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Abstract. In this paper, we �rst introduce the concepts of Markov Chains
and their stationary distributions. We then discuss total variation distance
and mixing times to bound the rate of convergence of a Markov Chain to
its stationary distribution. Functions on state spaces are then considered,
including a discussion of which properties of Markov Chains are preserved
over functions, and we will show that the mixing time of a Markov chain is
greater than or equal to the mixing time of its image.

Contents

1. Introduction

De�nition 1.1. A Markov Chain with countable state space 
 is a sequence of

 - valued random variables, X1; X2; X3; : : :, such that for any states xi, and any
time n � 1,

PfXn = xnjjXn�1 = xn�1; Xn�2 = xi�2; : : : X0 = x0g = PfXn = xnjjXn�1 = xn�1g

This de�nition says that the state of a Markov Chain depends only on the state
immediately preceding it, and is independent of any behavior of the chain before
that. We will often denote the probability of going from one state to another,
PfXn = xnjXn�1 = xn�1g as p(xn�1; xn). To refer to the probability of going
from one state to another in j steps, PfXn+j = yjXn = xg , we will use the
notation of pj(x; y).

We will also often refer to the transition probability matrix P of a Markov Chain.
This means the j
j � j
j matrix, where for all i; j in 
, Pij = p(i; j).

De�nition 1.2. A Markov Chain Xn with transition probability matrix P is irre-
ducible if for any two states x; y there exists an integer t (possibly depending on x
and y) such that pt(x; y) > 0

By this de�nition, if a Markov chain Xn is irreducible, there is positive proba-
bility that, starting at any state, the Markov chain will reach any other state in
�nite time.

De�nition 1.3. Let T (x) = ft � 1 : pt(x; x) > 0g be the set of times t for which
there is a positive probability for the chain to return to starting position x at time
t. The period of state x is de�ned to be the greatest common divisor of T (x).
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De�nition 1.4. A Markov Chain Xn is said to be aperiodic if the period of all of
its states is 1.

We will often discuss Markov Chains that are both irreducible and aperiodic. In
this case, the following theorem is useful:

Theorem 1.5. If Xn is an aperiodic and irreducible Markov Chain with transition
probability matrix P on some �nite state space 
, then there exists an integer M
such that for all m > M , pm(x; y) > 0 for all x; y 2 
.

Proof. For any x 2 
, recall from the de�nition of periodicity that T (x) = ft � 1 j
P t(x; x) > 0g, and since Xn is aperiodic, we know gcd(T (x)) = 1.
Consider any s and t in T (x). Since

ps+t(x; x) � ps(x; x)pt(x; x) > 0

we know that s+ t is in T (x) as well, so T (x) is closed under addition.
We will now use the fact from number theory that any set of non-negative integers
which is closed under addition and which has greatest common divisor 1 must
contain all but �nitely many of the non-negative integers. This implies that we can
�nd some tx such that, for all t � tx, t 2 T (x).
Fix any x; y in 
. Because Xn is irreducible, there exists some k(x;y) such that

pk(x;y)(x; y) > 0.
Thus, for t � tx + k(x;y),

pt(x; y) � pt�k(x;y)(x; x)pk(x;y)(x; y) > 0

Now, for any x 2 
, let t0x = tx+maxy2
 k(x;y). For all y 2 
, we have pt
0

x(x; y) > 0.
We then know that for all m � maxx2
 t

0
x, we have pm(x; y) > 0 for any x; y 2


. �

2. Stationary Distributions

De�nition 2.1. For any Markov Chain Xn with transition probability matrix
P , a stationary distribution of Xn is any probability distribution � satisfying the
condition that

� = �P

By matrix multiplication, it is equivalent that, for any y 2 
,

�(y) =
X
x2


�(x)p(x; y)

I will show in this section that, for any Markov chain Xn on a �nite state space

, the stationary distribution � exists, and if Xn is irreducible, then � is unique.
In the next section, I will show that if Xn is an irreducible and aperiodic Markov
chain, there is a notion of convergence to its stationary distribution.
For most of the theorems in this section, the condition of a �nite state space is
necessary. To show this, consider the simple random walk on Z, which is a Markov
Chain represented by the transition probabilities:

p(x; y) =

(
1
2 : if jx� yj = 1

0 : otherwise
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I will show that the simple random walk cannot have any stationary distribution.
Suppose the simple random walk on has a stationary distribution, that is, there
exists some probability distribution � such that

�(y) =
X
x2


�(x)p(x; y)

) �(y) =
1

2
�(y � 1) +

1

2
�(y + 1)

This means that � : Z ! [0; 1] is a harmonic function; that is, it satis�es the
condition that, for all x, �(x) equals the average of its neighbors. It can be shown
that the only harmonic functions on Z are linear. Because � must always be non-
negative, we know that the slope of � must be zero. If �(x) = 0 for all x, then �
is not a probability distribution; similarly, if �(x) 6= 0, then

P
x2Z �(x) =1, so �

is not a probability distribution. Thus, the simple random walk cannot have any
stationary distribution.

Theorem 2.2. If Xn is a Markov Chain with transition probability matrix P on
�nite state space 
, then �, the stationary distribution of Xn, exists.

Proof. Let S =
�
probability distributions onf1; 2; : : : ; ng

	
� R

n. Because the sum
of all components of a probability distribution must equal one, S is a compact
subset of Rn.
Choose any � 2 S. We know that �P; �P 2; �P 3; : : : are all also in S.
Now, consider the sequence

�n =
1

n

n�1X
k=0

�P k

�n is also a sequence in S. Because S is compact, it must have some convergent
subsequence. Thus, there exists some subsequence �nj that converges to some � in
S.
I claim that this � is a stationary distribution for P . We want to show that �P = �,
or equivalently, �P � � = 0.

�P = lim
j!1

vnjP

= lim
j!1

1

nj

nj�1X
k=0

�P k+1

) �P � � = lim
j!1

1

nj

nj�1X
k=0

�P k+1 �
1

nj

nj�1X
k=0

�P k

= lim
j!1

1

nj

njX
k=1

�P k �
1

nj

nj�1X
k=0

�P k

= lim
j!1

1

nj
(�(Pnj )� �)

= 0

since (�(Pnj )� �) is bounded and limj!1
1
nj

goes to 0. �

Theorem 2.3. If Xn is an irreducible Markov Chain with transition probability
matrix P on �nite state space 
, then the stationary distribution � is unique.
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Proof. Suppose there exists �1 and �2 such that �1P = �1 and �2P = �2. It is

su�cient to show that �1(x)
�2(x)

is a constant over all x, because if all stationary vectors

are scalar multiples of each other, there can be at most one with components that
sum to 1.
Because Xn is irreducible, we know that, if �P = �, then �(x) > 0 for all x 2 
.
This is true because Because

P
x2
 �(x) = 1, there must exist some y 2 
 such

that �(y) > 0, so if we choose any x, there must be some m such that pm(y; x) > 0
(or else Xn would be reducible), so it immediately follows that � can have no 0
components.
Since 
 is �nite, it follows that there exist some � > 0 such that

min
x

�1(x)

�2(x)
= �

This implies that, for all y 2 
,

�1(y)� ��2(y) � 0

and = 0 for some y 2 


If �1 � ��2 is not the zero vector, then we get that, for some appropriate scalar
�, �(�1 � ��2) is also a stationary distribution. However, �(�1 � ��2) = 0 at
some x, contradicting what we showed above, that no stationary distribution of
an irreducible Markov chain can have any components equal to 0. Thus, �1 � ��2
must equal 0 for all x, so �1(x)

�2(x)
is a constant, and P can only have one stationary

distribution. �

3. Convergence

The goal of this section is to place an upper bound on the time it takes any
irreducible, aperiodic Markov chains converge to its stationary distribution. This
section is mostly based on Chapter 4 of Markov Chains and Mixing Times.

3.1. Total Variation Distance. In order to de�ne Mixing Times, we �rst need
to de�ne a method to measure distance between probability distributions.

De�nition 3.1. For some probability distributions � and �, the Total Variation
Distance between � and �, denoted jj�� �jjTV , is

jj�� �jjTV = max
A�


j�(A)� �(A)j

Now, we will introduce some other de�nitions of Total Variation distance and
show that they are equivalent.

Proposition 3.2.

jj�� �jjTV =
1

2

X
x2


j�(x)� �(x)j

Proof. Let B = fx j �(x) � �(x)g. For any event A 2 
,

�(A)� �(A) � �(A \B)� �(A \B) � �(B)� �(B)

Similarly,
�(A)� �(A) � �(Bc)� �(Bc)

Because
�(B) + �(Bc) = 1 = �(B) + �(Bc)
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we get that �(Bc)��(Bc) = �(B)��(B), so this is an upper bound of jj���jjTV ,
and if we consider the event A = B, we get equality.
Thus, we get,

jj�� �jjTV =
1

2
[�(B)� �(B) + �(Bc)� �(Bc)]

=
1

2

X
x2


j�(x)� �(x)j

�

Note that the above proof also shows that

jj�� �jjTV =
X

x2
;�(x)>�(x)

j�(x)� �(x)j

To understand the next de�nition of Total Variation Distance, we need to use
coupling.

De�nition 3.3. A coupling of two probability distributions � and v is a pair of
random variables (X;Y ) such that the marginal distribution of X is � and the
marginal distribution of Y is v.

Thus, if q is a joint distribution of X;Y on 
 � 
, meaning q(x; y) = PfX =
x; Y = yg, then

P
y2
 q(x; y) = �(x) and

P
x2
 q(x; y) = �(y).

Clearly, X and Y can always have the same value only if � and � are identical.

Proposition 3.4.

jj�� �jjTV = inffPfX 6= Y g j (X;Y ) is a coupling of � and �g

Note: Such a coupling is called an optimal coupling. In the proof below, we will
show an optimal coupling always exists.

Proof. For any event A � 
,

�(A)� �(A) = P (X 2 A)� P (Y 2 A)

� PfX 2 A; Y =2 Ag

� PfX 6= Y g

) jj�� �jjTV � inffPfX 6= Y (X;Y ) is a coupling of � and �g

Now, we need to construct a coupling such that equality holds.
Let

p =
X
x2


minf�(x); �(x)g
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We show that

p =
X
x2


minf�(x); �(x)g

=
X

x2
;�(x)<�(x)

�(x) +
X

x2
;�(x)��(x)

�(x)

=
X

x2
;�(x)<�(x)

�(x) +
X

x2
;�(x)��(x)

�(x) +
X

x2
;�(x)��(x)

�(x)�
X

x2
;�(x)��(x)

�(x)

= 1�
X

x2
;�(x)��(x)

(�(x)� �(x))

= 1� jj�(x)� �(x)jjTV

Now, 
ip a coin with probability p of heads.
If the coin is heads, choose the value of X by the probability distribution


(x) =
minf�(x); �(x)g

p

In this case, let Y = X.
If the coin is tails, choose the value of X using the probability distribution

�(x) =

(
�(x)��(x)

1�p : if �(x) > �(x)

0 : otherwise

Independently choose the value of Y using the probability distribution

�(x) =

(
�(x)��(x)

1�p : if �(x) > �(x)

0 : otherwise

Using this, we have, for the distribution of X,

p
 + (1� p)� = �

and for the distribution of Y , we have

p
 + (1� p)� = �

This means that we have de�ned a coupling (X;Y ) of � and �. Note that X 6= Y
if and only if the tail lands tails. Thus,

PfX 6= Y g = 1� p = jj�� �jjTV

�

3.2. The Convergence Theorem.

Theorem 3.5. Suppose P is an irreducible, aperiodic Markov Chain, with sta-
tionary distribution �. Then there exists � 2 (0; 1) and C > 0 such that, for all
t � 0,

max
x2


jjP t(x; �)� �jjTV � C�t

Proof. Since P is irreducible and aperiodic, there exists � > 0 and r 2 N such that,
for all x; y in 
,

pr(x; y) � ��(y)

Let � = 1� �. Let � be a square matrix with j
j rows, each of which is �.
P r = (1��)� +�Q de�nes a stochastic matrix Q.
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Now, we will show P rk = (1��k)� + �kQk by induction.
For k = 1, this is true, because it is exactly how we de�ned Q. Assume this holds
for k = n.

P r(n+1) = P rnP r

= [(1��n)� + �nQn]P r

= (1��n)�P r + (1��)�nQn�+�(n+1)QnQ

Because �P r = �, and Qn� = �, we get

P r(n+1) = (1��n+1)� + �n+1Qn+1

completing the induction.

) P rkP j = (1��k)�P j +�kQkP j

P rk+j = ���k�+�kQkP j

P rk+j �� = �k(QkP j ��)

P rk+j(x0; �)��(x0; �)

2
=

�kQkP j(x0; �)��(x0; �)

2

Thus, the left hand side above becomes the Total Variation Distance, and the second
term on the right hand side is at most 1, so we get that there exists some Cj such
that

max
x2


jjP rk+j(x0; �)� �jjTV � Cj�
t

Now, let C = maxfC0; C1; : : : ; Cr�1; Crg, let k = [ t
r
], and we have

max
x2


jjP rk+j(x0; �)� �jjTV � C�t

�

3.3. Standardizing Distance from Stationary. We will now introduce notation
to show the distance of a Markov Chain from its stationary distribution, and the
distance between two Markov Chains.

De�nition 3.6.
d(t) = max

x2

jjP t(x; �)� �jjTV

d(t) = max
x;y2


jjP t(x; �)� P t(y; �)jjTV

Lemma 3.7.

d(t) � d(t) � 2d(t)

Proof. Because the triangle inequality holds for Total Variation Distance, for all
x; y in 
,

jjP t(x; �)� P t(y; �)jjTV � jjP t(x; �)� �jjTV + jjP t(y; �)� �jjTV

so d(t) � 2d(t). Since � is stationary,

�(A) =
X
y2


�(y)P t(y;A)
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Thus, we have

d(t) = max
x2


jjP t(x; �)� �jjTV

= max
x2


�
max
A�


jP t(x;A)� �(A)j
�

= max
x2


�
max
A�


j
X
y2


�(y)jP t(x;A)� P t(y;A)j
�

� max
x2


�X
y2


�(y)max
A�


jP t(x;A)� P t(y;A)j
�

� max
x2


�
max
y2


jjP t(x; �)� P t(y; �)jjTV
�

� max
x;y2


jjP t(x; �)� P t(y; �)jjTV = d(t)

The second to last inequality holds since
P

y2
 �(y) is a convex linear combination.
�

Lemma 3.8. d is submuliplicative; that is,

d(s+ t) � d(s)d(t)

Proof. Fix x; y in 
, and let (Xs; Ys) be the optimal coupling of P s(x; �) and P s(y; �).
We early showed this coupling does exist, and that

jjP s(x; �)� P s(y; �)jjTV = PfXs 6= YSg

ps+t(x;w) =
X
z2


ps(x; z)pt(z; w)

=
X
z2


P xfXs = zgpt(z; w)

= Ex(P t(Xs; w))

Similarly, ps+t(y; w) = E(pt(Ys; w)).

) ps+t(x;w)� ps+t(y; w) = E(P t(Xs; w)� P t(Ys; w))

) jjP s+t(x;w)� P s+t(y; w)jjTV =
1

2

X
w2


jE(P t(Xs; w)� P t(Ys; w))j

� E(
1

2

X
w2


jP t(Xs; w)� P t(Ys; w)j)

= E(jjP t(Xs; �)� P t(Ys; �)jjTV )

� d(t)PfXs 6= Ysg

� d(t)d(s)

�

We now get to the following corollary:

Corollary 3.9. For all c 2 N,

d(ct) � d(ct) � d(t)c
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Proof. From the earlier lemma, d(ct) � d(ct). From the lemma immediately above,

d(ct) = d(t+ t+ : : :+ t) (c times)

� d(t)d(t) : : : d(t) (c times)

= d(t)c

�

3.4. Mixing Times.

De�nition 3.10. The mixing time of a Markov Chain, with respect to �, is

tmix(�) = minft j d(t) � �g

We will also let tmix = tmix(
1
4 ).

The choice of exactly 1
4 is somewhat arbitrary, but as we will see below, it

simpli�es the calculation of a key inequality.
By corollary 3.9, for any l 2 N

d(ltmix(�)) � d(ltmix(�)) � d(tmix(�))
l � (2�)l

) d(ltmix) � 2�l

This means that a Markov Chain converges to its stationary distribution exponen-
tially fast.

4. Functions

We will now consider the idea of functions on state spaces. We let Xn be a
Markov Chain with transition probability matrix P on some state space X , and
consider some function F : X ! W. F will always be surjective, but not necessarily
injective. We will let Wn = F (Xn). For all of this section, assume X is at most
countable.
I will show, by counterexample, that Wn is not always a Markov Chain.
Let X = fa; b; cg and W = fd; eg. Let Xn be the Markov Chain represented by
the below directed graph, where p(i; j) = 1 if i has an outgoing edge to j, and 0
otherwise.

�a �b �c
��

// //

De�ne F such that F (a) = F (b) = d, and F (c) = e.
Let Xn have the starting distribution fp1; p2; p3g over fa; b; cg. We want to show

the Markov condition does not hold for Wn; that is, there exists some n and wn
such that

PfWn = wnjWn�1 = wn�1g 6= PfWn = wnjWn�1 = wn�1;Wn�2 = wn�2; � � � ;W0 = w0g

This is true for W2 = d, because

PfW2 = djW0 = e;W1 = eg =
PfX2 = a;X0 = (b or c); X1 = (b or c)g

PfX0 = (b or c); X1 = (b or c)g

=
p2
p2

= 1
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but

PfW2 = djW1 = eg =
PfX2 = a;X1 = (b or c)g

PfX1 = (b or c)g

=
p2

p1 + p2

PfW2 = djW0 = e;W1 = eg 6= PfW2 = djW1 = eg, so Wn is not a Markov Chain.
However, there does exist a condition on Xn that guarantees Wn to be a Markov
Chain.

Theorem 4.1. Let Xn be a Markov Chain with transition probability matrix P on
some state space X , and consider some function F : X ! W. Let Wn = F (Xn).
For each w 2 W, let F�1(w) = fx 2 X jF (x) = wg. If for every pair of states
w1; w2 in W and every pair of states x1; x2 in F�1(w1),X

y2F�1(w2)

p(x1; y) =
X

y2F�1(w2)

p(x2; y)

then Wn is a Markov Chain on W.

I will say that any Markov Chain with a function which satis�es the condition
of the above theorem is function regular.

Proof. We want to show that

PfWn = wnjWn�1 = wn�1g = PfWn = wnjWn�1 = wn�1;Wn�2 = wn�2; � � � ;W0 = w0g

We know for every x1; x2 in F�1(wn�1), there exists some ! 2 R such thatX
y2F�1(wn)

p(x1; y) =
X

y2F�1(wn)

p(x2; y) = !

I claim that

PfWn = wnjWn�1 = wn�1g = PfWn = wnjWn�1 = wn�1;Wn�2 = wn�2; � � � ;W0 = w0g = !

First, I will show this is true for the left hand side.

PfWn = wnjWn�1 = wn�1g = PfXn 2 F�1(wn)jXn�1 2 F�1(wn�1)g

=
PfXn 2 F�1(wn); Xn�1 2 F�1(wn�1)g

PfXn�1 2 F�1(wn�1)g

=

P
x2F�1(wn�1)

(P (Xn�1 = x) �
P

y2F�1(wn)
p(x; y))

PfXn�1 2 F�1(wn�1)g

=

P
x2F�1(wn�1)

(P (Xn�1 = x) � !)

PfXn�1 2 F�1(wn�1)g

=
! �
P

x2F�1(wn�1)
(P (Xn�1 = x))

PfXn�1 2 F�1(wn�1)g

= !
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Now, I will show this is true for the right hand side.

PfWn = wnjWn�1 = wn�1;Wn�2 = wn�2; � � � ;W0 = w0g

= PfXn 2 F�1(wn)jXn�1 2 F�1(wn�1); Xn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g

=
PfXn 2 F�1(wn); Xn�1 2 F�1(wn�1); Xn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g

PfXn�1 2 F�1(wn�1); Xn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g

=

 P
x2F�1(wn�1)

PfXn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g � PfXn�1 =

xjXn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g � (
P

y2F�1(wn)
P (x; y))

!
=

 
PfXn�1 2

F�1(wn�1); Xn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g

!

=

 
!
P

x2F�1(wn�1)
PfXn�2 2 F�1(wn�2); � � � ; X0 2 F�1(w0)g�PfXn�1 = xjXn�2 2

F�1(wn�2); � � � ; X0 2 F�1(w0)g

!
=

 
PfXn�1 2 F�1(wn�1); Xn�2 2 F�1(wn�2); � � � ; X0 2

F�1(w0)g

!

= !

Thus, Wn is a Markov Chain. �

However, function regularity is only a su�cient condition for the image to be a
Markov Chain, not a necessary one. Let Xn be the Markov Chain represented by
the transition probability matrix below.

a b c d
a 0 .5 .5 0
b 1 0 0 0
c 0 0 0 1
d 0 .5 .5 0

Let F (a) = �; F (b) = F (c) = �, and F (d) = 
.
Because p(b; a) 6= p(c; a), Xn is not function regular. We then have that Wn is
represented by the following transition probability matrix:

� � 

� 0 1 0
� .5 0 .5

 0 1 0

This counterexample demonstrates an issue with deciding how we determine the
starting distribution of the Xn. Given any starting distribution of Wn, can we
choose how we want to pull this back onto the Xn? If we know or can �x any
pull back of starting probabilities in X , then Wn is a Markov Chain, so this is
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a counterexample. However, if we do not know how the starting distribution is
pulled back in X , and all we know is the observed probabilities of the Wn, then
PfW1 = �jW0 = �g is not well de�ned, and Wn is not a Markov Chain.
For this rest of this section, unless otherwise stated we will not assume Xn is
function regular. However, we will assume that Wn is a Markov Chain.

We will now discuss some properties of Markov Chains that are, or are not,
preserved over functions on state spaces.

First, we will prove a lemma needed for the next theorem.

Lemma 4.2. Let P be a transition probability matrix on a state space Y. Then
a probability distribution � on Y is stationary for P if, on some probability space,
there exist Y-valued random variables Y0; Y1 such that (a) each of Y0 and Y1 has
marginal distribution �; and (b) the conditional distribution of Y1 given Y0 = y is
the yth row of P .

Proof. Suppose we have some random variables Y0; Y1 such that PfY1 = xjY0 =
yg = P (y; x) and PfY0 = yg = PfY1 = yg = �(y). We want to show that � is
stationary; that is, we want to show �(yi) =

P
y2Y(�(y)P (y; yi)).X

y2Y

(�(y)P (y; yi)) =
X
y2Y

(PfY0 = yg � PfY1 = xjY0 = yg)

=
X
y2Y

(PfY1 = yi; Y0 = yg)

= �(yi)

�

Theorem 4.3. Let Xn, with stationary distribution �, be a function regular Markov
Chain. Let Wn = F (Xn), as usual. Then the projection � � F�1 of � to W is a
stationary distribution for Wn.

Proof. We will �rst choose two random variables Y0; Y1 such that:

PfY1 = x j Y0 = yg = q(y; x) (1)

PfY0 = yg = PfY1 = yg = �(F�1(y)) (2)

=
X

z2F�1(y)

�(z)

By the lemma, we know that if two such random variables exist, than �(F�1) is a
stationary distribution.
Let P (Y1 = x; Y0 = y) = f(x; y). Having assumed PfY1 = x j Y0 = Y g = q(y; x),
we want to show that f(x; y) satis�es the condition (2) above.

PfY1 = x; Y0 = Y g

PfY0 = yg
= q(y; x)

)
f(x; y)P

z2F�1(y) �(z)
= q(y; x)

) f(x; y) = q(y; x)
X

z2F�1(y)

�(z)

)
X
x2W

f(x; y) =
X

z2F�1(y)

�(z)
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The last step follows since
P

x2W q(y; x) = 1.
Thus, we have just shown that P (Y0 = y) =

P
z2F�1(y) �(z), the second part of

condition 2. Now, all that is left is to show that P (Y1 = x) = (� � F�1(x)).

q(y; x) = PfW1 = y jW0 = xg

= Pfx1 2 F�1(y) j X0 2 F�1(x)g

= Pfx1 2 F�1(y) j X0 = z 2 F�1(x)g

We know that, since Xn is function regular, the last step above does not depend
on the choice of z.
Choose any u in F�1(y).X
y2W

f(x; y) =
X
y2W

� X
v2F�1(x)

P (u; v)
�� X

z2F�1(y)

�(z)
�

=
X
y2W

� X
z2F�1(y)

� X
v2F�1(x)

P (u; v)�(z)
��

=
X
y2W

� X
z2F�1(y)

� X
v2F�1(x)

P (z; v)�(z)
��

=
X

v2F�1(x)

�X
z2X

p(z; v)�(z)
�
(Since we were able to combine the y sum and the z sum)

=
X

v2F�1(x)

�(v) (Since � is stationary in X )

= (� � F�1)(x)

We just showed that
P

y f(x; y) = PfY1 = xg = (� � F�1)(x), so we are done. �

Now, as an example of a Markov Chain with a function on its state space, I will
introduce the Ehrenfest Urn model. The state space X is f0; 1gN . At each integer
time t, one random index 1 � j � N is chosen, and the jth coordinate from time
t� 1 is switched. Thus, for two vectors x and y, the transition probabilities are:

p(x; y) =

(
1
N

: if x and y di�er in exactly one coordinate

0 : otherwise

This can be visualized as two urns of balls. At each time t, one ball is randomly
chosen to switch urns.
I claim that the stationary distribution of the Ehrenfest Urn model, � is that
all possible vectors are uniformly distributed with probability 1

2N . Because there

are 2N vectors, this is a probability distribution. This distribution is stationary
because, for any y 2 X

1

2N
= N

1

2N
1

N
1

2N
=

X
fxjx and y di�er in exactly one coordinate g

1

2N
1

N

�(y) =
X
x2


�(x)p(x; y)

Because the Ehrenfest Urn model is irreducible and X is �nite, � is unique.
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Now, let W = f0; 1; 2; : : : ; Ng, and de�ne

Wn =

NX
j=1

Xn(j)

We know that Wn is a Markov chain because Xn is function regular (any vector
with k 1's at time t� 1 is equally likely to have l 1's at time t). We can determine
the transition probabilities of Wn by looking of the transition probabilities of Xn.
If Wn = w, then Wn+1 increases by 1 if a 0 is chosen to be switched in Xn, and
decreases by 1 if a 1 is chosen in Xn. the transition probabilities are as follows:

P (w;w + 1) =
N � w

N

P (w;w � 1) =
w

N
P (w; any other value) = 0

Using Theorem 5.3, we can also determine the stationary distribution of Wn by
considering the stationary distribution, �, of Xn. Since all vectors are equally
likely, it is simply a matter of counting how many vectors in X go to each value in
Y. The number of ways to have w 1's in an N length vector is

�
N
w

�
. Because there

are 2N binary vectors of length N , we can see that the stationary distribution of
Wn, �, is:

�(w) =

�
N
w

�
2N

We will now show that, if Xn converges to its stationary distribution, then Wn

converges to its stationary distribution at least as fast.

Theorem 4.4. If Xn is irreducible and aperiodic, then Wn is irreducible and ape-
riodic.

Proof. Because Xn is irreducible and aperiodic, there exists some M such that for
all m > M and x; y 2 X , pm(x; y) > 0.
We will now show that qm(w1; w2) > 0 for any m > M and w1; w2 2 W, where
qm(w1; w2) represents the transition probabilities of going from w1 to w2 in m steps
in the chain of the Wn.
Choose any w1; w2 2 W.

qm(w1; w2) = PfXn 2 F�1(w2) j Xn�m 2 F�1(w1)g

=
PfXn 2 F�1(w2); Xn�m 2 F�1(w1)g

PfXn�m 2 F�1(w1)g

=

P
x2F 1(w1);y2F�1(w2)

pm(x; y)

PfXn�m 2 F�1(w1)g

> 0

This condition is stronger than the condition for irreducibility, soWn is irreducible.
If we let w2 = w1, this condition says that for any m > M and w1 2 W,
qm(w1; w1) > 0, so T (w1) � fm j m > Mg. This implies that gcd(T (w1)) = 1
for all w1 2 W, so Wn is aperiodic. �

Theorem 4.5. d(t)Wn
� d(t)Xn

.
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Proof.

d(t)Wn
= max

w2W
jj
X
y2W

�
qt(w; y)� �(y)

�
jjTV

= max
w2W

jj
X
z2X

X
x2F�1(w)

�
PfXt = xjXt 2 F�1(w)gpt(x; z)� �(x)

�
jjTV By Theorem 5.3

� max
w2W

 
max

x2F�1(w)
jj
X
z2X

�
pt(x; z)� �(x)

�
jjTV

!

� max
x2X

jj
X
z2X

�
pt(x; z)� �(x)

�
jjTV

= d(t)Xn

The third line followed becauseX
x2F�1(w)

PfXt = xjXt 2 F�1(w)g = 1

�

Corollary 4.6. For all �, tmix(�)(Wn) � tmix(�)(Xn)

Proof. Recall that tmix(�) = minftjd(t) � �g. This corollary follows immediately
from theorem 5. �

I'll now show some counterexamples of properties that are not preserved under
functions on state spaces. If Xn is reducible,Wn is not necessarily irreducible. Con-
sider an Xn of two identical, non-communicating classes, for example, the Markov
Chain represented by the graph below:

�a

�b

�c

�c

jj

** **

jj

It is clear that there is a function (namely, F (a) = F (c) = � and F (b) = F (d) =
�) that maps the corresponding states in each class to the same point, creating a
Markov chain with a single communicating class.
If Xn is periodic, then Wn is not necessarily period. Consider the Markov Chain
represented by the transition probability matrix below to be Xn:

a b c d
a 0 .5 0 .5
b .5 0 .5 0
c 0 .5 0 .5
d .5 0 .5 0

Now let F (a) = F (b) = � and F (c) = F (d) = �. We then have that Wn is
represented by the transition probability matrix below:

� �
� .5 .5
� .5 .5

Here, Xn has period 2 , but its image has period 1, so Wn is aperiodic.
Consider the following lemma:
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Lemma 4.7. Let Xn be a function regular Markov Chain, and Wn = F (Xn).
q(w1; w2) = 0 if and only if for all x 2 F�1(w1) and y 2 F�1(w2), we have
p(x; y) = 0.

Proof. First, we will show that the right hand side implies the left hand side.
Suppose that for all x 2 F�1(w1), y 2 F�1(w2), p(x; y) = 0. We then get that

PfXn 2 F�1(w2) j Xn�1 2 F�1(w1)g = 0

which is equivalent to saying q(w1; w2) = 0, as desired.
Now, we will show the left hand side implies the right hand side by proving the
contrapositive. Suppose there exists some x0 2 F�1(w1) and y0 2 F�1(w2) such
that p(x; y) = 0. This means that

P
y2F�1(w2)

p(x0; y) = �, for some � > 0.

BecauseXn is function regular, we know that for all x 2 X ,
P

y2F�1(w2)
p(x; y) = �.

Also, because we are conditioning on the event Xn�1 2 F�1(w1), we will assume
that PfXn�1 2 F�1(w1)g > 0. We can now show that

q(x; y) = PfXn 2 F�1(w2) j Xn�1 2 F�1(w1)g

=
PfXn 2 F�1(w2); Xn�1 2 F�1(w1)g

PfXn�1 2 F�1(w1)g

=

P
x2F�1(w1)

PfXn�1 = xg � (
P

y2F�1(w2)
p(x; y))

PfXn�1 2 F�1(w1)g

=
� � PfXn�1 2 F�1(w1)g

PfXn�1 2 F�1(w1)g

> 0

�

Corollary 4.8. If Xn is irreducible and function regular, then Wn is irreducible.

Proof. Recall our de�nition of an irreducible Markov Chain: Xn is irreducible if for
any two states x; y there exists an integer t (possibly depending on x and y) such
that pt(x; y) > 0. It follows immediately from the lemma that if Xn is irreducible,
then Wn is irreducible. �

Corollary 4.9. If Xn is aperiodic and function regular, then Wn is aperiodic.

Proof. Recall our set T (x) = ft � 1 j pt(x; x) > 0g from our de�nition of the period
of a Markov Chain. Let T (x) = ft � 1 j qt(F (x); F (x)) > 0g. The above lemma
shows that T (x) must be always contain T (x). Thus, for any w, the gcd(T (x)) �
gcd(T (x)). Because Xn is aperiodic, gcd(x) = 1 for all x 2 X , so , because F is
always onto, gcd(w) = 1 for all w 2 W. Thus, Wn is aperiodic. �
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