
DIFFERENTIAL GALOIS THEORY

Abstract. Differential Galois Theory is a branch of abstract algebra that

studies fields equipped with a derivation function. In much the same way

as ordinary Galois Theory studies field extensions generated by solutions of
polynomials over a base field, differential Galois Theory studies differential

field extensions generated by solutions to differential equations over a base

field. In this paper, we will present some of the basic machinery of differential
Galois theory before turning to the question of solving differential equations

in terms of integrals. This will lead us to a criterion for whether a function

can be integrated in elementary terms, and we will prove the non-integrability

of ex
2
.
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1. Basic Theory

We begin by defining our basic objects of study. All rings are with identity and
all fields have characteristic 0. We will typically use R to denote a ring, and F to
denote a field, though additional notation will be used in the cases where multiple
rings or fields are being discussed.

Definition 1.1. Let R be a ring. A derivation on R is a map D : R → R
satisfying: D(a + b) = D(a) + D(b) and D(ab) = aD(b) + D(a)b. A differential
ring is a ring R equipped with a derivation DR. A differential ring which is a field
is a differential field. We will often denote D(x) by x′, where x is an arbitrary
element. Additionally, we will use the notation Di, i ∈ Z+, to denote applying D
i-times. That is, for an arbitrary ring element x, Di(x) = D(D(...D(x)...)), where
D is applied i-times. By convention, D0(x) = x.

The usual formulae for derivatives hold in differential rings:

D(1) = 0

D(xn) = nxn−1D(x)

D(x
y ) = yD(x)−xD(y)

y2
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2 DIFFERENTIAL GALOIS THEORY

Definition 1.2. Let R be a differential ring. A differential ring extension of R is a
differential ring S such that R ⊆ S and DS(a) = DR(a) for all a ∈ R. Similarly, a
differential subring of R is a differential ring T such that T ⊆ R and DT (a) = DR(a)
for all a ∈ T .

Definition 1.3. Let R be a differential ring. The set of constants of R is the kernel
of DR, i.e. {a ∈ R|DR(a) = 0}.

It is clear that the set of constants of R is a subring; if R is a field, then the set
of constants is a subfield.

Definition 1.4. A homomorphism of differential rings ϕ : R→ S is a ring homo-
morphism such that DS(ϕ(a)) = ϕ(DR(a)) for all a ∈ R. In other words, the ring
homomorphism must commute with the derivation maps on R and S.

Definition 1.5. Let R be a differential ring, and let I ⊆ R be an ideal. I is a
differential ideal if DR(I) ⊆ I.

It is not difficult to see that if I is generated by X, i.e. I = (X), and DR(X) ⊆
(X), then I is a differential ideal. If I is a differential ideal, then the quotient ring
R/I can be made into a differential ring with derivation DR/I(a+ I) = DR(a) + I.
DR/I is well-defined because DR(I) ⊆ I.

Note: From now on, we write the derivation D on R without a subscript, except
in the event where ambiguity between derivations on different rings might arise.

We now consider how to extend a derivation on R to its ring of fractions. Let R
be a differential ring and let Q be a multiplicatively closed subset of R such that

1 ∈ Q and 0 /∈ Q. Define D : Q−1R → Q−1R by D(a/b) = bD(a)−aD(b)
b2 . To check

that D is well-defined, we consider the dual numbers of R:

Definition 1.6. Let R be a ring. The ring of dual numbers over R is the ring
R[ε]/(ε2) = R⊕Rε.

Since ε is nilpotent, x = a + bε is a unit in R[ε] if and only if a is a unit in R.
Additionally, it is not difficult to see that an additive homomorphism D : R→ R is
a derivation on R if and only if ψD = (idR, D) : R→ R[ε] is a ring homomorphism.

Now let R be as above. Then we have a ring homomorphism ψD = (idR, D) :
R → R[ε]. Consider the composition φ of ψD with the homomorphism R[ε] →
Q−1R[ε]. The resulting map takes q ∈ Q to x = q/1 + (D(q)/1)ε. Since q/1 is a
unit of Q−1R, x is a unit of Q−1R[ε]. This implies φ extends to a homomorphism
γ : Q−1R → Q−1R[ε], and it is clear that γ takes the form (idQ−1R, E), where E

extends D. Then it follows from our above observations that E(a/q) = qD(a)−aD(q)
q2 .

Hence, D(a/b) is well-defined.

This construction also shows that the fraction field of a differential integral do-
main is a differential field. We now delve into differential polynomial rings in one
variable, a topic central to this paper.

Definition 1.7. Let R be a differential ring. The ring of differential polynomials
over R in the variable Y is the polynomial ring R{Y } = R[{Y (i)|i = 0, 1, 2, ...}] in
the countable set of indeterminates Y (i), with derivation defined to extend that of
R and such that D(Y (i)) = Y (i+1).
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Although we formally adjoin countably many variables to form the ring of differ-
ential polynomials over R, the variables are related through the derivation function
in that D(Y (i)) = Y (i+1). Hence, we can think of this ring as being a polynomial
ring with a single variable together with its derivatives of all orders.

Elements of R{Y } can be understood as differential operators on R, in light of
the natural ring homomorphism R{Y } → End(R) sending Y (i) to Di and a ∈ R
to left multiplication by a. This leads to another important definition:

Definition 1.8. Let R be a differential ring. The homogenous linear differential
operators over R are the elements L ∈ R{Y } such that the degree in L of each
variable Y (i) is at most 1 for i = 0, 1, 2, ....

A typical homogenous linear differential operator over R looks like

L = Y (l) −
∑l−1

i=0 aiY
(i), ai ∈ R

Each variable Y (i) has degree 1. By way of comparison, the operator L = (Y (1))2−
Y (2) is not a homogenous linear differential operator, because the Y (1) term has
degree 2.

In the case of our example above, we say L is monic, since its leading coefficient
is 1. We call l the order of L. Later in this paper, we will discuss the problem of
finding linearly independent solutions to homogenous linear differential operators.
First, we present the definition of a linear differential ideal.

Definition 1.9. Let F be a differential field, and let F{Y }1 denote the homogenous
elements of degree 1 in F{Y }. A differential ideal I ⊆ F{Y } is linear if I is
generated by I ∩ F{Y }1. The dimension of a linear differential ideal I is the
codimension of I ∩ F{Y }1 in F{Y }1

We note that F{Y }1 is a D-stable subspace of F{Y }.

Theorem 1.10. Let L ∈ F{Y } be a monic homogenous linear differential operator
of order l, and let I be the ideal generated by {DiL|i = 0, 1, 2, ...}. Then I is a
linear differential ideal of dimension l.

Proof. I is, by construction, a differential ideal. We claim that F{Y }1/(I∩F{Y }1)
has basis Ȳ (0), ..., Ȳ (l−1), where the overbar denotes the image modulo I.

As mentioned above, D preserves both F{Y }1 and I∩F{Y }1, and thus also acts
on the quotient F{Y }1/(I ∩F{Y }1). Since L = Y (l) +M , where M is an F -linear
combination of the Y (i) of order less than l, it follows that DnL = Y (l+n)+N , where
N is an F -linear combination of the Y (i) of order less than l+n. Since DnL belongs
to I for n = 0, 1, 2, ..., it follows that Ȳ (0), ..., Ȳ (l−1) span F{Y }1/(I ∩ F{Y }1).

To see that this set is also linearly independent, assume that there is a non-
trivial F -linear combination of Ȳ (0), ..., Ȳ (l−1) which sums to 0. Then the same
combination, without the overbars, belongs to I, giving a relation of the form∑l−1

i=0 ciY
(i) =

∑n
j=0 bjD

jL, bn 6= 0. By our earlier remarks on DnL in the pre-

ceding paragraph, we know that the coefficient of Y (l+n) on the right-hand side
of this equation is bn, while it is 0 on the left-hand side. Hence, we have a con-
tradiction, so the Ȳ (0), ..., Ȳ (l−1) are linearly independent, and hence a basis for
F{Y }1/(I ∩ F{Y }1).

�

In light of this theorem, we make the following definition:
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Definition 1.11. Let L ∈ F{Y } be a monic homogenous linear differential oper-
ator of order l, and let I be the ideal of F{Y } generated by {DiL|i = 0, 1, 2, ...}.
Then I is called the linear differential ideal generated by L. .

We conclude this section with two theorems characterizing the relationship be-
tween linear differential ideals and linear differential operators, the latter of which
is a converse of Theorem 1.10.

Theorem 1.12. Let L = Y l −
∑l−1

i=0 aiY
(i) be a linear homogenous differential

operator in F{Y } of order l. Then {Y (0), ..., Y (l−1), L,DL,D2L, ...} is a basis for
F{Y }1. In particular, if I is the linear differential ideal generated by L, then
F{Y }/I is isomorphic to the (ordinary) polynomial ring F [Ȳ (0), ..., Ȳ (l−1)].

Proof. The proof of Theorem 1.10 shows that Y (n) = D(n−l)L plus lower ordered
terms, provided n ≥ l, so that {Y (0), ..., Y (l−1), L,DL,D2L, ...} spans F{Y }1. If
some F -linear combination of the set is 0 then we have an equation of the form that
appeared in the proof of Theorem 1.10, so the coefficients must be all 0. Hence,
{Y (0), ..., Y (l−1), L,DL,D2L, ...} is a basis.

When F{Y } is regarded as the ordinary polynomial ring F [Y (0), Y (1), ...], a
change of basis in the homogenous component of degree 1, namely F{Y }1, extends
to a ring isomorphism so that F{Y } is isomorphic to the polynomial ring in the new
basis. If we apply this idea to {Y (0), ..., Y (l−1), L,DL,D2L, ...}, then the ideal I is
taken to the ideal generated by the polynomial indeterminates {DiL|i = 0, 1, 2, ...},
giving the desired isomorphism. �

We note that this theorem establishes that the differential ideal I generated by a
homogenous linear differential operator is prime, and that F{Y }/I is a Noetherian
ring. Additionally, we see that the derivation D acts on the polynomial ring by:

D(Ȳ (i)) = Ȳ (i+1), i < l

D(Ȳ (l)) =
∑l−1

i=0 aiȲ
(i)

Theorem 1.13. Let I ⊆ F{Y } be a linear differential ideal of dimension l. Then
there is a monic homogenous linear differential operator L of order l such that I
is the linear differential ideal generated by L. Moreover, L is the unique monic
homogenous linear differential operator in I of order l, and this is the minimal
order for a homogenous linear differential operator in I.

Proof. Let an overbar denote the image in F{Y }1/(I∩F{Y }), and call this quotient
V . Choose k maximal such that Ȳ (0),...,Ȳ (k) are linearly independent. Notice that
we must have k ≤ l − 1. Then there is an element L ∈ I of the form:

L = Y (k+1) −
∑k

i=0 aiY
(i)

Let J be the linear differential ideal generated by L, and let W denote the
quotient F{Y }1/(J ∩ F{Y }). Since J ⊆ I, W maps surjectively onto V . By
assumption, V has dimension l, and by Theorem 1.10, W has dimension k + 1.
Thus, surjectivity implies that k + 1 ≥ l; since k ≤ l − 1, this gives k + 1 = l, so
I ∩ F{Y }1 = J ∩ F{Y }1. Since I and J are linear, and hence generated by their
intersections with F{Y }1, it follows that I = J .

Now, let M be any homogeneous linear differential operator in I, say M =
Y (n)−

∑n−1
i=0 biY

(i). The linear differential ideal generated byM will have dimension
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n by Theorem 1.10 and will be contained in I, so as above, the surjectivity on
quotients will show that n ≥ l. This shows that the order of L is minimal. If M is
another element of order l, then:

L−M =
∑l−1

i=0(bi − ai)Y (i)

is in I and, if non-zero, has order less than or equal to l. Hence, L −M = 0, and
L is unique, as stated. �

2. Solving Differential Equations

We now turn our attention to the question of finding solutions to L = 0, where L
is a linear homogenous differential operator. Before presenting particular examples,
we give a definition and a useful theorem.

Definition 2.1. Let L = Y (l) −
∑l−1

i=0 aiY
(i) be a linear homogenous differential

operator in F{Y }. The polynomial ring R = F [y0, ..., yl], with derivation extended
to y0, ..., yl defined by:

DR(yi) = yi+1, i < l

DR(yl) =
∑l−1

i=0 aiyi

is called the universal solution algebra for L.

The universal solution algebra for L, which we will abbreviate USA-L, can be
understood as an abstract algebraic space in which L has a solution. This con-
struction is formal, though we note that the USA-L is just F{Y }/I, where I is the
differential ideal generated by L. Despite the rather abstract construction of the
USA-L, the following theorem, whose elementary proof is omitted, shows that if S
is any F -algebra in which L = 0 has a solution y, then there is a unique F -algebra
homomorphism from the USA-L to S, where y0 7→ y.

Theorem 2.2. Let L ∈ F{Y } be a monic homogenous linear differential operator,
and let I be the differential ideal generated by L. Then F{Y }/I has the following
properties:

• L(Y (0) + I) = 0

• If S is a differential F -algebra and y ∈ F satisfies L(y) = 0, then there is
a unique differential homomorphism F{Y } → S, where Y (0) + I 7→ y.

We will now investigate some examples of adjoining solutions to L = 0 for some
operator L.

First, consider the equation Y (1) = 0 over C, where the derivation is the trivial
derivation: D(z) = 0,∀z ∈ C. Then the universal solution algebra is C[y], with the
trivial derivation.

Now consider a field F with the trivial derivation and the equation Y (1) = a.
As simple as this equation seems, our theory is set up to handle only homogenous
differential equations, which Y (1) = a is not. However, any solution z to this
equation is such that D2(z) = D(a) = 0. Thus, we consider the equation Y (2) = 0,
which has universal solution algebra F [y0, y1], with derivation acting trivially on
F , D(y0) = y1, and D(y1) = 0. Notice also that the ideal I generated by y1 − a is
a differential ideal, since its generator is a constant, and F [y0, y1]/I is isomorphic
to F [y], where D(y) = a.
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Next, suppose our base differential field F is arbitrary and consider the equation
Y (1) = a, where a ∈ F is not constant. Let a1 = a′/a and consider the equation
Y (2) − a1Y (1) = 0. The corresponding universal solution algebra is F [y0, y1], with
derivation extended to y0 and y1 by D(y0) = y1 and D(y1) = a1y1. We consider
the ideal P of F [y0, y1] generated by y1 − a. Since D(y1 − a) = a1(y1 − a), P is a
differential ideal. As above, the quotient F [y0, y1]/P is isomorphic to F [y], where
D(y) = a.

Let F be an arbitrary differential field. Another basic type of equation looks like
Y (1) − aY (0) = 0. a ∈ F . The universal solution algebra for this equation is the
polynomial ring F [y], where D(y) = ay. Extensions of this sort, that is extensions

S of R where R(y) = S and y′

y ∈ R are called adjoining an exponential. We now

prove a theorem about adjoining exponentials.

Theorem 2.3. Let E = F (z) be a differential field extension such that D(z)
z ∈ F .

Then z is either transcendental over F obtained by adjoining an exponential to F ,
or for some n ∈ Z+, we have zn ∈ F .

Proof. Consider the polynomial ring F [y] with derivation D(y) = ay, a = D(z)
z .

This maps to E by the differential homomorphism which maps y to z. The kernel
of this homomorphism is a prime differential ideal. Since F is a field, F [y] is a
principal ideal domain, so this kernel is either the zero ideal, or is generated by a
monic irreducible polynomial p, and since the kernel is differential, we must have
p|D(p). Let p = yn + pn−1y

n−1 + ...+ p0. Then:

D(p) = anyn +
∑n−1

i=0 (D(pk) + akpk)yk

Since p|D(p), and both have degree n, D(p) = anp. Then by comparing terms of

equal degree, we know D(pk) = (n− k)apk for 0 ≤ k ≤ n− 1. Thus, D( zn−k

pk
) = 0,

so that pk = ckz
n−k, where ck is a constant of F . In particular, we have that

zn = p0

c0
= d is an element of F . When the kernel is zero, z is transcendental over

F , and z is obtained by adjoining an exponential to F . �

Before showing our next example, we recall an earlier definition:

Definition 2.4. Let F be a differential field with derivation D. The subfield of
constants of F , denoted Const(F ), is Const(F ) = {x ∈ F |D(x) = 0}.

As stated before, Const(F ) is a differential subfield of F . We now show how
adjoining solutions to particular differential equations can result in a field extensions
with “new constants,” or more formally, differential extensions E of a differential
field F with Const(E) \ Const(F ) 6= ∅.

Let C(z) be the field of rational functions in one variable with coefficients in C,
and let C((z)) be the corresponding ring of formal power series in C. C(z) is a
differential subring of C((z)), where both have the usual derivation: D(z) = 1 and
D(z0) = 0, ∀z0 ∈ C.

Let f be the usual exponential series. Then D(f) = f . Now we consider the
differential field F = C(f) and the equation Y (1) − Y (0) = 0. As in our earlier
example involving this equation, the universal solution algebra to this equation
is F [y], where D(y) = y. However, since F already contains a solution to this
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equation, namely f , this adjunction of y is in some sense superfluous. The existence
of these two solutions then gives the following equations on their ratios:

D( y
f ) = fD(y)−yD(f)

f2 = fy−yf
f2 = 0

Hence, adding the superfluous solution generates a new constant: y
f . The next

section investigates the ideas of adding new constants and superfluous solutions
more generally.

3. Linear Independence over the Field of Constants

We begin this section with the definition of the Wronskian determinant, then
proceed to discuss its applications to solutions of differential equations.

Definition 3.1. Let y1, y2, ..., ys be elements of the differential field F . Then

w = w(y1, ...ys) =

∣∣∣∣∣∣∣∣∣∣
y
(0)
1 y

(0)
2 . . . y

(0)
s

y
(1)
1 y

(1)
2 . . . y

(1)
s

...
...

. . .

y
(s−1)
1 y

(s−1)
2 . . . y

(s−1)
s

∣∣∣∣∣∣∣∣∣∣
where y

(j)
i denotes Dj(yi), is called the Wronskian determinant of y1, ..., ys, or

simply the Wronskian of y1, ..., ys.

We now make some comments regarding notation when working with the Wron-
skian. Let F be a differential field, and let F (n) denote the row n-tuples of elements
of F . The elements of F (n) look like y = (y1, ..., yn), and for any i, we define

y(i) = (Di(y1), ..., Di(yn)).

With this notation, w(y)=det(y(0), ...,y(n−1)).

We now show how the Wronskian relates to linear independence of a set of field
elements over the subfield of constants. We begin by proving that a set of solutions
of a differential equation which has more elements than the order of the differential
equation has a vanishing Wronskian.

Theorem 3.2. Let F be a differential field, and let y1, ..., yn+1 be elements of F

which satisfy the equation Y (n) −
∑n−1

i=0 aiY
(i), ai ∈ F . Then w(y1, ..., yn+1) = 0.

Proof. Let y=(y1, ..., yn+1). Then w(y)=det(y(0), ...,y(n−1)), using the notation
above. In this determinant, the last row is a linear combination of the preceding
ones, so the determinant is 0. �

We now give necessary and sufficient conditions for the Wronskian to vanish.

Theorem 3.3. Let F be a differential field, and let C = Const(F ). Then y1, ..., yn ∈
F are linearly dependent over C if and only if w(y1, ..., yn) = 0.

Proof. First suppose that the yi are linearly dependent over C. Then there are
elements ci ∈ C, 1 ≤ i ≤ n, such that

∑n
i=1 ciyi = 0. Then applying Dk, we have∑n

i=0 ciD
k(yi) = 0 for all k. In particular, c1, ..., cn is a non-trivial solution of the

system of linear equations∑n
i=1 y

(k)
i xi = 0 for 0 ≤ k ≤ n− 1
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The determinant of the matrix with coefficients of the above system is the Wron-
skian w(y1, .., yn), and since the system has a non-trivial solution, this determinant
is 0.

Conversely, if w(y1, ..., yn) = 0, then by the same reasoning, the system:∑n
i=1 y

(k)
i xi = 0 for 0 ≤ k ≤ n− 1

has a non-trivial solution b1, ..., bn, where bi ∈ F . In particular, if k = 0, then we
have

∑n
i=0 biyi = 0. We can rearrange indices so that b1 6= 0, and then dividing

through by b1, we can assume b1 = 1. Now for each k, 0 ≤ k ≤ n− 1, we have that∑n
i=0 y

(k)
i bi = 0

Applying D to this equation for 0 ≤ k ≤ n− 2, we also have that∑n
i=0 y

(k+1)
i bi +

∑n
i=0 y

(k)
i D(bi) = 0

In this equation, the first sum is 0 by the preceding equation. In the second sum,
the first term is 0 since D(b1) = D(1) = 0, so that D(b2), ..., D(bn) is a solution for
the system of linear equations∑n

i=2 y
(k)xi = 0 for 0 ≤ k ≤ n− 2

The determinant of the matrix of coefficients of this system of linear equations is the
Wronskian w(y2, ..., yn). If w(y2, ..., yn) 6= 0, then the solution D(b2), ..., D(bn) is
trivial so thatD(bi) = 0 and each bi for 2 ≤ i ≤ n is a constant. Since

∑n
i=1 biyi = 0,

we have the yi linearly dependent over C. If w(y2, ..., yn) = 0, then we proceed by
induction to find a linear dependence over y2, ..., yn using the same argument just
employed, thus establishing the theorem. �

We can now give a short theorem on the structure of the solution set for a linear
differential equation:

Theorem 3.4. Let L be a monic linear homogenous differential operator of order
l over the differential field F . Let E be a differential extension field of F , and let
S be the set of solutions to L = 0 in E. Then S is a vector space over the field of
constants Const(F ) = C of dimension at most l.

Proof. The map y 7→ L(y) on E is a C-linear transformation, so its kernel, namely
S, is a C-vector space. By Theorem 3.2, any l + 1 elements of S have vanishing
Wronskian, so by Theorem 3.3, they are linearly dependent over C. It follows that
S has dimension at most l over C. �

Hence, we have an upper bound on the size of the solution set of a differential
equation. We introduce some terminology to denote the idea of a maximal solution
set.

Definition 3.5. Let L be a monic linear differential operator of order l over the
differential field F . We say that L = 0 has a full solution set in the differential
field extension E of F if the set of solutions in E has dimension l over the field of
constants of E. That is, if there are elements y1, ..., yl ∈ E such that L(yi) = 0 and
the Wronskian w(y1, ..., yn) 6= 0.
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By placing an upper limit on the size of the solution set, Theorems 3.2 and 3.3
also imply that a full solution set uniquely determines the equation:

Theorem 3.6. Let L1 and L2 be monic homogeneous linear differential operators
of order l over the field F , and suppose there are elements y1, ..., yl ∈ F linearly
independent over C = Const(F ) such that L1(yi) = L2(yi) = 0 for each i, that is,
y1, ..., yn is a full solution set for L1 and L2. Then L1 = L2. In fact, L1 = L2 =
w(Y,y1,...,yl)
w(y1,...,yl)

.

Proof. Suppose L1 =
∑l

i=0 aiY
(i) and L2 =

∑l
i=0 biY

(i), where al = bl = 1. Let j
be the maximum index where aj 6= bj . Consider L = (aj − bj)−1(L1 −L2). Now L
is a monic homogeneous linear differential operator of order < l, but the space of
solutions for L = 0 contains y1, ..., yl, so it has dimension over the field of constants
≥ l. This contradicts Theorem 3.4, so no such j exists. Hence, ai = bi for each i,
so L1 = L2.

Now, let L3 = w(Y,y1,...,yl)
w(y1,...,yl)

. L3 is a monic, homogeneous linear differential op-

erator over F of order l, such that L3(yi) = 0. Hence, we have just proven that
L3 = L1 = L2. �

Theorem 3.4 also tells us that given a linear differential equation L = 0 of order
l, the most we can hope for is to add l linearly independent solutions over the field
of constants. We now show how to do just that, namely how to adjoin a full solution
set in a general way.

Definition 3.7. Let L = Y (l) −
∑l−1

i=0 aiY
(i) be a monic linear homogeneous dif-

ferential operator in F{Y }. Let S = F [yij |0 ≤ i ≤ l − 1, 1 ≤ j ≤ l][w−1] be the
localization of the polynomial ring R = F [yij ] in l2 variables at w =det(yij). Define
a derivation DR on R by:

DR(yij) = yi+1,j , i < l − 1

DR(yl−1,j) =
∑l−1

i=0 aiyi

and extend to S. S is the full universal solution algebra for (the differential equa-
tion) L = 0, abbreviated FUSA-L.

This construction mirrors our earlier construction for adjoining a single solution,
except here, we invert w. This is to formally ensure that the solutions we adjoin
are linearly independent over the subfield of constants.

Having established how to construct, for a given linear differential equation L
over a differential field F , a differential extension of F where L has a full solution
set, we turn to the question of finding a minimal such extension field. We saw
earlier an example where adjoining an extra solution resulted in creating a new
constant. In the next section, we will show that, for a given L, it is possible to
construct a unique differential extension E of F where L has a full solution set, and
E has no constants not in F . Such extensions are called Picard-Vessiot extensions.

4. Picard-Vessiot Extensions

We begin this section with the precise definition of Picard-Vessiot Extensions,
before proving their existence and uniqueness.
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Definition 4.1. Let L be a monic homogeneous linear differential operator of
order l over the differential field F . A differential extension field E ⊇ F is called a
Picard-Vessiot extension of F for L if:

• E is generated over F by the set V of solutions of L = 0 in E (E = F 〈V 〉)
• E contains a full solution set of L = 0, that is, there are y1, ..., yl ∈ V with
w(y1, ..., yl) 6= 0
• Every constant of E lies in F

We will shortly establish the existence of Picard-Vessiot extensions in the case
when the field of constants C is algebraically closed. We first prove some properties
of Picard-Vessiot extensions, beginning with their minimality with respect to having
a full solution set to L = 0.

Theorem 4.2. Let E ⊇ F be a Picard-Vessiot extension of F for the operator
L. If E ⊇ K ⊇ F is an intermediate extension such that K contains a full set of
solutions of L = 0, then E = K.

Proof. By the third criterion of Definition 4.1, every constant of E lies in F . Hence,
every constant of E lies in K. Assume that E properly contains K. Let VE be
the solution set for L = 0 in E. Then E = F 〈VE〉, so K ⊂ F 〈VE〉. It follows that
VK , the solutions to L = 0 in K, is a proper subset of VE , and that K = F 〈VK〉.
But since VK spans VE over Const(E), Const(E) must properly contain Const(K).
This contradicts every constant of E lying in K, so E = K. �

Picard-Vessiot Extensions also satisfy a normality condition, stated as follows:

Theorem 4.3. Let E1, E2 ⊇ F be Picard-Vessiot extensions of order l for the
operator L over F , and let E ⊇ F be an extension with no new constants. Assume
that σi : Ei → E is an F -differential embedding, i=1,2. Then σ1(E1) = σ2(E2).

Proof. Let Vi = L−1(0) in Ei, and let V = L−1(0) in E. Then Vi is a vector space
of dimension l over the field of constants C of F , and V is a vector space over C
of dimension at most l. This follows from the fact that the field of constants of
Ei and E coincide with C. Since we also have σi(Vi) ⊆ V , all three vector spaces
coincide: σ1(V1) = V = σ2(V2). Since Ei = F 〈Vi〉, this means σ(E1) = σ(E2).

�

We now turn our attention to proving the existence and uniqueness, up to dif-
ferential isomorphism, of Picard-Vessiot extensions. First, we prove a few lemmas.
These lemmas require a result from commutative algebra, which we now state with-
out proof. The interested reader can see a proof on page 10 of Magid’s text.

Theorem 4.4. Let R be a finitely generated F -algebra, and let d be an element
of R. Then either d is algebraic over F or there exists c ∈ F such that d − c is a
non-unit of R.

We now state and prove our lemmas.

Lemma 4.5. Let R be a differential integral domain, finitely generated over the
differential field F . Let E denote the quotient field of R, and let C denote the field
of constants of F . Suppose E contains a constant, d, not in F . If d is not algebraic
over C, then R contains a proper differential ideal.
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Proof. Let I = {h ∈ R|hd ∈ R}. Then I is an ideal of R; it is non-zero because
d is a fraction of elements of R. It is a differential ideal because d is constant, so
D(hd) = D(h)d is in R if hd is. If I 6= R, then it is our desired proper ideal. If
not, then d is an element of R, and we consider the ideals (d − c)R for c ∈ C.
These are all differential ideals. If one of them is properly contained in R, then
it is the desired ideal. If all are improper, the d is algebraic over F , by Theorem
4.4. Let p(x) = xn + pn−1x

n−1 + ... + p0 ∈ F [x] be the minimal polynomial of
d over F . Then 0 = D(p(d)) = D(pn−1)dn−1 + ... + D(p0), so that d is also a
root of q(x) = D(pn−1)xn−1 + ...+D(p0), which has degree less than that of p(x).
By minimality of p(x), we have q(x) ≡ 0 and hence D(pi) = 0 for each i. Hence,
p(x) ∈ C[x], so that d is algebraic over C.

�

Corollary 4.6. Let R be a differential integral domain, finitely generated over the
differential field F . Let E denote the quotient field of R, and let C denote the field
of constants of F . Assume that R contains no proper differential ideals and that
the field of constants of C is algebraically closed. Then the field of constants of E
coincides with C.

Lemma 4.7. Let R be a differential ring, and let I be a maximal differential ideal
of R such that the quotient R/I is of characteristic zero. Then I is prime.

Proof. We pass to the quotient R/I, so we can assume that R has no proper dif-
ferential ideals. We then need to show that R is an integral domain. So suppose
that a and b are non-zero elements of R and that ab = 0. We first claim that
if ab = 0, then Dk(a)bk+1 = 0 for k > 0. We proceed by induction on k. Note
first that 0 = D(ab) = D(a)b + aD(b), so multiplication by b gives the claim for
k = 1. Now assume the claim holds for k = 1, ..., n− 1. Since Dn(ab) = 0, we have
Dn(ab)bn = 0. Notice that the formula:

Dn(ab) =
∑n

k=0

(
n
k

)
Dk(a)Dn−k(b)

can be used to expand this equation. Then the inductive hypothesis gives us, after
simplification, that 0 = Dn(a)bbn = Dn(a)bn+1, which establishes our claim by
induction.

Let J denote the differential ideal generated by a, that is, J =
∑∞

i=0RD
i(a).

Suppose that no power of b is zero. Then our claim above implies the element∑n
i=0 riD

i(a) of J is multiplied to 0 by bn+1, and hence that every element of J is
a zero divisor. In particular, it is impossible that 1 ∈ J , and since 0 6= a ∈ J , we
have that J is a proper differential ideal. This contradicts I maximal, since we are in
R/I. Hence, some power of b is necessarily 0. Since b was an arbitrary zero divisor,
it follows that every every zero divisor of R is nilpotent, in particular that an = 0
for some n ∈ Z+, and we can choose n minimal. Then 0 = D(an) = nan−1D(a)
and nan−1 is non-zero, since we are in characteristic zero, so D(a) is a zero divisor.
Repeating this process shows that every Dn(a) is a zero divisor, hence nilpotent,
and the ideal they generate, namely J is a differential ideal consisting entirely of
nilpotent elements. In particular, it again cannot contain 1, and hence is a proper
ideal, contracting our hypothesis. It follows that there are no non-zero a and b such
that ab = 0, and thus R/I is an integral domain, so I is prime. �

We now prove the existence of Picard-Vessiot extensions:
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Theorem 4.8. Let F be a differential field with algebraically closed field of con-
stants C. Let L be a monic homogeneous linear differential operator over F , let S be
its full solution algebra over F , and let P be a maximal differential ideal of S. Then
P is prime and the fraction field E of the integral domain S/P is a Picard-Vessiot
extension of F for L.

Proof. S is differentially generated over F by solutions of L = 0 and the inverse
Wronskian, hence so is S/P . By Lemma 4.7, P is prime, and, since P is a maximal
differential ideal, S/P has no proper differential ideals. By Corollary 4.6, the field
of constants of E coincides with C. Moreover, E is differentially generated over
F by solutions to L = 0, and the inverse Wronskian from S is also a unit in S/P
and hence in particular is non-zero in E, so L = 0 has a full set of solutions in E.
It follows that E is a Picard-Vessiot extension of F for L, since it meets all three
criteria of Definition 4.1 �

Since S could have more than one maximal ideal, the reader might wonder how
canonical the construction just shown is. We answer this question by proving that
Picard-Vessiot extensions are unique up to isomorphism.

Theorem 4.9. Let E1, E2 be Picard-Vessiot extensions of F for the operator L of
order l. Assume that F has an algebraically closed field of constants. Then there is
an F -differential isomorphism E1 → E2.

Proof. We can assume that E1, say, is the Picard-Vessiot extension constructed in
Theorem 4.8. We use the notation of that theorem and its proof.

We consider the ring R = S/P ⊗F E2. R is differentially generated as an algebra
over E2 by the generators of S/P . Since S/P is, by construction, generated over
F by linearly independent solutions v1, ..., vn of L, R is finitely generated over E2.
Let Q be a maximal proper differential ideal of R and consider its inverse image I
in S/P , i.e. I = {a ∈ S/P |a⊗F 1 ∈ Q}. Now I is a differential ideal of S/P , which
by construction has no proper differential ideals, so either I = S/P or I is the zero
ideal.

If I = S/P , then 1⊗F 1 ∈ Q, which is impossible, so I = (0). It follows that S/P
injects into R/Q under the map sending a 7→ (a ⊗F 1) + Q. The map E2 → R/Q
under b 7→ (1⊗F b) +Q is also injective. Now by Lemma 4.7, Q is prime, so R/Q is
an integral domain. Let E denote the fraction field of R/Q. The differential integral
domain R/Q has no proper differential ideals, is finitely generated as an algebra
over the differential field E2, and the field of constants of E2, which is the same as
the field of constants of F , is algebraically closed. By Lemma 4.5, the constants
of E the coincide with those of E2 and hence with those of F . The embedding of
S/P to R/Q extends to an embedding σ1 of E1 into E, and the embedding of E2

to S/Q extends to an embedding σ2 of E2 to E. Both embeddings are the identity
on F . Now we have two embeddings of Picard-Vessiot extensions for L over F into
E, a no new constants extension of F . By Theorem 4.3, they have the same image,
so the map σ−12 ◦ σ1 is the desired F -isomorphism from E1 into E2. �

We end our theoretical discussion on this note, moving to applications to non-
integrability in the next section.
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5. Liouville’s Theorem

The main goal of this section will be proving that ex
2

is not integrable in elemen-
tary terms; our main theorem in proving this will be Liouville’s Theorem. Before
any discussion of the problem can begin, however, we must define what we mean
by “elementary terms.” To this effect, we state several definitions:

Definition 5.1. Let F be a differential field, K a differential field extension. We
call t ∈ K a primitive over F if D(t) ∈ F . We say t ∈ K, t 6= 0, is a hyperexponential

over F if D(t)
t ∈ F .

Definition 5.2. Let F be a differential field, K a differential field extension. We
say t ∈ K is Liouvillian over F if t is either algebraic, or a primitive, or a hyper-
exponential over F . Similarly, we call K a Liovillian extension of F if there are
t1, ..., tn ∈ K such that K = F (t1, ..., tn) and ti is Liouvillian over F (t1, ..., ti−1) for
1 ≤ i ≤ n.

We now introduce the particular Liouvillian extensions that define our integra-
tion problem.

Definition 5.3. Let F and K be as above. We say t ∈ K is a logarithm over F if

D(t) = D(b)
b for some b ∈ F , b 6= 0. We say t ∈ K, t 6= 0 is an exponential over F

if D(t)
t = D(b) for some b ∈ F .

Definition 5.4. Let F be a differential field, K a differential field extension. We say
t ∈ K is elementary over F if it is either algebraic, or a logarithm, or an exponential
over F . We say t ∈ K is an elementary monomial over F if t is transcendental and
elementary over F , and Const(F (t)) = Const(K). Similarly, K is an elementary
extension of F if there are t1, ..., tn in K such that K = F (t1, ..., tn) and ti is
elementary over F (t1, ..., ti−1) for 1 ≤ i ≤ n. We say that f ∈ F has an elementary
integral over F if there exists an elementary extension E of F and g ∈ E such that
D(g) = f .

Definition 5.5. An elementary function is any element of any elementary exten-
sion of the differential field C(x) with the usual derivation d

dx .

All of the usual functions from calculus, such as log(x), ex, and the trigonometric
functions are elementary over C(x), so this definition is appropriate.

We now state our main theorem for this section, which gives necessary and
sufficient conditions for integrability in elementary terms:

Theorem 5.6. (Liouville’s Theorem) Let K be a differential field and f ∈ K. If
there exists an elementary extension of E of K with Const(E) = Const(K), and
g ∈ E such that D(g) = f , then there are v ∈ K,u1, ..., um ∈ K, ui 6= 0, and
c1, ..., cm ∈ Const(K) such that:

f = D(v) +
∑m

i=1 ci
D(ui)
ui

Corollary 5.7. Let E be a differential field, and let K be a no new constant
differential field extension of E generated by adjoining an exponential, that is, K =
E(eg) for some g ∈ K. Suppose that eg is transcendental over E. For any f ∈ E,
feg ∈ K has a primitive within some elementary no new constant differential field
extension of K, i.e. feg is elementary integrable, if and only if there is some
element a ∈ E such that f = a′ + ag′.
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We omit the proofs of these results for space considerations. The curious reader
should consult Bronstein’s text for more details.

We can now prove that ex
2

is not integrable in elementary terms: by Corollary

5.5, ex
2

has an elementary primitive if and only if there is a function a ∈ C(x)
such that 1 = a′ + 2ax. We claim there is no such function. To see this, assume
a = p

q ∈ C(x) satisfies this equation, where gcd(p, q) = 1. Then:

1 = qp′−q′p
q2 + 2px

q
so

q − 2px− p′ = q′p
q

This implies that q|q′p. But gcd(p, q) = 1, so q 6 |p. This means q|q′, so q is constant.
Then without loss of generality, a = p

q = p. Comparing the degrees in x on the two

sides of 1 = a′ + 2ax now results in a contradiction, since the left hand side has
degree 0 in x, but the right hand side has degree ≥ 1. Hence, no such a exists, so

ex
2

is not elementary integrable.
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