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Abstract. We present several axioms in an attempt to characterize Set . A

category which satisfies these axioms has many properties which can be seen

to be analogous to properties of Set , and, in fact, the category is equivalent
to Set .
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1. Introduction.

In his 1964 paper, “An Elementary Theory of the Category of Sets”, William
Lawvere presented a set theory with axioms given in purely categorical language.
The irreducible term in the usual formalization of set theory is usually the inclusion
relation. However, the irreducible term in Lawvere’s formalization is the morphism.

We demonstrate that the natural numbers, familiar concepts of functions and
subsets, and the axiom of choice can be understood in a category which satisfies
Lawvere’s axioms. Then we show that any such category which is additionally
complete and locally small is equivalent to Set.

2. Preliminaries and axioms.

In the following section, we give several of the axioms which will characterize
categories equivalent to Set and several definitions so that we can describe the
properties of the categories in familiar set theoretic terms. We also prove several
results which follow from the axioms.

We begin with a category S which has the following axioms. By a category we
mean a collection of arrows and objects with the usual relations. However, in this
paper we stress the fact that the objects of a category are only special instances of
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arrows: those which are identity arrows. For this reason, we denote both an object
and its identity arrow by the same name: for any object X in S

X : X → X

is the identity arrow of X.

Axiom 2.1. All finite limits, co-limits, and exponentials exist.

Remark 2.2. We only consider objects in S as up to isomorphism, and thus all
limits, co-limits, and exponentials are considered unique.

In particular, we have a unique initial object 0 and a unique terminal object 1.
By !, we will mean the canonical map from any object to 1. For any objects A and
B, by πA we mean the canonical projection A × B → A, and by ιA we mean the
canonical injection A→ A+B.

Definition 2.3. An object G is a generator in a category C if for any f, g : A→ B
in C , f = g if and only if for all a : G → A we have fa = ga. An object G′ is a
co-generator if for any f, g : A→ B in C , f = g if and only if for all b : B → G′ we
have bf = bg.

Axiom 2.4. 1 is a generator.

Definition 2.5. Given arrows x and y with y monic, there exists a unique z : 1 99K ·
such that the following commutes,

X

1
z //___

x

??��������
·
OO

y

OO

we say that x is an member of y, denoted x ∈ y as usual. If y is an identity, it is
clear that y is monic and that there exists such a z, i.e. x, for any x : 1 → X. In
this case, we say x is an element of X, denoted x ∈ X as usual.

Definition 2.6. If given arrows a : A� X and b : B � X there exists a unique
c : A 99K B such that the following commutes,

X

A
c //___
>>
a

>>~~~~~~

B

OOb

OO

we write a ⊂ b. If b is an object, that is if b = X : X → X, it is clear that b is
monic and that there exists such a c, i.e. a, for any a : A→ X. In this case, we say
x is a subset of X, denoted x ⊂ X as usual. We sometimes refer to the domains of
the arrows and write A ⊂ X if a ⊂ X so that our notation resembles familiar set
notation.

Axiom 2.7. For any f : A → B if A has elements, then there exists g : B → A
such that f = fgf .

Remark 2.8. If f is monic, this axiom says there exists g such that gf = A, and if
f is epic, fg = B.

Axiom 2.9. Every object but 0 has elements.
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Remark 2.10. Otherwise, 0 ∼= 1. In fact, if ! is the canonical arrow 0→ 1 and there
exists x : 1 → 0, we have x! : 0 → 0 and !x : 1 → 1. However by the universal
properties of 1 and 0 there exist only one endomorphism, the identity, on either of
these objects. Thus x! = 0 and !x = 1.

Axiom 2.11. Every element of a co-product is an member of one of the injections.

Axiom 2.12. There exists an object with more than one element.

Remark 2.13. If for an arrow m with domain A we have ma = ma′ implies a = a′

for all a, a′ ∈ A, m is monic. In fact, let x, y : B ⇒ A. Then we have mx = my
implies mxb = myb for all b ∈ B. By hypothesis, we have xb = yb, and by axiom
2.7, x = y.

Lemma 2.14. An object S is the sum of objects A and B if and only if there are
arrows a : A→ S and b : B → S such that any element of S is an member of either
a or b but not both.

Proof. Let a : A → S and b : B → S be arrows such that any element of S is
an member of either a or b but not both. Let f, g : Z ⇒ A be arrows such that
af = ag. Then we see that for any z ∈ Z, afz = agz : 1→ S. By hypothesis, there
is a unique z̄ such that az̄ = afz = agz, and thus fz = gz. By axiom 2.4, we see
that f = g, and thus a, and similarly b, is monic.

By the universal property of A + B there exists f : A + B → S such that
fιA = a and fιB = b. Suppose fx = fy for x, y ∈ A + B and that x, y ∈ A
without loss of generality. Then there exist x̄, ȳ such that x = ιAx̄, y = ιAȳ. Then
ax̄ = fιAx̄ = fx = fy = fιAȳ = aȳ which implies x̄ = ȳ since a is monic. Therefore
x = ιAx̄ = ιAȳ = y, and we see that f is a monomorphism.

Now let g : S → A + B such that gf = A as guaranteed by axiom 2.7. Let
x ∈ S. Then, by hypothesis and without loss of generality, there exists x̄ : 1 → A
such that ax̄ = x. We have fgx = fgax̄ = fgfιAx̄ = fιAx̄ = ax̄ = x. Thus, by
axiom 2.4, fg = S so S is isomorphic to the sum of A and B.

Therefore, S is the sum of A and B if there are arrows a : A→ S and b : B → S
such that any element of S is an member of either a or b but not both.

Let S be the sum of A and B. By axiom 2.11, any element of S is an element of
A or B.

Let x ∈ S and suppose x ∈ a and x ∈ b. Let M be an object with two distinct
elements, m and n, as guaranteed by axiom 2.12. Then there exist α and β such
that the following diagram commutes.

A
! //

a

��

1

m

��
1

α

99rrrrrrrrrrrr

β
%%LLLLLLLLLLLL

x // A+B //_____ M

B
! //

b

OO

1

n

OO

We see that m!α = n!β, and thus m = n. By contradiction, we cannot have both
x ∈ a and x ∈ b.
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Therefore, S is the sum of A and B only if any element of S is an member of
either a or b but not both.

�

Remark 2.15. We see that the sum of two objects is analogous to the disjoint union
of two sets.

We denote the co-product of 1 and 1 as 2:

1
ι0 // 2 1

ι1oo

Lemma 2.16. 2 is a co-generator in S .

Proof. Let f, g : A→ B.
If f = g then clearly bf = bg for all b : B → 2.
Conversely, suppose f 6= g. By axiom 2.4, there exists a x : 1 → A such that

fx 6= gx. Let b′ = 〈fx, gx〉 : 2 → B so that fx = b′ι0 and gx = b′ι1. Since 2 has
elements, by the axiom 2.7 there exists b : B → 2 such that b′ = bb′b. Thus we have
fx = b′ι0 = b′bb′ι0 = b′bfx and similarly gx = b′bgx. Thus we see that b′bf 6= b′bg
and so bf 6= bg.

1
ι0 //

x

��/
///////////// 2

b′

��

1
ι1oo

x

����������������

B

b

OO

A

f

OO
g

OO

Thus, the contrapositive says that f = g only if bf = bg for all b : B → b. �

Lemma 2.17. Let a, b ⊂ A. Then a ⊂ b if and only if for all x ∈ A we have x ∈ a
implies that x ∈ b.
Proof. If a ⊂ b and x ∈ a there exist unique α, γ by definition making the outer
and left triangles commute below. Define

β ≡ γα
We have βb = aα = x. Thus β makes the right triangle commute below, and since
b is monic, β is unique in this respect. Therefore x ∈ b.

A

1

α
~~}}}}}}}}

β ��@@@@@@@@

x

OO

A′ γ
//

GG

a

GG�������������

B

WW

b

WW/////////////

Conversely, suppose that for all x ∈ A, x ∈ a implies that x ∈ b. Let c be an
arrow such that bcb = b by axiom 2.7. Then define

γ ≡ ca
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Since for every α ∈ A′ there is a β ∈ B such that bβ = aα by hypothesis, we have
aα = bβ = bcbβ = bcaα = bγα for all α ∈ A′. By axiom 2.4, a = bγ, and γ is the
unique such arrow since b is monic. Therefore, a ⊂ b. �

The next section will explore the final axiom.

3. The natural numbers.

By the following axiom, there is an object in S which respresents N with an
initial element and successor morphism. We show that Peano’s postulates hold for
N in S .

Axiom 3.1. (Natural numbers object.) There exists a triple (N, 0, s) such that for
all other triples (X,x0, t), there exists a unique x such that the following diagram
commutes:

1
0 //

x0

��???????? N
s //

x

��

N

x

��
X

t // X

N is universal among objects with a distinguished element and endomorphism.

The object N corresponds to the usual notion of the natural numbers with 0 as
its first element and s as the successor function. The unique arrow x corresponds
to the usual notion of a sequence in X which would be given in usual set notation
as (x(n))n∈N where x(n) = (tn ◦ x0)(1) for all n ∈ N.

Recall that an exponential of two objects A and B is an object BA and arrow
εBA : BA × A → B, called the evaluation, such that for any f : Z × A → B there
exists a unique f̃ : Z → BA such that the triangle below commutes:

BA BA ×A
εBA // B

Z

f̃

OO

Z ×A

f

;;wwwwwwwww
f̃×A

OO�
�
�

An arrow denoted εBA will always refer to the evaluation of BA for any A,B.

When we have arrows x : C → A and y : C → B, the arrow C → A×B induced
by the universal property of A × B is denoted as 〈x, y〉. When we have arrows
x : A → C and y : B → D, the arrow A × B → C × D induced by the arrows
xπA : A×B → C and yπB : A×B → D is denoted just 〈x, y〉 for simplicity. It will
be clear in context which is meant.

Theorem 3.2. (Primitive recursion.) Given arrows f0 : A→ B and u : N × A×
B → B, there exists f : N × A → B such that for any n ∈ N , a ∈ A we have
f〈0, a〉 = f0a and f〈sn, a〉 = u〈n, a, f〈n, a〉〉 as in the following diagrams:
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1
a //

〈0,a〉
��

A

f0

��
N ×A

f // B

N ×A

f

��

1
〈n,a〉oo 〈sn,a〉 //

〈n,a,f〈n,a〉〉
���
�
� N ×A

f

��
B N ×A×BπB

oo

πN×A

ffNNNNNNNNNN
u // B

Proof. We construct f as follows. Let ∆ = 〈D,D〉 : D → D ×D be the diagonal
arrow for any object D, ε : BA × A → B the evaluation arrow for the exponential
BA. Define t′ : N ×BA ×A→ B to be the composite

N ×BA ×A
N×BA×∆// N ×BA ×A×A ∼= N ×A×BA ×A

N×A×ε// N ×A×B u // B

Let t̃′ : N×BA → BA be the exponential adjoint to t′ so that the following diagram
commutes:

BA ×A ε // B

N ×BA ×A

t′

99sssssssssss
t̃′×A

OO�
�
�

Define

t ≡ 〈sπN , t̃′〉 : N ×BA → N ×BA

Then by axiom 3.1 there exists x : N → N × BA such that the following diagram
commutes:

1
0 //

〈0,f̃0〉 ##GGGGGGGGG N
s //

x

��

N

x

��
N ×BA t // N ×BA

where f̃0 : 1→ BA is the exponential adjoint of f0. Then define

f ≡ ε〈πBAx,A〉 : N ×A→ B.

1

a

��

〈πBAx0,a〉
// BA ×A

ε

��
A

f0 //

f̃0×A
77ooooooooooooo
B

In consideration of the above diagram, in which the right triangle commutes, we see
have that f〈0, a〉 = ε〈πBAx,A〉〈0, a〉 = ε〈πBAx0, a〉 = ε〈πBA〈0, f̃0〉, a〉 = ε〈f̃0, a〉 =
f0a.

A
n×A // N ×A

s×A
��

x×A // N ×BA ×A
t̃′×A

))SSSSSSSSSSSSSS

t×A
��

t′ // B

N ×A
x×A // N ×BA ×A

πBA×A // BA ×A

ε

OO
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In consideration of the above commutative diagram, we have that f〈sn, a〉 =

ε〈πBAx,A〉〈sn, a〉 = ε〈πBAxsn, a〉 = ε〈πBAtxn, a〉 = ε〈πBA〈sπN , t̃′〉xn, a〉 = ε〈t̃′xn, a〉 =
t′〈xn, a〉. By the definitions of t′, u, and f that t′〈xn, a〉 = u(N ×A× ε)(N ×BA×
∆)〈xn, a〉 = u(N×A×ε)〈xn, a, a〉 = u〈πNxn, a, ε〈πBAxn, a〉〉 = u〈πNxn, a, f〈n, a〉〉.
Since πN 〈0, f̃0〉 = 0 and πN t = πN 〈sπN , t̃′〉 = sπN the following diagram commutes:

N
s //

x

��

N

x

��
1

0

77ooooooooooooooo

0
''OOOOOOOOOOOOOOO

〈0,f̃0〉 // N ×BA

πN

��

t // N ×BA

πN

��
N

s // N

In particular, the outer pentagon commutes. Since it is clear that by replacing both
instances of πNx with N , the outer pentagon still commutes, and by axiom 3.1 this
arrow is unique, we see πNx = N and in particular πNxn = n. Thus, we have that
f〈sn, a〉 = t′〈xn, a〉 = u〈πNxn, a, f〈n, a〉〉 = u〈n, a, f〈n, a〉〉. �

Lemma 3.3. There exists a predecessor function p : N → N such that it is left
inverse to the successor function, and the predecessor of 0 is 0.

Proof. By theorem 3.2, from the arrows 0: 1 → N and πN1
: N × 1 × N → N we

can define p : N × 1 → N such that for all n ∈ N p〈0, 1〉 = 0 ◦ 1 and p〈sn, 1〉 =
πN1〈n, s, f〈n, 1〉〉. In essence, from the arrows 0: 1→ N and πN1 : N ×N → N we
can define p : N → N such that for all n ∈ N p0 = 0 and psn = n. By axiom 2.4,
we have ps = N . �

Theorem 3.4. (Peano’s postulates.)
(i) 0 ∈ N and for any n ∈ N, sn ∈ N .
(ii) 0 is not the successor of any n ∈ N .
(iii) The successor function is injective.
(iv) Let A ⊂ N such that 0 ∈ A and if n ∈ A then sn ∈ A for all n ∈ N . Then

A ∼= N .

Proof. (i) By the definition of 0, 0 ∈ N and for any n ∈ N , n is an arrow n : 1→ N ,
so sn : 1→ N → N . Thus, sn ∈ N .

(ii) Suppose there exists n ∈ N such that sn = 0. Then by lemma 3.3, we have
n = psn = p0 = 0 so that s0 = 0. Then for any t : X → X and x0 ∈ X by axiom
3.1 there must exist an x : N → X such that the following commutes:

1
0 //

x0

��???????? N
s //

x

��

N

x

��
X

t // X

Since s0 = 0, x0 = x0 = xs0 = tx0 = tx0. By axiom 2.4, since this must hold for
all x0 ∈ X, we have that t = X for any object X and any endomorphism x → X.
Thus, the only endomorphism for any object is the identity morphism. However,
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axiom 2.14 ensures the existence of non-identity endomorphisms. By contradiction,
we see that 0 is not the successor of any n ∈ N .

(iii) Suppose for x, x′ with codomain N , sx = sx′. Then x = psx = psx′ = x′

by lemma 3.3, so s is injective.
(iv) Let ν : A� N . By axiom 2.7, there exists µ′ : N → A such that νµν = ν.

Define

t ≡ µsν : A→ A

For all a ∈ A, there exists a unique n ∈ N such that n = νa, and for all n ∈ ν
there exists a unique a′ ∈ A such that sn = νa′ by hypothesis. Thus, we have
that for all a ∈ ν there exists a unique a′ ∈ A such that νa′ = sνa. We see that
sνa = νa′ = νµνa′ = νµsνa, and by axiom 2.12, sν = νµsν = νt, and thus the
bottom square commutes below.

N
s //

x

��

N

x

��
1

0

??��������

0 ��????????
0′ // A

ν

��

t // A

ν

��
N

s // N

There exists a unique 0′ ∈ A such that the bottom triangle commutes by hypoth-
esis, and by axiom 3.1, there exists a unique x : N → A such that the upper half
commutes. By the universal property of (N, 0, s), we see that νx = N . Then
νxν = ν and, since ν is monic, xν = A. Therefore, A ∼= N . �

4. Functions and subsets.

We show that we can take the union and complement of any collection of subsets
of a common object in S .

Definition 4.1. Let e be the equalizer of fπA1
and fπA2

, e∗ the co-equalizer of
ιB1

f and ιB2
f , φ the equalizer of e∗ιB1

and e∗ιB2
, φ∗ the co-equalizer of πA1

e and
πA2e as below:

E // e // A×A
πA1 //
πA2

// A

φ∗

����

f // B
ιB1 //
ιB2

// B +B
e∗ // // E∗

I∗ I

OO
φ

OO

We call the object I the image of f and the object I∗ the co-image of f .

Theorem 4.2. The image and co-image of a function are isomorphic.

Proof. By axiom 2.7 and 2.9 there exist arrows ψ∗ : I∗ → A, ψ : B → I, and
g : B → A such that φ∗ψ∗ = I∗ and ψφ = I. Define

f∗ ≡ ψfψ∗ : I∗ → I

g∗ ≡ φ∗gφ : I → I∗
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A
f //

φ∗

����

B

ψ

��

g
oo

I∗
f∗ //

ψ∗

OO

I

OOφ

OO

g∗
oo

By the universal properties of I and I∗, we see that there exist arrows α, β

A
α

$$JJJJJJ
f //

φ∗

����

B

ψ

��
I∗

β ::t
t

t
t

t
ψ∗

OO

I

OOφ

OO

such that f = βφ∗ and f = φα. Thus we have φψf = φψφα = φα = f , and
similarly fψ∗φ∗ = f .

Then we have that f∗g∗f∗ = ψ(fψ∗φ∗)g(φψf)ψ∗ = ψfgfψ∗ = ψfψ∗ = f∗.
Now we have that fπA1

〈ψ∗, ψ∗g∗f∗〉 = fψ∗ = φψfψ∗ = φf∗ = φf∗g∗f∗ =
fψ∗g∗f∗ = fπA2

〈ψ∗, ψ∗g∗f∗〉. Since e is the equalizer of fπA1
and fπA2

, there
exists ε : I∗ × I∗ → E such that eε = 〈ψ∗, ψ∗g∗f∗〉. Then we have since φ∗ is
the co-equalizer of πA1e and πA2e, I

∗ = φ∗ψ∗ = φ∗πA1〈ψ∗, ψ∗g∗f∗〉 = φ∗πA1eε =
φ∗πA2

eε = φ∗πA2
〈ψ∗, ψ∗g∗f∗〉 = φ∗ψ∗g∗f∗ = g∗f∗. Similarly, we have that f∗g∗ =

I. �

Remark 4.3. Given a function f , we see that f factors through its image I as below.

A
f //

f∗φ∗ �� ��@@@@@@@@ B

I

OOφ

OO

Definition 4.4. The characteristic function of a subset A ⊂ X is a mapping
φ : X → 2 such that x ∈ A if and only if φx = ι1, that is, there exists a unique a′

to make the upper triangle commute if and only if the bottom triangle commutes.

A
��
a

��

1
a′
oo_ _ _

ι1

��
x

����������

X
φ
// 2

Remark 4.5. Given φ : X → 2 we see that the equalizer of φ and ι1!

A // a // X
φ //
ι1!
// 2

is a subset of X such that for x ∈ X, x ∈ A if and only if φx = ι1!. Thus, subsets and
their characteristic functions are in bijective correspondence as we would expect.

Given φ : X → 2 we have an arrow φ̃ : 1→ 2X given by the exponential adjoint.
Conversely, given an arrow φ̃ : 1→ 2X we have an arrow φ = ε(φ̃×X) : X → 2 where
ε : 2X ×X → 2 is the evaluation for the exponential 2X . Thus since characteristic
functions of subsets of X and arrows 1→ 2X are in bijective correspondence so are
subsets of X and arrows 1→ 2X .
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Definition 4.6. Given a collection of subsets of X, we say that U is their union
if x ∈ U if and only if x is a member of one of the subsets.

Theorem 4.7. Given any collection of subsets of X, their union exists.

Proof. Let the collection of subsets be indexed by an arrow α : I → 2X where I
is an ‘indexing’ object in the sense that the elements i, j, ... ∈ I induce elements
αi, αj, ... ∈ 2X . By the above remark, we see that x ∈ A for some A ⊂ X if and
only if there is some j ∈ I such that ε2X 〈αj, x〉 = ι1. We show there is an object
U ⊂ X which is the union of the indexed subsets in the sense that x ∈ U if and
only if there exists j ∈ I such that ε2X 〈αj, x〉 = ι1.

Define U by

E

v
����

// e // I ×X
πX

��

ε2X 〈α,X〉 //
!
// 1 ι1

// 2

U // u // X

where E is the equalizer of ε2X 〈α,X〉 and ι1! and uv = πXe is the factorization of
πXe through its image U .

Let x ∈ U . There exists v′ : U → E such that vv′ = U by axiom 2.7, and x′

such that ux′ = x by definition. Define

x′′ ≡ v′x′ ∈ E

j ≡ πIex′′ ∈ I
Then x = ux′ = uvv′x′ = uvx′′ = πXex

′′. Thus we have that ε〈α,X〉〈j, x〉 =
ε〈α,X〉〈πIex′′, πXex′′〉 = ε〈α,X〉ex′′ = ι1!ex′′ = ι1 since !ex′′ : 1 → 1 must be the
identity of 1.

Conversely, if there exists j ∈ I and x ∈ X such that ε〈α,X〉〈j, x〉 = ι1 = ι1!ex′′,
then by the universal property of E, there exists x′′ ∈ E such that ex′′ = 〈j, x〉.
Then we have that x = πX〈j, x〉 = πXex

′′ = u(vx′′) and the arrow vx′′, which is
unique since u is monic, shows that x ∈ U . �

Definition 4.8. For two subsets A,B ⊂ X, we say that B is the complement of A
if X ∼= A+B.

Theorem 4.9. The complement of any subset exists.

Proof. Let a : A� X. We will construct the complement of A.
Define 2a : 2X → 2A as the exponential adjoint of ε2X 〈2X , a〉 : 2X × A → 2,

∅ : 1→ 2A as the exponential adjoint of ι0! : A→ 2.

2A ×A
ε2A // 2

2X ×A

〈2a,A〉

OO�
�
�

〈2X ,a〉// 2X ×X

ε2X

OO 2A ×A
ε2A // 2

A

〈∅,A〉

OO�
�
�

! // 1

ι0

OO

We may think of 2a as analogous to a function taking subsets of X to their preimage
in A, and ∅ as the subset of A which is empty.
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Define e : E � 2X to be the equalizer of 2a, ∅! : 2X → 2A.

E // e // 2X
2a

//
!
// 1

∅
// 2A

Here, E is analogous to a the set of subsets of X whose preimages under a are
empty.

Define b : B � X to be the union of the collection of subsets indexed by
e : E � 2X by theorem 4.7.

F

g
����

// f // E ×X
πX

��

ε2X (e×X)
//

ι1!
// 2

B // b // X

We show that b : B� X is the complement of a : A� X.

Now we show that for all x ∈ a and t ∈ e we have ε2X 〈t, x〉 = ι0, but for all
x ∈ b, there exists t ∈ e such that ε2X 〈t, x〉 = ι1. Thus, for all x ∈ X, we cannot
have both x ∈ a and x ∈ b.

For all x ∈ a and t ∈ e, there exist unique x̄ and t̄ such that ax̄ = x and et̄ = t
by definition, and we see that the two leftmost triangles below commute. By the
definition of 2a and ∅, the two sqaures below commute, and by the definition of E,
the rightmost triangle commutes.

E ×A

〈e,A〉
��

〈!,A〉

**UUUUUUUUUUUUUUUUUUU

1

〈t̄,x̄〉
;;xxxxxxxxx 〈t,x̄〉//

〈t,x〉 ""FFFFFFFFF 2X ×A

〈2X ,a〉
��

〈2a,A〉
// 2A ×A

ε2A

��

1×A
〈∅,A〉
oo

!

��
2X ×X

ε2X // 2 1
ι0oo

From the diagram, we see that ε2X 〈t, x〉 = ε2X 〈2X , a〉〈t, x̄〉 = ε2X 〈2X , a〉〈e,A〉〈t̄, x̄〉 =
ε2A〈2a, A〉〈e,A〉〈t̄, x̄〉 = ε2A〈∅, A〉〈!, A〉〈t̄, x̄〉 = ι0!〈!, A〉〈t̄, x̄〉 = ι0 since !〈!, A〉〈t̄, x̄〉
must be the identity of 1.

Now for all x ∈ b there exists a unique x̄ such that bx̄ = x. Let g′ : B → F be
such that gg′ = B by axiom 2.7. Define

t ≡ eπEfg′x̄ ∈ e

where t̄ = πEfg
′x̄ is the unique arrow such that et̄ = t since e is monic. We have

x = bx̄ = bgg′x̄ = πXfg
′x̄ which implies 〈t, x〉 = 〈eπEfg′x̄, πXfg′x̄〉 = 〈e,X〉fg′x̄

so that the following diagram commutes.
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F

f

��
1

〈t̄,x〉//

g′x̄

;;wwwwwwwwww

〈t,x〉 ##FFFFFFFFF E ×X ! //

〈e,X〉
��

1

ι1

��
2X ×X

ε2X // 2

We see that ε2X 〈t, x〉 = ι1!fg′x̄ = ι1.
Therefore we see that there is no x ∈ X such that both x ∈ a and x ∈ b.

Now we show that if x /∈ a, then x ∈ b so for all x ∈ X, we have that x ∈ a or
x ∈ b.

Let x ∈ X, and suppose x /∈ a. Let s : A + 1� X be arrow induced by a and
x and t : X → A + 1 the arrow guaranteed by axiom 2.7 such that ts = A + 1 as
below.

A||
a

||xxxxxxxx

! //

ιA

��

1

ι0

��
X

t //
A+ 1oo

s
oo

〈ι0!,ι1〉//___ 2

1 =

ι1

OO

bbx

bbFFFFFFFF

1

ι1

OO

We see that ta = tsιA = ιA and tx = tsι1 = ι1. Define

φ̃ ≡ 〈ι0!, ι1〉t

Then φ̃a = ι0! and φ̃x = ι1. Let φ ∈ 2X be the exponential adjoint of φ̃. Since
φ̃a = ι0!, by exponential adjointness we see that 2aφ = ∅ = ∅!φ. Thus, there
is a unique ψ : 1 → E such that eψ = φ. Now we see that ε2X 〈e,X〉〈ψ, x〉 =

ε2X 〈φ, x〉 = φ̃x = ι0. Thus, there is a ρ : 1→ F such that fρ = 〈ψ, x〉. We see that
b(gρ) = πX〈ψ, x〉 = x and that gρ is unique in this regard since b is monic. Thus,
x ∈ b. Therefore, for every x ∈ X either x ∈ A or x ∈ B.

Since for all x ∈ X, x ∈ a or x ∈ b but not both, by lemma 2.14, we see that X
is the sum of A and B. Therefore, B is the complement of A by definition. �

5. The axiom of choice.

We show that axiom 2.7 is stronger than the Axiom of Choice. In brief, axiom
2.7 ensures that both epimorphisms and monomorphisms spilt, but the Axiom of
Choice only implies that the former split. In the following, we do not assume axiom
2.7.

Theorem 5.1. For any f : A→ B, if A has elements, then there exists g : B → A
such that f = fgf if and only if both of the following are true.

(i) Given α : I → 2X , there exists f : I → X such that for all j ∈ I fj ∈ αj
where αj is the equalizer of ι1! and ε2X 〈αj,X〉.

(ii) The complement of any subset exists.
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Remark 5.2. Statement (i) is the statement of the usual Axiom of Choice we will
use in this proof. In usual set theory, we would say that given an index function,
α, of subsets of X, there exists an index function, f , of elements of X such that
f(j) ∈ α(j) for all j ∈ I. However, in this category, αj is only an element of 2X

and so we must construct the subset of X represented by αj as below.

Aj //
αj // X

ι1!

33
〈αj,X〉// 2X × 2

ε2X // 2

Proof. We show that axiom 2.7 implies statement (i). Given a collection of subsets
indexed by an arrow α : I → 2X and any j ∈ I, let e : E � I ×X be the equalizer
of ε〈α,X〉 and ι1!I×X , and let αj : Aj � X be the equalizer of ε〈α,X〉〈j,X〉 and
ι1!X .

E // e // I ×X
ε〈α,X〉 //

!I×X

// 1 ι1
// 2

Aj //
αj // X

〈j,X〉

OO

!X

==zzzzzzzzz

We have that ε〈α,X〉〈j,X〉αj = ι1!Xαj = ι1!I×X〈j,X〉αj , and thus by the
universal property of E, there is a unique arrow m : Aj → E such that the following
commutes.

E // e // I ×X

Aj //
αj //

m

OO�
�
�

X

〈j,X〉

OO

Let n : E → Aj be such that mnm = m by axiom 2.7. Then we have that
mn = Aj and nm = E by the universal properties of E and Aj , so that n is the
inverse of m. Let c : I → E such that (πIe)c(πIe) = πIe as ensured by axiom 2.7.

I

c
{{wwwwwwwwww

E // e //

n

��

I ×X

πI

OO

Aj //
αj //

m

OO

X

〈j,X〉

OO

Define

f ≡ αjnc : I → X

Then we see that αj(ncj) = fj, and that ncj is the unique such arrow since αj is
monic. Thus ncj shows that fj ∈ αj .

Thus we have shown that axiom 2.7 implies (i), and theorem 4.9 uses axiom 2.7
to show (ii). Therefore axiom 2.7 implies (i) and (ii).

Now we show that statements (i) and (ii) imply axiom 2.7, that is, given f :
A → B, we show there exists g : B → A such that fgf = f . In summary, we first
construct an arrow ḡ from the image of A under f back to A, and then construct
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g : B → A by applying ḡ to the image of A and sending everything else to some
selected point in A.

Let i : I � B be the image of f : A→ B, and let f̄ : A→ I be the arrow given
by the universal property of I such that if̄ = f . Define

φ ≡ 〈f̄ , A〉∆ : A� I ×A
and φC : A� I ×A as the complement of φ by statement (ii). Let α̃ be the arrow
given in the following diagram by the universal property of I ×A as the coproduct
of φ and φC .

A
! //

φ

��

1

ι1

��
I ×A α̃ // 2

A

φC

OO

! // 1

ι0

OO

Then we have an arrow α : I → 2A by exponential adjointness and consequently
an arrow ḡ : I → A by statement (i) such that for all j ∈ I, ḡj ∈ αj , where
αj ⊂ A is the equalizer of ι1! and α̃〈j, A〉. (Each such αj 6= 0 since, given j ∈ J ,
by exponential adjointness we have a subset arrows 1→ 2J → 2A by which we can
find a suitable a by hypothesis.)

By axiom 2.11, 〈j, ḡj〉 ∈ I × A must be a member of either φ or φC . We have
α̃〈j, ḡj〉 = α̃〈j, A〉(ḡj) = ι1!(ḡj) = ι1, so 〈j, ḡj〉 must be a member of φ.

Thus, there exists a ∈ A such that 〈j, ḡj〉 = φa = 〈f̄a, a〉. We see j = f̄a and
ḡj = a. Hence f̄ ḡj = j for all j ∈ I. Therefore, by axiom 2.4, f̄ ḡ = I.

Let IC be the complement of I. By statement (i), choose some a∗ ∈ A. Define
g : B → A by the universal property of B as a coproduct:

I
��

��

g̃

  AAAAAAAA

B
g //___ A

IC
a∗!

>>}}}}}}}OO

OO

Since by the universal property of I, for all a ∈ A, fa ∈ I. Then we have fa =
if̄a = if̄ ḡf̄a = fgfa by the universal property of I. Therefore, by axiom 2.4,
f = fgf .

Therefore, statements (i) and (ii) imply axiom 2.7. �

6. Set

The above results suggest that a category characterized by the given axioms has
properties similar to those of Set. The following theorem shows that, in fact, a
category characterized by these axioms is equivalent to Set.

Theorem 6.1. Let C be a locally small complete category which satisfies the ax-
ioms. Define a functor F : C → Set by

FC = C (1, C)
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(Ff)c = fc

for all objects C in C , arrows f : C → D, and c ∈ C. Then F is an equivalence of
C and Set.

Proof. Given g : FC → FD, construct f : C → D as follows. By lemma 2.14, C
and D are each the sum of 1 over their respective elements. There exists f : C → D
induced by the identity arrows dom(c)→ dom(gc) such that fc = gc for all c ∈ C.
Then we have (Ff)c = fc = gc for all c ∈ C so Ff = g. Therefore, F is full.

Let Ff = Ff ′. Then for all c ∈ C, fc = (Ff)c = (Ff ′)c = f ′c and thus f = f ′

by axiom 2.4. Therefore, F is faithful.
For any set S, let C in C be the sum over the elements of S. Then by lemma

2.14, C (1, C) and S have the same cardinality, and thus are isomorphic. Therefore,
F is essentially surjective.

Since F is full, faithful, and essentially surjective, it is an equivalence of C and
Set. �
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