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Abstract. In this paper we discuss some fundamental results in real and func-

tional analysis including the Riesz representation theorem, the Hahn-Banach

theorem, and the Baire category theorem. We also discuss applications of
these theorems to other topics in analysis.
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1. Introduction

The goal of this paper is to develop the foundations of functional analysis. In
doing so, we first review some basic concepts from real analysis. After a brief
review of Banach space and Hilbert space theory, we introduce Lp spaces, which
will serve as our primary working example throughout the paper. We circumvent a
detailed discussion of measure theory and simply assume the reader is comfortable
with Lebesgue integration. In section 4, we introduce bounded linear operators and
dual spaces which are the building blocks in the theory that follows. We conclude
this section with the Riesz representation theorem which states that the dual of
any Hilbert space is isometrically isomorphic with itself. The Riesz representation
theorem is undoubtedly one of the most important results in real analysis, because it
allows us to explicitly describe certain dual spaces. In section 5, we prove the Hahn-
Banach theorem using Zorn’s Lemma and discuss some corollaries. We continue by
proving two geometric versions of the Hahn-Banach theorem. In section 6, we prove
the Baire category theorem in order to prove the uniform boundedness principle. In
the final section, we introduce the notions of weak and weak-* convergence. We will
apply the Hahn-Banach theorem and the uniform boundedness principle to deduce
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properties of these weaker topologies. The weak topologies are fundamental in the
study of functional analysis and partial differential equations.

2. Some Basic Definitions

In this section we define Banach spaces and Hilbert spaces. We also note that
every Hilbert space is a Banach space under an appropriate norm, but the converse
is not always true.

Definition 2.1. A normed linear space is a vector space X over R and a func-
tion ‖ · ‖ : X → R satisfying:

(i) ‖x‖ ≥ 0 for all x ∈ X,
(ii) ‖x‖ = 0 if and only if x = 0,

(iii) ‖αx‖ = |α|‖x‖ for all x ∈ X, α ∈ R,
(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A metric space X is complete if every Cauchy sequence in X converges. A Banach
space is a complete normed linear space.

Definition 2.2. A subset Y of a Banach space X is dense in X if for every ε > 0
and x ∈ X there exists a y ∈ Y such that ‖x− y‖ < ε (or equivalently if Y = X).
A Banach space X is separable if it has a countable dense subset.

We can generalize the notion of length through the norm, and similarly we can
generalize the notion of the angle between two elements by introducing the inner
product.

Definition 2.3. An inner product over R, on a general vector space X, is a map
(·, ·) : X ×X → R, such that

(i) (λx+ µy, z) = λ(x, z) + µ(y, z)
(ii) (x, y) = (y, x) for all x, y ∈ X, and
(iii) (x, x) ≥ 0 for all x ∈ X, with equality if and only if x = 0.

The natural norm associated with the inner product is given by,

(2.4) ‖x‖ = (x, x)1/2.

Definition 2.5. A Hilbert Space is a complete inner product space.

We now state a very useful inequality that provides the triangle inequality for
the norm defined in (2.4).

Theorem 2.6. (Cauchy-Schwarz Inequality) Let x, y ∈ X, then

|(x, y)| ≤ ‖x‖‖y‖.

By defining a norm through (2.4), any Hilbert space is also a Banach space.
However, the converse is not necessarily true. For example, the Lp spaces, p 6= 2,
are Banach spaces, but not Hilbert spaces. We will discuss Lp spaces in section 3.
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3. Preliminaries

In this section we wish to review the theory of Lp spaces of Lebesgue integrable
functions and some properties of Hilbert spaces.

We begin by stating the dominated convergence theorem, a fundamental conver-
gence result from the theory of Lebesgue integration:

Theorem 3.1. (Dominated Convergence Theorem) Let Ω be an open subset
of Rn and {fn} be a sequence of measurable functions converging pointwise almost
everywhere to a limit on Ω. If there is a function g ∈ L1(Ω) such that |fn(x)| ≤ g(x)
for every n and almost every x ∈ Ω, then

lim
n→∞

∫
Ω

fn(x) dx =

∫
Ω

(
lim
n→∞

fn(x)
)
dx.

Now we define the norm on Lp(Ω), 1 ≤ p <∞, which makes use of the Lebesgue
integral:

Definition 3.2. The Lp-norm is given by the integral (to be understood in the
Lebesgue sense):

(3.3) ‖f‖Lp =

(∫
Ω

|f(x)|pdx
)1/p

,

and we define the space

Lp(Ω) = {f : ‖f‖Lp <∞}
with 1 ≤ p <∞.

Next we record Hölder’s inequality which is used to prove the triangle inequality
for the Lp-norm:

Lemma 3.4. (Hölder′s Inequality) Let p, q > 1 with p−1 + q−1 = 1 and 1 < p <
∞, and suppose that f ∈ Lp(Ω) and g ∈ Lq(Ω). Then, fg ∈ L1(Ω), with

(3.5) ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Now we state the triangle inequality for the Lp spaces, which is called Minkowski’s
inequality.

Lemma 3.6. (Minkowski′s Inequality) If f, g ∈ Lp(Ω), 1 ≤ p < ∞, then
f + g ∈ Lp(Ω), with

(3.7) ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lq .

Although we do not prove it here, one can show that all Lp spaces are complete
and thus Banach spaces.

One “Lebesgue” space that does not arise naturally from the integration theory
is L∞(Ω), the space of “essentially bounded” functions.

Definition 3.8. L∞(Ω) is the space of all functions f such that the essential
supremum of f, given by

(3.9) ‖f‖∞ = ess supΩ |f(x)|,
is finite. The essential supremum of f is the smallest value that bounds f almost
anywhere:

ess supΩ |f(x)| = inf

{
sup
x∈S
|f(x)| : S ⊂ Ω, with Ω \ S of measure zero

}
.
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In particular |f(x)| ≤ ‖f‖∞ almost everywhere, and it follows that if f ∈ C0
b (Ω),

the space of bounded continuous functions on Ω, then the essential supremum of f
is the same as its supremum.

Remark 3.10. L∞ is a Banach space.

Now we define a related family of spaces, the lp spaces of sequences.

Definition 3.11. For 1 ≤ p <∞, lp is the space of all infinite sequences {xn}∞n=1

such that the lp-norm

(3.12) ‖x‖lp =

 ∞∑
j=1

|xj |p
1/p

is finite. l∞ consists of all bounded sequences, with norm

(3.13) ‖x‖l∞ = sup
j∈Z+

|xj |.

At this point we wish to clarify the relationship between Lp and lp spaces. First,
consider the characteristic function:

χ[n,n+1](x) =

{
1 : x ∈ [n, n+ 1]
0 : x /∈ [n, n+ 1]

Given {αn} ∈ lp, let f be defined such that

f(x) =

∞∑
n=1

αnχ[n,n+1](x).

Then the Lp norm of f is

‖f(x)‖Lp =

(∫ ( ∞∑
n=1

αnχ[n,n+1](x)

)p)1/p

=

( ∞∑
n=1

(αn)p

)1/p

= ‖αn‖lp <∞.

which is the lp-norm of the sequence {αn}∞n=1 with f ∈ Lp.

We end this section by stating, without proof, the orthogonal decomposition of
Hilbert spaces onto a linear subspace. We will use this result in the proof of the
Riesz representation theorem.

Definition 3.14. If M is a subset of a Hilbert space H, then the orthogonal
complement of H, M⊥, is given by

M⊥ = {u ∈ H : (u, v) = 0 for all v ∈M}.

Proposition 3.15. If M is a closed linear subspace of H, then every x ∈ H has a
unique decomposition as

x = u+ v, u ∈M,v ∈M⊥.
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4. Dual Spaces and the Riesz Representation Theorem

In this section we prove some useful results about bounded linear operators and
introduce dual spaces. We then prove our first major result, the Riesz representation
theorem.

Definition 4.1. An operator A on a vector space V is linear if

A(x+ λy) = Ax+ λAy

for all x, y ∈ V and λ ∈ R (or C).

Definition 4.2. A linear operator A from a normed vector space (X, ‖ · ‖X) into
another normed space (Y , ‖ ·‖Y ) is bounded if there exists a constant M such that

(4.3) ‖Ax‖Y ≤M‖x‖X for all x ∈ X.

Let L(X,Y ) denote the space of all bounded linear maps from X into Y.

Definition 4.4. The operator norm of an operator A : X → Y is the smallest
value of M such that (4.3) holds:

(4.5) ‖A‖L(X,Y ) = inf{M : ‖Ax‖Y ≤M‖x‖X for all x ∈ X}.
Equivalently,

(4.6) ‖A‖L(X,Y ) = sup
x 6=0

‖Ax‖Y
‖x‖X

= sup
‖x‖X=1

‖Ax‖Y .

The space L(X,Y ) is a Banach space whenever Y is a Banach space; this does
not depend on whether or not the space X is complete.

Proposition 4.7. Let X be a normed vector space and Y a Banach space. Then
L(X,Y ) is a Banach space.

Proof. Let {An} be a Cauchy sequence in L(X,Y ). We want to show that An → A
for some A ∈ L(X,Y ). Since An is Cauchy, given ε > 0 there exists an N such that

(4.8) ‖An −Am‖L(X,Y ) ≤ ε for all n,m ≥ N.
We now show that for every fixed x ∈ X the sequence {Anx} is Cauchy in Y . This
follows since

(4.9) ‖Anx−Amx‖Y = ‖(An −Am)x‖Y ≤ ‖An −Am‖L(X,Y )‖x‖X ,
and {An} is Cauchy in L(X,Y ). Since Y is complete, it follows that Anx → y,
where y depends on x. Let us define a mapping A : X → Y by Ax = y. First we
show that A is linear since

A(x+ λy) = lim
n→∞

An(x+ λy) = lim
n→∞

Anx+ λ lim
n→∞

Any = Ax+ λAy.

In order to show that A is bounded, take n,m ≥ N (from (4.8)) in (4.9) and let
m→∞. Since Amx→ Ax this shows that

(4.10) ‖Anx−Ax‖Y ≤ ε‖x‖X .
Since (4.10) holds for every x it follows that

(4.11) ‖An −A‖L(X,Y ) ≤ ε,
and so An − A ∈ L(X,Y ). Since L(X,Y ) is a vector space and An ∈ L(X,Y ) it
follows that A ∈ L(X,Y ), and An → A in L(X,Y ). �
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An extremely useful property of linear operators is that boundedness is equiva-
lent to continuity.

Proposition 4.12. Let L : X → Y be a linear map. Then L is continuous if and
only if it is bounded.

Proof. First let us suppose L is bounded, then

‖L(xn − x)‖Y ≤ ‖L‖L(X,Y )‖xn − x‖X ,
which implies continuity since given any ε > 0 there exists δ > 0 such that ‖xn −
x‖X < δ implies ‖L(xn − x)‖Y < ε.

Now let us suppose L is continuous but unbounded; this implies that for every
n there exists a yn such that ‖Lyn‖Y > n2‖yn‖X . Now let

xn =
yn

(n‖yn‖X)
→ 0,

but ‖lxn‖Y > n, so that L is not continuous at the origin, which is a contradiction.
Thus continuity implies boundedness. �

Definition 4.13. A bounded linear map from a Banach space X into R (an element
of L(X,R)) is called a linear functional on X. The space L(X,R) of all linear
functionals on X is denoted by X∗ and is called the dual space of X.

Before we start working with dual spaces, we will provide an example using Lp

spaces.

Example 4.14. The Dual Space of Lp, 1 < p <∞:
Let p, q > 1 with p−1 + q−1 = 1. Then if f ∈ Lq(Ω), we can define a linear

functional Lf on Lp by

(4.15) Lf (g) =

∫
Ω

f(x)g(x)dx,

and this is well defined because Hölder’s inequality gives us

|Lf (g)| ≤ ‖f‖Lq‖g‖Lp <∞.
Clearly, we have ‖Lf‖(Lp)∗ ≤ ‖f‖Lq . If we set

g(x) = |f(x)|q−2f(x)

then

‖g(x)‖Lp =

(∫
Ω

|f(x)|(q−1)pdx

)1/p

=

(∫
Ω

|f(x)|qdx
)1/p

= ‖f‖q/pLq ,

and

|Lf (g)| =
∣∣∣∣∫

Ω

|f(x)|qdx
∣∣∣∣ = ‖f‖qLq .

Therefore,

|Lf (g)| = ‖f‖Lq‖g‖Lp ,

showing that we have

‖Lf (g)‖(Lp)∗ = ‖f‖Lq .

We have shown that the map f 7→ Lf is an isometry from Lq into (Lp)∗. Fur-
thermore, one can show that every element of (Lp)∗ can be realized as Lf for some
f ∈ Lq. (In other words that the map f 7→ Lf is onto). It follows that Lq and
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(Lp)∗ are isometrically isomorphic, denoted as Lq ' (Lp)∗. We conclude that every
element of (Lp)∗ can be identified with an element of Lq.

It is important to note that (L∞)∗ 6' L1. We will prove this later using the
Hahn-Banach theorem.

Now we show that for any Hilbert Space H, the dual of H is identifiable with H
itself. In particular, we show that any linear functional l on H can be represented
as an inner product with some appropriate element xl of H itself:

Theorem 4.16. (Riesz Representation Theorem). For any Hilbert space H,
H∗ ' H. In particular, for every x ∈ H,

(4.17) lx(y) ≡ (x, y)

is bounded and has norm ‖lx‖H∗ = ‖x‖. Furthermore, for every bounded linear
functional l ∈ H∗ there exists a unique xl ∈ H such that

(4.18) l(y) = (xl, y) for all y ∈ H,
and ‖xl‖H = ‖l‖H∗ . It follows that l 7→ xl is continuous.

Proof. By using equation (4.17) and the Cauchy-Schwarz inequality we get

|lx(y)| = |(x, y)| ≤ ‖x‖‖y‖
so that lx ∈ H∗ with ‖lx‖H∗ ≤ ‖x‖, thus lx is bounded. By choosing y = x we see
that in fact ‖lx‖H∗ = ‖x‖.

Now suppose that l ∈ H∗. Since l is bounded it is also continuous by Prop. 4.12.
We know that if l is continuous then the pre-image of a closed set is closed. Then
the kernel of l, K = {y ∈ H : l(y) = 0}, is a closed subspace of H. We next observe
that the subspace K⊥ of vectors orthogonal to K is a one-dimensional subspace of
H. To see this, for u, v ∈ K⊥ we have

l[l(u)v − l(v)u] = 0

and so [l(u)v − l(v)u] ∈ K by definition. Since u and v are orthogonal to K, so is
l(u)v − l(v)u. Thus l(u)v − l(v)u is in K and K⊥ and hence is equal to 0. This
shows that u and v are proportional.

Now choose a unit vector z ∈ K⊥. By Prop. 3.15, we can decompose every
y ∈ H as y = (z, y)z + w, where w ∈ K. Then l(y) = (z, y)l(z), and so if we set
xl = l(z)z, we have

(xl, y) = (l(z)z, y) = l(z)(z, y) = l(y).

Again using Cauchy-Schwarz we see that ‖l‖H∗ ≤ ‖xl‖H and in fact, ‖l‖H∗ =
‖xl‖H . To show that xl is unique suppose l(y) = (x1, y) = (x2, y), with x1, x2 ∈ K⊥.
This implies that x1 = λx2 for some λ ∈ R. Therefore, x1 = x2. It also follows
that l 7→ xl is continuous since l is bounded. �

5. The Hahn-Banach Theorem

5.1. The Analytic Hahn-Banach Theorem.

Definition 5.1. A set S is called partially ordered if there is a relation x ≺ y
defined for certain pairs of elements (x, y) of S such that

(i) x ≺ x for all x ∈ S,
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(ii) x ≺ y, y ≺ x implies x = y,
(iii) x ≺ y, y ≺ z implies x ≺ z.

Definition 5.2. The set S is called totally ordered if for each pair (x, y) of
elements of S, one has either x ≺ y or y ≺ x (or both).

Definition 5.3. Let T be a subset of a partially ordered set S. Then x0 ∈ S is an
upper bound of T if x ≺ x0 for all x ∈ T . An element x0 is said to be maximal
for S if x0 ≺ x implies x = x0.

Lemma 5.4. (Zorn′s Lemma) If S is a partially ordered set such that each totally
ordered subset has an upper bound in S, then S has a maximal element.

Now we prove that any linear functional defined on a linear subspace of a Banach
space X can be extended to a bounded functional on all of X:

Theorem 5.5. (Hahn-Banach Theorem) Let E be a vector space and p : E → R
be a function such that

(i) p(λx) = λp(x) for all x ∈ E and λ ∈ R, λ > 0 (homogeneity),
(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ E (sublinearity).

Suppose G is a subspace of E and g is a linear functional defined on G which satisfies
g(x) ≤ p(x) for all x ∈ G. Then, there exists a linear functional f : E → R with
f(x) = g(x) for all x ∈ G and f(y) ≤ p(y) for all y ∈ E.

Proof. Let P denote the set of all linear maps h : D(h) → R, where D(h) is a
subspace of E, such that

h|G = g, and h(x) ≤ p(x) for all x ∈ D(h).

Clearly P is nonempty since g ∈ P .
Let us define a partial order on P such that

h1 ≤ h2 if and only if D(h1) ⊂ D(h2) and h2(x) = h1(x) for all x ∈ D(h1).

Now we will show that every totally ordered subset Q of P has an upper bound.
Let

Q = (hi)i∈I .

If

D(h) =
⋃
i∈I

D(hi) and h(x) = hi(x) for all x ∈ D(hi)

then h ∈ P and hi ≤ h for all i ∈ I, and therefore, h is an upper bound. By Zorn’s
Lemma P admits a maximal element, f .

Then by construction f : D(f) → R, f(x) = g(x) for all x ∈ G, and f ≤ p on
D(f).

If D(f) = E then the proof is complete.
If D(f) 6= E then there exists x0 ∈ E \D(f). We will show that f can be further

extended which contradicts the maximality of f . Let us construct

f̃ : D(f) + Rx0 = D(f̃)→ R.

Define f̃(x0) = α and f̃(x+ tx0) = f(x) + tα. Clearly f̃ is a linear functional that
extends g.
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Now we want to show f(x) + tα ≤ p(x+ tx0) for all t ∈ R and x ∈ D(f). Since
p is positively homogeneous of degree 1, let t = ±1, so

f(x)− α ≤ p(x− x0)

f(y) + α ≤ p(y + x0),

for all x, y ∈ D(f). Then

f(x)− p(x− x0) ≤ α ≤ p(y + x0)− f(y),

for all x, y ∈ D(f). Now it suffices to show that

f(x)− p(x− x0) ≤ p(y + x0)− f(y),

and we know that

f(x) + f(y) = f(x+ y) ≤ p(x+ y) ≤ p(x− x0) + p(y + x0),

since f ≤ p on D(f). Thus we have shown that f can be further extended, which
contradicts the maximality of f in E. Hence D(f) = E and the theorem is proved.

�

The Hahn-Banach theorem is an extremely powerful tool in functional analysis;
here we state just a few of its immediate consequences:

Remark 5.6. Note that if we let p(x) = ‖g‖G∗‖x‖, then by the Hahn-Banach theo-
rem there exists f ∈ E∗ such that f(x) = g(x) for all x ∈ G and f(y) ≤ ‖g‖G∗‖y‖
for all y ∈ E. It follows that

‖f‖E∗ = sup
x∈E

|f(x)|
‖x‖

= ‖g‖G∗ .

Corollary 5.7. Let X be a Banach space.

(i) If x ∈ X, then there exists f ∈ X∗ such that ‖f‖X∗ = 1, f(x) = ‖x‖X .
(ii) For all x ∈ X,

‖x‖X = max
f∈X∗,‖f‖≤1

f(x).

Proof. (i) Let G be a subspace of E such that G = Rx. Define g : G→ R on G by

g(αx) = α‖x‖ for all α ∈ R.

Then g is linear, and

|g(αx)| = |α| · ‖x‖ = ‖αx‖.
So g is bounded on G and,

‖g‖G∗ = sup
x∈G,x 6=0

g(x)

‖x‖
= 1.

Then by the Hahn-Banach theorem, there is a bounded linear functional f on X
such that ‖f‖X∗ = 1 and f(x) = ‖x‖X .

(ii) It follows from Remark 5.6 that

|f(x)| ≤ ‖f‖‖x‖.

Therefore,

‖x‖ ≥ sup
f∈X∗,f 6=0

|f(x)|
‖f‖

.
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However, by (i) for each x ∈ X there is an f ∈ X∗ such that ‖f‖ = 1 and
f(x) = ‖x‖. So,

‖x‖ = max
f∈X∗,f 6=0

|f(x)|
‖f‖

.

�

Corollary 5.8. Let X be a Banach space. If x, y ∈ X and f(x) = f(y) for every
f ∈ X∗ then x = y.

Proof. If x = y = 0 then the proof is done. Therefore, without loss of generality
assume that x 6= 0. Assume x 6= y and let Y be the linear subspace spanned by x
and y. If x and y are linearly dependent, set

g(αx) = α|x|,

otherwise set

g(αx+ βy) = α|x| for all β ∈ R.
In both cases g(x) 6= g(y). Then by using the Hahn-Banach theorem, we can extend
g to an element f ∈ X∗. Clearly, f(x) 6= f(y). �

We use the Hahn-Banach theorem in the following example to show that L1 is
not the whole dual space of L∞.

Example 5.9. We want to show that not every element of the dual of L∞ is given
by

Λ(g) =

∫ 1

−1

f(x)g(x) dx

for some f ∈ L1.

Proof. Let C[−1, 1] be the space of continuous functions on the closed interval
[−1, 1]. Clearly, C[−1, 1] is a subspace of L∞[−1, 1]. Also, C[−1, 1] is a Banach
space with norm

‖ · ‖∞ = max
x∈[−1,1]

|f(x)|.

Let Λ : C[−1, 1]→ R be such that Λ(f) = f(0) ≤ ‖f‖∞ and assume Λ is linear.
By the Hahn-Banach theorem, there exists Λ : L∞[−1, 1]→ R such that

Λ(f) = f(0) for all f ∈ C[−1, 1],

and Λ ∈ (L∞)∗. We want to show that there does not exist g ∈ L1 such that

Λ(f) =

∫ 1

−1

f(x)g(x)dx for all f ∈ L∞[−1, 1].

To show this suppose there exists such a function g ∈ L1[−1, 1]. Consider the
sequence of functions {fn} such that

fn(x) = max{1− n|x|, 0}.

fn(x) converges to 0 pointwise and clearly, |f(x)| ≤ 1.
We know Λ is well defined since∫

|fn(x)g(x)|dx ≤
∫
|g(x)|dx <∞.
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Hence, by the dominated convergence theorem we have

lim
n→∞

Λ(fn) = lim
n→∞

∫
fn(x)g(x)dx =

∫
lim
n→∞

fn(x)g(x)dx = 0.

However, fn(0) = 1 for all n, by definition, which leads to a contradiction. This
shows that there does not exist such a function g ∈ L1[−1, 1]. �

5.2. The Geometric Hahn-Banach Theorems. Here we apply the analytic
Hahn-Banach theorem to prove two versions of the geometric Hahn-Banach theo-
rem. The geometric versions of the Hahn-Banach theorem are often more useful
when trying to prove results in analysis.

Definition 5.10. Let f : E → R be a nonzero linear functional, and α ∈ R. We
then define a hyperplane H on E by the set H = {x ∈ E : f(x) = α}.

Definition 5.11. Let E be a normed vector space and let A and B be subsets
of E. We say that a hyperplane H = {x ∈ E : f(x) = α} separates A and B if
f(x) ≤ α for all x ∈ A and f(y) ≥ α for all y ∈ B. H strictly separates A and B
if f(x) < α for all x ∈ A and f(y) > α for all y ∈ B.

We state and prove two lemmas that will allow us to prove one version of the
Geometric Hahn-Banach theorem.

Lemma 5.12. Let C be an open convex subset of a normed vector space E such
that 0 ∈ C. Then there exists p : E → R such that

(i) p(βx) = βp(x) for all β ∈ R and x ∈ E,
(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ E,

(iii) 0 ≤ p(x) ≤M‖x‖ for all x ∈ E,
(iv) C = {x ∈ E : p(x) < 1}.

Proof. For all x ∈ E define p(x) = inf{α > 0 : α−1x ∈ C}.
(i) Clearly, p(βx) = inf{α > 0 : α−1βx ∈ C} = βp(x).

(iii) Since C is open, there exists an r > 0 such that B(0, r) ⊂ C, which im-
plies p(x) ≤ 1

r‖x‖ for all x ∈ E. Set M = 1
r .

(iv) Since C is open, x ∈ C implies (1 + ε)x ∈ C, 0 < ε � 1. By definition it
follows that p(x) ≤ 1

1+ε < 1, which implies that C ⊆ {p(x) < 1}. Now suppose

that p(x) < 1, then there exists α ∈ (0, 1) such that α−1x ∈ C. Since C is convex
and 0, α−1x ∈ C this implies x ∈ C. This shows that C = {x ∈ E : p(x) < 1}.

(ii) For every x ∈ E and ε > 0,

x

p(x) + ε
∈ C,

because

p

(
x

p(x) + ε

)
=

p(x)

p(x) + ε
< 1.

Again, since C is convex, for all t ∈ [0, 1],

tx

p(x) + ε
+

(1− t)y
p(y) + ε

∈ C.
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Now, set

t =
p(x) + ε

p(x) + p(y) + 2ε

It follows that

x+ y

p(x) + p(y) + 2ε
∈ C, and p

(
x+ y

p(x) + p(y) + 2ε

)
< 1.

This gives

p(x+ y) ≤ p(x) + p(y) + 2ε.

�

Lemma 5.13. Let C be a nonempty open convex subset of a normed vector space
E and x0 ∈ E \C. Then there exists f ∈ E∗ such that f(x) < f(x0) for all x ∈ C.

Proof. Without loss of generality, assume 0 ∈ C. Let G be a subspace of E such
that G = Rx0 and g : G→ R be a linear functional such that g(tx0) = t.

Define p : E → R as in Lemma 5.12 above. Note that x0 6∈ C, then g ≤ p on G
since 1 ≤ p(x0). Then by the Hahn-Banach theorem, there exists a bounded linear
functional f : E → R such that f(x) = g(x) for all x ∈ G and f ≤ p on E.

It follows that f(x) ≤ M‖x‖ for all x ∈ E, and f(x) ≤ p(x) < 1 for all x ∈ C.
Set f(x0) = 1, then f(x) < f(x0) for all x ∈ C. �

Now we are well equipped to prove the geometric Hahn-Banach theorems:

Theorem 5.14. (Geometric Hahn-Banach 1). Let A and B be nonempty dis-
joint convex subsets of a normed vector space E. If A is open, then there exists a
hyperplane H separating A and B.

Proof. Let C = A−B = {x− y : x ∈ A, y ∈ B}. Since A and B are disjoint 0 6∈ C.
It is easy to see that C is also a nonempty open convex subset of E.

By Lemma 5.13, if x0 ∈ E \C, then there exists f ∈ E∗ such that f(z) < f(x0)
for all z ∈ C. Let x0 = 0 and f(0) = 0. Then, f(z) < 0 for all z ∈ C.

It follows that

f(x− y) < 0,

f(x) ≤ f(y) for all x ∈ A, y ∈ B.
So there exists an α ∈ R such that

sup
x∈A

f(x) ≤ α ≤ inf
y∈B

f(y).

Thus the hyperplane H = {x ∈ E : f(x) = α} separates A and B. �

Theorem 5.15. (Geometric Hahn-Banach 2). Let A and B be nonempty dis-
joint convex subsets of a normed vector space E. If A is closed and B is compact,
then there exists a hyperplane H that strictly separates A and B.

Proof. Define Aε = A + B(0, ε) and Bε = B + B(0, ε). Then, both Aε and Bε are
nonempty, open and convex.

We claim there exists ε > 0 such that Aε ∩ Bε = ∅. To see why, suppose not.
Then for every ε > 0 we have Aε ∩Bε 6= ∅. Choose a sequence {εk} → 0 such that
we can find sequences {xk} ⊂ A and {yk} ⊂ B satisfying

|xk − yk| < 2εk.
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for all k ≥ N , N ∈ N.
Since B is compact, {yk} has a convergent subsequence {ykj} such that {ykj} →

y in B. So there exists N1 ∈ N such that for all k ≥ N1

|ykj − y| < 2εkj .

Define a subsequence {xkj} of {xk} such that

|xkj − ykj | < 2εkj .

Then,
|xkj − y| ≤ |xkj − ykj |+ |ykj − y| < 4εkj .

Since A is closed, it must follow that y ∈ A and y ∈ B. This is a contradiction
since A and B are disjoint, so Aε ∩Bε = ∅ for some ε > 0.

Now if we apply the first geometric Hahn-Banach theorem (Theorem 5.13) on
Aε and Bε we have

f(x+ βε) ≤ α ≤ f(y − βε) for all x ∈ A, y ∈ B,
for some 0 < β < 1. Hence, A and B are strictly separated by the hyperplane
H = {x ∈ E : f(x) = α}. �

Here we state one important corollary of the the second geometric Hahn-Banach
theorem.

Corollary 5.16. Let F be a subspace of a normed vector space E such that F 6= E.
Then there exists f ∈ E∗ \ {0} such that f(x) = 0 for all x ∈ F .

Proof. Since F 6= E, there exists x0 ∈ E\F . Let A = F and B = {x0}. Then by the
second geometric Hahn-Banach theorem (Theorem 5.15) there exists a hyperplane
determined by the pair (f, α), f ∈ E∗, that strictly separates A and B,

(5.17) f(x) < α < f(y) for all x ∈ A.
Now since A is a subspace of E it is closed under scalar multiplication and since
(5.17) holds for all x ∈ A we can write:

f(βx) = βf(x) < α < f(y) for all x ∈ A, β ∈ R.
In order for this to hold, f(x) is necessarily 0 for all x ∈ F . �

This corollary is one of the most important results related to the Hahn-Banach
theorem, because it provides an alternative way of showing density of a subspace.
This is often much easier to work with than trying to verify the topological definition
of a dense subspace.

6. The Baire Category Theorem and the Uniform Boundedness
Principle

Another fundamental result in functional analysis is the uniform boundedness
principle. In order to prove the uniform boundedness principle, we will have to use
the following topological result from real analysis, the Baire Category theorem.

Theorem 6.1. (Baire Category Theorem). If Ui is a countable family of dense
open subsets of a Banach space X, then

U =

∞⋂
n=1

Un
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is dense in X.

Proof. Take x ∈ X, and r > 0; we want to show that B(x, r)
⋂
U is not empty.

Now, since each Un is dense and open, for some y ∈ Un and s > 0, we have

B(x, r) ∩ Un ⊃ B(y, 2s) ⊃ B(y, s).

First take x1 ∈ X and r1 < 1/2 such that B(x1, r1) ⊂ U1 ∩ B(x, r), then take
x2 ∈ X and r2 < 2−2 such that B(x2, r2) ⊂ U2 ∩ B(x1, r1), and in general take
xn ∈ X and rn < 2−n such that B(xn, rn) ⊂ Un∩B(xn−1, rn−1). By this we obtain
a nested sequence of closed sets

(6.2) B(x1, r1) ⊃ B(x2, r2) ⊃ · · ·.

Since the space X is complete we have,

∞⋂
n=1

B(xn, rn) = x0.

So, the points {xj} form a Cauchy sequence by (6.2), and they converge to x0,

which is the intersection of all the nested sets. Now, x0 ∈ B(x1, r1) ⊂ B(x, r), and
also x0 ∈ B(xn, rn) ⊂ Un for all n. So x0 ∈ U ∩B(x, r) as asserted. �

By taking complements, we have this immediate useful corollary:

Corollary 6.3. Let X be a Banach space and Fj a countable sequence of nowhere
dense subsets. Then

∞⋃
j=1

Fj 6= X.

We now prove the uniform boundedness principle, which will come into play in
proving some results about weak convergence.

Theorem 6.4. (Uniform Boundedness Principle). Let X be a Banach space
and Y normed space. Let S ⊂ L(X,Y ), and let

sup
T∈S
‖Tx‖Y <∞ for all x ∈ X.

Then

sup
T∈S
‖T‖L(X,Y ) <∞.

Proof. Consider the sets

Gj = {x ∈ X : ‖Tx‖Y ≤ j for all T ∈ S}.

Then
⋃
j Gj = X, and since Gj is closed, Corollary 6.3 shows that at least one of

the Gj must have a nonempty interior, call it Gn. Then there exists y ∈ X, and
r > 0 such that B(y, r) ⊂ Gn.
Therefore, if ‖x‖X ≤ r, so that (y + x) ∈ Gn,

‖Tx‖Y = ‖T (y + x) + T (−y)‖ ≤ n+ ‖Ty‖Y ≤ R

for some R > 0, since supT∈S ‖Ty‖Y is bounded. Thus, for any x with ‖x‖X = r
we have

‖Tx‖Y ≤
R

r
‖x‖X , for all T ∈ S.
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This shows that,

‖T‖L(X,Y ) ≤
R

r
for all T ∈ S,

�

7. Weak and Weak-* Convergence

First, we introduce the notion of a reflexive space in order to prove some basic
results about weak convergence.

Let X be a general Banach space. Then for an element x ∈ X we can define a
linear functional Gx on X∗ by

(7.1) Gx(f) = f(x) for all f ∈ X∗.

with Gx ∈ X∗∗ ≡ (X∗)∗. If we set Ax = Gx we get a linear map A : X → X∗∗.
Note that

|Gx(f)| ≤ ‖f‖X∗‖x‖,
then,

‖Gx‖X∗∗ ≤ ‖x‖.
Now by Corollary 5.7, given an x ∈ X there exists an f ∈ X∗ with ‖f‖X∗ = 1 and
f(x) = |x|; therefore,

(7.2) ‖Gx‖X∗∗ = ‖x‖,

and hence A is an isometry from X onto a subspace of X∗∗. When the isometry is
onto (when X ' X∗∗), we say that X is reflexive.

Definition 7.3. Let X be a Banach space. A sequence xn ∈ X converges weakly
to x ∈ X, denoted by

xn ⇀ x in X,

if f(xn)→ f(x) for every f ∈ X∗.

In order to motivate the preceding terminology, we point out that the standard
notion of convergence in the norm is referred to as strong convergence. Now we
show that strong convergence implies weak convergence, but the converse is not
always true.

Lemma 7.4. If xn → x (strong convergence) then xn ⇀ x (weak convergence).

Proof. Every element of the dual space, X∗ is a bounded linear functional and
therefore is continuous. So, f(xn) → f(x) for every f ∈ X∗, which is exactly
xn ⇀ x. �

Example 7.5. Here we provide a simple example of weakly convergent subse-
quences that do not converge strongly:

Let {ej} be an orthonormal basis in a separable Hilbert space. The unit ball in
an infinite-dimensional Hilbert space is not compact, so the {ej} have no convergent
subsequence. Hence the sequence {ej} does not converge strongly. However, we
will show that ej ⇀ 0.
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By the Riesz representation theorem, every element l ∈ H∗ has a representation
as (xl, ·) for some xl ∈ H. It suffices to consider sequences (xl, ej) for each xl ∈ H.
Now since {ej} is an orthonormal basis, we have

‖xl‖2 =

∞∑
j=l

|(xl, ej)|2,

and as j → ∞ we have |(xl, ej)| → 0. And this is precisely l(ej) → 0 for every
l ∈ H∗, and therefore ej ⇀ 0.

The following result relies on the Hahn-Banach Theorem and uniform bounded-
ness principle.

Proposition 7.6. Weak limits are unique, and weakly convergent sequences are
bounded.

Proof. If xn ⇀ x and xn ⇀ y then it follows that f(x) = f(y) for every f ∈ X∗.
By Corollary 5.8, this implies that x = y.

For boundedness, notice that for each f ∈ X∗, {f(xn)} is a convergent sequence
of real numbers and is bounded,

|f(xn)| ≤ Cf for all n.

Now define an element Gn ∈ X∗∗ that corresponds to xn,

Gn(f) = f(xn) for all f ∈ X∗.
Then

|Gn(f)| ≤ Cf for all n,

and {Gn(f)} is a bounded sequence for every f ∈ X∗. By Prop. 4.7 X∗ is complete
and then by the uniform boundedness principle the sequence {‖Gn‖X∗∗} is bounded.
Finally, by equation (7.2) ‖Gn‖X∗∗ = ‖xn‖, so {xn} is bounded as wanted. �

Taking weak limits can decrease the norm, however it can never increase it. The
following lemma shows this:

Lemma 7.7. If xn ⇀ x in X then

‖x‖ ≤ lim inf
n→∞

‖xn‖.

Proof. If xn ⇀ x, choose f ∈ X∗ such that ‖f‖X∗ = 1, f(x) = ‖x‖X (Corollary
5.7). Then

‖x‖ = ‖f(x)‖ = lim
n→∞

‖f(xn)‖ ≤ lim inf
n→∞

‖f‖X∗‖xn‖ = lim inf
n→∞

‖xn‖.

�

Now we introduce the notion of weak-* convergence which is a type of weak
convergence for a sequence {fn} in X∗ defined in terms of the action of the fn on
elements of X.

Definition 7.8. A sequence fn ∈ X∗ converges weakly-* to f , written

fn
∗
⇀ f,

if fn(x)→ f(x) for every x ∈ X.

Proposition 7.9. -

(i) Weak-* limits are unique, and weakly-* convergent sequences are bounded,
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(ii) weak convergence implies weak-* convergence, and
(iii) weak-* convergence implies weak convergence if X is reflexive.

Proof. (i) Uniqueness follows directly from the definition: if f, g ∈ X∗ with f(x) =
g(x) for all x ∈ X, then f = g. We can apply the uniform boundedness principle
directly to the sequence {fn} to show it is bounded (this is identical to the proof
of Prop 7.6).
(ii) By (7.1) we have X ⊂ X∗∗, using

(7.10) Gx(f) = f(x) for all f ∈ X∗.
By weak convergence we have

(7.11) G(fn)→ G(f) for all G ∈ X∗∗.
In particular we have

Gx(fn)→ Gx(f) for some x ∈ X.
Which gives by definition of Gx,

fn(x)→ f(x) for all x ∈ X.
which is weak-* convergence.
(iii) If X is reflexive then every element of G ∈ X∗∗ can be written as Gx for some
x ∈ X (see 7.10). Now for each G we have

Gx(fn) = fn(x)→ f(x) = Gx(f)

by weak-* convergence. Since (7.11) holds for all G ∈ X∗∗, weak convergence
follows. �
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