THE ATTYAH-GUILLEMIN-STERNBERG CONVEXITY
THEOREM

WOLFGANG SCHMALTZ

ABSTRACT. A ‘moment map’ is a way to generalize the definition of a Hamil-
tonian action of R on a symplectic manifold M. Associated to a Lie group G, a
moment map p is at the most basic level a map from M to g*, the dual of the
Lie algebra. In particular, a moment map then allows us to describe Hamil-
tonian actions of G on M. We present a proof, credited to Atiyah, Guillemin,
and Sternberg, that investigates the properties of a Hamiltonian action of a
torus Lie group, T™, and the properties of the associated moment map p; in
particular, we prove that image of the moment map pu(M) C R™ must be
convex.
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2 WOLFGANG SCHMALTZ

1. SYMPLECTIC MANIFOLDS

Definition 1.1. A symplectic manifold is a pair (M,w), where M is a smooth
manifold which possesses a closed, nondegenerate, skew-symmetric 2-form w, called
the symplectic form. We will often simply say that M is a symplectic manifold
if the 2-form w is understood.

The condition that w is closed means that dw = 0, where d is the exterior
derivative. That w is nondegenerate means that at any point p € M, if we let
X € T,M then if w,(X,Y) =0 for all Y € T, M then we must have X = 0. Lastly,
that w is skew-symmetric means that at any point p € M, we have w,(X,Y) =
—wp(Y, X) for all X,Y € T, M.

Furthermore, consideration of symplectic linear geometry of w, on T, M, specifi-
cally, the fact that w, is nondegenerate and skew-symmetric means that the dimen-
sion of T, M must be even. Therefore, the dimension of M is also even. We restate
this as a proposition to note its importance:

Proposition 1.2. If M is a symplectic manifold, then M is necessarily even di-
mensional.

Definition 1.3. A symplectomorphism is a diffeomorphism from a symplectic
manifold to itself which preserves the symplectic form. Explicitly, if M is a sym-
plectic manifold, then ¢ € Diff(M) is a symplectomorphism if ¢*w = w. By the
definition of the pullback, this means that at a point p € M, and with vectors
X,Y € T,M, we have

(P*w)p(X,Y) = Wy (p) (dipp(X), dipp(Y)) = wp(X,Y)

The group (under composition) of symplectomorphisms of a symplectic manifold
to itself is denoted as Symp(M,w).

Definition 1.4. A symplectic submanifold is a submanifold Y of a symplectic
manifold (M, w) such that at each point p € Y, the restriction of w, to T,Y is sym-
plectic, i.e., wp|r,yxT,y is nondegenerate (this restriction is automatically closed
and skew-symmetric since w is).

2. ALMOST COMPLEX STRUCTURES

Definition 2.1. Let V be a vector space. A complex structure on V is a linear
map J : V — V such that J? = —Id.

Definition 2.2. Let (V,w) be a symplectic vector space. A complex structure J
is called compatible if the map g; : V x V — R defined by:

gs(X,)Y)=w(X,JY) forall X,Y € V
is a positive inner product on V.

Proposition 2.3. Let (V,w) be a symplectic vector space. Then there exists a
compatible complex structure on V.

Definition 2.4. Suppose that M is a smooth manifold. An almost complex
structure on M is a smooth field of complex structures on the vector spaces of the
tangent spaces. That is, at each point z in M we have a linear map J, : T, M —
T, M such that J2 = —Id.
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Definition 2.5. Suppose that (M, w) is a symplectic manifold. An almost complex
structure J on M is called compatible with w if the 2-form g on T'M defined by:
G T M X T, M — R
9:(X,)Y) =w, (X, J;) forall XY €e T, M
is a Riemannian metric on M. We call a triple (w,g,J) where w is a symplectic

form, g is a Riemannian metric, and J is an almost complex structure a compatible
triple when ¢, (-, ") = wg (-, J;-) for all x € M.

Proposition 2.6. Suppose that (M,w) is a symplectic manifold, and g is a Rie-
mannian metric on M. Then there exists an almost complex structure J on M
which is compatible.

Proposition 2.7. Any symplectic manifold has compatible almost complex struc-
tures.

Proposition 2.8. Let (V,w) be a symplectic vector space, and let (w,g,J) be a
compatible triple on V. A linear map A : V — V which preserves both the both the
symplectic structure and the complex structure must be unitary, i.e., A € U(V).

3. SYMPLECTIC AND HAMILTONIAN ACTIONS OF R

Definition 3.1. Let (M,w) be a symplectic manifold. A smooth symplectic
action of R on M is a group homomorphism ¢ : R — Symp(M,w) such that the
evaluation map evy : M x R — M given by evy(p,t) = ¢4(p) is smooth.

Definition 3.2. Let X be a vector field on a symplectic manifold (M,w). Then
we say the X is a symplectic vector field if the 1-form ixw is closed, that is,
dixw =0.

For the next proposition, recall properties of the Lie derivative. Explicitly, given
a tensor field 7 and a smooth vector field X, we can let v¢; be the flow of X, i.e.,
Yo = Id and £ ¢;(p) = X (¥¢(p)). Then the Lie derivative of 7 with respect to X
is given by:

d
LxT=— T
XT di t:Oth

We claim the following identities relating to the Lie derivative:

(1)The Cartan Magic Formula: Lx7 = ixdr + dixT
d * *
()L vir = viLxr

Proposition 3.3. Let (M,w) be a compact, symplectic manifold. Let ¢ : R —
Symp(M,w) be a smooth symplectic action of R. Then ¢ generates a family of
vector fields {X;} defined by:

d
%wt:Xtow

Then X; is a symplectic vector field for every t € R. Conversely, if {X;} is a
time-dependent family of symplectic vector fields, then the flow of X; determines a
smooth family of diffeomorphisms {1} satisfying:

d
P = Id and@@/}t:Xtowt.
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Then {1} is a smooth symplectic action ¥ : R — Symp(M,w). Thus, there is a
one-to-one correspondence:

{symplectic actions of R on M} > {time-dependent symplectic vector fields on M}

Proof. Under either assumption, it is true that:

%lﬁw =i Lx,w = ¥y (ix, dw, +dix,w) = Pidixw
=0
where dw = 0 since w is closed. If v; is a symplectomorphism for all ¢t € R, then
Yjw = w, hence % Yiw = 0 and thus ¢} dixw = 0, which is only true if dix,w = 0,
i.e., X; is closed. Conversely, if X; is a time-dependent family of vector fields, then
X is closed for all ¢ € R. Therefore dix,w = 0, hence % Y;w = 0, and since 1y = Id
50 YPjw = w, we must have 1w = w and so ¢ : R — Symp(M, w) must be a smooth
symplectic action. [

As a side note, given a complete vector field X, this proposition shows that the
flow of X, {exptX : M — M]|t € R} defined as the unique family of diffeomor-
phisms satisfying:

d
exptX =1Id and 7 exptX = X oexptX.
t=0

is a smooth symplectic action.

Definition 3.4. Let (M,w) be a symplectic manifold. Given any smooth function
H : M — R by the nondegeneracy of w we can define a vector field Xy on M by:

ixyw =dH.
We then call H a Hamiltonian function and Xy a Hamiltonian vector field.
Note that since:
dH(Xpy)=ix,w(Xyg) =w(Xyg,Xg)=0
we conclude that the X is tangent to the level sets of H.

Definition 3.5. Since dix,w = ddH = 0, we automatically get that Xy is a
symplectic vector field, and thus if M is compact, the flow ¥ of Xy is a smooth
symplectic action. We then say that ¢ is a Hamiltonian action of R.

4. LiIE GROUPS

Definition 4.1. Recall that a Lie group is a group G which is also a smooth
manifold, and where the operations of multiplication and inversion are smooth
maps.

Definition 4.2. Let G be a Lie group. Given g € G, we can define left multipli-
cation by g as Ly : G — G given by a — ¢ -a. A vector field X on G is called
left-invariant if (L;).X = X for every g € G.

Proposition 4.3. The set g of all left-invariant vector fields on G, together with
the Lie bracket [-,-] is a Lie algebra, which we call the Lie algebra of the Lie
group G.
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Proposition 4.4. The map from g — T.G given by X — X, (that is, it sends a
left invariant vector field to its value at the identity e of G) is an isomorphism of
vector spaces. In this way, we can identify g with the vector space T.G.

Definition 4.5. The derivative at the identity of the map
Vg G — G
g—g-a-g

gives an invertible linear map Ady : g — g (where we have identified g with T.G).
By varying g, we get an action of G on g, called the adjoint action, given by

Ad :G — GL(g)
g — Ady.

1

Definition 4.6. Let g* be the dual vector space of g. We let (-,-) be the pairing
of g* and g, that is,

()" xg—R

This allows us to define a map Ady : g* — g*: given { € g* we define Ad;¢ by
(Ady€, X) = (§,Ady-1X) for any X € g. By varying g, we get an action of G on
g*, called the coadjoint action, given by

Ad* :G — GL(g")
g~ Adj.

If our Lie group G is abelian, it is easy to see that Ady, = Id on g and Ad; =1d
on g* for all g € G. Since the Lie group T™ is abelian, we need not concern
ourselves with the previous definitions; we state these properties solely so that we
may formally define the moment map properly in the next section.

5. MOMENT MAPS

Definition 5.1. Let (M,w) be a symplectic manifold. A smooth symplectic
action of a Lie group G is a group homomorphism ¢ : G — Symp(M,w) such
that the evaluation map evy : M x G — M given by evy(p, g) = ¥4(p) is smooth.

Definition 5.2. Given a vector £ € g where g is the Lie algebra of G, we define
the infinitesimal action of { as the vector field X¢ on M defined by:
d
Xe= g, Vowteer
t=
We note that since R — Symp(M,w) : t = thexp(re), We automatically get that
X¢ is a symplectic vector field.

Definition 5.3. Suppose that (M, w) is a symplectic manifold, G is a Lie group, g
is the Lie algebra of G, g* is the dual vector space of g, and ¢ : G — Symp(M,w) is
a symplectic action. Then we say that 1 is a Hamiltonian action if there exists
a map

w:M—g*

which we call the moment map, and which satisfies:
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(1) For each 6 € g, we define Hy : M — R by Hy(p) = (u(p),0). Then Hy is
the Hamiltonian function for the vector field Xp:

ng = ixew.
(2) pis equavariant to the action of ¥ of G on M and the coadjoint action Ad*
of G on g*:
oy = Ad; ol
for all g € G.

In the case where G is abelian, then since Ad; = Id for all g € GG, the second
condition simplifies to:

pothg = pu.
6. MORSE-BOTT FUNCTIONS

Definition 6.1. Let M be any compact Riemannian manifold. A smooth function
f: M — Ris a Morse-Bott function if the critical set Crit(f) = {z € M|df(z) =
0} decomposes into finitely many connected submanifolds of M, which we shall call
the critical manifolds, and the tangent space of the critical set coincides with
ker V2 f. That is, for every z € Crit(f),

T,Crit(f) = ker V2 f(x)

Notice that the definition of a Morse function is a special case of a Morse-Bott
function where the critical manifolds are all zero dimensional, and hence for any
x € Crit(f) we have ker V2f(z) = 0, and therefore the Hessian is nondegenerate.

To make a bit more intuitive sense of this definition, it is useful to consider the
following definition:

Definition 6.2. Let M be a compact Riemannian manifold, let f : M — M be
a diffeomorphism, and let L be a f invariant subset of M. We say that L is a
normally hyperbolic invariant manifold if for any point x € L the tangent
space T, M splits as a direct sum of three subbundles:

T.M=T,L®E ® E;

where, with respect to some Riemannian metric on M:
(1) the restriction of df to E*, called the stable bundle, is a contraction
(2) the restriction of df to E—, called the unstable bundle, is an expansion
(3) the restriction of df to T'L is relatively neutral.

In other words, there must exist constants 0 < k < 6~! < 1 and 0 < ¢ such that:
(1) df.Ef = Bf,, and df,E; = E;,, forallz € L
(2) [ldf™|| < er™|jv]| for all v € ET and n >0

(3) |ldf ~"v|| < k™ ||v|| for all v € E~ and n > 0
(4) |ldf ~"v]| < ed™ ||v|| for all v € TL and n > 0.

This definition allows us to make the following claim: if f is a Morse-Bott
function then its critical manifolds are all normally hyperbolic invariant manifolds
with respect to the negative gradient flow. More explicitly, the negative gradient
flow is the family of diffeomorphisms ¢; : M — M defined by % ¢or = —Vfogp, and
¢o = id for £ € R. Then for any critical manifold C, and for any point x € C, the
tangent space T, M decomposes as a direct sum:

T.M=T,C® Ef ®E,
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where E;} is spanned by the positive eigenspaces and E, is spanned by the negative
eigenspaces of V2 f(x). Additionally, since ker V2 f(z) = T,,C, we see that de(z) is
relatively neutral on T,,C, and dg¢;(x) is a contraction and an expansion on E; and
E7, respectively. Armed with this interpretation, we can construct the following
definitions:

Definition 6.3. The set of points € M whose trajectories ¢;(x) converge to some
point in C as t — oo form a manifold called the stable manifold, denoted W*(C).
Additionally, for any point x € C, T,W*(C) = T,,C & E;}. Similarly, the set of
points © € M whose trajectories ¢;(z) converge to some point in C' as t — —o0
form a manifold called the unstable manifold, denoted W*(C). Additionally, for
any point z € C, T, W*(C) =T, C ® E_ .

Because M is compact, its image f(M) C R must also be compact, and therefore
has a minimum and maximum. Therefore, for any point x € M, since f decreases
along the trajectory ¢;(z) as ¢ — oo, it follows that the trajectory must converge
to some critical manifold C' as t — oco. Thus:

M= Jw=(C)
C

By the same logic, for any point x € M, since f increases along the trajectory ¢:(x)
as t — —oo, it follows that the trajectory must converge to some critical manifold
C as t — —oo. Thus:

M= Jw*(C)
And finally, we will need the followinz definitions:
Definition 6.4. The index of a critical manifold C is defined by:
n~ (C) =dim W*(C) — dim C = codimW?(C).
Likewise, the coindex of a critical manifold C' is defined by:
nt(C) = dim W*(C) — dim C = codimW"(C).

The Jordan-Brouwer Separation Theorem states that any compact hypersurface
in R™ disconnects R™ into an ‘inside’ and an ‘outside’. It is easy to see that this
is not true for any embedded manifold of codimension not equal to 1: if M is a
compact manifold embedded in R™, and codim(M) # 1, then R™ — M is connected.
Similarly, it is true that for any submanifold N of a compact manifold M with
codimension greater than 1, the complement M — N must be connected. Intuitively,
if codim # 1, there is ‘enough room to move around’ to avoid being disconnected.
The next lemma extends this basic intuition to a consideration of the level sets of
a Morse-Bott function:

Lemma 6.5. Suppose M is a compact connected manifold and f : M — R is a
Morse-Bott function such that for any of the critical manifolds C' of f we have
n*(C) # 1. Then for every c € R the level set f~(c) is connected.

Proof.

(1) There is exactly one connected critical manifold of index zero, and exactly
one connected critical manifold of coindex zero

It is easy to see that there must be at least one critical manifold of index zero;
if there were not, then M = |J, W*(C) would consist solely of a finite union of
stable manifolds all of codimension greater than or equal to 2, which is impossible.
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To see that there is only one such critical manifold, let Cy be the union of
all critical manifolds of index zero. Then the M — W*(Cj) consists of the stable
manifolds of the other critical manifolds, and is therefore a union of submanifolds of
codimension at least 2. It therefore follows by the previous discussion that W*(Cp)
is connected, and therefore that Cy is connected; for if Cy were not connected, i.e.,
Co=UUV and UNV =, then we would have W*(Cy) = W*(U) UW?*(V) and
Ws(U)NW#(V) = 0, hence we would have W*(Cy) not connected, a contradiction.
Similar reasoning shows that there is exactly one connected critical manifold of
coindex zero.

Notice also, that if a critical manifold is a local minimum or maximum of f,
then it must be of index zero or coindex zero, respectively. Since there is only one
critical manifold of index zero, and one of coindex zero, we see that f has a unique
local minimum (which is hence the minimum) and a unique local maximum (which
is hence the maximum). Therefore, the critical manifold of index zero is where f
attains its minimum, and the critical manifold of coindex zero is where f attains
its maximum.

(2) f~Y(c) is connected for every reqular value ¢ € R

Let ¢co < ¢; < ... < cy be the critical levels of f. Then Cy = f~1(cg) is the
connected critical manifold of index zero, and Oy = f~!(cy) is the connected
critical manifold of coindex zero.

First, we prove that f~1(c) is connected for ¢ < ¢ < ¢;. To do this, take any
two points zg,z; € f~1(c), and note that the trajectories ¢;(xo) and ¢;(z1) must
converge to points yg,y; € Cy as t — co. Thus, we can join xg to x1 by follow the
flowlines of ¢; from xq to yg, and z; to y;, and then connect yo to y; in Cp, since
Cy is connected. We then only need notice that codimCy = dim M — dim Cy =
dim W#(Cp) —dim Cy = n*(Cp) > 2, and thus consideration of dimensions and the
Stability Theorem of transversality allows us to move our path slightly so it does
not intersect Cy. From here, we can move the path up to the level of ¢ via the
gradient flow, leaving a path in f~1(c) from x¢ to z;.

From here, we suppose by induction that f~!(c) is connected for regular values
¢ < c¢g. Suppose, then, that we have a regular value ¢ with ¢, < ¢. Take any two
points zg,z1 € f~*(c), and connect them via paths in f~!(c) to points in W*(Cy).
From here we can connect these points in W*(Cj) to points in f~1(c; —€) using the
downward gradient flow. These resulting points can be joined together since by our
inductive assumption, f~*(cy—e) is connected. Again, by the Stability Theorem, we
can move this path slightly so that it is transversal to all of the unstable manifolds.
Since codimW*(C;) > 2 for all i # N, our path must lie entirely within W*(Cy).
We can now use the flow to move this path back up to the level of f~1(c).

This proves, therefore, that f~!(c) is connected for every regular value ¢ € R.

(3) f~(cj) is connected for the remaining critical values 0 < j < N

Choose a regular value ¢ > ¢; such that there are no critical values between c and
¢;j. Then we can define a continuous surjection by ¢ : f~(c) = f~!(c;) defined
by:

b(x) = lim¢—yoo de(x) if f(Pe(x)) > ¢j for all £ > 0
Yi() if f(¢¢(x)) = ¢; for some t.
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The fact that f is Morse-Bott shows that i is surjective, and a consideration of
limits of gradient flow lines shows that ¢ is continuous. Therefore, we may conclude
that f~!(c;) is connected.

Taken as a whole, we see that the proof is complete. [

7. PRECURSORS TO CONVEXITY

Lemma 7.1. Suppose that (M,w) is a compact connected symplectic manifold with
a symplectic action of a compact group G — Symp(M,w) : 7 — .. Then there
exists an almost complex structure J on M which is compatible with w and invariant
under the action of G. By ‘“invariant under the action of G, we mean that v:J = J
for every T € G.

Proof. Simply take any Riemannian metric ¢’ and average (which we can do, since
G is assumed to be compact) to obtain an invariant metric g: in other words:

sxy) = [

TE

gy (i, X, di, Y )dr
G

for any vectors X,Y in any tangent space T, M. Together with the symplectic form
w, this invariant g induces a compatible almost complex structure J. Thus, for any
1r, we have:

p(X,Y) = wp(X, J,Y) = 7w, (X, JpY) = wy_(p) (dor (p) X, dib-(p) JpY))
[
wigp(Xa Y) = glﬁr(l’)(dwr(p)Xv dwr(p)y) = Wy (p) (dwr(p)X, wa(p)dwf(p)y)-

for any vectors X, Y in any tangent space T, M. By the nondegeneracy of w, we must

have di; (p)J,Y = Jy_(mdibr (p)Y, ie., JY = (do-(p)) ™'y, (mdior (p)Y = ¢1J,Y.
Hence ¢}J = J as required. ([

Proposition 7.2. Let H C G be a subgroup. Let Fix(H) C M be the set of points
of M fized by every symplectomorphism in Im(H) C Symp(M,w), that is

Fie(H) = (1 Fia(ibn).
heH
Then Fiz(H) is a submanifold of M.

For the next lemma, we must recall the definition of the exponential map with
respect to some chosen Riemannian metric g. Given a point x € M, and a vector
¢ € T, M there is a unique geodesic v (determined by g) satisfying v(0) = z with
initial velocity 7/(0) = . We can then define the exponential map exp,, : T, M — M

by exp,.(§) = (1)

Lemma 7.3. Let H C G be a subgroup. Let Fix(H) C M be the set of points of
M fized by every symplectomorphism in Im(H) C Symp(M,w), that is

Fie(H) = (1 Fia(ibn).
heH
Then Fiz(H) is a symplectic submanifold of M.
Proof. Let x € Fix(H). For any h € H, Lemma 7.1 proves that di,(x) : T,.M —

T, M (the differential of the symplectomorphism 5) is a unitary action of G on
the complex vector space (T, M,w, J,). Given a vector £ € T,, M there is a unique
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geodesic v (determined by our previously determined invariant Riemannian metric
g) with v(0) = = and initial velocity 7/(0) = &. Then exp,(§) = v(1). Since g is
invariant under the action of G, it necessarily follows that since 7 is a geodesic,
0 is 1y o y. Thus we have a geodesic ¥, o v with ¢, o y(0) = ¢p(z) = = and
initial velocity (1 o) (0) = dip(z) 0 v/ (0) = dipp(x)€. Hence, exp, (dyn(x)§) =
Yp 0 v(1) = Pn(exp,(§)). Specifically:

exp, (din(2)€) = Yn(exp,(€))-

Thus, there is a correspondence between the points fixed by 1, and the vectors
fixed by di,. We can therefore concluded that:

T,Fix(H) = () ker(1 — dibn ()
heH

Explicitly, if we take a vector £ € T, Fix(H) we can restrict exp, to exp, |7, pix(#)
T,Fix(H) — Fix(H) to see that exp,(§) € Fix(H). Thus, for any h € H we have
Yp(exp,(§)) = exp,(§) = exp, (dvp(x)€), and provided & is small, exp, is injective.
Thus, £ is fixed by dyu(z) for any h € H and so & € (,cpy ker(l — diop(x)).
Alternatively, if we take a vector £ € [,y ker(1 — dyo(x)), for any h € H we
can get a geodesic v : [-1,1] — M by v(t) = exp,(dipn(x)t€). Then, for any
h € H, ’Y(t) = eXPx(d¢h($)t§) = epr(tf) = ¢h(epr(t§)) Hence, 7[_1’1] C
e Fix(¢n) = Fix(H), thus v'(0) = ¢ € T, Fix(H).

We can use this to prove that Fix(H) is a symplectic submanifold. Now, let
¢ € T,Fix(H). Then for every h € H, £ is fixed by dip,(x). Since J, is invariant
under the action of G, we have dyy (z)J, () = Jpdipp(x)(§) = J(€). Thus, for every
h e H, dpp(x)J.(§) = J(§) and so J.(&) € (,ep ker(1 — dipn(z)) = T, Fix(H).
Therefore, for every x € Fix(H), T,Fix(H) is a symplectic vector space, and we
conclude that Fix(H) is a symplectic submanifold. O

Lemma 7.4. Suppose that (M,w) is a compact connected symplectic manifold with
Hamiltonian torus action T™ — Symp(M,w) : 0 — by with moment map u :
M — R™. For every 0 € g* = R™, let Hy be the associated Hamiltonian function
Hy = (u,0) : M — R. Then the critical set of Hy is equal to the set of points
of M fized by every symplectomorphism in Im(Ty) C Symp(M,w), where Ty =
cd({t0 + k|t e R,k € Z™}/Z™). In other words,

Crit(Hy) = () Fia(ib,).
T€TH

Lastly, and most importantly, Hy is a Morse-Bott function which has critical set
Crit(Hy) a symplectic submanifold, and critical manifolds which are both even di-
mensional, and of even index and coindex.

Proof. We get the vector field Xp, on M from solving ix, w = dHp, and by
properties of moment maps, we know that X, is equal to the vector field generated
on M by the one-parameter subgroup {exp(td)|t € R} C G, and thus we also have:

d
T Vg = XH, © g

Suppose then, that z € Crit(Hp). Then dHy(z) = 0, and since ix, w = dHy,
we must have Xp,(z) = 0. Thus, %z{;tg(z/)t_@l(x)) = 0, and since ¢o(x) = z, we
must have i, (z) = « for all t € R. It follows by continuity that x is fixed by the
symplectomorphisms in the closure, as well. Thus, z € ﬂTeTg Fix(),).
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Alternatively, suppose that = € () cq, Fix(¢-). Then 0 = & ¢yp(x) = X, o
Vio(x) = Xp, (), and so ix, (zyws = dHp(x) = 0. Thus, z € Crit(Hyg). Therefore,
Crit(Hp) = ﬂTeTg Fix(¢,) as claimed.

It then follows by Lemma 7.3 for the subgroup Ty C T™ that Crit(Hp) is a
symplectic submanifold of M and therefore, has finitely many components. At
any point * € M, consider the Hessian V2Hy(z) : T,M — T, M. We claim that
dXp,(x) = —J:V?Hg(z) and therefore, diexp(0)(z) = exp(—tJ,V>Hy(x)), and so
we can conclude that the kernel of V2 Hy(x) equals the fixed points of AV exp(t0) ().
By continuity, we see that:

T, Crit(Hy) = ﬂ ker(Id — di, (z)) = ker V2 Hy(z).
T€Ty
This proves that Hy is a Morse-Bott function. We now claim that since each
dbexpio)(z) = exp(—tJ,V2Hg(x)) is unitary, that V?Hp(z) commutes with J,;
therefore the eigenspaces of V2Hy(z) are invariant with J,, and must therefore
be even dimensional. Thus, we see that the critical manifolds of Hy are even
dimensional (since they are symplectic) and are of even index and coindex. O

Definition 7.5. We denote the components of the moment map g : M — R™ as
w= (1, tm). We say that p is irreducible if the 1-forms duy,...,du,, are

linearly independent, i.e., given a scalar (ai,...,a,) € R™, then
ardpy(z)(€) + ... + amdpm (2)(§) =0
at all points z € M and all vectors £ € T, M if and only if oy = ... = a,,, = 0. We

say the u is reducible otherwise.

Definition 7.6. We say that a set of real numbers {6;|]1 < i < s,0; € R} is
rationally dependent if % is rational for all nonzero 6; ; with 1 <1i,j <s.
J

Proposition 7.7. If u is reducible, then we can reduce it to an action of an (m—1)-
torus. Specifically, there exists a Hamiltonian torus action T™~* — Symp(M,w) :
T L with moment map p' : M — R™ 1 and an integer matriz A € Z(m=1xm
such that, for 0 € T™ and x € M:

VYo = Vs and p(x) = ATy ().

Proof. Note that we have g = R™ and g* = R™, and that given § = (0y,...,0,,) € g

and p(p) = (ua(p), - - pm(p)) € g%, then (u(p),0) = 37", O;pui(p). Therefore, we
can write the Hamiltonian action Hy = (u, 0) as:

Hg = Z QZ,U,Z
=0

Then we also have:

By assumption p is reducible, and therefore there must exist some nonzero 6 =
(01,...,0m) € R™ such that dHy(z)(§) = 0 at all points x € M and all vectors
& e T, M. It follows therefore, that Hy : M — R is constant for this . Then we also
note that Hyg = constant and thus dH;y = 0 for all t € R. Since iXpy,, W = dHyg, we
have Xp,, = 0 and thus ¥e,p19) = Id for all t € R. Lastly, note that exp : R — T™
is the same as the natural projection 7 : R™ — T™.
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Now, take a maximal rationally dependent subset {0;,,...,0;,]1 <i1 < ... <14 <
m} C {01,...,0n}, and reorder indices so that this subset is in the first [ spots. It
is an exercise to show that the projection of the line L, = {t(6y,...,0;)|t € R} C R!
to the torus T' via the natural projection 7 : R! — R!/Z! ‘closes up’, i.e., 7|, is not
surjective. If [ # 1, then we can say additionally that 7(L,) is not dense in T'. It
is also an exercise to show that the projection of the line Ly = {t(0;41,...,0m)|t €
R} C R™~ to the torus T™~! via the natural projection 7 : R™~! — T™~! is dense,
ie., cl{m(Ly)} = T™ L If m — [ # 1, then we can say additionally that 7(L;) does
not ‘close up’.

Thus, we conclude that we can find a rationally dependent direction v € cl{exp(t0)
|t € R} =cl{n(L)} C T™ (where L = {tf|t € R™}). For the first { positions, take
w(01,...,0;) and for the last m — [ positions we can choose compatible values since
we have all of cl{m(Ly)} = T™~! to pick from; for instance, we could take 6, for all
of the remaining positions. Since 1., = Id for every v € {exp(t0)|t € R} = m(L),
we deduce by continuity that since v € cl{exp(t0)|t € R} = cl{m(L)} we must have
¥, = Id.

It is immediate that our previous observations about 6 are true for v as well
(when we consider v as an element of R™): in particular, texpt,) = 4d for all
t € R. Thus, we may quotient out the direction of v: it is easy to show that
R™/L = R™ = R™ N v+, where L = {tv|t € R™} and v is the unique plane in
R™ normal to v. However, we claim it is only because v is rationally dependent
that R™ N vt /Z™ = R™~1/Zm~1 (this is because v is rationally dependent, there
must be some nonzero vector with integer components in R™ N v+, etc.). Then
the matrix that takes R™ Nyt /Z™ C R™/Z™ to R™~1/Z™~! is an integer matrix
A e Z(m=Dxm_ This is the required matrix. O

8. CONVEXITY

Theorem 8.1. (The Atiyah-Guillemin-Sternberg Convexity Theorem) Suppose that
(M,w) is a compact connected symplectic manifold with Hamiltonian torus action
T™ — Symp(M,w) : 0 — 1y with moment map p : M — R™. Then the image of
w is a convex subset of R™. Specifically, the points of M fixed by every symplec-
tomorphism in Im(T™) C Symp(M,w) are a finite union of connected symplectic
submanifolds Cy,...,Cy, i.e.

N
() Fia(y) = U C;.

oeT™

Furthermore, the image of any of these symplectic submanifolds is constant: p(C;) =
n; € R™. Lastly, the image of p itself is given by the convex hull of these points:

(M) = K(n,...,nn)

Proof.

(1) By induction over the dimension m of the torus, the preimage p='(n) C M
is connected for every reqular value n € R™

The base case m = 1 is almost immediate. We have T™ = S! and thus g = R
and g* = R, hence the moment map p : M — R is simply a function. For any
0 € g = R, by Lemma 7.4 we know that Hy must be Morse-Bott with critical
manifolds of even index, and since Hy = 0 - p, if we let § = 1 we see that p is
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also Morse-Bott with critical manifolds of even index. Then by Lemma 6.5, the
preimage 1~ !(n) must be connected for every n € R.

Suppose by our inductive hypothesis that the assertion is true for any Hamil-
tonian torus action T™~! — Symp(M,w). Consider any Hamiltonian torus action
T™ — Symp(M,w) with moment map p : M — R™. If y is reducible, then by

Lemma 7.7 we have u = AT oy’ : M i; R™1 A—T> R™ . and any regular value n € R™
of 1 must also be a regular value of A7 : R™~! — R™ and since we must have
(AT)=1(n) = 0, we also must have p~1(n) = . Thus, the preimage of any regular
value of a reducible moment map is trivially connected. Therefore, let us assume
that p is irreducible.

If p is irreducible, then:

> aidpi()(€) =0
1=1

at all points € M and all vectors ¢ € T, M if and only if oy = ... = a,,, = 0, and
since Hgp = Y " 0;p;, we also have:

dHp(z) = > Oidp;(x) =0

at all points x € M and all vectors £ € T, M if and only if 0; = ... =60, =0. We
conclude that Hy : M — R is nonconstant for every nonzero vector 6 € R™.
Now, consider the set:
Z = | J Crit(Hy).
0#£0

By Lemma 7.4, we know Crit(Hg) = (), cp, Fix(¢7), as well as that Crit(Hp) is
a set of even dimensional proper submanifolds. It is easy to see that the set of
fixed points ﬂTeTe Fix(1;) decreases as the subtorus Ty C T™ increases, hence it
is sufficient to restrict our attention to 1-dimensional subtori. Explicitly, if the
components of 6 are not rationally dependent, then as we saw in Lemma 7.7 we
can choose a rationally dependent direction v € Ty. Then T, is a 1-dimensional
subtorus, and since T, C Tp, we must have () cp, Fix(¢r) C (¢, Fix(¢r). If
we let R = {6 € R™|f # 0 and the components of § are rationally dependent}, it
follows that:

Z c | Crit(H,).

0ER

Notice that if 7 = 0 for some ¢ € R, and nonzero 7,0 € R™ (7 and 6 have the
same ‘direction’), it follows that T = Ty so that Crit(H,) = Crit(Hy), therefore it
is only the ‘direction’ that matters. Since there are only countably many rationally
dependent directions in R, we know there are only countably many distinct critical
sets Crit(Hp) in Jye  Crit(Hp). And since each critical set Crit(Hp) is a set of even
dimensional proper submanifolds, we can conclude that Z is a countable union of
proper submanifolds of M. Because Z is a countable union, an application of Baire’s
Category Theorem tells us that M — Z must be dense in M. We lastly note that
M — Z is open; a point x is in M — Z if and only if dHp(x) = >\, 0;dp;(x) # 0
for all # € R™, i.e., if and only if the linear functionals du(x),...,du,(x) are
linearly independent. Since duq,...,du,, must also be linearly independent in a
neighborhood of z, it follows that M — Z is open.
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We can now show that the regular values of y are dense in the image pu(M) C R™.
To do this, take any € u(M) and any point = € p~1(n) € M. Since M — Z is
dense in M, we can approximate x by a sequence {x;} € M — Z. Then, at any
x; we have duy(z;), ..., dun,(x;) linearly independent, and therefore we know that
u takes a sufficiently small neighborhood of z; to a neighborhood U of pu(z;). By
Sard’s Theorem, we can find a regular value n; € R™ which is arbitrarily close to
w(x;), i.e., n; € U so that n; € u(M). Thus we can find a regular value arbitrarily
close to pu(xz) = n, and therefore we conclude the regular values of u are dense in
w(M). By nearly identical reasoning, if we let X = (p1,..., fm—_1) : M — R™~1
be the reduced moment map, i.e., A(z) = (p1(x),. .., pm—1(x)), then the set of all
points € u(M) such that (n1,...,7m—1) is a regular value of X is also dense in
().

We now show that the submanifold z~*(n) is connected whenever (g, ..., 7m—_1)
is a regular value of A\. Notice that A is a moment map for the reduced Hamiltonian
torus action T~ — Symp(M,w) : (61, ...,0m—1) — P (o,,....0,. ,,0)- Therefore, by
our inductive hypothesis, if 7 € R™~! is a regular value of \, then A=1(n/) € M

must be connected. In particular, for any n = (91,...,%m) € R™, if (n1,...,Nm-1 €
R™~1 is a regular value of A\, then A=Y(n1,...,m,_1) C M is connected, i.e., the
submanifold:

m—1
Q=A"01 e mmn) = [} 1 (0)
i=1

is connected. Note, also that if we let dim M = d, then dim@Q = k = dim M — (m —
1) =d— (m —1). Now, let us consider the restricted function:

tm : Q — R.

We will briefly show that a point x € @ is critical for p,, if and only if there
exist 61,...,0,,_1 € R such that:

m—1
> Oidpi(2)(€) + dppan (2)(€) = 0 for all £ € T, M.
=1

If a point = € @ is critical for p,, then du,,(x)(¢) = 0 for all ¢ € T,,Q. For any
vector ¢ € T,,Q we have du;(z)(¢) =0 for 1 <i < m—1, since y; is constant on Q.
Thus, we need to find 61, ...,0,,_1 € R such that Z:’:ll Oidpi(x) (&) +dpm(x) (&) =
0 for all £ € T,M — T,Q. But, notice that dim(7T, M — T,Q) = m — 1, and
therefore by considering du(z),...,dum(x) as elements of the dual vector space
of T,M — T,(Q, we must have a linear dependence, which we can normalize so
that E:’:ll Oidp;(x)(€) + dppm (2)(€) = 0 for all £ € T,M — T,Q and hence also
for all £ € T,M. On the other hand, suppose for some point x € @ there exist
01,01 € R such that 37" 0;du; (2)(€) + dpm (z)(€) = 0 for all & € T, M.
As noted above, for any vector ¢ € T,,QQ we have dy;(z)({) =0for 1 <i<m—1,
and therefore, 0 = 37" 0;dpi () (C) + dpimn (2)(C) = dpm ()(C), e, dpim () = 0
on T,@Q. Hence x € @ is critical for pi,,.

Therefore, x is also a critical point for the Hamiltonian function Hy = (i, 6) :
M — R where 6§ = (0y,...,0,,—1,1). Thus, by Lemma 7.4, we know that Hy is
Morse-Bott with even dimensional critical manifolds of even index. Let C' C M
be the critical manifold of Hy which contains . We wish to demonstrate that C
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intersects @ transverally, i.e.:
T.M=T,Q+T,C.

The easiest way to do this is in our case is to show that the dual vector space to
T,Q + T,C has the same dimension as T,M. To do this, it is enough to find d
linearly independent linear functionals & on T, + T,C. Since dimT, Q) = k, we
can pick a basis e, ..., e € T,;Q and a corresponding dual basis e7, ..., e}. Since
dpy (), ..., dptm—1(x) vanish on T, Q, if we can show that du(z), ..., dum—1(x) are
linearly independent on T, C, then it is easy to check that, given:

alv"'7aka/617"'7/8m—l eR
then:

m—1

k
Zaief(i) + Z Biduj(w)(§) =0

forall £ e T,Q+T,Cifand onlyif oy =...=ap =01 =... = Bm—1 = 0. Since
k+(m—-1)=d—(m—1)+(m—1) =dimT, M, this would prove that T,,Q + T,,C
has the same dimension as T, M, and therefore, T,M = T,,Q + T,,C. Thus, all we
have to do is prove that du (), ..., dpm—1(x) remain linearly independent on T,C.
To begin with, we know that du(z),...,dum—1(x) are linearly independent on
all of T, M since z is a regular point of A : M — R™ !, Then the Hamiltonian
vector fields X, given by du; = ix, w are also linear independent at z, i.e.:

m—1 m—1
> cudpi(2)(€) = wn( 3 X, (2).6) = 0
i=1 i=1

for all vectors £ € T, M if and only if a; = 0, 1 < i < m — 1, hence by the
nondegeneracy of w, 221_11 a; Xy, (x) =0if and only if a; =0, 1 <i <m—1. Our
next observation is that the vector fields X, must all lie tangent to C. Since p is
a moment map, and since T™ is abelian, we know:

w(g(p)) = u(p)

for all points p € M, and therefore, u;(¢4(p)) = pi(p). Since % Vexp(t) = XH, ©
Yexp(to), We have:

d
0= T Wi (Yexpeay) = dpi(Xy)-
=0

Thus, we have:
0=du;(Xp,) = z'XMw(XHB)
= w(Xp;), Xty) = —w( Xy, Xy,)
=Xy, w(Xy,)
= —dHy(X,,).
Therefore, Hy is constant on the level curves of p; and hence, the level curves of p;

must preserve the critical manifold C. Therefore, we conclude that the Hamiltonian
vector fields X,,, are tangent to C' and thus:

XNI (LU), e 7Xy,m,1 (LU) S TIC

By Lemma 7.4 we know that the critical manifolds of Hy are symplectic subman-
ifolds, and therefore T,C is a symplectic vector space. This means that w, is
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nondegenerate on T,C. Thus, if we have a1, ..., a,—1 € R with not all zero, then
there exists a vector £ € T, C such that:

m—1 m—1 m—1
0#we( D Xy, (2),8) = Y i, @wa(&) = Y aidpi(x)(§).
i=1 i=1 i=1

Hence we conclude that duq(z), ..., dum—1(x) are linearly independent on T,C.
The fact that T,M = T,Q + T,C means that 7,C+ C T,Q. From this we
notice that V2Hy(x) is nondegenerate on 7,Q N T,C~; i.e., T,Q splits as T,Q =
(T.CNT,Q)®E}®E, . In particular, this means that the restriction Hp|g : Q — R
is Morse-Bott with critical manifold C' N . Furthermore, since the index of Hy
on M is n=(C) = dimW*(C) — dimC = dim E~ and the coindex is n*(C) =
dim W*#(C) — dim C = dim E™ are both even, we see that the index of Hy|g on Q
isn™(CNQ)=dimE~ and the coindex is n™(C' N Q) = dim E*, and so they are
also even. Lastly, we note that the difference between p,,|q and Hylq is simply the
constant Z:’:ll 6;n;, and therefore these conclusions are true for p,,|g as well, i.e.,
tml|g : @ — R is Mores-Bott and has critical manifolds of even index and coindex.
Therefore, by Lemma 6.5, we know the u'(n,) C @ is connected for ev-
ery n, € R. In other words, u=t(n) = Q N p,,'(ny) is connected whenever
(M, yMm—1) € R™ ! is a regular value of A\ = (u1,...,tm—1). As we argued
before, the set of regular values of A is dense in u(M) and therefore, by a continuity
argument we know that p~1(n) is connected for every regular value n € R™.

(2) By induction over the dimension m of the torus, the image u(M) C R™ is
convex

The base case m = 1 follows from the fact that that (M) C R™ = R is
connected, and therefore, convex. Suppose by our inductive hypothesis that the
assertion is true for any Hamiltonian torus action T™~! — Symp(M,w). Consider
any Hamiltonian torus action T™ — Symp(M,w) with moment map p: M — R™.
If ;1 is reducible, then by Lemma 7.7 we have u = AT op/ : M i; Rm—1 A—T>
R™. By our inductive hypothesis, p'(M) must be convex, and thus we know that
AT (W' (M)) = p(M) must also be convex. Therefore, let us assume that p is
irreducible.

If we choose an injective integer matrix A € Z™*(m=1 then we obtain a torus
action given by:

T™ 1 — Symp(M,w) : 0 +— 1hag

with moment map pa = ATy : M — R™~1. The fact that u is irreducible implies
that ua4 must also be irreducible, and therefore the regular values of 4 are dense
in pua(M). We also know by the previous part that for any regular value n € R™,
we have u;l(n) connected. Fix a point xg € u;l(n). It is easy to see that we can
write the set u,'(n) as:

pat(n) = {x € Mlp(x) — p(xo) € ker AT}
Since A is injective, the transpose AT : R™ — R™~! is surjective, and so we see
that dimker AT = 1. Therefore, given xo,z; € ;' (1), we have a path 7 : [0,1] —
p'(n). Then the image 1(7[0,1]) € R™ must connected, and must be in the
1-dimensional ker AT, and therefore must be convex. Thus, we see that:

(1 — )aleo) + tuer) € p(M), 0 <t < 1.
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We now modify this method slightly to show that given any two points yg, y1 € M
then every convex combination (1 — ¢)u(yo) + tu(y1), 0 < ¢ < 1is in p(M). Start
with any two points yp,y1 € M. We can approximate these points arbitrarily
closely by points yj,y; € M such that p(y)) — p(yy) € ker AT for an injective
integer matrix A € Z™*(m=1)_ We can furthermore approximate these points by
points yf,yy € M such that n = ATu(yy) = ATp(y)) € R™1 is a regular value
of ATy = pa, which shows that every convex combination (1 — #)u(yy) + tu(y)),
0 <t <1lisin p(M). Thus, given any points yo,y1 € M we can approximate these
points arbitrarily closely by points with images such that every convex combination
of these images is contained in p(M). It follows by continuity therefore that every
convex combination (1 —)u(yo) +tp(y1), 0 <t < 1isin u(M).

This proves that the image (M) is convex.

(8) The points of M fized by every symplectomorphism in Im(T™) C Symp(M,w)
decomposes into a finite union of symplectic submanifolds Cy,...,Cyn, and the mo-
ment map is constant on these symplectic submanifolds

Lemma 7.3 shows that Fix(T™) = (\ycpm Fix(1e) is a symplectic submanifold
of M, hence decomposes into a finite union of symplectic submanifolds C,...,Cy.
Each component of the moment map is equal to a Hamiltonian function:

, = Hg wh =(0,... 1 ..., 0).
i o wihere 0 (07 ,0, ,707 70)

ith

And thus, by Lemma 7.4, we have C; C Crit(Hy) for every 1 < i < N and every
0 € R™, and therefore we conclude that the components of the moment map are
critical and therefore constant on the symplectic submanifolds C;, 1 < ¢ < N.
Therefore:

w(C;) =n; € R™ for every 1 <i < N.

(4) The itmage of w is the convex hull of the points n; = u(C;) e R™, 1 < j < N
Since we have already proved that (M) is convex, it is certainly true that the
convex hull K of ny,...,ny is contained in p(M), i.e.:

K=K(n,...,ny) C p(M).
To see that they must be equal, let & € R™ — K. We can choose a vector § € R™
which has rationally independent components such that:
ni,0) < {a,0), 1<i<N

(it is easy to see that such a vector # exists by geometrical considerations). Since
0 has rationally independent components, we see that Ty = cl({t0 + k|t € R,k €
Z™}]7"™) = T™. Therefore, by Lemma 7.4 we see that the critical set of the
Hamiltonian function Hy = (u,6) : M — R equals C; U...UCy, i.e.:

Crit(Hg) = (] Fix(¢;) = Fix(T™) = Cy U...UCy.
TeT™

It necessarily follows that Hy must achieve its maximum on one of these sets Cj,
in other words, for all p € M:
(n(p),0) < sup (u(x),0) = sup (n;,0).

z€C; 1<i<N
1<i<N
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And therefore, since (1;,0) < (a,0) for all 1 < i < N, we conclude that, for all
pE M:

{u(p), 0) < (e, 6).
Thus, a ¢ p(M). And therefore, K(n1,...,nny) = u(M) as was claimed. O

9. EXAMPLES

Example 9.1. We may the sphere S? as a symplectic manifold with symplectic
form w = df A dh, where (0, h) are cylindrical polar coordinates on S2. We have
a torus action of T! = S' given by rotations about the vertical axis, i.e., S1 —
Symp(S?,w) : t — 1, where (0, h) = (6 + 27t,h). Tt is easy to check that this
torus action is indeed, a Hamiltonian action p : S? — R given by u(6,h) = h:

e For any 7 € R, considered as the Lie algebra of S!, we have:
H, = {(u,7)=7-p:8%— R given by H,(0,h) =7 - h.
Since dH, = tdh = ix,,_(df A dh), we see that:

0
Xy =7—
He =50
and, indeed:
d 0
XT = 7 xptt — T3,
dt |, Vvt = Ta0

So X = X, as required.
o u(4(0,h)) = u(@+2nt,h) = h = p(6,h) as required.

We have 1(S?) = [-1,1] C R, so the image of the moment map is convex, as
required.

S? T'=g! g=R g"=R
¢ 1

I

S

~  __— ?-1

Symp(S?,df A dh)
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Example 9.2. We may the complex projective space CP" as a symplectic manifold
with symplectic form given by the Fubini-Study form wprg. We have a torus action
of T™:

T — Symp((CIP’", wps) : (01, . ,gn) — 1/J(917__.79n)

where

20: 210tz =20 e 20 e 20,
(017 »an)

We claim that this torus action is, indeed, a Hamiltonian action with moment map
u: CP™ — R™ given by:

2 2
u[zgszlz---:zn}=ﬂ<|zl . 20| )ER”

20 2
[E 2]l

where [|z]|> = 327 |2
Thus, the image of p is a simplex:

A= {(ml,...,xn) 6R”|O§in §7r}

i=1
and p has n + 1 isolated fixed points in CP" at:
¢ =10:---:0:_1 :0:---:0], 0<i<n
~~
ith

which get mapped by p to the vertices of A. Thus, the convex hull K (pu(cy), ..., u(ey)) =
w(CP™) = A as required.

L

Symp(CP", wrg) CP™
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