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Abstract. A ‘moment map’ is a way to generalize the definition of a Hamil-

tonian action of R on a symplectic manifold M . Associated to a Lie group G, a
moment map µ is at the most basic level a map from M to g∗, the dual of the

Lie algebra. In particular, a moment map then allows us to describe Hamil-

tonian actions of G on M . We present a proof, credited to Atiyah, Guillemin,
and Sternberg, that investigates the properties of a Hamiltonian action of a

torus Lie group, Tm, and the properties of the associated moment map µ; in

particular, we prove that image of the moment map µ(M) ⊂ Rm must be
convex.
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1. Symplectic Manifolds

Definition 1.1. A symplectic manifold is a pair (M,ω), where M is a smooth
manifold which possesses a closed, nondegenerate, skew-symmetric 2-form ω, called
the symplectic form. We will often simply say that M is a symplectic manifold
if the 2-form ω is understood.

The condition that ω is closed means that dω = 0, where d is the exterior
derivative. That ω is nondegenerate means that at any point p ∈ M , if we let
X ∈ TpM then if ωp(X,Y ) = 0 for all Y ∈ TxM then we must have X = 0. Lastly,
that ω is skew-symmetric means that at any point p ∈ M , we have ωp(X,Y ) =
−ωp(Y,X) for all X,Y ∈ TpM .

Furthermore, consideration of symplectic linear geometry of ωp on TpM , specifi-
cally, the fact that ωp is nondegenerate and skew-symmetric means that the dimen-
sion of TpM must be even. Therefore, the dimension of M is also even. We restate
this as a proposition to note its importance:

Proposition 1.2. If M is a symplectic manifold, then M is necessarily even di-
mensional.

Definition 1.3. A symplectomorphism is a diffeomorphism from a symplectic
manifold to itself which preserves the symplectic form. Explicitly, if M is a sym-
plectic manifold, then ψ ∈ Diff(M) is a symplectomorphism if ψ∗ω = ω. By the
definition of the pullback, this means that at a point p ∈ M , and with vectors
X,Y ∈ TpM , we have

(ψ∗ω)p(X,Y ) = ωψ(p)(dψp(X), dψp(Y )) = ωp(X,Y )

The group (under composition) of symplectomorphisms of a symplectic manifold
to itself is denoted as Symp(M,ω).

Definition 1.4. A symplectic submanifold is a submanifold Y of a symplectic
manifold (M,ω) such that at each point p ∈ Y , the restriction of ωp to TpY is sym-
plectic, i.e., ωp|TpY×TpY is nondegenerate (this restriction is automatically closed
and skew-symmetric since ω is).

2. Almost Complex Structures

Definition 2.1. Let V be a vector space. A complex structure on V is a linear
map J : V → V such that J2 = −Id.

Definition 2.2. Let (V, ω) be a symplectic vector space. A complex structure J
is called compatible if the map gJ : V × V → R defined by:

gJ(X,Y ) = ω(X, JY ) for all X,Y ∈ V

is a positive inner product on V .

Proposition 2.3. Let (V, ω) be a symplectic vector space. Then there exists a
compatible complex structure on V .

Definition 2.4. Suppose that M is a smooth manifold. An almost complex
structure on M is a smooth field of complex structures on the vector spaces of the
tangent spaces. That is, at each point x in M we have a linear map Jx : TxM →
TxM such that J2

x = −Id.
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Definition 2.5. Suppose that (M,ω) is a symplectic manifold. An almost complex
structure J on M is called compatible with ω if the 2-form g on TM defined by:

gx : TxM × TxM → R
gx(X,Y ) = ωx(X, Jx) for all X,Y ∈ TxM

is a Riemannian metric on M . We call a triple (ω, g, J) where ω is a symplectic
form, g is a Riemannian metric, and J is an almost complex structure a compatible
triple when gx(·, ·) = ωx(·, Jx·) for all x ∈M .

Proposition 2.6. Suppose that (M,ω) is a symplectic manifold, and g is a Rie-
mannian metric on M . Then there exists an almost complex structure J on M
which is compatible.

Proposition 2.7. Any symplectic manifold has compatible almost complex struc-
tures.

Proposition 2.8. Let (V, ω) be a symplectic vector space, and let (ω, g, J) be a
compatible triple on V . A linear map A : V → V which preserves both the both the
symplectic structure and the complex structure must be unitary, i.e., A ∈ U(V ).

3. Symplectic and Hamiltonian Actions of R

Definition 3.1. Let (M,ω) be a symplectic manifold. A smooth symplectic
action of R on M is a group homomorphism ψ : R→ Symp(M,ω) such that the
evaluation map evψ : M × R→M given by evψ(p, t) = ψt(p) is smooth.

Definition 3.2. Let X be a vector field on a symplectic manifold (M,ω). Then
we say the X is a symplectic vector field if the 1-form iXω is closed, that is,
diXω = 0.

For the next proposition, recall properties of the Lie derivative. Explicitly, given
a tensor field τ and a smooth vector field X, we can let ψt be the flow of X, i.e.,
ψ0 = Id and d

dt ψt(p) = X(ψt(p)). Then the Lie derivative of τ with respect to X
is given by:

LXτ =
d

dt

∣∣∣∣
t=0

ψ∗t τ.

We claim the following identities relating to the Lie derivative:

(1)The Cartan Magic Formula: LXτ = iXdτ + diXτ

(2)
d

dt
ψ∗t τ = ψ∗tLXτ.

Proposition 3.3. Let (M,ω) be a compact, symplectic manifold. Let ψ : R →
Symp(M,ω) be a smooth symplectic action of R. Then ψ generates a family of
vector fields {Xt} defined by:

d

dt
ψt = Xt ◦ ψt.

Then Xt is a symplectic vector field for every t ∈ R. Conversely, if {Xt} is a
time-dependent family of symplectic vector fields, then the flow of Xt determines a
smooth family of diffeomorphisms {ψt} satisfying:

ψ0 = Id and
d

dt
ψt = Xt ◦ ψt.
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Then {ψt} is a smooth symplectic action ψ : R → Symp(M,ω). Thus, there is a
one-to-one correspondence:

{symplectic actions of R on M} ↔ {time-dependent symplectic vector fields on M}

Proof. Under either assumption, it is true that:

d

dt
ψ∗t ω = ψ∗tLXtω = ψ∗t (iXt dω︸︷︷︸

=0

+diXtω) = ψ∗t diXω

where dω = 0 since ω is closed. If ψt is a symplectomorphism for all t ∈ R, then
ψ∗t ω = ω, hence d

dt ψ
∗
t ω = 0 and thus ψ∗t diXω = 0, which is only true if diXtω = 0,

i.e., Xt is closed. Conversely, if Xt is a time-dependent family of vector fields, then
Xt is closed for all t ∈ R. Therefore diXtω = 0, hence d

dt ψ
∗
t ω = 0, and since ψ0 = Id

so ψ∗0ω = ω, we must have ψ∗t ω = ω and so ψ : R→ Symp(M,ω) must be a smooth
symplectic action. �

As a side note, given a complete vector field X, this proposition shows that the
flow of X, {exp tX : M → M |t ∈ R} defined as the unique family of diffeomor-
phisms satisfying:

exp tX

∣∣∣∣
t=0

= Id and
d

dt
exp tX = X ◦ exp tX.

is a smooth symplectic action.

Definition 3.4. Let (M,ω) be a symplectic manifold. Given any smooth function
H : M → R by the nondegeneracy of ω we can define a vector field XH on M by:

iXHω = dH.

We then call H a Hamiltonian function and XH a Hamiltonian vector field.

Note that since:

dH(XH) = iXHω(XH) = ω(XH , XH) = 0

we conclude that the XH is tangent to the level sets of H.

Definition 3.5. Since diXHω = ddH = 0, we automatically get that XH is a
symplectic vector field, and thus if M is compact, the flow ψ of XH is a smooth
symplectic action. We then say that ψ is a Hamiltonian action of R.

4. Lie Groups

Definition 4.1. Recall that a Lie group is a group G which is also a smooth
manifold, and where the operations of multiplication and inversion are smooth
maps.

Definition 4.2. Let G be a Lie group. Given g ∈ G, we can define left multipli-
cation by g as Lg : G → G given by a 7→ g · a. A vector field X on G is called
left-invariant if (Lg)∗X = X for every g ∈ G.

Proposition 4.3. The set g of all left-invariant vector fields on G, together with
the Lie bracket [·, ·] is a Lie algebra, which we call the Lie algebra of the Lie
group G.
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Proposition 4.4. The map from g → TeG given by X 7→ Xe (that is, it sends a
left invariant vector field to its value at the identity e of G) is an isomorphism of
vector spaces. In this way, we can identify g with the vector space TeG.

Definition 4.5. The derivative at the identity of the map

ψg :G −→ G

g 7→ g · a · g−1

gives an invertible linear map Adg : g→ g (where we have identified g with TeG).
By varying g, we get an action of G on g, called the adjoint action, given by

Ad :G→ GL(g)

g 7→ Adg.

Definition 4.6. Let g∗ be the dual vector space of g. We let 〈·, ·〉 be the pairing
of g∗ and g, that is,

〈·, ·〉 :g∗ × g→ R
(ξ,X) 7→ 〈ξ,X〉 = ξ(X).

This allows us to define a map Ad∗g : g∗ → g∗: given ξ ∈ g∗ we define Ad∗gξ by

〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉 for any X ∈ g. By varying g, we get an action of G on
g∗, called the coadjoint action, given by

Ad∗ :G→ GL(g∗)

g 7→ Ad∗g.

If our Lie group G is abelian, it is easy to see that Adg = Id on g and Ad∗g = Id
on g∗ for all g ∈ G. Since the Lie group Tm is abelian, we need not concern
ourselves with the previous definitions; we state these properties solely so that we
may formally define the moment map properly in the next section.

5. Moment Maps

Definition 5.1. Let (M,ω) be a symplectic manifold. A smooth symplectic
action of a Lie group G is a group homomorphism ψ : G → Symp(M,ω) such
that the evaluation map evψ : M ×G→M given by evψ(p, g) = ψg(p) is smooth.

Definition 5.2. Given a vector ξ ∈ g where g is the Lie algebra of G, we define
the infinitesimal action of ξ as the vector field Xξ on M defined by:

Xξ =
d

dt

∣∣∣∣
t=0

ψexp(tξ).

We note that since R → Symp(M,ω) : t 7→ ψexp(tξ), we automatically get that
Xξ is a symplectic vector field.

Definition 5.3. Suppose that (M,ω) is a symplectic manifold, G is a Lie group, g
is the Lie algebra of G, g∗ is the dual vector space of g, and ψ : G→ Symp(M,ω) is
a symplectic action. Then we say that ψ is a Hamiltonian action if there exists
a map

µ : M → g∗

which we call the moment map, and which satisfies:
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(1) For each θ ∈ g, we define Hθ : M → R by Hθ(p) = 〈µ(p), θ〉. Then Hθ is
the Hamiltonian function for the vector field Xθ:

dHθ = iXθω.

(2) µ is equavariant to the action of ψ of G on M and the coadjoint action Ad∗

of G on g∗:
µ ◦ ψg = Ad∗g ◦ µ

for all g ∈ G.

In the case where G is abelian, then since Ad∗g = Id for all g ∈ G, the second
condition simplifies to:

µ ◦ ψg = µ.

6. Morse-Bott Functions

Definition 6.1. Let M be any compact Riemannian manifold. A smooth function
f : M → R is a Morse-Bott function if the critical set Crit(f) = {x ∈M |df(x) =
0} decomposes into finitely many connected submanifolds of M , which we shall call
the critical manifolds, and the tangent space of the critical set coincides with
ker∇2f . That is, for every x ∈ Crit(f),

TxCrit(f) = ker∇2f(x)

Notice that the definition of a Morse function is a special case of a Morse-Bott
function where the critical manifolds are all zero dimensional, and hence for any
x ∈ Crit(f) we have kerO2f(x) = 0, and therefore the Hessian is nondegenerate.

To make a bit more intuitive sense of this definition, it is useful to consider the
following definition:

Definition 6.2. Let M be a compact Riemannian manifold, let f : M → M be
a diffeomorphism, and let L be a f invariant subset of M . We say that L is a
normally hyperbolic invariant manifold if for any point x ∈ L the tangent
space TxM splits as a direct sum of three subbundles:

TxM = TxL⊕ E+
x ⊕ E−x

where, with respect to some Riemannian metric on M :

(1) the restriction of df to E+, called the stable bundle, is a contraction
(2) the restriction of df to E−, called the unstable bundle, is an expansion
(3) the restriction of df to TL is relatively neutral.

In other words, there must exist constants 0 < κ < δ−1 < 1 and 0 < c such that:

(1) dfxE
+
x = E+

f(x) and dfxE
−
x = E−f(x) for all x ∈ L

(2) ‖dfnv‖ ≤ cκn ‖v‖ for all v ∈ E+ and n > 0
(3) ‖df−nv‖ ≤ cκn ‖v‖ for all v ∈ E− and n > 0
(4) ‖df−nv‖ ≤ cδn ‖v‖ for all v ∈ TL and n > 0.

This definition allows us to make the following claim: if f is a Morse-Bott
function then its critical manifolds are all normally hyperbolic invariant manifolds
with respect to the negative gradient flow. More explicitly, the negative gradient
flow is the family of diffeomorphisms φt : M →M defined by d

dt φt = −∇f ◦φt and
φ0 = id for t ∈ R. Then for any critical manifold C, and for any point x ∈ C, the
tangent space TxM decomposes as a direct sum:

TxM = TxC ⊕ E+
x ⊕ E−x
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where E+
x is spanned by the positive eigenspaces and E−x is spanned by the negative

eigenspaces of ∇2f(x). Additionally, since ker∇2f(x) = TxC, we see that dφt(x) is
relatively neutral on TxC, and dφt(x) is a contraction and an expansion on E+

x and
E−x , respectively. Armed with this interpretation, we can construct the following
definitions:

Definition 6.3. The set of points x ∈M whose trajectories φt(x) converge to some
point in C as t→∞ form a manifold called the stable manifold, denoted W s(C).
Additionally, for any point x ∈ C, TxW

s(C) = TxC ⊕ E+
x . Similarly, the set of

points x ∈ M whose trajectories φt(x) converge to some point in C as t → −∞
form a manifold called the unstable manifold, denoted Wu(C). Additionally, for
any point x ∈ C, TxW

u(C) = TxC ⊕ E−x .

Because M is compact, its image f(M) ⊂ R must also be compact, and therefore
has a minimum and maximum. Therefore, for any point x ∈ M , since f decreases
along the trajectory φt(x) as t → ∞, it follows that the trajectory must converge
to some critical manifold C as t→∞. Thus:

M =
⋃
C

W s(C)

By the same logic, for any point x ∈M , since f increases along the trajectory φt(x)
as t→ −∞, it follows that the trajectory must converge to some critical manifold
C as t→ −∞. Thus:

M =
⋃
C

Wu(C)

And finally, we will need the following definitions:

Definition 6.4. The index of a critical manifold C is defined by:

n−(C) = dimWu(C)− dimC = codimW s(C).

Likewise, the coindex of a critical manifold C is defined by:

n+(C) = dimW s(C)− dimC = codimWu(C).

The Jordan-Brouwer Separation Theorem states that any compact hypersurface
in Rn disconnects Rn into an ‘inside’ and an ‘outside’. It is easy to see that this
is not true for any embedded manifold of codimension not equal to 1: if M is a
compact manifold embedded in Rn, and codim(M) 6= 1, then Rn−M is connected.
Similarly, it is true that for any submanifold N of a compact manifold M with
codimension greater than 1, the complement M−N must be connected. Intuitively,
if codim 6= 1, there is ‘enough room to move around’ to avoid being disconnected.
The next lemma extends this basic intuition to a consideration of the level sets of
a Morse-Bott function:

Lemma 6.5. Suppose M is a compact connected manifold and f : M → R is a
Morse-Bott function such that for any of the critical manifolds C of f we have
n±(C) 6= 1. Then for every c ∈ R the level set f−1(c) is connected.

Proof.
(1) There is exactly one connected critical manifold of index zero, and exactly

one connected critical manifold of coindex zero
It is easy to see that there must be at least one critical manifold of index zero;

if there were not, then M =
⋃
CW

s(C) would consist solely of a finite union of
stable manifolds all of codimension greater than or equal to 2, which is impossible.
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To see that there is only one such critical manifold, let C0 be the union of
all critical manifolds of index zero. Then the M −W s(C0) consists of the stable
manifolds of the other critical manifolds, and is therefore a union of submanifolds of
codimension at least 2. It therefore follows by the previous discussion that W s(C0)
is connected, and therefore that C0 is connected; for if C0 were not connected, i.e.,
C0 = U ∪ V and U ∩ V = ∅, then we would have W s(C0) = W s(U) ∪W s(V ) and
W s(U)∩W s(V ) = ∅, hence we would have W s(C0) not connected, a contradiction.
Similar reasoning shows that there is exactly one connected critical manifold of
coindex zero.

Notice also, that if a critical manifold is a local minimum or maximum of f ,
then it must be of index zero or coindex zero, respectively. Since there is only one
critical manifold of index zero, and one of coindex zero, we see that f has a unique
local minimum (which is hence the minimum) and a unique local maximum (which
is hence the maximum). Therefore, the critical manifold of index zero is where f
attains its minimum, and the critical manifold of coindex zero is where f attains
its maximum.

(2) f−1(c) is connected for every regular value c ∈ R
Let c0 < c1 < . . . < cN be the critical levels of f . Then C0 = f−1(c0) is the

connected critical manifold of index zero, and CN = f−1(cN ) is the connected
critical manifold of coindex zero.

First, we prove that f−1(c) is connected for c0 < c < c1. To do this, take any
two points x0, x1 ∈ f−1(c), and note that the trajectories φt(x0) and φt(x1) must
converge to points y0, y1 ∈ C0 as t→∞. Thus, we can join x0 to x1 by follow the
flowlines of φt from x0 to y0, and x1 to y1, and then connect y0 to y1 in C0, since
C0 is connected. We then only need notice that codimC0 = dimM − dimC0 =
dimW s(C0)−dimC0 = n+(C0) ≥ 2, and thus consideration of dimensions and the
Stability Theorem of transversality allows us to move our path slightly so it does
not intersect C0. From here, we can move the path up to the level of c via the
gradient flow, leaving a path in f−1(c) from x0 to x1.

From here, we suppose by induction that f−1(c) is connected for regular values
c < ck. Suppose, then, that we have a regular value c with ck < c. Take any two
points x0, x1 ∈ f−1(c), and connect them via paths in f−1(c) to points in W s(C0).
From here we can connect these points in W s(C0) to points in f−1(ck−ε) using the
downward gradient flow. These resulting points can be joined together since by our
inductive assumption, f−1(ck−ε) is connected. Again, by the Stability Theorem, we
can move this path slightly so that it is transversal to all of the unstable manifolds.
Since codimWu(Ci) ≥ 2 for all i 6= N , our path must lie entirely within Wu(CN ).
We can now use the flow to move this path back up to the level of f−1(c).

This proves, therefore, that f−1(c) is connected for every regular value c ∈ R.

(3) f−1(cj) is connected for the remaining critical values 0 < j < N
Choose a regular value c > cj such that there are no critical values between c and

cj . Then we can define a continuous surjection by ψ : f−1(c) → f−1(cj) defined
by:

ψ(x) =

{
limt→∞ φt(x) if f(φt(x)) > cj for all t > 0

ψt(x) if f(φt(x)) = cj for some t.
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The fact that f is Morse-Bott shows that ψ is surjective, and a consideration of
limits of gradient flow lines shows that ψ is continuous. Therefore, we may conclude
that f−1(cj) is connected.

Taken as a whole, we see that the proof is complete. �

7. Precursors to Convexity

Lemma 7.1. Suppose that (M,ω) is a compact connected symplectic manifold with
a symplectic action of a compact group G → Symp(M,ω) : τ 7→ ψτ . Then there
exists an almost complex structure J on M which is compatible with ω and invariant
under the action of G. By ‘invariant under the action of G’, we mean that ψ∗τJ = J
for every τ ∈ G.

Proof. Simply take any Riemannian metric g′ and average (which we can do, since
G is assumed to be compact) to obtain an invariant metric g: in other words:

gp(X,Y ) =

∫
τ∈G

g′p(dψτX, dψτY )dτ

for any vectors X,Y in any tangent space TpM . Together with the symplectic form
ω, this invariant g induces a compatible almost complex structure J . Thus, for any
ψτ , we have:

gp(X,Y ) = ωp(X, JpY ) = ψ∗τωp(X, JpY ) = ωψτ (p)(dψτ (p)X, dψτ (p)JpY ))

‖
ψ∗τgp(X,Y ) = gψτ (p)(dψτ (p)X, dψτ (p)Y ) = ωψτ (p)(dψτ (p)X,Jψτ (p)dψτ (p)Y ).

for any vectorsX,Y in any tangent space TpM . By the nondegeneracy of ω, we must
have dψτ (p)JpY = Jψτ (p)dψτ (p)Y , i.e., JpY = (dψτ (p))−1Jψτ (p)dψτ (p)Y = ψ∗τJpY .
Hence ψ∗τJ = J as required. �

Proposition 7.2. Let H ⊂ G be a subgroup. Let Fix(H) ⊂M be the set of points
of M fixed by every symplectomorphism in Im(H) ⊂ Symp(M,ω), that is

Fix(H) =
⋂
h∈H

Fix(ψh).

Then Fix(H) is a submanifold of M .

For the next lemma, we must recall the definition of the exponential map with
respect to some chosen Riemannian metric g. Given a point x ∈ M , and a vector
ξ ∈ TxM there is a unique geodesic γ (determined by g) satisfying γ(0) = x with
initial velocity γ′(0) = ξ. We can then define the exponential map expx : TxM →M
by expx(ξ) = γ(1).

Lemma 7.3. Let H ⊂ G be a subgroup. Let Fix(H) ⊂ M be the set of points of
M fixed by every symplectomorphism in Im(H) ⊂ Symp(M,ω), that is

Fix(H) =
⋂
h∈H

Fix(ψh).

Then Fix(H) is a symplectic submanifold of M .

Proof. Let x ∈ Fix(H). For any h ∈ H, Lemma 7.1 proves that dψh(x) : TxM →
TxM (the differential of the symplectomorphism ψh) is a unitary action of G on
the complex vector space (TxM,ω, Jx). Given a vector ξ ∈ TxM there is a unique
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geodesic γ (determined by our previously determined invariant Riemannian metric
g) with γ(0) = x and initial velocity γ′(0) = ξ. Then expx(ξ) = γ(1). Since g is
invariant under the action of G, it necessarily follows that since γ is a geodesic,
so is ψh ◦ γ. Thus we have a geodesic ψh ◦ γ with ψh ◦ γ(0) = ψh(x) = x and
initial velocity (ψh ◦ γ)′(0) = dψh(x) ◦ γ′(0) = dψh(x)ξ. Hence, expx(dψh(x)ξ) =
ψh ◦ γ(1) = ψh(expx(ξ)). Specifically:

expx(dψh(x)ξ) = ψh(expx(ξ)).

Thus, there is a correspondence between the points fixed by ψh and the vectors
fixed by dψh. We can therefore concluded that:

TxFix(H) =
⋂
h∈H

ker(1− dψh(x))

Explicitly, if we take a vector ξ ∈ TxFix(H) we can restrict expx to expx |TxFix(H) :
TxFix(H) → Fix(H) to see that expx(ξ) ∈ Fix(H). Thus, for any h ∈ H we have
ψh(expx(ξ)) = expx(ξ) = expx(dψh(x)ξ), and provided ξ is small, expx is injective.
Thus, ξ is fixed by dψh(x) for any h ∈ H and so ξ ∈

⋂
h∈H ker(1 − dψh(x)).

Alternatively, if we take a vector ξ ∈
⋂
h∈H ker(1 − dψh(x)), for any h ∈ H we

can get a geodesic γ : [−1, 1] → M by γ(t) = expx(dψh(x)tξ). Then, for any
h ∈ H, γ(t) = expx(dψh(x)tξ) = expx(tξ) = ψh(expx(tξ)). Hence, γ[−1, 1] ⊂⋂
h∈H Fix(ψh) = Fix(H), thus γ′(0) = ξ ∈ TxFix(H).
We can use this to prove that Fix(H) is a symplectic submanifold. Now, let

ξ ∈ TxFix(H). Then for every h ∈ H, ξ is fixed by dψh(x). Since Jx is invariant
under the action ofG, we have dψh(x)Jx(ξ) = Jxdψh(x)(ξ) = Jx(ξ). Thus, for every
h ∈ H, dψh(x)Jx(ξ) = Jx(ξ) and so Jx(ξ) ∈

⋂
h∈H ker(1 − dψh(x)) = TxFix(H).

Therefore, for every x ∈ Fix(H), TxFix(H) is a symplectic vector space, and we
conclude that Fix(H) is a symplectic submanifold. �

Lemma 7.4. Suppose that (M,ω) is a compact connected symplectic manifold with
Hamiltonian torus action Tm → Symp(M,ω) : θ 7→ ψθ with moment map µ :
M → Rm. For every θ ∈ g∗ = Rm, let Hθ be the associated Hamiltonian function
Hθ = 〈µ, θ〉 : M → R. Then the critical set of Hθ is equal to the set of points
of M fixed by every symplectomorphism in Im(Tθ) ⊂ Symp(M,ω), where Tθ =
cl({tθ + k|t ∈ R, k ∈ Zm}/Zm). In other words,

Crit(Hθ) =
⋂
τ∈Tθ

Fix(ψτ ).

Lastly, and most importantly, Hθ is a Morse-Bott function which has critical set
Crit(Hθ) a symplectic submanifold, and critical manifolds which are both even di-
mensional, and of even index and coindex.

Proof. We get the vector field XHθ on M from solving iXHθω = dHθ, and by
properties of moment maps, we know that XHθ is equal to the vector field generated
on M by the one-parameter subgroup {exp(tθ)|t ∈ R} ⊂ G, and thus we also have:

d

dt
ψtθ = XHθ ◦ ψtθ.

Suppose then, that x ∈ Crit(Hθ). Then dHθ(x) = 0, and since iXHθω = dHθ,

we must have XHθ (x) = 0. Thus, d
dt ψtθ(ψ

−1
tθ (x)) = 0, and since ψ0(x) = x, we

must have ψt(x) = x for all t ∈ R. It follows by continuity that x is fixed by the
symplectomorphisms in the closure, as well. Thus, x ∈

⋂
τ∈Tθ Fix(ψτ ).
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Alternatively, suppose that x ∈
⋂
τ∈Tθ Fix(ψτ ). Then 0 = d

dt ψtθ(x) = XHθ ◦
ψtθ(x) = XHθ (x), and so iXHθ (x)ωx = dHθ(x) = 0. Thus, x ∈ Crit(Hθ). Therefore,

Crit(Hθ) =
⋂
τ∈Tθ Fix(ψτ ) as claimed.

It then follows by Lemma 7.3 for the subgroup Tθ ⊂ Tm that Crit(Hθ) is a
symplectic submanifold of M and therefore, has finitely many components. At
any point x ∈ M , consider the Hessian ∇2Hθ(x) : TxM → TxM . We claim that
dXHθ (x) = −Jx∇2Hθ(x) and therefore, dψexp(tθ)(x) = exp(−tJx∇2Hθ(x)), and so

we can conclude that the kernel of ∇2Hθ(x) equals the fixed points of dψexp(tθ)(x).
By continuity, we see that:

TxCrit(Hθ) =
⋂
τ∈Tθ

ker(Id− dψτ (x)) = ker∇2Hθ(x).

This proves that Hθ is a Morse-Bott function. We now claim that since each
dψexp(tθ)(x) = exp(−tJx∇2Hθ(x)) is unitary, that ∇2Hθ(x) commutes with Jx;

therefore the eigenspaces of ∇2Hθ(x) are invariant with Jx, and must therefore
be even dimensional. Thus, we see that the critical manifolds of Hθ are even
dimensional (since they are symplectic) and are of even index and coindex. �

Definition 7.5. We denote the components of the moment map µ : M → Rm as
µ = (µ1, . . . , µm). We say that µ is irreducible if the 1-forms dµ1, . . . , dµm are
linearly independent, i.e., given a scalar (α1, . . . , αm) ∈ Rm, then

α1dµ1(x)(ξ) + . . .+ αmdµm(x)(ξ) = 0

at all points x ∈M and all vectors ξ ∈ TxM if and only if α1 = . . . = αm = 0. We
say the µ is reducible otherwise.

Definition 7.6. We say that a set of real numbers {θi|1 ≤ i ≤ s, θi ∈ R} is
rationally dependent if θi

θj
is rational for all nonzero θi,j with 1 ≤ i, j ≤ s.

Proposition 7.7. If µ is reducible, then we can reduce it to an action of an (m−1)-
torus. Specifically, there exists a Hamiltonian torus action Tm−1 → Symp(M,ω) :
τ 7→ ψ′τ with moment map µ′ : M → Rm−1 and an integer matrix A ∈ Z(m−1)×m

such that, for θ ∈ Tm and x ∈M :

ψθ = ψ′Aθ and µ(x) = ATµ′(x).

Proof. Note that we have g = Rm and g∗ = Rm, and that given θ = (θ1, . . . , θm) ∈ g
and µ(p) = (µ1(p), . . . , µm(p)) ∈ g∗, then 〈µ(p), θ〉 =

∑m
i=1 θiµi(p). Therefore, we

can write the Hamiltonian action Hθ = 〈µ, θ〉 as:

Hθ =

m∑
i=0

θiµi.

Then we also have:

dHθ = θ1dµ1 + . . .+ θmdµm.

By assumption µ is reducible, and therefore there must exist some nonzero θ =
(θ1, . . . , θm) ∈ Rm such that dHθ(x)(ξ) = 0 at all points x ∈ M and all vectors
ξ ∈ TxM . It follows therefore, that Hθ : M → R is constant for this θ. Then we also
note that Htθ = constant and thus dHtθ = 0 for all t ∈ R. Since iXHtθω = dHtθ, we
haveXHtθ = 0 and thus ψexp(tθ) = Id for all t ∈ R. Lastly, note that exp : Rm → Tm
is the same as the natural projection π : Rm → Tm.
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Now, take a maximal rationally dependent subset {θi1 , . . . , θil |1 ≤ i1 < . . . < il ≤
m} ⊂ {θ1, . . . , θm}, and reorder indices so that this subset is in the first l spots. It
is an exercise to show that the projection of the line La = {t(θ1, . . . , θl)|t ∈ R} ⊂ Rl
to the torus Tl via the natural projection π : Rl → Rl/Zl ‘closes up’, i.e., π|La is not
surjective. If l 6= 1, then we can say additionally that π(La) is not dense in Tl. It
is also an exercise to show that the projection of the line Lb = {t(θl+1, . . . , θm)|t ∈
R} ⊂ Rm−l to the torus Tm−l via the natural projection π : Rm−l → Tm−l is dense,
i.e., cl{π(Lb)} = Tm−l. If m− l 6= 1, then we can say additionally that π(Lb) does
not ‘close up’.

Thus, we conclude that we can find a rationally dependent direction ν ∈ cl{exp(tθ)
|t ∈ R} = cl{π(L)} ⊂ Tm (where L = {tθ|t ∈ Rm}). For the first l positions, take
π(θ1, . . . , θl) and for the last m− l positions we can choose compatible values since
we have all of cl{π(Lb)} = Tm−l to pick from; for instance, we could take θ1 for all
of the remaining positions. Since ψγ = Id for every γ ∈ {exp(tθ)|t ∈ R} = π(L),
we deduce by continuity that since ν ∈ cl{exp(tθ)|t ∈ R} = cl{π(L)} we must have
ψν = Id.

It is immediate that our previous observations about θ are true for ν as well
(when we consider ν as an element of Rm): in particular, ψexp(tν) = id for all
t ∈ R. Thus, we may quotient out the direction of ν: it is easy to show that
Rm/L ∼= Rm = Rm ∩ ν⊥, where L = {tν|t ∈ Rm} and ν⊥ is the unique plane in
Rm normal to ν. However, we claim it is only because ν is rationally dependent
that Rm ∩ ν⊥/Zm ∼= Rm−1/Zm−1 (this is because ν is rationally dependent, there
must be some nonzero vector with integer components in Rm ∩ ν⊥, etc.). Then
the matrix that takes Rm ∩ ν⊥/Zm ⊂ Rm/Zm to Rm−1/Zm−1 is an integer matrix
A ∈ Z(m−1)×m. This is the required matrix. �

8. Convexity

Theorem 8.1. (The Atiyah-Guillemin-Sternberg Convexity Theorem) Suppose that
(M,ω) is a compact connected symplectic manifold with Hamiltonian torus action
Tm → Symp(M,ω) : θ 7→ ψθ with moment map µ : M → Rm. Then the image of
µ is a convex subset of Rm. Specifically, the points of M fixed by every symplec-
tomorphism in Im(Tm) ⊂ Symp(M,ω) are a finite union of connected symplectic
submanifolds C1, . . . , CN , i.e. ⋂

θ∈Tm
Fix(ψθ) =

N⋃
j=1

Cj .

Furthermore, the image of any of these symplectic submanifolds is constant: µ(Cj) =
ηj ∈ Rm. Lastly, the image of µ itself is given by the convex hull of these points:

µ(M) = K(η1, . . . , ηN )

Proof.
(1) By induction over the dimension m of the torus, the preimage µ−1(η) ⊂ M

is connected for every regular value η ∈ Rm
The base case m = 1 is almost immediate. We have Tm = S1 and thus g = R

and g∗ = R, hence the moment map µ : M → R is simply a function. For any
θ ∈ g = R, by Lemma 7.4 we know that Hθ must be Morse-Bott with critical
manifolds of even index, and since Hθ = θ · µ, if we let θ = 1 we see that µ is
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also Morse-Bott with critical manifolds of even index. Then by Lemma 6.5, the
preimage µ−1(η) must be connected for every η ∈ R.

Suppose by our inductive hypothesis that the assertion is true for any Hamil-
tonian torus action Tm−1 → Symp(M,ω). Consider any Hamiltonian torus action
Tm → Symp(M,ω) with moment map µ : M → Rm. If µ is reducible, then by

Lemma 7.7 we have µ = AT ◦µ′ : M
µ′→ Rm−1 A

T

→ Rm, and any regular value η ∈ Rm
of µ must also be a regular value of AT : Rm−1 → Rm, and since we must have
(AT )−1(η) = ∅, we also must have µ−1(η) = ∅. Thus, the preimage of any regular
value of a reducible moment map is trivially connected. Therefore, let us assume
that µ is irreducible.

If µ is irreducible, then:
m∑
i=1

αidµi(x)(ξ) = 0

at all points x ∈M and all vectors ξ ∈ TxM if and only if α1 = . . . = αm = 0, and
since Hθ =

∑m
i=1 θiµi, we also have:

dHθ(x) =

m∑
i=1

θidµi(x) = 0

at all points x ∈ M and all vectors ξ ∈ TxM if and only if θ1 = . . . = θm = 0. We
conclude that Hθ : M → R is nonconstant for every nonzero vector θ ∈ Rm.

Now, consider the set:

Z =
⋃
θ 6=0

Crit(Hθ).

By Lemma 7.4, we know Crit(Hθ) =
⋂
τ∈Tθ Fix(ψτ ), as well as that Crit(Hθ) is

a set of even dimensional proper submanifolds. It is easy to see that the set of
fixed points

⋂
τ∈Tθ Fix(ψτ ) decreases as the subtorus Tθ ⊂ Tm increases, hence it

is sufficient to restrict our attention to 1-dimensional subtori. Explicitly, if the
components of θ are not rationally dependent, then as we saw in Lemma 7.7 we
can choose a rationally dependent direction ν ∈ Tθ. Then Tν is a 1-dimensional
subtorus, and since Tν ⊂ Tθ, we must have

⋂
τ∈Tθ Fix(ψτ ) ⊂

⋂
τ∈Tν Fix(ψτ ). If

we let R = {θ ∈ Rm|θ 6= 0 and the components of θ are rationally dependent}, it
follows that:

Z ⊂
⋃
θ∈R

Crit(Hθ).

Notice that if τ = tθ for some t ∈ R, and nonzero τ, θ ∈ Rm (τ and θ have the
same ‘direction’), it follows that Tτ = Tθ so that Crit(Hτ ) = Crit(Hθ), therefore it
is only the ‘direction’ that matters. Since there are only countably many rationally
dependent directions in Rm, we know there are only countably many distinct critical
sets Crit(Hθ) in

⋃
θ∈R Crit(Hθ). And since each critical set Crit(Hθ) is a set of even

dimensional proper submanifolds, we can conclude that Z is a countable union of
proper submanifolds of M . Because Z is a countable union, an application of Baire’s
Category Theorem tells us that M − Z must be dense in M . We lastly note that
M − Z is open; a point x is in M − Z if and only if dHθ(x) =

∑m
i=1 θidµi(x) 6= 0

for all θ ∈ Rm, i.e., if and only if the linear functionals dµ1(x), . . . , dµm(x) are
linearly independent. Since dµ1, . . . , dµm must also be linearly independent in a
neighborhood of x, it follows that M − Z is open.
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We can now show that the regular values of µ are dense in the image µ(M) ⊂ Rm.
To do this, take any η ∈ µ(M) and any point x ∈ µ−1(η) ⊂ M . Since M − Z is
dense in M , we can approximate x by a sequence {xi} ∈ M − Z. Then, at any
xi we have dµ1(xi), . . . , dµm(xi) linearly independent, and therefore we know that
µ takes a sufficiently small neighborhood of xi to a neighborhood U of µ(xi). By
Sard’s Theorem, we can find a regular value ηi ∈ Rm which is arbitrarily close to
µ(xi), i.e., ηi ∈ U so that ηi ∈ µ(M). Thus we can find a regular value arbitrarily
close to µ(x) = η, and therefore we conclude the regular values of µ are dense in
µ(M). By nearly identical reasoning, if we let λ = (µ1, . . . , µm−1) : M → Rm−1
be the reduced moment map, i.e., λ(x) = (µ1(x), . . . , µm−1(x)), then the set of all
points η ∈ µ(M) such that (η1, . . . , ηm−1) is a regular value of λ is also dense in
µ(M).

We now show that the submanifold µ−1(η) is connected whenever (η1, . . . , ηm−1)
is a regular value of λ. Notice that λ is a moment map for the reduced Hamiltonian
torus action Tm−1 → Symp(M,ω) : (θ1, . . . , θm−1) 7→ ψ(θ1,...,θm−1,0). Therefore, by

our inductive hypothesis, if η′ ∈ Rm−1 is a regular value of λ, then λ−1(η′) ⊂ M
must be connected. In particular, for any η = (η1, . . . , ηm) ∈ Rm, if (η1, . . . , ηm−1 ∈
Rm−1 is a regular value of λ, then λ−1(η1, . . . , ηm−1) ⊂ M is connected, i.e., the
submanifold:

Q = λ−1(η1, . . . , ηm−1) =

m−1⋂
i=1

µ−1i (ηi)

is connected. Note, also that if we let dimM = d, then dimQ = k = dimM − (m−
1) = d− (m− 1). Now, let us consider the restricted function:

µm : Q→ R.

We will briefly show that a point x ∈ Q is critical for µm if and only if there
exist θ1, . . . , θm−1 ∈ R such that:

m−1∑
i=1

θidµi(x)(ξ) + dµm(x)(ξ) = 0 for all ξ ∈ TxM.

If a point x ∈ Q is critical for µm, then dµm(x)(ζ) = 0 for all ζ ∈ TxQ. For any
vector ζ ∈ TxQ we have dµi(x)(ζ) = 0 for 1 ≤ i ≤ m− 1, since µi is constant on Q.

Thus, we need to find θ1, . . . , θm−1 ∈ R such that
∑m−1
i=1 θidµi(x)(ξ)+dµm(x)(ξ) =

0 for all ξ ∈ TxM − TxQ. But, notice that dim(TxM − TxQ) = m − 1, and
therefore by considering dµ1(x), . . . , dµm(x) as elements of the dual vector space
of TxM − TxQ, we must have a linear dependence, which we can normalize so
that

∑m−1
i=1 θidµi(x)(ξ) + dµm(x)(ξ) = 0 for all ξ ∈ TxM − TxQ and hence also

for all ξ ∈ TxM . On the other hand, suppose for some point x ∈ Q there exist
θ1, . . . , θm−1 ∈ R such that

∑m−1
i=1 θidµi(x)(ξ) + dµm(x)(ξ) = 0 for all ξ ∈ TxM .

As noted above, for any vector ζ ∈ TxQ we have dµi(x)(ζ) = 0 for 1 ≤ i ≤ m− 1,

and therefore, 0 =
∑m−1
i=1 θidµi(x)(ζ) + dµm(x)(ζ) = dµm(x)(ζ), i.e., dµm(x) = 0

on TxQ. Hence x ∈ Q is critical for µm.
Therefore, x is also a critical point for the Hamiltonian function Hθ = 〈µ, θ〉 :

M → R where θ = (θ1, . . . , θm−1, 1). Thus, by Lemma 7.4, we know that Hθ is
Morse-Bott with even dimensional critical manifolds of even index. Let C ⊂ M
be the critical manifold of Hθ which contains x. We wish to demonstrate that C
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intersects Q transverally, i.e.:

TxM = TxQ+ TxC.

The easiest way to do this is in our case is to show that the dual vector space to
TxQ + TxC has the same dimension as TxM . To do this, it is enough to find d
linearly independent linear functionals ξ∗i on TxQ + TxC. Since dimTxQ = k, we
can pick a basis e1, . . . , ek ∈ TxQ and a corresponding dual basis e∗1, . . . , e

∗
k. Since

dµ1(x), . . . , dµm−1(x) vanish on TxQ, if we can show that dµ1(x), . . . , dµm−1(x) are
linearly independent on TxC, then it is easy to check that, given:

α1, . . . , αk, β1, . . . , βm−1 ∈ R

then:
k∑
i=1

αie
∗
i (ξ) +

m−1∑
j=1

βjdµj(x)(ξ) = 0

for all ξ ∈ TxQ + TxC if and only if α1 = . . . = αk = β1 = . . . = βm−1 = 0. Since
k+ (m− 1) = d− (m− 1) + (m− 1) = dimTxM , this would prove that TxQ+TxC
has the same dimension as TxM , and therefore, TxM = TxQ + TxC. Thus, all we
have to do is prove that dµ1(x), . . . , dµm−1(x) remain linearly independent on TxC.

To begin with, we know that dµ1(x), . . . , dµm−1(x) are linearly independent on
all of TxM since x is a regular point of λ : M → Rm−1. Then the Hamiltonian
vector fields Xµi given by dµi = iXµiω are also linear independent at x, i.e.:

m−1∑
i=1

αidµi(x)(ξ) = ωx(

m−1∑
i=1

αiXµi(x), ξ) = 0

for all vectors ξ ∈ TxM if and only if αi = 0, 1 ≤ i ≤ m − 1, hence by the
nondegeneracy of ω,

∑m−1
i=1 αiXµi(x) = 0 if and only if αi = 0, 1 ≤ i ≤ m− 1. Our

next observation is that the vector fields Xµi must all lie tangent to C. Since µ is
a moment map, and since Tm is abelian, we know:

µ(ψg(p)) = µ(p)

for all points p ∈ M , and therefore, µi(ψg(p)) = µi(p). Since d
dt ψexp(tθ) = XHθ ◦

ψexp(tθ), we have:

0 =
d

dt

∣∣∣∣
t=0

µi(ψexp(tθ)) = dµi(XHθ ).

Thus, we have:

0 = dµi(XHθ ) = iXµiω(XHθ )

= ω(Xµi), XHθ ) = −ω(XHθ , Xµi)

= iXHθω(Xµi)

= −dHθ(Xµi).

Therefore, Hθ is constant on the level curves of µi and hence, the level curves of µi
must preserve the critical manifold C. Therefore, we conclude that the Hamiltonian
vector fields Xµi are tangent to C and thus:

Xµ1
(x), . . . , Xµm−1

(x) ∈ TxC.
By Lemma 7.4 we know that the critical manifolds of Hθ are symplectic subman-
ifolds, and therefore TxC is a symplectic vector space. This means that ωx is
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nondegenerate on TxC. Thus, if we have α1, . . . , αm−1 ∈ R with not all zero, then
there exists a vector ξ ∈ TxC such that:

0 6= ωx(

m−1∑
i=1

αiXµi(x), ξ) =

m−1∑
i=1

αiiXµi (x)ωx(ξ) =

m−1∑
i=1

αidµi(x)(ξ).

Hence we conclude that dµ1(x), . . . , dµm−1(x) are linearly independent on TxC.
The fact that TxM = TxQ + TxC means that TxC

⊥ ⊂ TxQ. From this we
notice that ∇2Hθ(x) is nondegenerate on TxQ ∩ TxC⊥; i.e., TxQ splits as TxQ =
(TxC∩TxQ)⊕E+

x ⊕E−x . In particular, this means that the restriction Hθ|Q : Q→ R
is Morse-Bott with critical manifold C ∩ Q. Furthermore, since the index of Hθ

on M is n−(C) = dimWu(C) − dimC = dimE− and the coindex is n+(C) =
dimW s(C)− dimC = dimE+ are both even, we see that the index of Hθ|Q on Q
is n−(C ∩Q) = dimE− and the coindex is n+(C ∩Q) = dimE+, and so they are
also even. Lastly, we note that the difference between µm|Q and Hθ|Q is simply the

constant
∑m−1
i=1 θiηi, and therefore these conclusions are true for µm|Q as well, i.e.,

µm|Q : Q→ R is Mores-Bott and has critical manifolds of even index and coindex.
Therefore, by Lemma 6.5, we know the µ−1m (ηm) ⊂ Q is connected for ev-

ery ηm ∈ R. In other words, µ−1(η) = Q ∩ µ−1m (ηm) is connected whenever
(η1, . . . , ηm−1) ∈ Rm−1 is a regular value of λ = (µ1, . . . , µm−1). As we argued
before, the set of regular values of λ is dense in µ(M) and therefore, by a continuity
argument we know that µ−1(η) is connected for every regular value η ∈ Rm.

(2) By induction over the dimension m of the torus, the image µ(M) ⊂ Rm is
convex

The base case m = 1 follows from the fact that that µ(M) ⊂ Rm = R is
connected, and therefore, convex. Suppose by our inductive hypothesis that the
assertion is true for any Hamiltonian torus action Tm−1 → Symp(M,ω). Consider
any Hamiltonian torus action Tm → Symp(M,ω) with moment map µ : M → Rm.

If µ is reducible, then by Lemma 7.7 we have µ = AT ◦ µ′ : M
µ′→ Rm−1 AT→

Rm. By our inductive hypothesis, µ′(M) must be convex, and thus we know that
AT (µ′(M)) = µ(M) must also be convex. Therefore, let us assume that µ is
irreducible.

If we choose an injective integer matrix A ∈ Zm×(m−1), then we obtain a torus
action given by:

Tm−1 → Symp(M,ω) : θ 7→ ψAθ

with moment map µA = ATµ : M → Rm−1. The fact that µ is irreducible implies
that µA must also be irreducible, and therefore the regular values of µA are dense
in µA(M). We also know by the previous part that for any regular value η ∈ Rm,
we have µ−1A (η) connected. Fix a point x0 ∈ µ−1A (η). It is easy to see that we can

write the set µ−1A (η) as:

µ−1A (η) = {x ∈M |µ(x)− µ(x0) ∈ kerAT }.

Since A is injective, the transpose AT : Rm → Rm−1 is surjective, and so we see
that dim kerAT = 1. Therefore, given x0, x1 ∈ µ−1A (η), we have a path γ : [0, 1]→
µ−1A (η). Then the image µ(γ[0, 1]) ⊂ Rm must connected, and must be in the
1-dimensional kerAT , and therefore must be convex. Thus, we see that:

(1− t)µ(x0) + tµ(x1) ∈ µ(M), 0 ≤ t ≤ 1.
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We now modify this method slightly to show that given any two points y0, y1 ∈M
then every convex combination (1 − t)µ(y0) + tµ(y1), 0 ≤ t ≤ 1 is in µ(M). Start
with any two points y0, y1 ∈ M . We can approximate these points arbitrarily
closely by points y′0, y

′
1 ∈ M such that µ(y′1) − µ(y′0) ∈ kerAT for an injective

integer matrix A ∈ Zm×(m−1). We can furthermore approximate these points by
points y′′0 , y

′′
1 ∈ M such that η = ATµ(y′′0 ) = ATµ(y′′1 ) ∈ Rm−1 is a regular value

of ATµ = µA, which shows that every convex combination (1 − t)µ(y′′0 ) + tµ(y′′1 ),
0 ≤ t ≤ 1 is in µ(M). Thus, given any points y0, y1 ∈M we can approximate these
points arbitrarily closely by points with images such that every convex combination
of these images is contained in µ(M). It follows by continuity therefore that every
convex combination (1− t)µ(y0) + tµ(y1), 0 ≤ t ≤ 1 is in µ(M).

This proves that the image µ(M) is convex.

(3) The points of M fixed by every symplectomorphism in Im(Tm) ⊂ Symp(M,ω)
decomposes into a finite union of symplectic submanifolds C1, . . . , CN , and the mo-
ment map is constant on these symplectic submanifolds

Lemma 7.3 shows that Fix(Tm) =
⋂
θ∈Tm Fix(ψθ) is a symplectic submanifold

of M , hence decomposes into a finite union of symplectic submanifolds C1, . . . , CN .
Each component of the moment map is equal to a Hamiltonian function:

µi = Hθ where θ = (0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0).

And thus, by Lemma 7.4, we have Ci ⊂ Crit(Hθ) for every 1 ≤ i ≤ N and every
θ ∈ Rm, and therefore we conclude that the components of the moment map are
critical and therefore constant on the symplectic submanifolds Ci, 1 ≤ i ≤ N .
Therefore:

µ(Ci) = ηi ∈ Rm for every 1 ≤ i ≤ N.

(4) The image of µ is the convex hull of the points ηj = µ(Cj) ∈ Rm, 1 ≤ j ≤ N
Since we have already proved that µ(M) is convex, it is certainly true that the

convex hull K of η1, . . . , ηN is contained in µ(M), i.e.:

K = K(η1, . . . , ηN ) ⊂ µ(M).

To see that they must be equal, let α ∈ Rm −K. We can choose a vector θ ∈ Rm
which has rationally independent components such that:

〈ηi, θ〉 < 〈α, θ〉, 1 ≤ i ≤ N
(it is easy to see that such a vector θ exists by geometrical considerations). Since
θ has rationally independent components, we see that Tθ = cl({tθ + k|t ∈ R, k ∈
Zm}/Zm) = Tm. Therefore, by Lemma 7.4 we see that the critical set of the
Hamiltonian function Hθ = 〈µ, θ〉 : M → R equals C1 ∪ . . . ∪ CN , i.e.:

Crit(Hθ) =
⋂
τ∈Tm

Fix(ψτ ) = Fix(Tm) = C1 ∪ . . . ∪ CN .

It necessarily follows that Hθ must achieve its maximum on one of these sets Ci,
in other words, for all p ∈M :

〈µ(p), θ〉 ≤ sup
x∈Ci

1≤i≤N

〈µ(x), θ〉 = sup
1≤i≤N

〈ηi, θ〉.
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And therefore, since 〈ηi, θ〉 < 〈α, θ〉 for all 1 ≤ i ≤ N , we conclude that, for all
p ∈M :

〈µ(p), θ〉 < 〈α, θ〉.

Thus, α /∈ µ(M). And therefore, K(η1, . . . , ηN ) = µ(M) as was claimed. �

9. Examples

Example 9.1. We may the sphere S2 as a symplectic manifold with symplectic
form ω = dθ ∧ dh, where (θ, h) are cylindrical polar coordinates on S2. We have
a torus action of T1 = S1 given by rotations about the vertical axis, i.e., S1 →
Symp(S2, ω) : t 7→ ψt where ψt(θ, h) = (θ + 2πt, h). It is easy to check that this
torus action is indeed, a Hamiltonian action µ : S2 → R given by µ(θ, h) = h:

• For any τ ∈ R, considered as the Lie algebra of S1, we have:

Hτ = 〈µ, τ〉 = τ · µ : S2 → R given by Hτ (θ, h) = τ · h.

Since dHτ = τdh = iXHτ (dθ ∧ dh), we see that:

XHτ = τ
∂

∂θ

and, indeed:

Xτ =
d

dt

∣∣∣∣
t=0

ψexp tτ = τ
∂

∂θ
.

So XHτ = Xτ as required.
• µ(ψt(θ, h)) = µ(θ + 2πt, h) = h = µ(θ, h) as required.

We have µ(S2) = [−1, 1] ⊂ R, so the image of the moment map is convex, as
required.



THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM 19

Example 9.2. We may the complex projective space CPn as a symplectic manifold
with symplectic form given by the Fubini-Study form ωFS . We have a torus action
of Tn:

Tn → Symp(CPn, ωFS) : (θ1, . . . , θn) 7→ ψ(θ1,...,θn)

where

ψ(θ1,...,θn)[z0 : z1 : · · · : zn] = [z0 : e−2πiθ1z1 : · · · : e−2πiθnzn].

We claim that this torus action is, indeed, a Hamiltonian action with moment map
µ : CPn → Rn given by:

µ[z0 : z1 : · · · : zn] = π

(
|z1|2

‖z‖2
, . . . ,

|zn|2

‖z‖2

)
∈ Rn

where ‖z‖2 =
∑n
i=0 |zi|2.

Thus, the image of µ is a simplex:

∆ =

{
(x1, . . . , xn) ∈ Rn|0 ≤

n∑
i=1

xi ≤ π

}
and µ has n+ 1 isolated fixed points in CPn at:

ci = [0 : · · · : 0 : 1︸︷︷︸
ith

: 0 : · · · : 0], 0 ≤ i ≤ n

which get mapped by µ to the vertices of ∆. Thus, the convex hullK(µ(c1), . . . , µ(cn)) =
µ(CPn) = ∆ as required.
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