
FRIEZE GROUPS IN R2

MAXWELL STOLARSKI

Abstract. Focusing on the Euclidean plane under the Pythagorean Metric,

our goal is to classify the frieze groups, discrete subgroups of the set of isome-

tries of the Euclidean plane under the Pythagorean metric whose translation
subgroups are infinite cyclic. We begin by developing a normal form for repre-

senting all isometries. To simplify the problem of composing isometries written

in normal form, we shall discuss the properties of compositions of reflections
across different axes. Such a discussion will naturally lead to a classification

of all isometries of the plane. Using such knowledge, we can then show that

there are only seven geometrically different types of frieze groups.
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1. Metric Spaces, Groups, and Isometries

Before we can begin to talk about frieze groups, we must discuss certain necessary
preliminary concepts. We begin by formalizing the concept of distance between
points in a set.

Definition 1.1. A metric on a set X is a map d : X ×X → R such that
i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x) for all x, y ∈ X;
iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

A set X with a metric d is called a metric space, written (X, d). We are
specifically interested in distance preserving maps from a metric space to itself and
so we present Definition 1.2.

Definition 1.2. An isometry of a metric space (X, d) is a bijection u : X → X
such that, for all x, y ∈ X, d(x, y) = d(xu, yu). (Note that for a map u : X → Y
and an element x ∈ X we denote the image of x by xu instead of u(x).)

We let Isom(X, d) denote the set of isometries of a metric space (X, d). In
other words, Isom(X, d) is the set of functions from a set to itself that preserve
distance. While there are many such sets, we shall deal almost exclusively with
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the set of isometries of the Euclidean plane under the Pythagorean metric. We
shall refer to this set as E, formally defined as E := Isom(R2, d) where d(x, y) =√∑2

i=1(xi − yi)2, x = (x1, x2), and y = (y1, y2).
Diverging from the topic of metric spaces, we present the following definitions,

formalizations of fundamental algebraic concepts:

Definition 1.3. A group is a set X with a binary operation such that
i) there is an identity element 1 ∈ X such that, for all x ∈ X, 1x = x1 = x;
ii) the binary operation is associative, i.e. for all x, y, z ∈ X, (xy)z = x(yz);
iii) for every x ∈ X, there exists some y ∈ X (called the inverse of x and written

x−1) such that xy = yx = 1.

Definition 1.4. A subgroup is a subset of a group G that forms a group under
the same binary operation as G. We denote a subgroup H of G by writing H ≤ G.

Definition 1.5. A subgroup H of a group G is said to be normal if Hx = xH for
all x ∈ G. We denote a normal subgroup H of G by writing H C G.

There is, however, an equivalent definition of a normal subgroup that will be
useful for later proofs.

Theorem 1.6. H C G if and only if x−1Hx = H for all x ∈ G.

Proof. Let x ∈ G and h ∈ H. Assume H C G. By definition, Hx = xH, so hx =
xh′ for some h′ ∈ H. Right multiplying both sides by x−1 yields x−1hx = h′ ∈ H,
from which it follows that x−1Hx ⊂ H. Because x ∈ G is arbitrary, xHx−1 is also
a subset of H. Thus, H = x−1xHx−1x ⊂ x−1Hx and we have proved the theorem
in one direction.

For the other direction, assume x−1Hx = H for all x ∈ G. Let x ∈ G and
h ∈ H. By the assumption, x−1hx = h′ ∈ H and right multiplication by x yields
hx = xh′ ∈ xH. Thus, Hx ⊂ xH. Because x−1Hx = H for all x ∈ G, it
follows that xhx−1 = h′′ ∈ H. By similar logic, xH ⊂ Hx. Thus, xH = Hx and
H C G. �

The concepts of isometries and groups now combine in the following theorem.
Note that, building off the previous notation, we write composition of maps f ◦ g
as gf and (f ◦ g)(x) = f(g(x)) = xgf .

Theorem 1.7. The set of isometries of a set X, i.e. Isom(X), forms a group
under composition of maps.

Proof. First, we need to show the existence of an identity element. Consider the
identity map 1 : X → X,x 7→ x. The identity map 1 is obviously a bijection.
Furthermore, for all x, y ∈ X, d(x1, y1) = d(x, y) as x1 = x and y1 = y. Thus,
1 ∈ Isom(X). Let u ∈ Isom(X) and x ∈ X. Because x1u = xu = xu1, the
identity map 1 ∈ Isom(X) is the identity element such that, for all u ∈ Isom(X),
u1 = 1u = u.

Composition of maps is obviously associative for x(tu)v = ((xt)u)v = xt(uv).
Next, we need to show the existence of inverses, so let u ∈ Isom(X). Because u ∈

Isom(X), u is a bijection. Thus, there exists a map u−1 such that uu−1 = u−1u = 1.
Let x, y ∈ X. Because d(xu−1, yu−1) = d(xu−1u, yu−1u) = d(x1, y1) = d(x, y),
u−1 ∈ Isom(X). Thus, for every u ∈ Isom(X), there exists u−1 ∈ Isom(X) such
that uu−1 = u−1u = 1.
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To complete the proof, we need to show that Isom(X) is closed under composition
of maps. In other words, we need to show that, for all u, v ∈ Isom(X), uv ∈
Isom(X). Let u, v ∈ Isom(X) and let x, y ∈ X. By definition, d(x, y) = d(xu, yu)
and xu, yu ∈ X. It follows that d(xu, yu) = d(xuv, yuv). By the transitivity of
equality, d(x, y) = d(xuv, yuv). Therefore, uv ∈ Isom(X). �

2. E and the Normal Form Theorem

This section deals exclusively with E, the set of isometries of the Euclidean plane
under the Pythagorean metric. The most well-known isometries of the plane are
perhaps translations, rotations, and reflections. We begin by formally defining these
isometries. Later, the Normal Form Theorem will show that every isometry of R2

can be written as a composition of a reflection, rotation, and translation.

Definition 2.1. A translation t is a map that moves every point a fixed distance
in a fixed direction. In symbols, for some x ∈ R2 with Cartesian coordinates (x1, x2)

t : (x1, x2) 7→ (x1 + a1, x2 + a2)

where a1 and a2 are constants that define a constant vector a = (a1, a2). We denote
such a translation by writing t = t(a) and call the direction of a the axis of t.

Translations are orientation preserving (OP) and have no fixed points, unless, of
course, the translation is the trivial translation through the zero vector.

Translations compose according to the following rule: If a = (a1, a2) and b =
(b1, b2) are constant vectors in R2, then t(a)t(b) = t(a + b) where t maps a point
(x1, x2) in the plane to (x1 + a1 + b1, x2 + a2 + b2). It follows from this fact that
the set of all translations in E form a subgroup of E.

Definition 2.2. A rotation s of the plane is a map that moves every point through
a fixed angle about a fixed point, called the center.

Taking the center O to be the origin of a polar coordinate system,

s : (ρ, θ) 7→ (ρ, θ + α)

where (ρ, θ) are the polar coordinates of an arbitrary point in R2 and α is a fixed
angle. We denote such a rotation by writing s = s(O,α).

Rotations are order preserving and non-trivial rotations have only one fixed
point, namely the center.

Rotations with the same center compose according to the following rule:

s(O,α)s(O, β) = s(O,α+ β)

where s(O,α + β) : (ρ, θ) 7→ (ρ, θ + α + β) and α and β are constant angles. It
follows that rotations about the same center O form a subgroup of E.

Definition 2.3. A reflection r is a map that moves every point in the plane to its
mirror image across a line l. This line l is called the axis of r and we denote such
a reflection by writing r = r(l). In symbols, given a point P ∈ R2, if P ∈ l then
Pr = P . If P /∈ l, then Pr is the unique point in R2 such that l is the perpendicular
bisector of P and Pr.

Reflections are orientation reversing and fix only the points on the axis of the
reflection. The inverse of a reflection is itself, i.e. r(l)2 = 1. The composition



4 MAXWELL STOLARSKI

of reflections across different axes, as well as the composition of rotations about
different centers, is the topic of discussion in Section 4.

The proofs that translations, rotations, and reflections are isometries of R2 and
satisfy their described properties regarding orientation, fixed points, and composi-
tion are somewhat trivial and will not be discussed here.

Having formalized the notions of translation, rotation, and reflection, we seek
to show that every isometry of the plane can be written as a composition of a
reflection, rotation, and translation. With that goal in mind, the following lemma,
that every isometry of R2 is determined by its effect on 3 non-collinear points, will
be a key first step towards proving the Normal Form Theorem.

Lemma 2.4. Let O,P,Q be 3 non-collinear points of R2 and let u1, u2 ∈ E such
that Ou1 = Ou2, Pu1 = Pu2 and Qu1 = Qu2. Then u1 = u2.

Proof. Define u = u1u
−1
2 . Thus, O = Ou,P = Pu, and Q = Qu. E is a group

by Theorem 1.7, so u ∈ E. Let R ∈ R2. Because u ∈ E, d(O,R) = d(Ou,Ru) =
d(O,Ru). Thus, Ru lies on circle C1 center O radius d(O,R). By similar logic, Ru
lies on circle C2 center P radius d(P,R). Thus, R,Ru ∈ C1 ∩ C2. Because O,P,Q
are non-collinear, O 6= P . It follows that |C1 ∩ C2| ∈ {1, 2}. If |C1 ∩ C2| = 1, then
R = Ru and we are done. Otherwise, |C1 ∩ C2| = 2, C1 ∩ C2 = {R,R′}, and Ru ∈
{R,R′}. It follows that line OP is the perpendicular bisector of RR′. Equivalently,
for any point S ∈ R2, d(S,R) = d(S,R′) if and only if S ∈ OP . Because O,P,Q
are non-collinear, Q /∈ OP , so d(Q,R) 6= d(Q,R′). Because d(Q,R) = d(Qu,Ru) =
d(Q,Ru), R′ 6= Ru. Therefore, R = Ru for all R ∈ R2 and we have proved the
lemma. �
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Theorem 2.5. (Normal Form Theorem) Fix a point O and a line l ∈ R2 such that
O ∈ l. Any u ∈ E can be written uniquely as

u = rεst

where r is a reflection over axis l, ε ∈ {0, 1}, s is a rotation about center O, and t
is a translation.

Proof. Let t be a translation such that Ou = Ot. Thus, Out−1 = O. Let P ∈ l such
that P 6= O. It follows that 0 < d(O,P ) = d(Out−1, Put−1) = d(O,Put−1). Thus,
both P and Put−1 lie on the circle center O with radius d(O,P ) = d(O,Put−1).
It follows that there exists a rotation s about O such that Ps = Put−1. Thus,
P = Put−1s−1. Because s is a rotation about O, Os = O, from which it follows that
O = Out−1s−1. Let Q /∈ l. Furthermore, d(O,Q) = d(Out−1s−1, Qut−1s−1) =
d(O,Qut−1s−1) and d(P,Q) = d(Put−1s−1, Qut−1s−1) = d(P,Qut−1s−1). By
similar logic as in Lemma 2.4, Qut−1s−1 equals either Q or the reflection of Q
over line l. In the case of the former, ε = 0. In the case of the latter, ε = 1. In
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both cases, O and P remain fixed. It follows that, since O,P,Q are non-collinear,
u = rεst by Lemma 2.4.

To prove uniqueness, suppose rεst = rδs′t′ where ε, δ ∈ {0, 1}, s and s′ are
rotations about O, and t and t′ are translations. If this isometry is orientation
preserving, then ε = δ = 0. Otherwise, this isometry is orientation reversing and
ε = δ = 1. Right multiplying both sides by r, if necessary, yields st = s′t′. Further
multiplication yields s′−1s = t′t−1 which is both a translation and a rotation about
O. Because the rotation fixes O and only the trivial translation has fixed points,
s′−1s = t′t−1 must equal the identity map 1. It follows that s = s′ and t = t′. �

3. Generators and Relations

We now take a short break from isometries of the Euclidean plane to discuss the
notation that will be used to describe and classify the frieze groups.

We write G = 〈X|R〉 where the symbols X,R,G have the following meaning:
The set X of generators consists of symbols, usually finite in number, say

x1, ..., xn, n ∈ N ∪ {0}. We think of the symbols x±1
i , 1 ≤ i ≤ n, as letters in

an alphabet X± from which words can be formed. The length of a word is the
number of its letters, assumed to be finite, and we allow the empty word e of length
zero. A word is reduced if it does not involve the letters x±1

i in adjacent places
for any i ∈ {1, ..., n}, and the set of all reduced words is denoted by F (X).

The set R of defining relations consists of relations, that is, equations between
words, usually finite in number, say ui = vi, where ui, vi ∈ F (X), i ∈ {1, ...,m},
m ∈ N ∪ {0}.

We say that 〈X|R〉 is a presentation of a group G or, equivalently, G = 〈X|R〉,
if the following three conditions are satisfied:

i) every element of G can be written as a word in X±;
ii) the equations in R all hold in G;
iii) any equation between words in X± that holds in G is a consequence of the

relations in R.
Before we forget the definition of generators, we shall present the following lemma

that will later be useful in the classification of frieze groups.

Lemma 3.1. Let T ≤ G, t be a generator of T , and r ∈ G. Then, r−1tr is a
generator of the group r−1Tr = {r−1xr|x ∈ T}.

Proof. Let x ∈ r−1Tr. Because t is a generator of T , it follows that x = r−1tlr for
some l ∈ Z. Note that (r−1tr)l = r−1trr−1tr...r−1tr = r−1tlr. Thus, x = (r−1tr)l.
Because x ∈ r−1Tr is arbitrary, r−1tr is a generator of r−1Tr. �

4. Compositions of Reflections Across Different Axes

Returning once again to isometries of the plane, we now take a look at com-
positions of reflections across different axes. Doing so provides a powerful tool
with which to compose and classify isometries in E and will furthermore simplify
the classification of frieze groups. As different axes of reflection can easily become
confused, many diagrams have been included in this section to illustrate the var-
ious axes and lines. We now begin with the composition of two reflections across
different axes.

Theorem 4.1. Let r, r′ ∈ E be reflections across distinct lines l, l′, respectively.
If l ∦ l′, then rr′ is a rotation about the point of intersection of l and l′ through
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an angle twice that from l to l′. If l ‖ l′, then rr′ is a translation in the direction
normal to l and l′ through distance twice that from l to l′.

Proof. Let r and r′ be reflections across lines l and l′, respectively. Assume l 6= l′.
Either l ∦ l′ or l ‖ l′.

Case 1: Suppose l ∦ l′. Thus, l ∩ l′ = {O} where O is the point of intersection
of lines l and l′ (see figure). Let P ∈ R2. Taking O as the origin and l as the axis,
we can write P in terms of polar coordinates P = (ρ, θ). Thus, r : (ρ, θ) 7→ (ρ,−θ).
Let Pr′ = P ′ = (ρ, φ). Because l′ bisects ∠P ′OP , θ+φ

2 = α and it follows that
φ = 2α− θ. Thus, rr′ : (ρ, θ) 7→ (ρ, 2α+ θ) and, therefore, rr′ = s(O, 2α). In other
words, rr′ is a rotation about O through twice the angle from l to l′.

Case 2: Suppose l ‖ l′. Let P ∈ R2. Taking l as the x-axis, we can write
P in terms of Cartesian coordinates P = (x, y). Thus, r : (x, y) 7→ (x,−y) and
r′ : (x, y) 7→ (x, z). Note that y+z

2 = a, so z = 2a− y. It follows that rr′ : (x, y) 7→
(x, 2a + y). Therefore, rr′ = t(0, 2a), i.e. a translation through twice the distance
between lines l and l′. �

It is worth noting that Theorem 4.1 also indicates that any translation or rotation
can be written as the composition of two reflections. In the case of a rotation s
about some center O, simply draw two lines l, l′, both containing O, such that l ∦ l′
and the angle from l to l′ is half the angle of rotation. It follows from Theorem 4.1
that r(l)r(l′) = s. Similarly, in the case of a translation t through a vector a, draw
two parallel lines l, l′ such that l and l′ are perpendicular to a and the distance
between l and l′ equals half the magnitude of a. By Theorem 4.1, r(l)r(l′) = t.

�
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l

Case 1: l ∦ l′
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l

l′

Case 2: l ‖ l′

Before continuing, we introduce a new isometry that will appear in the next
theorem.

Definition 4.2. Given a pair of distinct points P, P ′ on a line l, the isometry
q(P, P ′) = r(l)t(

−−→
PP ′) is called a glide reflection. (Note that t(

−−→
PP ′) is the unique

translation such that Pt = P ′.)

Unlike the isometries defined in Section 2, glide reflections are both orientation
reversing and have no fixed points. As the following theorem shows, glide reflections
also arise from the composition of three reflections across distinct axes.

Theorem 4.3. The product of 3 reflections in E is either a reflection or glide
reflection according as the number of points of intersection of distinct axes is less
than or greater than 3

2 .

Proof. Let r1, r2, r3 ∈ E be reflections across distinct lines l1, l2, l3 respectively.
Because two distinct lines can have at most 1 point in common, it follows that the
total number n points of intersection of 3 distinct lines is either 0,1,2, or 3.
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Suppose n = 0. It follows by Theorem 4.1 that r1r2 is a translation in the
direction normal to l1 through distance 2a where a is the distance between lines l1
and l2. By Theorem 4.1 there is a line l such that reflection r across line l composed
with r3 is a translation in the direction normal to l through distance 2a. Because
l ‖ l3 ‖ l1, r1r2 = rr3. Thus, r1r2r3 = rr3r3 = r. Therefore, r1r2r3 is reflection
r across line l. Similarly, for the case n = 1, we can draw the line l such that
r1r2 = rr3 where r is a reflection across line l. By similar logic, r1r2r3 is reflection
r across line l.
l1 l2 l3l
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Consider the cases n ≥ 2. Note that rotating axes l1 and l2 about their point of
intersection while keeping l3 fixed does not change r1r2. Thus, we can transform
any case in which n ≥ 2 to the case n = 2 and l2 ‖ l3 without affecting the
composition r1r2r3. So assume n = 2 and l2 ‖ l3. Let O be the point of intersection
of lines l1 and l2 and let Q be the point of intersection of lines l1 and l3 (see figure
below). Draw line l such that O ∈ l and l ⊥ l2. Note that l ⊥ l3. Finally, let P be
the point of intersection of lines l and l3. It follows that either P = Q or P 6= Q.

Suppose P 6= Q. Let O′ = Or1r2r3 and similarly define Q′. Because r1 fixes O,
O′ = Or1r2r3 = Or2r3. By similar logic, Q′ = Qr2r3. By Theorem 4.1, O′ and Q′

are simply the images of O and Q, respectively, under translation in the direction
of l through distance 2a where a is the distance between lines l2 and l3. Because
r1r2r3 ∈ E, d(O,P ) = d(Or1r2r3, P r1r2r3), d(O,Q) = d(Or1r2r3, Qr1r2r3), and
d(P,Q) = d(Pr1r2r3, Qr1r2r3). It follows by ”Side-Side-Side” that 4OPQ and
4O′P ′Q′ are congruent. Thus, Pr1r2r3 can be one of two points as indicated by
P ′ and P ′′ in the figure below. However, because r1r2r3 is orientation reversing,
it follows that Pr1r2r3 = P ′. Now, draw line l∗ through P and P ′. Let q be
the composition of translation t along l∗ through distance d(P, P ′) followed by a
reflection r across axis l∗. Note that q = tr = rt. Inspection of the figure below
reveals that O′ = Oq, P ′ = Pq, Q′ = Qq. By Lemma 2.4, q = r1r2r3 = tr = rt.
Therefore, r1r2r3 is a glide reflection.

Suppose P = Q. Thus, l = l1, l1 ⊥ l2, and l1 ⊥ l3. It follows that r1 is the
reflection r across line l and r1r2 is a translation t through distance 2a along line l.
As in the previous case, we have r1r2r3 = rt = tr and r1r2r3 is a glide reflection. �
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After having discussed the compositions of two and three reflections, the obvious
next step is to cover the composition of four reflections, which, in turn, shall describe
the composition of any number of reflections. In particular, the composition of five
reflections allows for an alternative normal form as presented in the statement of
the following theorem.

Theorem 4.4. Every non-trivial isometry of R2 is the product of at most 3 reflec-
tions, and is either a rotation, translation, reflection, or glide reflection according
to the following table:

Fixed points? Yes No
OP Rotation Translation
OR Reflection Glide Reflection

Proof. Consider the product u of four reflections. By Theorem 4.1, u is either
the composition of two translations, two rotations, or one of each. If u is the
composition of two translations, then u is a translation.

Suppose u = st where s = s(O,α) is a rotation and t = t(a) is a translation. Let
l be the line through O perpendicular to the direction a. Let l′ be the line through
O such that the angle between l′ and l is α

2 . Let l′′ be the perpendicular bisector
of O and Ot. It follows by Theorem 4.1 that s = r(l′)r(l) and t = r(l)r(l′′). Thus,
u = st = r(l′)r(l)r(l)r(l′′) = r(l′)r(l′′). Because l′ ∦ l′′, u is a rotation.
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Suppose u = ts. Thus, u−1 = s−1t−1. By similar logic, u−1 is a rotation from
which it follows that u is a rotation.

Finally, suppose u is the composition of two rotations s(O,α) and s′(O′, α′). If
O = O′, then u is a rotation through α + α′. Suppose O 6= O′. Let l be the line
through O and O′. Let l′ be the line through O such that the angle from l′ to
l is α

2 . Let l′′ be the line through O′ such that the angle from l′′ to l is α′

2 . It
follows by Theorem 4.1 that s = r(l′)r(l) and s′ = r(l)r(l′′). Thus, u = r(l′)r(l′′)
as r(l)r(l) = 1. There are now two cases: l′ ‖ l′′ and l′ ∦ l′′. If l′ ‖ l′′, then u is
a translation by Theorem 4.1 and this happens if and only if the angles α

2 and α′

2
are supplementary (i.e. sum up to angle π). Otherwise, l′ ∦ l′′. In this case, u is a
rotation s(P, 2φ) where P = l′ ∩ l′′ and 2φ = α+ α′.
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In summary, the product of four reflections is either a translation or rotation
which, in turn, is the product of two reflections by Theorem 4.1. It follows that,
when n ≥ 4, a product of n reflections is a product of n−2 reflections. By an obvious
induction, it follows that when n ≥ 4, a product of n reflections is a product of at
most three reflections.

Now, consider the Normal Form Theorem from Section 2 which stated that
any isometry in E could be written as the composition of a reflection, rotation, and
translation. It follows from Theorem 4.1 that any isometry in E can then be written
as the product of five reflections, which, in turn, can be reduced to the product of
at most three reflections. The cases that then result have already been discussed
in Theorems 4.1 and 4.3 and as such complete the proof of Theorem 4.4. �

5. Classification of Frieze Groups

The effect of composing reflections will be enormously useful and often cited
in our discussion of subgroups of E. Of the many such subgroups, we shall only
concern ourselves with those that are discrete, which we now define.

Definition 5.1. A subgroup G of E is discrete if, for any point O ∈ R2, every
circle center O contains only finitely many points in {Og|g ∈ G}.

Given a discrete subgroup G ≤ E, there is a translation subgroup T ≤ G defined
as the set of all translations in G. Furthermore, there are, in fact, only three
types of translation subgroups of a discrete subgroup: the trivial subgroup of no
translations, the free abelian group on two generators (i.e. 〈t1, t2|t1t2 = t2t1〉 ∼= Z2),
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or the infinite cyclic group. We shall limit our discussion to groups with the last
such type of translation subgroup.

Definition 5.2. A frieze group is a discrete subgroup of E whose translation
subgroup is infinite cyclic, i.e. a subgroup of E whose translation subgroup is
generated by only one translation.

There are, in fact, only seven frieze groups. Before classifying them, we shall
need two lemmas that show some useful properties of translations.

Lemma 5.3. Let r be a glide reflection and let t be a translation such that the axes
of r and t are parallel. Then r and t commute.

Proof. Taking the axis of r as the x-axis, we can write t = t(a) where a = (a1, 0).
Thus, rt and tr both map an arbitrary point with Cartesian coordinates (x, y) 7→
(x+ a1,−y). It follows that r and t commute. �

Lemma 5.4. Let T ≤ G ≤ E where T is the translation subgroup of G. Then T is
a normal subgroup of G.

Proof. Let r be a reflection and t = t(a) be a translation. Let P ∈ R2 be an
arbitrary point. Taking the axis of r as the x-axis we can describe the point P
and the vector a in terms of Cartesian coordinates P = (x, y) and a = (a1, a2),
respectively. It follows that the image of P under rtr proceeds as follows: (x, y) 7→
(x,−y) 7→ (x + a1,−y + a2) 7→ (x + a1, y − a2). Therefore, Prtr = Pt′ where t′

is translation by the vector a∗ = (a1,−a2). Thus, we have shown that if t is a
translation and r is a reflection then rtr is also a translation.

Now, let u ∈ G be an arbitrary isometry of R2 and let t be an arbitrary trans-
lation. We claim that u−1tu is a translation. If u is the identity, then u−1tu is
obviously the translation t. Otherwise, u is the product of at most 3 reflections
according to Theorem 4.4. We can then rewrite u as the product of reflections say
u = r1r2r3. It follows that u−1tu = r3r2r1tr1r2r3. We have already shown that
if r is a reflection then rtr is a translation. It thus follows from associativity that
r3r2r1tr1r2r3 is also a translation. By similar logic, if u is the product of one or two
reflections, then u−1tu is a translation. Because u−1tu is a translation, u−1tu ∈ T .
Therefore, by Theorem 1.6, T is a normal subgroup. �

At this point, we have all the tools we need to classify the seven types of frieze
groups.

Theorem 5.5. If F is a frieze group, then F is one of the seven possible groups:
F1 = 〈t|〉
F 1

1 = 〈t, r|r2 = 1, r−1tr = t〉
F 2

1 = 〈t, r|r2 = 1, r−1tr = t−1〉
F 3

1 = 〈t, r|r2 = t, r−1tr = t〉
F2 = 〈t, s|ts = t−1, s2 = 1〉
F 1

2 = 〈t, s, , r|s2 = 1, ts = t−1, r2 = 1, tr = t, (sr)2 = 1〉
F 2

2 = 〈t, s, r|s2 = 1, ts = t−1, r2 = t, tr = t, (sr)2 = 1〉

Proof. Let F be a frieze group and let T be the translation subgroup of F . Because
F is a frieze group, T = 〈t|〉 where t is a translation that generates T .

Case 1: Suppose F contains no non-trivial rotations. If F contains no reflections,
then F = F1 = 〈t|〉. Otherwise, F contains a reflection or a glide reflection. Suppose



FRIEZE GROUPS IN R2 11

F contains a reflection r. By Lemma 3.1, r−1tr generates r−1Tr. Note that T is
a normal subgroup by Lemma 5.4. Thus, r−1Tr = T by Theorem 1.6. It follows
that r−1tr generates T . Therefore, r−1tr = t±1. Each case generates a different
frieze group so either F = F 1

1 = 〈t, r|r2 = 1, r−1tr = t〉 or F = F 2
1 = 〈t, r|r2 =

1, r−1tr = t−1〉. (Note: If F also contained a glide reflection q, then rq, being an
orientation preserving isometry that has no fixed points, would be a translation
in F . It would then follow that q would already be generated by r and t, and,
therefore, not generate a new frieze group.)

There does, however, remain the case in which F contains a glide reflection but
no reflection. So, instead of a reflection, suppose F contains a glide reflection r.
Thus, r2 = th for some h ∈ Z. Because r and t commute by Lemma 5.3, it follows
that (rtk)2 = r2t2k = t2k+h for all k ∈ Z. Choose k ∈ Z such that 2k + h = 0 or 1
and define r′ = rtk. Because r′2 = t2k+h, r′2 = 1 or t. Also, because r′ = rtk, it
follows that the group generated by r and t is the same group as that generated by
r′ and t, i.e. 〈r, t|〉 = 〈r′, t|〉. If r′2 = 1, then the the frieze group F 1

1 is generated.
Otherwise, r′2 = t and we have a new frieze group F 3

1 = 〈t, r|r2 = t, r−1tr = t〉.
Case 2: Suppose F contains a non-trivial rotation s. By similar logic as in Case

1, s−1ts = t±1. Because s is non-trivial, s−1ts = t−1. Thus, s is a rotation through
π and, consequently, s2 = 1. Suppose there exists some rotation s′ ∈ F such that
s′ 6= s. By similar logic, s′ is a rotation through π. Because s 6= s′, it follows from
our analysis of composition of rotations in the proof of Theorem 4.4 that ss′ is a
translation. Thus, ss′ ∈ T . Multiplying both sides by s, we see that s′ ∈ sT and,
thus, s′ is generated by s and t. It follows that if F contains no reflections then
F = F2 = 〈t, s|ts = t−1, s2 = 1〉.

Suppose F contains a reflection or glide reflection r with axis l′. By similar
logic as before, r−1tr = t±1. Thus, either l′ ‖ l or l′ ⊥ l where l is the axis of t.
Suppose l′ ⊥ l. It follows that (sr)−1t(sr) = t and sr is an orientation reversing
isometry (i.e. a reflection or glide reflection) with axis l′′ parallel to l. Because
(sr)−1t(sr) = t and rtr = t−1, it follows that rstst = r and tstr = (sr) Thus,
we can rewrite the generators without changing the group, so let sr replace the
generator r. This simplifies the cases l′ ‖ l or l′ ⊥ l to only the case l′ ‖ l as sr is
an orientation reversing isometry with axis parallel to l.

Now we claim that l′ = l where l′ denotes the axis of the orientation reversing
isometry r and shall prove the claim by contradiction. Suppose l′ 6= l and consider
the point Or and the isometry r−1sr. It follows that Orr−1sr = Osr = Or as
O is the center of s. Since r−1sr is orientation preserving and fixes Or, r−1sr
must be a rotation by Theorem 4.4. To show that r−1sr is a non-trivial rotation,
consider the some point P ∈ R2 such that P 6= O. The image of Pr under r−1sr
is Psr. Because P 6= O, Ps 6= P from which it follows that that Psr 6= Pr as the
isometry r preserves distance. Thus, Pr is not fixed under r−1sr, so r−1sr is a
non-trivial rotation of the plane. We have already established that Or is fixed and
all non-trivial rotations in frieze groups are rotations through angle π so it follows
that r−1sr = s(Or, π). Because O 6= Or and π

2 and π
2 are supplementary, it follows

from our analysis of composition of rotations in Theorem 4.4 that s(O, π)s(Or, π)
is a translation τ . By looking at the image of O under τ we see that τ = t(2

−−→
OOr).

Because l ‖ l′ and l 6= l′, τ is a translation that is not in the frieze group. This
contradiction proves the claim that l = l′.
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It now follows that if r is a reflection then sr is a reflection by Theorem 4.3 with
axis m ⊥ l at O. Thus, F = F 1

2 = 〈t, s, r|s2 = 1, ts = t−1, r2 = 1, tr = t, (sr)2 = 1〉.
Otherwise, r is glide reflection. By similar logic as in Case 1, we can change

generators to get r2 = t. Because r2 = t, l is the axis of both r and t. Let O be
the center of the rotation s. Let M be the midpoint of line segment OOt and the
M ′ be the midpoint of line segment OM . Let m the line containing O such that
m ⊥ l and let m′ be the line containing M ′ such that m′ ⊥ l as illustrated in the
figure below.

ssss
O M ′ M Ot

m m′

l

It follows by Theorem 4.1 that s = r(m)r(l) and r = r(l)r(m)r(m′). Thus,
sr = r(m′) and, consequently, (sr)2 = 1. This gives the final frieze group F 2

2 =
〈t, s, r|s2 = 1, ts = t−1, r2 = t, tr = t, (sr)2 = 1〉. �

Having successfully completed our goal, we conclude with illustrations of the
seven frieze groups, understanding the horizontal line to represent the axis of trans-
lation and the images to continue indefinitely.
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