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Abstract

Building upon the concepts of the matrix Lie group and the matrix
Lie algebra, we explore the natural connections between the Lie groups
and Lie algebras via the exponential map. We later introduce the
matrix commutator as a Lie bracket operation to aid our investigation
of Lie algebra representations, which we illustrate with the example
of the adjoint representation on the special unitary group.

1 Introduction

1.1 Significance

The theory of representation of Lie algebras allows for the classification of Lie
groups, which has broad applications to analyses of continuous symmetries
in mathematics and physics. In mathematics Lie group classification reveals
symmetries in differential equations and provides a method of considering
geometries in terms of their invariant properties. In physics representation
theory yields natural connections between representations of Lie algebras and
the properties of elementary particles.

Limiting the current study to matrix groups and algebras allows us to
work from a Lie group to its adjoint representation with little more theoretical
background than basic analysis, group theory and linear algebra. According
to Ado’s theorem, every finite-dimensional Lie algebra can be viewed as a Lie
algebra of n x n matrices; thus, scaling the problem down to one of matrix
groups does not limit the current study beyond any mathematical or physical
application.



1.2 Preliminary Definitions

Definition 1. A Lie group is a group that is also a smooth manifold such
that the group action is compatible with differential structure.

Example 1. The set of complex numbers of absolute value 1 together with
complex multiplication satisfies the group axioms and has the structure of a
topological group, as multiplication and inversion are continuous functions
over the multiplicative group of nonzero complex numbers. This set, called
the circle group and denoted T, is a Lie group.

Definition 2. A matrix group is a subset of the n x n matrices that forms
a group with matrix multiplication. Naturally, a matrix Lie group is a Lie
group that is also a matrix group.

Example 2. The set of n x n invertable matrices together with matriz multi-
plication is a matrix Lie group called the general linear group and denoted
GL(n).

Definition 3. A real vector space g over a field F is called a Lie algebra if
it has a bracket operation [-,-] : g X g — g, called the Lie bracket, with the
following properties:

e [, ] is anti-symmetric, i.e. for all v,w € g,
[va] = _[wvv]
e [, ] is bilinear, i.e. for all a,b € F' and vy, vs,v3 € g,

l[avy + bug, v3] = alvy, v3] + blug, vs]

and
[v1, avy + bus] = alvy, va] + blvy, vs)

e [, ] satisfies the Jacobi identity, i.e. for all vy, vq,v3 € g,

[1, [V2, v3]] + [, [vs, v1]] + [vs, [V1, va]] = O

Example 3. The standard Lie bracket for matriz Lie algebras, called the
commutator bracket, is defined for A,B € g as [A, B] = AB — BA.



2 The Lie Algebra of a Matrix Lie Group

2.1 Theory: the Tangent Space

Definition 4. The tangent space of a matrix Lie group G at a point p in
G is the n-dimensional plane in R” tangent to G at p. The tangent space
at the identity is denoted L(G).

Let G be a matrix Lie group, and define a smooth matrix-valued function
7 : R — G of a real variable ¢ that satisfies v(0) = p for some p in G. The
n xn matrix v(t) has entries 7;;(¢) that are smooth functions of ¢. The image
of 7 is a smooth curve in G that passes through p. The differential v at
t = 0 is tangent to v at ¢ = 0. Since the image of v lies on the manifold G,
we know that +/(0) is tangent to G at p. The differential +/(¢) is an n x n
matrix: the Jacobian of v(t). The tangent space of G at p is the set of all
matrices of the form +/(0) for some smooth curve v : R — G that satisfies
7(0) = p. Letting p = I,, defines the tangent space of G at the identity,
denoted L(G).

2.2 An Example: SU(n)

Let SU(n) denote the special unitary group, the set of all n x n unitary
matrices with determinant 1 together with matrix multiplication. Clearly,
SU(n) is a matrix Lie group, as it is a subgroup of GL(n,C).

Let v : R — SU(n) be a smooth matrix-valued function of a real variable
t that satisfies y(0) = I,,. Then 7(¢) is an n X n unitary matrix, and we have
the identity

V() ()" = I (1)
where A* represents the conjugate transpose of the matrix A.

Lemma: product rule for matrix functions. Express matrix-valued
functions A,B : R — M, (C) of a real variable ¢t in terms of their ele-
ments: A(t) = (aij(t))nxn and B(t) = (bij(t))nxn. Then (A(t) - B(t));; =
> aig(t)bg;(t). The derivatives of A and B are taken element-wise; thus,

n

(A@)-BO); = Y (aw(t)bi (1))

k=1

= ) an®b; (1) + > ah ()b (1)
k=1 k=1
= (A(t)B'(t) + A'(t)B(t))y



Note that differentiation commutes with the complex conjugacy opera-
tion because differentiation acts element-wise. Then we can unambiguously
express an immediate implication of (1):

V() A @)+ @) () =0, (2)
Now let ¢ = 0. Then by the assumption v(0) = I,,, we have
7(0) ++'(0)" =0, (3)

Let W denote the set of all matrices of the form +/(0) that satisfy (3) for
smooth 7, i.e. the set of n x n traceless skew-Hermitian matrices. Then the
tangent space of SU(n) at the identity is a subspace of W. Later we will
show that W and the tangent space of SU(n) are the same space.

2.3 Theory: the Exponential Map

If G is a matrix Lie group, then clearly there exists a group homomorphism
v : (R,+) = GL(n,R). If for all 1 < 4,j < n, 7;; is continuous, then ~y
is continuous. The existence of a continuous group homomorphism implies
that such a function is smooth.

Theorem 1. If v : (R,+) — GL(n,R) is a continuous group homomor-
phism, then (t) = exp(tA) for A =+(0).

Proof. 1t is beyond the scope this discussion to prove Theorem 1 in general.
Below is a proof of the 1-dimensional case. Since GL(1,R) is isomorphic to
R\ {0}, it is sufficient to prove that if v : (R,+) — (R,-) is a continuous
group homomorphism, then (t) = exp(ta) for a = +'(0).

Assume (1) < 0. Since y(0) = 1, by the Intermediate Value Theorem
there exists a real ¢y such that v(fy) = 0, but zero does not belong to the
codomain of v x. Thus, b =~(1) > 0.

Subpoint: y(mc) = (y(c))™ for ¢ € R, m € ZT. The case where m =1 is
trivially true. Assume the case where m = k. Then y((k+1)c) = y(kc+c¢) =
v(ke)y(c) since 7 is a group homomorphism, and ~(kc)y(c) = (v(c))*y(c) =
(7(c))®* by the induction hypothesis. v/

Subpoint: y(gq) = b? for ¢ € Q. Let ¢ = 1. Then clearly y(m) = b™. Now
let s € Z*. ~y(1/s) = b'/* follows from (b'/*)* = b = (1) = y(s(1/s)) =
(7(1/s))%. Then for r € Z*, we have b'/* = (b/*)" = (y(1/5))" = ~(r/s).
v(—=r/s) = b~"/* follows from 1 = v(0) = y(r/s+(—1/s)) = y(r/s)y(=1/s) =
v/sy(—r/s). v

Subpoint: y(t) = b* for t € R. Define a sequence of rationals {t;};cz+
for each ¢t such that t = lim;_,t;. Since v is continuous, we can write



Y(t) = Y(limisooti) = limi ooy (t;) = lim;oob'. Since b' is continuous,
Y(t) = lim;_oobli = plimizeti = bt
Let a = In(b). Then v(t) = V' = (exp(a))’ = exp(at) and v'(0) =a. O

As a corollary, v(t) is smooth. This follows from the fact that exp(ta)
is smooth. The extension of this theorem to complex numbers involves a
similar proof.

2.4 An Example: SU(n)

Lemma 1. For A € W, exp(tA)exp(tA)* = I,.
Proof. We wish to show

exp(tA)exp(tA)” = exp(tA)exp(tA”) (4)
= exp(tA)exp(—tA) (5)
= exp(tA—tA) (6)
= I (7)

(4) follows from the fact that for matrices A, B we have (AB)* = B*A* since
complex conjugation commutes with matrix transpositition and distibrutes
over complex multiplication. (5) follows from the fact that (tA) is skew-
Hermitian. (6) follows from the fact that (tA) and (—tA) commute. (7) is
trivial. O

Lemma 2. For A € W, det(exp(tA)) = 1.
Proof. We wish to show

det(exp(tA)) = exp(tr(tA)) (8)
= exp(0) (9)
-1 (10)

For a field F, let an n x n matrix M be such that the eigenvalues of M belong
to F. Then by the Jordan normal form theorem, M is upper triangularizable,

so there exist an invertable matrix L and an upper triangular matrix C such
that M = LCL~!. Then

exp(A) = exp(LCL™)

oo

=y %(LCL*)’“

k=0
1w

= D L LCL
k=0

= Lexp(C)L™!

b}



Then, where the \; are the diagonal entries of C,

det(Lexp(C)L™') = det(L)det(exp(C))det(L™") = det(exp(C))

= H exp(Ay) = exp (Z Ak) = exp(tr(C))

k=0 k=0

The second line follows from the fact that the diagonal entries of C are
invariant over exponentiation. Then since tr(C) = tr(LCL™') = tr(M),
we have det(exp(M)) = exp(tr(M)). Then (8) follows from the fact that
the eigenvalues of (tA) are complex. (9) follows from the fact that (tA) is
traceless. (10) is trivial. O

Together, lemmas 1 and 2 demonstrate that W is a subspace of su(n),
the tangent space of SU(n) at the identity, which as we demonstrated above
is a subspace of W; thus, su(n) = W. In other words, the tangent space of
SU(n) at the identity is the space of n x n traceless skew-Hermitian matrices.

2.5 The Lie Bracket

If the tangent space L(G) at the identity of a Lie group G is equipped with
a Lie bracket operation, it is called the Lie algebra g of G. The standard Lie
bracket for Lie algebras of matrix Lie groups is given by [A, B] = AB — BA.
From the previous examples and the definitions above, it is clear that the
Lie algebra su(n) of the special unitary group SU(n) is the space of n x n
traceless skew-Hermitian matrices together with the commutator bracket.

3 Lie Algebra Representation

3.1 Theory: the Adjoint Representation

Definition 5. A representation of a Lie algebra g is a Lie algebra homo-
morphism p : g — End(g).

Definition 6. Given an element A of a Lie algebra g, we define the adjoint
action of A on g as the endomorphism ad(A) : g — g with ad(A)(B) = [A, B|
for all B in g. The map ad : g — End(g) given by A — ad(A) is called the
adjoint representation of g.

It is not difficult to show that the adjoint representation is indeed a



representation of g. Let A, B,C € g. Then we have

([ad(A),ad(B)])(C) = [A,[B,C]] = [B,[A,C]]
= [A,[B,C]]+[B,[C, A]]
= —[C,[A, B]]
= [[4,B],C] = ad([A, B))(C)

where the third line follows from the Jacobi identity. Since the adjoint repre-
sentation commutes with the Lie bracket, it is a Lie algebra homomorphism
and thus is indeed a representation of g.

Definition 7. In general the Cartan subalgebra is defined as the self-
normalizing nilpotent subalgebra of a Lie algebra. Given a finite-dimensional
Lie algebra over an algebraically-closed field of characteristic 0, the Cartan
subalgebra is unique up to conjugation.

Consideration of this technical definition is not necessary to our analysis
of su(2) and su(3). For the purposes of this discussion, let the Cartan sub-
algebra, denoted b, of a Lie algebra g be the subalgebra of g that consists of
elements, the adjoint representation matrices of which have diagonal entries.

Definition 8. Let g be a Lie algebra over a field F. A root is a functional
Xo : b — F, with corresponding root root vector v € g, that satisfies
[z,v] = xu(x)v for all x € b.

3.2 Roots of su(2)

Consider the Lie algebra su(2). Since for all positive integers n the Lie algebra
su(n) consists of n x n traceless skew-Hermitian matrices, we can express an

arbitrary element of su(2) by
1 —B
b —ix

where z € R and € C. The obvious basis for su(2) over R is {uy, us, us}

where
(0 (0 -1 (i 0
M=y 0 )"0 0 )T Lo =i



Complexify the basis vectors as follows:

1 ) 0 0
Uy = —§(u1+zu2): 0

1 , 0
u_ = —§(u1 — iug) = ( 0

1 (2 0
Y2 = 9= 0 -

Then we can express the adjoint actions ad(uy ), ad(u_),ad(u,) by matrices
corresponding to the basis {u;,u_,u,} over C:

000 0 0 —i 1 0 0
adfuy)=10 0 ¢ |,adlu_)=10 0 0 |],ad(u,)=1| 0 —1 0
1 00 0 -1 0 0 0 O

These matrices demonstrate that scalar multiples of u, constitute the Cartan
subalgebra of su(2). Then u, is an eigenvector of ad(u,) with eigenvalue 1
and that u_ is an eigenvector of ad(u,) with eigenvalue -1. In other terms
the root from u, to 1 has root vector u,, and the root from wu, to -1 has root
vector u._.

3.3 Roots of su(3)

As with su(2) complexify the obvious basis over R to find the useful basis
over C. For su(3) the useful basis vectors are as follows:

0 &0 0 &0 -5 00
ty= % 0 0 )t-= % 0 0], t.=| 0 3 0
0 0 0 0 0 0 0 00
0 0 & 0 0 00 0
vy= 0 0 0 J,oo=( 0 0 0 |,upy=[0 0 L
20 00 =0 0 0 & 0
0 0 0 £ 0 0
u_:OO%,yzoéO
0 % 0 00 -2

Then we can express the adjoint actions over this basis. In the case of
su(3), we can simplify the computation by considering the adjoint action of



an arbitrary linear combination z of ¢, and y, the two basis vectors whose
adjoint matrices are diagonal. For a,b € C, let x = at, + by. Then

a 0 0 0 0 0 0 0
0 —a 0 0 0 0 0 0
00 0 0 0 0 0 0
0 0 0 —3a+b 0 0 0 0
“W@=109 0 0 "0 la-b 0 0 0
0 0 0 0 0 ga+b 0 0
00 0 0 0 0 —la—b 0
0 0 0 0 0 0 0 0

Here we see that t,t_,t,,v;,v_,uy,u_,y are eigenvectors of ad(z) with
eigenvalues a, —a, 0, —%a + b, %a — b, %a + b, —%a — b and 0, respectively.

4 Conclusion

By working our way from the arbitrary matrix Lie group to its respective Lie
algebra and its adjoint representation, we have demonstrated several funda-
mental properties of matrix Lie groups and matrix Lie algebras including
the existence and form of the exponential map and the utility of the Lie
bracket in the representation of Lie algebras. And by supplementing our
theoretical results with the example of the special unitary group we inspire
immediate physical applications. A more general investigation of Lie groups
requires more advanced techniques in algebra and topology, and the current
study explores basic concepts and methods that establish an introductory
understanding to an extent that they may be expanded upon later.



