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Abstract. This paper will prove that given a finite group G, the associated

irreducible characters form an orthonormal basis for the set of class functions
on G. We start with two different (but related) definitions of a representation,

though we will make reference to the definition used in Fulton and Harris. After

proving Schur’s lemma and a useful corollary, we prove that each representation
can be written as the direct sum of finitely many irreducible representations.

After defining character functions and describing their importance in relation

to irreducible representations, we define a Hermitian inner product on Cclass,G

(the set of class functions from G into C) and show that a certain set of

characters are orthonormal to each other. We then show that this orthonormal

set is a basis for Cclass,G. Finally, we end with the character table for S5, which
can be derived from the theorems this paper contains.

1. Representations of Finite Groups, and Schur’s Lemma

Representation Theory arises from the study of group actions. A group action
is a function that describes how a group acts on a set. For example, consider D6

as an abstract group. If we let X be the set of vertices of an equilateral triangle,
we can think of D6 as the group of symmetries on X, whose group elements act as
rotations and reflections (indeed, the group D2n is usually thought of in terms of
symmetries on the regular n-gon).

Definition 1.1. Let G be a group, and X a set. A group action is a function
φ : G×X → X with the following properties:

1) If e ∈ G is the identity, then φ(e, x) = x for all x ∈ X.
2) Let g1, g2 ∈ G. Then φ(g1, φ(g2, x)) = φ(g1g2, x).

One usually writes g · x in place of φ(g, x).
Now, according to the above definition, the set X need not have any properties

at all. If we use a vector space V instead of X as well as a few more conditions, we
get the following definition.

Definition 1.2. Let G be a group and V a vector space. The map φ : G×V → V
is a representation of G on V if φ is a group action and if, for every g ∈ G, the
function φg : V → V defined by φg(v) = φ(g, v) is a linear function.

For the purposes of this paper, we will use the definition of a representation
given in Fulton and Harris, which is similar to the definition above. Whereas the
above definition defines a representation as a map from G× V into V , Fulton and
Harris define a representation as a map from G into the set of linear transformations
of V .
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Definition 1.3. Let G be a finite group, and V an n-dimensional vector space. A
representation of G on V is a homomorphism σ : G→ GLn(V ).

Note that we will always assume our vector space V is taken over the complex
number field C. Also, unless otherwise stated, we will always assume that the vector
space V is finite dimensional.

Because it is sometimes confusing to remember that a representation is a ho-
momorphism, but often one needs to discuss the associated vector space as well,
this paper will use the notation (σ, V ) to signify the representation. The σ is the
homomorphism, and the V is the representation.

A single finite group G will usually have multiple representations. In prepa-
ration for results to come, we shall define the direct sum of two representations
here. Let (α, V ) and (β,W ) be two representations of the finite group G. The
direct sum of vector spaces V and W gives rise to another representation, writ-
ten (α ⊕ β, V ⊕ W ) where, for each v ∈ V , w ∈ W , and g ∈ G, we have
(α⊕ β)(g)(v ⊕ w) = (α(g)v)⊕ (β(g)w).

Definition 1.4. Let (σ, V ) be a representation of the finite group G. We say that
(σ,W ) is a sub-representation of (σ, V ) if W is a vector subspace of V and W is
invariant under G, that is, if σ(g)w ∈W for all w ∈W .

The importance of this definition is only realized in conjunction with the fol-
lowing definition.

Definition 1.5. Let (σ, V ) be a representation of the finite group G. Then (σ, V )
is irreducible if it has no proper, nonzero sub-representations.

As it turns out, all representations can be written as the direct sum of irre-
ducible representations. That result implies that knowing all irreducible represen-
tations for a given group (a finite group, for our purposes) allows one to construct
all possible representations for that group. In addition, the decomposition of a
representation into a direct sum of irreducible representations is unique.

Before proving the above paragraph, we present the statement and proof of
Schur’s Lemma, an extremely useful result about functions between irreducible
representations. In preparation for the proof, we give the definition for G-linear
maps.

Definition 1.6. Let σ1 and σ2 be representations of the finite group G on vector
spaces V and W respectively. A G-linear map, also called a G-module homo-
morphism, is a map α : V →W such that α(σ1(g)v) = σ2(g)α(v).

Lemma 1.7. (Schur’s Lemma) Let G be a finite group with nontrivial irreducible
representations (σ1, V ) and (σ2,W ). Suppose φ : V →W is a G-linear map. Then
either φ is an isomorphism, or φ(v) = 0 for all v ∈ V .

Proof. By the G-linearity of φ, we have

φ(σ1(g)v) = σ2(g)φ(v) = 0
for al v ∈ ker(φ). Therefore, σ1(g)v ∈ ker(φ) for all g ∈ G. Consequently,

ker(φ) is invariant under G, so (σ1, ker(φ)) is a sub-representation of (σ1, V ).
Before moving on, it is worth showing that (σ2, φ(V )) is a sub-representation

of (σ2,W ). Firstly, φ(V ) is a vector subspace of W . Secondly, for all w ∈ φ(V )
(where we write w = φ(v) for some v ∈ V ), we have the following:



SOME ELEMENTARY RESULTS IN REPRESENTATION THEORY 3

σ2(g)w = σ2(g)φ(v) = φ(σ1(g)v).
Therefore σ2(g)w ∈ φ(V ) for all g ∈ G. Consequently, φ(V ) is invariant under

G, so (σ2, φ(V )) is a sub-representation of (σ2,W ).
Collecting these two facts will complete the proof. Since V is irreducible,

ker(φ) = 0 or ker(φ) = V . If ker(φ) = 0 then φ is an injection. Since (σ2, φ(V ))
is a sub-representation of (σ2,W ), it must be all of W since neither W nor V are
the trivial vector space. Therefore, φ is a bijective G-linear map, and hence is an
isomorphism.

Finally, if ker(φ) = V , then φ(v) = 0 for all v ∈ V . This completes the proof.
�

We now state an important corollary to this lemma, which we will use in later
sections.

Corollary 1.8. Let G be a finite group with the nontrivial irreducible representation
(σ, V ). Suppose φ : V → V is a G-linear map. Then there exists a λ ∈ C such that
φ(v) = λv for all v ∈ V .

Proof. The field C is algebraically closed. Therefore, each linear transformation on
V , in this case, φ : V → V , has an eigenvalue λ with eigenvector x. Consider the
function f : V → V defined by

f(v) = φ(v)− λI(v),
where I is the identity transformation. Then f is a G-linear map, so by Schur’s

lemma, f is an isomorphism or f is the zero map. But since φ(x) = λI(x), we
have that x ∈ ker(f). Consequently, ker(f) 6= 0. Thus, f is the zero map and so
φ(v) = λI(v) for all v ∈ V .

�

We are now prepared to prove the following theorem.

Theorem 1.9. Let (σ, V ) be a representation of the finite group G. Then V can
be written as the direct sum of finitely many irreducible representations.

Proof. We define a recursive procedure for splitting V into sub-representations, and
show that this process eventually terminates.

Step 1) Check if V is irreducible: If V is irreducible we’re done, since then
obviously V can be written as the direct sum of finitely many irreducible represen-
tations.

Step 2) Decomposition of V into complementary sub-representation: If V is not
irreducible, then let (σ,W ) be a (nontrivial) sub-representation of V . We will show
that there exists a sub-representation (σ,W ′) of (σ, V ) where W ′ is a complement
of W and V = W ′ ⊕W . To do this, let X be an arbitrary subspace of V such that
V = W ⊕X.

Define the projection map p : V → W by p(v) = p(v1, v2) = v1. Then define
the map

f(v) =
1
|G|

∑
g∈G

σ(g)p(σ(g−1)v).

Now, for w ∈W , note that
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f(w) =
1
|G|

∑
g∈G

σ(g)p(σ(g−1)w) =
1
|G|

∑
g∈G

σ(g)σ(g−1)w =
1
|G|

∑
g∈G

w = w

because (σ,W ) is a sub-representation of (σ, V ), and consequently the vector
space W is invariant under the action of G. Thus, f fixes W , and f(V ) = W . We
now show that we may take ker(f) = W ′ as our invariant subspace of V which is
complementary to W .

Clearly, W ′ is complementary to W because when viewed as elements of V ,
the elements of W ′ are of the form (0, w′). It remains to be shown that W ′ is fixed
under the action of G. To see that this is the case, note that

σ(h) ·f ·σ(h−1) =
1
|G|

∑
g∈G

σ(h)σ(g) ·p ·σ(g−1)σ(h−1) =
1
|G|

∑
g∈G

σ(hg) ·p ·σ((hg)−1)

=
1
|G|

∑
g∈G

σ(g) · p · σ(g−1) = f.

In other words, σ(h) · f = f · σ(h). As a consequence of this, for each x ∈ W ′
we have f(σ(h)x) = σ(h)f(x) = 0, and therefore σ(h)x ∈W ′. Therefore, W ′ is the
complementary sub-representation of W we wanted.

Step 3) Return to Step 1) with W and W ′: We can apply a similar procedure
to both (σ,W ) and (σ,W ′), writing each of them as the sum of complementary
sub-representations. For example, consider (σ,W ). If (σ,W ) is irreducible, we’re
done. If not, then applying step 2 shows that we can write W = U ′ ⊕ U , where U ′

is complementary to U and (σ, U ′) and (σ, U ′) are sub-representations of (σ,W ).
Note that dim(V ) = dim(W ) + dim(W ′), which implies that step 2 involves

writing the representation as the sum of two representations of smaller dimension.
If the dimension of a vector space is 0, then that vector space is trivial. Hence, this
process eventually terminates at step 1. When this process is completed, we can
write V =

∑k
i=1 V

αi
i , where (σ, Vi) is a distinct, irreducible sub-representation of

V , and V αi
i denotes the direct sum of Vi with itself αi times.

�

We call αi the multiplicity of Vi in the decomposition of V . To close this
section, we prove that this decomposition is unique.

Theorem 1.10. Suppose (σ, V ) is a representation of the finite group G, and sup-
pose V =

∑k
i=1 V

vi
i where each (σ, Vi) is a distinct, irreducible sub-representation

of V (we know such decomposition exists by the theorem above). Then this decom-
position is unique.

Proof. Suppose V may also be written as the direct sum

V =
n∑
i=1

W β1
1

where (σ,Wi) is an irreducible representation.
Consider the identity map I : V → V . As proved in Schur’s lemma, any nonzero

map between irreducible representations is an isomorphism. Therefore, the map I
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takes each subspace Wi to a subspace Vj (that is, Wi
∼= Vj), and therefore I takes

W βi

i to V αj

j . Thus, βi = αj , which proves that the decomposition of V is unique.
�

2. Characters and Irreducibility

We have shown that every representation (σ, V ) of a finite group G may be
written as the direct sum of irreducible representations. Thus, in order to find all
representations of a given group, one need only find the irreducible representations.
The study of characters (a term we define below) is conducted in order to describe
all irreducible representations of a given group G.

Definition 2.1. Let (σ, V ) be a representation of the finite group G. The char-
acter of that representation is a function χσ,V : G → C defined as χσ,V (g) =
Trace(σ(g)). Furthermore, if (σ, V ) is an irreducible representation, then we will
call χσ,V an irreducible character.

As the rest of the paper will show, these character functions contain all the
information one needs to classify irreducible representations. It is the trace of the
linear transformation σ(g) that contains all the necessary data; one need not know
the eigenvalues of σ(g), just their sum. Quite an elegant result.

Definition 2.2. A class function is a function f on G such that f(g) = f(hgh−1).
For our purposes, the class functions will go into C, that is, f : G→ C. Notationally,
we write Cclass(G) for the set of all class functions into C.

Note that characters are class functions, since

χσ,V (hgh−1) = Trace(σ(h)σ(g)σ(h−1) = Trace(σ(h−1)σ(h)σ(g))

= Trace(σ(h−1h)σ(g)) = Trace(σ(g)) = χσ,V (g).

Before moving on, we need to establish several properties concerning characters
and representations. Firstly, if (α, V ) and (β,W ) are two representations of the
finite group G, the tensor product of the vector spaces gives rise to a representation,
written (α ⊗ β, V ⊗ W ) where, if v ∈ V , w ∈ W , and g ∈ G, we have (α ⊗
β)(g)(v ⊗ w) = (α(g)v)⊗ (β(g)w) (this is entirely similar to the direct sum of two
representations).

For the purposes of the upcoming theorem, it is equally necessary, though
slightly more involved, to define the dual of a representation as a representation.
Suppose (σ, V ) is a representation of the finite group G. The dual of V , denoted
V ?, is the set Hom(V,C).

Let σ? : G→ GL(V ?) be defined by σ?(g) = t(σ(g−1)). Then (σ?, V ?) is indeed
a representation for the group G. Furthermore, it respects analogous pairing of a
vector space to its dual space: if v ∈ V , then v? ∈ V ? is the associated linear
functional in the dual space. Likewise, σ(g)(v) is associated with σ?(g)(v) for each
g ∈ G, v ∈ V .

These different kinds of representations translate into operations on characters,
as the following proposition illuminates.

Proposition 2.3. Let (α, V ) and (β,W ) be representations of the finite group G.
Then the following equivalences hold:
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1) χα⊕β,V⊕W = χα,V + χβ,W .
2) χα⊗β,V⊗W = χα,V · χβ,W .
3) χα?,V ? = χα,V .

Proof.
1) For all g ∈ G, consider Trace((α ⊕ β)(g)). This trace is equal to the sum

of the eigenvalues of the matrix (α⊕ β)(g). The eigenvalues of that matrix are the
sum of the eigenvalues of α(g) and β(g). That is, if {λi}k1i=1 is the set of eigenvalues
of α(g), and {γi}k2j=1 is the set of eigenvalues for β(g), then for 1 ≤ i ≤ k1 and
1 ≤ j ≤ k2, the set {λi + γj} is the set of eigenvalues for (α ⊕ β)(g). Therefore,
Trace((α⊕ β)(g)) = Trace(α(g)) + Trace(β(g)), which completes the proof of the
first equality.

2) The proof here is similar to the proof in part one. The only difference is to
note that each eigenvalue of the matrix (α⊗β)(g) may be written as the product of
an eigenvalue of α(g) and an eigenvalue of β(g). Also, given any eigenvalue of α(g)
and any eigenvalue of β(g), their product is an eigenvalue of (α⊗β)(g). Therefore,
the second equation follows.

3) Again, this proof follows the logic of the two above it. If {γi}ni=1 are the
eigenvalues for α(g) ∈ G, then the eigenvalues for α?(g) are {γi}ni=1 = {γ−1

i }ni=1

since the γi have absolute value equal to 1.
�

Let (α, V ) and (β,W ) be two representations of the finite group G. Then
(α? ⊗ β, V ? ⊗W ) is a representation, which we identify by (α? ⊗ β,Hom(V,W )).
This is because if φ ∈ H(V,W ) then

(
(α?⊗β)(g)φ

)
(v) =

(
α?⊗β(g)

)
φ(α?⊗β(g−1)v).

We now prove a lemma in preparation for the upcoming theorem.

Lemma 2.4. Let (α, V ) and (β,W ) be two representations of the finite group G.
Then the vector space of G-linear maps from V to W , written as HomG(V,W ), is
a subspace of Hom(V,W ) invariant under G.

Proof. Clearly, HomG(V,W ) is a subspace of Hom(V,W ), since the sum of two
linear functions, and the product of a scalar times a linear function, are both linear
functions. To show invariance under the action of G, take g ∈ G and φ a linear
map. Then for all v ∈ V , we have β(g)φ(v) = φ(α(g)v), so obviously each G-linear
function is fixed under the action of g.

Let H be the subspace of Hom(V,W ) fixed under the action of G, and take
some g ∈ G. Then for each h ∈ H and v ∈ V we have β(g)h(v) = h(α(g)v), and
therefore h is a G-linear function.

�

In preparation for the following theorem, we define a Hermitian inner product
on the set of all class functions. Let µ, ν ∈ Cclass(G). Their inner product is

(µ, ν) =
1
|G|

∑
g∈G

µ(g)ν(g).

We are now ready for an important theorem concerning irreducible representa-
tions and their characters.
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Theorem 2.5. For each irreducible representation of G, the corresponding irre-
ducible characters are orthonormal with respect to the Hermitian inner product
defined above.

Proof. Let (α, V ) and (β,W ) be irreducible representations of the finite group G.
We want to show that if V ∼= W ,

1
|G|

∑
g∈G

χα,V (g)χβ,W (g) = 1,

but if V �W ,

1
|G|

∑
g∈G

χα,V (g)χβ,W (g) = 0.

Letting σ = α? ⊗ β and Y = Hom(V,W ) for convenience, we get

χα,V (g)χβ,W (g) = χσ,Y .

Thus, we want to evaluate the sum

1
|G|

∑
g∈G

χσ,Y .

We now define the following sub-representation of (σ, Y ) as

(σ, YG)
where YG = {φ ∈ Y | σ(g)φ = φ for all g ∈ G}. Note that by the lemma above,

YG is the set of all G-linear homomorphisms from V to W . This will allow us to
make assumptions about the nature of the function φ, defined as

φ =
1
|G|

∑
g∈G

σ(g).

Note that φ is aG-linear homomorphism, since 1
|G|
∑
g∈G σ(g) = 1

|G|
∑
g∈G σ(hgh−1).

In a moment, we will prove that φ is a projection into YG, but first we give the
reasons why such a fact is useful.

Now, φ might seem pretty arbitrary. But notice what happens when we take
the trace of φ:

Trace(φ) =
1
|G|

∑
g∈G

Trace(σ(g)) =
1
|G|

∑
g∈G

χσ,Y (g).

The result is precisely sum we are trying to find. Thus, we have reduced our
problem to finding the trace of φ.

We now show that Trace(φ) = dim(YG), which will follow from the fact that
φ is a projection into YG.

We now show that φ is a projection. First, consider φ(v) = 1
|G|
∑
g∈G σ(g)v.

Then for each h ∈ G we have σ(h)φ(v) = 1
|G|
∑
g∈G σ(h)σ(g)v = 1

|G|
∑
g∈G σ(g)v =

φ(v), so therefore φ(v) ∈ YG for all v ∈ V . Secondly, if x ∈ YG then φ(x) =
1
|G|
∑
g∈G σ(g)x = 1

|G|
∑
g∈G x = x. Therefore, φ is a projection.

Consequently, the trace of φ is equal to dim(YG).
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Therefore, we only need find dim(YG). But this is simple. If V ∼= W , then
obviously dim(YG) = 1. If, however, V � W , then since both (α, V ) and (β,W )
are irreducible, they do not appear in each other’s decomposition. Consequently,
there are no homomorphisms between them, and thus dim(YG) = 0.

Because this theorem holds for arbitrary irreducible representations (α, V ) and
(β,W ), the proof is complete.

�

3. Irreducible Characters Form A Basis

The final part of this paper builds upon the final theorem of the previous
section. Before proceeding, we must define the regular representation of a group.

Definition 3.1. Let G be a finite group. We call the representation (r,R) the
regular representation if R is a finite dimensional vector space whose basis can
be indexed by the elements of G. That is, {eg | g ∈ G} is a basis for R. Letting
ah ∈ C for h ∈ G, the homomorphism r : G→ GLn(R) acts on R by

r(g)
|G|∑
h=1

aheh =
|G|∑
h=1

ahegh.

We will use this regular representation to prove properties about the irreducible
characters of a finite group. It turns out that not only are irreducible characters
orthonormal, but they form a basis for Cclass(G). Hence the following theorem:

Theorem 3.2. Let G be a finite group with irreducible characters χσ1,V1 , · · · , χσn,Vn
.

Let Cclass,G be the set of class functions on G. Then the χσi,Vi form an orthonormal
basis for Cclass,G.

Proof. We have already shown that the χσi,Vi
are orthonormal, so it remains to

show that they span Cclass,G. To do this, suppose that µ ∈ Cclass,G is orthogonal
to each χσi,Vi , that is, (µ, χσi,Vi) = 0 for all i with 1 ≤ i ≤ n. We want to show
that µ must be the zero function.

Given a representation (β,W ) of G, let

βµ =
∑
g∈G

µ(g)β(g).

Now suppose that (β,W ) is an irreducible representation (that is, β = σi for
some i). We show that βµ = 0. Because each β can be written as a direct sum of
irreducible representations, any β (irreducible or not) must be the zero map.

To show that β being irreducible implies βµ = 0, we show that βµ is a G-linear
map and then apply Schur’s lemma an Corollary 1.8. For each h ∈ G, we have

βµβ(h) =
∑
g∈G

µ(g)β(g)β(h) =
∑
g∈G

µ(g)β(gh).

Because µ is a class function, µ(xy) = µ(yx). Therefore,

∑
g∈G

µ(g)β(gh) =
∑
r∈G

µ(rh−1)β(r) =
∑
r∈G

µ(h−1r)β(r) =
∑
u∈G

µ(u)β(hu)
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=
∑
u∈G

µ(u)β(h)β(u) = β(h)βµ

for r = gh and u = h−1r. Therefore, βµ is a G-linear function. By Corollary
1.8, this means that βµ = λ · I for some eigenvalue λ. Now, Trace(λ · I) = kλ, and
Trace(βµ) =

∑
g∈G µ(g)Trace

(
β(g)

)
. Therefore,

λ =
1
k

∑
g∈G

µ(g)χβ,W (g) =
|G|
k

(µ, χβ,W ) = 0.

So βµ = 0.
As was explained above, we now know that βµ = 0 for each representation

(β,W ).
Specifically, if (β,W ) is the regular representation and {eg | g ∈ G} is a basis

for W , then

0 = 0 · e1 = βµe1 =
∑
g∈G

µ(g)β(g)e1 =
∑
g∈G

µ(g)eg.

Since the eg are linearly independent, µ(g) = 0 for all g ∈ G.
Therefore, {χσi,Vi

| 1 ≤ i ≤ n} is an orthonormal basis for Cclass,G.
�

As a consequence of this theorem, we get the following corollary, which shows
that there is one irreducible character for each conjugacy class of G.

Corollary 3.3. Let G be a finite group, and {χσi,Vi}ni=1 an orthonormal basis for
Cclass,G. Then there are n conjugacy classes of G.

Proof. For each conjugacy class Ci of G, the function fi : G → C, defined by
fi(x) = 1 if x ∈ Ci, and fi(x) = 0 if x /∈ Ci, is a class function. The set of all these
fi are clearly a basis for Cclass,G. Therefore, by the above theorem (and since every
basis of a vector space has the same number of elements) there are as many fi as
there are χσi,Vi , and therefore there are n conjugacy classes of G.

�

4. Character Table for S5

We end this paper with a complete description of the irreducible characters
on the group S5. That information is organized into a character table, in which
the irreducible characters are listed along the left-most column, and the conjugacy
classes of the group are listed along the top row. Each box has a number, and that
number is the value of the character on the respective conjugacy class. Notationally,
the conjugacy class represented by 3 is just the set of all 3-cycles, the conjugacy
class represented by 2− 2 is the set two 2-cycles.

The function I is the identity function. The function S is the sign function.
The function R is equal to the regular representation minus 1. The functions P
and Q are other, more archaic irreducible characters, and the functions S ⊗R and
S ⊗ V is a shorthand for the tensor product of the representations which S and R,
and S and V respectively, stand for.
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Character 1 2 3 4 5 2-2 2-3
I 1 1 1 1 1 1 1
S 1 -1 1 -1 1 1 -1
R 4 2 1 0 -1 0 -1

S ⊗R 4 -2 1 0 -1 0 1
P 5 -1 -1 1 0 1 -1

S ⊗ V 5 1 -1 -1 0 1 1
Q 6 0 0 0 1 -2 0

To read the table, pick a character and a conjugacy class. The value of that
character on that conjugacy class is listed in the appropriate place of the character
table. To state a quick example, if a ∈ S5 is a 4-cycle, then R(a) = 0.

We neglect to show the entire calculation for how this character table was
derived, because that derivation is lengthy and not very illuminating. The primary
tools we used were that the irreducible characters of a group G form an orthonormal
basis for Cclass,G. We also use the fact that∑

χ

χσ,V (g)χσ,V (g) =
|G|
|C(g)|

,

where C(g) is the conjugacy class of g. Of course, this fact is a quick conse-
quence of Theorem 3.2.
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