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Abstract. Real-variable methods are used to prove the Marcinkiewicz Inter-

polation Theorem, boundedness of the dyadic and Hardy-Littlewood maximal
operators, and the Calderón-Zygmund Covering Lemma. The Hilbert trans-

form is defined, and its boundedness is investigated. All results lead to a final

theorem on the pointwise convergence of the truncated Hilbert transform
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1. Introduction

The Hilbert transform H on R is formally defined by

(1.1) Hf(x) = lim
ε→0+

Hε(x)

where Hε is the truncated Hilbert transform at ε > 0,

Hεf(x) =
∫
|y|>ε

f(x− y)
y

dy

and dx is the Lebesgue measure. While Hε is well-defined for a large class of
functions, the principal value integral implicit in Equation (1.1) is finite for only
well-behaving functions. However, H has boundedness properties by which it can
be extended to larger function spaces.

In the following exposition, we build the real-variable tools needed to extend the
Hilbert transform to Lp(R, µ) for all p ∈ [1,∞), where µ is the Lebesgue measure.
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These instruments include the Marcinkiewicz Interpolation Theorem, Calderón-
Zygmund decomposition, Schwartz functions, and tempered distributions. In the
end, we prove that Equation (1.1) is valid for f ∈ Lp, p ∈ [1,∞), up to a µ-null set.

2. Preliminaries

We begin by defining different types of boundedness. The basic domain consid-
ered in this paper is Lp(X,µ), where p ∈ (0,∞], X is an arbitrary set, and µ is
a nonnegative, extended real-valued measure. Intuitively, the image of Lp under a
given operator T determines the strength of its boundedness: does T map Lp to q-
integrable functions, 0 < q ≤ ∞, or to functions satisfying only a weaker condition?
One such weaker condition is that which defines the weak-Lp space.

Definition 2.1. Let (X,µ) be a measure space, and let f : X → C be a measurable
function. For measurable A ⊆ X, we denote µ(A) by |A|. The distributional
function of f is the function df : R+ → R given by

df (λ) = |{x ∈ X : |f(x)| > λ}|

If X = Rn, we set µ to be the Lebesgue measure.

Note that df is a measurable function.

Definition 2.2. For p ∈ (0,∞), weak-Lp(X,µ), denoted by Lp,∞(X,µ), is the
space of all measurable functions f : X → C such that

||f ||p,∞ := inf
λ>0
{C > 0 : df (λ) ≤ Cp

λp
} = sup

λ>0
{λdf (λ)

1
p } <∞

We set weak-L∞(X,µ) to be L∞(X,µ) and || · ||∞,∞ to be || · ||∞.

The map || · ||p,∞ is a quasinorm on the linear space Lp,∞(X,µ)/C. Chebyshev’s
inequality shows that Lp ⊆ Lp,∞. If X = Rn, a counterexample demonstrating
that this containment is strict is f(x) = |x|−n/p. So Lp and Lp,∞ determine two
types of boundedness.

Definition 2.3. An operator T from Lp(X,µ) to the space of complex-valued,
measurable functions on a measure space (Y, ν) is sublinear if

(1) ∀f, g ∈ Lp(X,µ), |T (f + g)(y)| ≤ |Tf(y)|+ |Tg(y)|
(2) ∀α ∈ C, |T (αf)(y)| = |α||Tf(y)|

Definition 2.4. A sublinear operator T is weakly bounded from p to q, 0 < p, q ≤
∞, if there exists C > 0 such that

||Tf ||q,∞ ≤ C||f ||p ∀f ∈ Lp(X,µ)

We say that such an operator T is weak (p, q) for short. T is strongly bounded from
p to q if there exists a C > 0 such that

||Tf ||q ≤ C||f ||p ∀f ∈ Lp(X,µ)

We say that T is strong (p, q).

Remark 2.5. Note that by our definitions, weak (p,∞) boundedness is identical to
strong (p,∞) boundedness. We will say that an operator satisfying Definition 2.4
for q =∞ is bounded (p,∞).



INTERPOLATION, MAXIMAL OPERATORS, AND THE HILBERT TRANSFORM 3

In other words, T is strong (p, q) if T maps Lp into Lq; T is weak (p, q) if T
maps Lp only into Lq,∞. By the fact that Lq ⊆ Lq,∞, T is strong (p, q) implies T
is weak (p, q). Note that T is weak (p, q) if and only if for all f ∈ Lp and λ > 0,

dTf (λ) ≤ (
C

λ
||f ||p)q

The following theorem about the pointwise convergence of linear operators, based
only on the above definitions, will be of use later.

Theorem 2.6. Let {Tt} be a family of linear operators mapping Lp(X,µ) into
the space of complex-valued, measurable functions over (X,µ). Define the maximal
operator T ∗ by

T ∗f(x) = sup
t
{|Ttf(x)|}

If T ∗ is weak (p, q), then the set

A = {f ∈ Lp : lim
t→t0

Ttf(x) exists a.e.}

is closed in Lp.

Proof. Assume that Ttf is real-valued. If Ttf is complex-valued, apply the following
argument to the real and imaginary parts of Ttf separately. First, observe that for
all f ∈ Lp,

(2.7) lim sup
t→t0

Ttf(x)− lim inf
t→t0

Ttf(x) ≤ 2T ∗f(x)

Now suppose {fn} ⊂ A converges in Lp norm to f . Each fn satisfies

|{x ∈ X : lim sup
t→t0

Ttfn(x)− lim inf
t→t0

Ttfn(x) > 0}| = 0

and it suffices to show f satisfies the same equation. For all λ > 0,

|{x ∈ X : lim sup
t→t0

Ttf(x)− lim inf
t→t0

Ttf(x) > λ}|

≤ |{x ∈ X : lim sup
t→t0

Tt(f − fn)(x)− lim inf
t→t0

Tt(f − fn)(x) > λ}|

≤ |{x ∈ X : 2T ∗(f − fn)(x) > λ}| (Equation (2.7))

= dT∗(f−fn)(
λ

2
) ≤ (

2C
λ
||f − fn||p)q (T is weak (p, q))

The limit of the last term as n→∞ is 0. Hence,

|{x ∈ X : lim sup
t→t0

Ttf(x)− lim inf
t→t0

Ttf(x) > 0}|

≤
∞∑
k=1

|{x ∈ X : lim sup
t→t0

Ttf(x)− lim inf
t→t0

Ttf(x) >
1
k
}| = 0

�

Remark 2.8. By a similar proof, one could show that the set

A′ = {f ∈ Lp : lim
t→t0

Ttf(x) = f(x) a.e.}

is closed in Lp. One would disregard Equation (2.7) and thereafter replace lim inf Ttfn(x)
with fn(x) and lim inf Ttf(x) with f(x).



4 MICHAEL WONG

3. Marcinkiewicz Interpolation Theorem

The next step is to determine the p ∈ (0,∞] for which a given sublinear op-
erator is bounded (p, p). The Marcinkiewicz interpolation theorem asserts strong
boundedness for all values of p between two values for which weak boundedness is
established. In our proof of the theorem, the following two lemmas will be used.
We set dµ(x) = dx.

Lemma 3.1. Let Lp0(X,µ) + Lp1(X,µ), 1 ≤ p0 < p1 ≤ ∞, be the direct sum of
Lp0(X,µ) and Lp1(X,µ). If p0 < p < p1 and f ∈ Lp(X,µ), then f = f0 + f1 for
some f0 ∈ Lp0 and f1 ∈ Lp1 .

Proof. Fix λ > 0. Given f ∈ Lp, define f0 and f1 by

f0 = fχ{x:|f(x)|≥cλ} f1 = fχ{x:|f(x)|<cλ}

where the value of the constant c will be chosen in Theorem 3.3. To see that
f0 ∈ Lpo , observe that∫

X

|f0(x)|p0 dx =
∫
{|f(x)|≥cλ}

|f(x)|p0(
cλ

cλ
)p−p0 dx

≤
∫
{|f(x)|≥cλ}

|f(x)|p0(
|f(x)|
cλ

)p−p0 dx

≤ (
1
cλ

)p−p0 ||f ||pp

The fact that f1 ∈ Lp1 is shown similarly. �

Lemma 3.2. If f ∈ Lp(X,µ), 1 ≤ p <∞, then ||f ||pp =
∫∞

0
pλp−1df (λ) dλ.

Proof.

||f ||pp =
∫
X

|f(x)|p dx

=
∫
X

∫ |f(x)|

0

pλp−1 dλdx

=
∫ ∞

0

∫
{x:|f(x)|>λ}

pλp−1 dxdλ (Fubini’s theorem)

=
∫ ∞

0

pλp−1df (λ) dλ

�

Theorem 3.3 (Marcinkiewicz Interpolation Theorem). Suppose T is a sublinear
operator from Lp0(X,µ) + Lp1(X,µ), 1 ≤ p0 < p1 ≤ ∞, to the space of complex-
valued, measurable functions on (Y, ν). If T is weak (p0, p0) and weak (p1, p1), then
T is strong (p, p) for all p ∈ (p0, p1).

Proof. Fix λ > 0. Given f ∈ Lp, define f0 and f1 as in Lemma 3.1. Because T is
sublinear,

(3.4) dTf (λ) ≤ dTf0(
λ

2
) + dTf1(

λ

2
)

We choose c by cases for the value of p1.
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First, suppose p1 < ∞, and let c = 1. T is weak (p0, p0) and weak (p1, p1), so
Inequality (3.4) becomes

dTf (λ) ≤ (
2C0

λ
||f0||p0)p0 + (

2C1

λ
||f1||p1)p1

from which we derive the following estimate:

||Tf ||pp =
∫ ∞

0

pλp−1dTf (λ) dλ (Lemma 3.2)

≤
∫ ∞

0

(2C0)p0pλp−p0−1||f0||p0p0 dλ+
∫ ∞

0

(2C1)p1pλp−p1−1||f1||p1p1 dλ

=
∫ ∞

0

(2C0)p0pλp−p0−1

∫
{y:|f(y)|≥λ}

|f(y)|p0 dy dλ

+
∫ ∞

0

(2C1)p1pλp−p1−1

∫
{y:|f(y)|<λ}

|f(y)|p1 dy dλ

= (2C0)p0p
∫
X

|f(y)|p0
∫ |f(y)|

0

λp−p0−1 dλ dy

+(2C1)p1p
∫
X

|f(y)|p1
∫ ∞
|f(y)|

λp−p1−1 dλ dy (Fubini’s theorem)

= (
(2C0)p0p
p− p0

+
(2C1)p1p
p1 − p

)||f ||pp

Now, suppose p1 =∞. Then ||Tf ||∞ ≤ C1||f ||∞ for all f ∈ L∞. If c = 1/(2C1),
then f1 = fχ{x:|f(x)|<λ/(2C1)}, implying ||Tf1||∞ ≤ λ

2 . So dTf1(λ2 ) = 0 in Inequality
(3.4), and with just one term, the result follows as above. �

4. The Dyadic Maximal Operator and Calderón-Zygmund
Decomposition

The Calderón-Zygmund decomposition of a function f ∈ L1(Rn) will be essential
to our study of the Hilbert transform. This decomposition is a corollary to the
Calderón-Zygmund Covering Lemma, which we prove using the dyadic maximal
operator. The construction of this operator involves the partition of Rn into dyadic
cubes.

Consider the cube [0, 1)n generated by half-open intervals. The collection D0 =
[0, 1)n + Zn of translates of the cube is a pairwise disjoint cover of Rn, and every
point in Zn is a vertex of 2n cubes in D0. For k ∈ Z, let Dk = [0, 2−k) + 2−kZn. In
words, Dk−1 is formed from Dk by partitioning each cube in Dk into 2n disjoint,
equal cubes. The following observations are clear:

(1) for all k, Dk is pairwise disjoint.
(2) each cube in Dk contains exactly 2n cubes in Dk−1

(3) for every x ∈ Rn, there exists a unique sequence of dyadic cubes {Qk}k∈Z
such that x ∈ Qk and Qk ∈ Dk for all k.

Given f ∈ L1
loc(Rn), we define an operator Ek whose value Ekf(x) is the average

of f over Q ∈ Dk where x ∈ Q. Then the dyadic maximal operator is given by the
supremum over k of these averages:
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Definition 4.1. The operator Ek on L1
loc(Rn) is defined by

Ekf(x) =
∑
Q∈Dk

( 1
|Q|

∫
Q

f
)
χQ(x)

The dyadic maximal operator E is then defined by

Ef(x) = sup
k∈Z
{|Ekf(x)|}

Clearly, E is sublinear. The Calderón-Zygmund Covering Lemma will be a small
step from the following theorem.

Theorem 4.2. .

(1) E is weak (1, 1)
(2) If f ∈ L1

loc(Rn), then limk→∞Ekf(x) = f(x) a.e.

Proof. .

(1) Suppose f ∈ L1, and fix λ > 0. Let

(4.3) Ωk = {x ∈ Rn : |Ekf(x)| > λ and |Ejf(x)| ≤ λ ∀j < k}
To see that this definition makes sense, observe that for all x, limk→−∞Ekf(x) =
0. So if there exists k′ such that |Ek′f(x)| > λ, then there exists a k as in
the definition of Ωk: namely, the smallest k′. It follows from the definition
of Ek that there exists a subcollection Sk ⊆ Dk such that

(4.4) Ωk =
⋃
Q∈Sk

Q

Clearly, {Ωk}k∈Z is pairwise disjoint. Then writing

(4.5) {x : Ef(x) > λ} =
⋃
k

Ωk

we see that

dEf (λ) =
∑
k

|Ωk| ≤
1
λ

∑
k

∫
Ωk

|Ekf | (Chebyshev’s inequality)

=
1
λ

∑
k

∑
Q∈Sk

∣∣ 1
|Q|

∫
Q

f
∣∣ (Equation (4.4))

≤ 1
λ
||f ||1(4.6)

(2) Assume f ∈ L1 is continuous. For a fixed x ∈ Rn,

Ekf(x) =
1
|Qk|

∫
Qk

f

where {Qk} is the unique sequence in observation (3) above. By the conti-
nuity of f , for all ε > 0, there exists K ∈ Z such that for all k ≥ K,

|Ekf(x)− f(x)| =
∣∣∣ 1
|Qk|

∫
Qk

f(y)− f(x) dx
∣∣∣ ≤ 1
|Qk|

∫
Qk

|f(y)− f(x)| dx < ε

Therefore, limk→∞Ekf(x) = f(x) everywhere. The set of continuous, in-
tegrable functions is dense in L1. Hence, by Theorem 2.6, the equation

(4.7) lim
k→∞

Ekf(x) = f(x) a.e.
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holds for all f ∈ L1.
Now, if f ∈ L1

loc, then for all compact cubes Rm = [−m,m]n, m ∈ N,
fχRm is integrable. Thus, Equation (4.7) is satisfied for a.e. x ∈ Rm. So
Ekf(x) converges to f(x) for a.e. x ∈

⋃
mRm = Rn.

�

Lemma 4.8 (Calderón-Zygmund Covering Lemma). Suppose f ∈ L1(Rn) is real-
valued and nonnegative, and fix λ > 0. There exists a pairwise disjoint sequence of
dyadic cubes {Qj} such that

(1) f(x) ≤ λ a.e. x /∈
⋃
j Qj

(2) |
⋃
j Qj | ≤

1
λ ||f ||1

(3) λ < 1
|Qj |

∫
Qj
f ≤ 2nλ

Proof. Define Ωk and Sk as in Theorem 4.2, and let
⋃
k Sk = {Qj}. Then

(1) by Equation (4.3), Ekf(x) ≤ λ for all x /∈
⋃
j Qj . Hence, by Theorem 4.2,

Part 2, the result follows.
(2) Observe that |

⋃
j Qj | =

∑
k |Ωk|. Therefore, by Inequality (4.6), the result

follows.
(3) The first inequality is a consequence of the definition of Ωk. Let Q̃j be the

unique cube in Dj−1 containing Qj . Note that the average of f over Q̃j is
at most λ. Then

1
|Qj |

∫
Qj

f ≤ |Q̃j |
|Qj |

1
|Q̃j |

∫
Q̃j

f ≤ 2nλ

�

Given λ > 0 and any function f satisfying the hypotheses of Lemma 4.8, we can
write Rn as the union of two disjoint sets, Ω :=

⋃
j Qj and Rn \ Ω. In turn, this

cover gives a way to decompose f into a sum of two functions g and b, defined by

(4.9) g(x) =
{

f(x) if x /∈ Ω,
1
|Qj |

∫
Qj
f if x ∈ Qj , b(x) =

∑
j

bj(x)

where
bj(x) =

(
f(x)− 1

|Qj |

∫
Qj

f
)
χQj

(x)

The function g is called the bounded or “good” part of f , for

(4.10) g(x) ≤ 2nλ ∀x ∈ Rn

whereas b is the oscillatory or “bad” part of f , for each bj has zero average. Note
also that bj vanishes outside Qj . This way of writing f is called the Calderón-
Zygmund (C-Z) decomposition of f at height λ.

5. The Hardy-Littlewood Maximal Operator

Later on, we will need to bound convolution-type operators of functions with ra-
dial symmetry. It will be convenient to use the Hardy-Littlewood maximal operator
instead of the dyadic maximal operator for this task. Like the dyadic operator E,
the Hardy-Littlewood operator M is defined by the supremum over averages of f .
However, the averages in the definition of M are over balls of arbitrary radius, not
dyadic cubes.
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Definition 5.1. The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

{ 1
|Br|

∫
Br

|f(x− y)| dy
}

where Br is the ball of radius r centered at 0 and f is any function on Rn for which
this quantity is finite.

Evidently, M is sublinear. Replacing balls with cubes of side length r centered
at 0 defines a new operator M ′ given by

M ′f(x) = sup
r>0

{ 1
|Qr|

∫
Qr

|f(x− y)| dy
}

By considering balls nested in cubes and vice versa, one may verify that there exist
constants cn and Cn, depending only on the dimension n, such that

(5.2) cnM
′f(x) ≤Mf(x) ≤ CnM ′f(x)

Concerning the boundedness of M , it follows immediately from the definition
that ||Mf ||∞ ≤ ||f ||∞, so M is bounded (∞,∞). By the Marcinkiewicz Interpola-
tion Theorem, if M is also weak (1, 1), then M is strong (p, p) for all p ∈ (1,∞).

Theorem 4.2 implies that dEf (λ) ≤ 1/λ||f ||1 where f ∈ L1(Rn). So bounding
dMf by dE|f | pointwise suffices to show M is weak (1, 1). (The absolute value is
needed because we will use C-Z decomposition, which demands that f is real-valued
and nonnegative). To avoid the issue of comparing arbitrary balls to dyadic cubes,
however, we prove that dM ′f is dominated by dE|f | and apply Equation (5.2).

Proposition 5.3. If f ∈ L1(Rn), then dM ′f (4nλ) ≤ 2ndE|f |(λ)

Proof. Note that M ′f = M ′|f |, so without loss of generality, assume f is real-
valued and nonnegative. Let {Qj} be the sequence of dyadic cubes in the C-Z
decomposition of f at height λ, and let Q̃j be the cube with the same center as Qj
but twice the side length. By Equation (4.5),

|
⋃
j

Q̃j | ≤ 2n|
⋃
j

Qj | = 2ndEf (λ)

So it suffices to show {x ∈ Rn : M ′f(x) > 4nλ} ⊂
⋃
j Q̃j .

Suppose x /∈
⋃
j Q̃j , and let Q be any cube centered at x. Choose k ∈ Z such

that 2k−1 ≤ l(Q) < 2k, where l(Q) is the side length of Q. A simple geometric
argument shows that Q is covered by m cubes in D−k, where m ≤ 2n. Let {Ri}mi=1

be this cover. Note that no Ri is contained in any Qj , for if there were such an Ri,
then we would have x ∈

⋃
j Q̃j . Hence, by Equation (4.3), the average of f over Ri

is at most λ. So

1
|Q|

∫
Q

f =
m∑
i=1

1
|Q|

∫
Q∩Ri

f

≤
m∑
i=1

2kn

|Q|
1
|Ri|

∫
Ri

f (Ri ∈ D−k)

≤ 2nmλ (2k−1 < l(Q))
≤ 4nλ

This inequality holds for all Q, implying x /∈ {x ∈ Rn : M ′f(x) > 4nλ}. �
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The following proposition shows how M is a pointwise bound to convolution-type
operators on L1

loc(Rn), defined by a particular class of functions. For a function φ,
we define φε by φε(x) = ε−nφ(ε−1x).

Proposition 5.4. Suppose f ∈ L1
loc(Rn). If φ : Rn → R is nonnegative, radial,

decreasing [as a function on (0,∞)], and integrable, then

sup
ε>0
{|φε ∗ f(x)|} ≤ ||φ||1Mf(x)

Proof. First, assume φ is the simple function

φ(x) =
m∑
i=1

aiχBi
(x)

where each ai > 0 and Bi is the ball of radius ri centered at 0. This simple function
satisfies the hypothesis. Then

|φ ∗ f(x)| =
∣∣ m∑
i=1

ai|Bi|
1
|Bi|

∫
Bi

f(x− y) dy
∣∣ ≤ ||φ||1Mf(x)

For general φ satisfying the hypothesis, let {φk} be a monotonic sequence of simple
functions converging to φ pointwise. Then by the monotone convergence theorem,

|φ ∗ f(x)| ≤ φ ∗ |f |(x)
= lim

k→∞
φk ∗ |f |(x)

≤ lim
k→∞

||φk||1Mf(x)

= ||φ||1Mf(x)

Any dilation φε is also nonnegative, radial, decreasing [as a function on (0,∞)],
and integrable, with ||φε||1 = ||φ||1 by change of variables. So for all ε > 0,

|φε ∗ f(x)| ≤ ||φ||1Mf(x)

and the desired result follows. �

6. Schwartz Functions and Tempered Distributions

As stated in the introduction, the Hilbert transform defined by Equation (1.1)
must be restricted to well-behaving functions. But we would like to extend H to
Lp(R) via its boundedness. So the domain of H must be a function space satisfying
a few conditions:

(1) the functions overcome the kernel at the singularity x = 0.
(2) the functions decay sufficiently quickly.
(3) the function space is dense in Lp(R), 1 ≤ p <∞.

A candidate for this function space is the Schwartz space, the collection of smooth
functions which decrease rapidly in the following sense:

Definition 6.1. The Schwartz space over Rn, denoted by S (Rn), is the set of all
infinitely differentiable functions f : Rn → C such that

||f ||α,β := sup
Rn

|xαDβf(x)| <∞

for all multi-indices α, β.
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One may show that {|| · ||α,β} is a countable collection of seminorms which
separates points, so (S (Rn), {|| · ||α,β})/C is a locally convex space. Under the
natural topology induced by these seminorms, the Schwartz space is complete and
metrizable. In addition, S (Rn) is dense in Lp, 1 ≤ p <∞.

Recall that the Fourier transform of a Schwartz function f , denoted by F (f) = f̂ ,
is defined by

f̂(x) =
∫

Rn

f(y)e−2πix·y dy

and the inverse Fourier transform of f , denoted by F−1(f) = f̌ , is defined by

f̌(x) =
∫

Rn

f(y)e2πix·y dy

One can prove that F and F−1 are continuous linear transformations on S and,
moreover, that F−1F (f) = FF−1(f) = f .

The dual of S (Rn) will also be important in defining the Hilbert transform and
demonstrating its boundedness.

Definition 6.2. The space of tempered distributions, denoted by S ′(Rn), is the
space of continuous linear functionals W : S (Rn)→ C.

Remark 6.3. From the theory of locally convex spaces, we know that a linear func-
tional W on S (Rn) is continuous if and only if W is bounded by a linear combi-
nation of seminorms:

|W (f)| ≤
∑

|α|,|β|<m

||f ||α,β ∀f ∈ S (Rn)

The classic example of a tempered distribution is integration against a fixed
function g ∈ S , defined by

(6.4) Wg(f) =< g, f >=
∫

Rn

g(x)f(x) dx ∀f ∈ S

This functional clearly is linear. To see that it is continuous, observe that

| < g, f > | ≤
∫

Rn

|g(x)f(x)| dx ≤ ||g||1||f ||0,0

In fact, Equation (6.4) defines a tempered distribution if g is any function satisfying

(6.5) |g(x)| ≤ C(1 + |x|)k

for constants C > 0 and k ∈ R.
Not every tempered distribution has this concrete form. Nevertheless, Equation

(6.4) motivates the use of inner-product notation:

W (f) =< W, f >

With this notation, adjoint identities suggest a way to extend certain operations
on S (Rn) to S ′(Rn). A simple application of Fubini’s theorem shows that for
g, f ∈ S ,

(6.6) < ĝ, f >=
∫
ĝ(x)f(x) dx =

∫
g(x)f̂(x) dx =< g, f̂ >
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Taking this equation as a template, we define the Fourier transform Ŵ of a tempered
distribution W by

(6.7) < Ŵ , f >=< W, f̂ >

One can show that Ŵ is itself a tempered distribution. Additionally, the inverse
Fourier transform of a tempered distribution can be defined in the same way.

In a similar manner, we define multiplication and convolution of a Schwartz
function and a tempered distribution. The Schwartz space is closed under both
operations. Observe that for g, f, h ∈ S ,

< f · g, h >=< g, f · h >

Defining f̃ by f̃(x) = f(−x), we see that

< g ∗ f, h > =
∫ ∫

g(y)f(x− y)h(x) dydx

=
∫
g(y)

∫
f̃(y − x)h(x) dxdy (Fubini’s theorem)

= < g, f̃ ∗ h >

So we define the product of f ∈ S and W ∈ S ′ by

(6.8) < f ·W,h >=< W · f, h >=< W, f · h >

and the convolution by

(6.9) < f ∗W,h >=< W ∗ f, h >=< W, f̃ ∗ h >

Note that convolution (as well as multiplication) is associative, in the sense that

< (f1 ∗ f2) ∗W,h >=< f1 ∗ (f2 ∗W ), h >

The Convolution-Multiplication Theorem states that the Fourier transform of the
convolution of two Schwartz functions is the product of the two functions trans-
formed:

F (f ∗ g) = f̂ · ĝ
An identical equality holds with F−1 in place of F . Furthermore, there is an
analogous equation for the convolution defined above.

Proposition 6.10. If f ∈ S (Rn) and W ∈ S ′(Rn), then

F (f ∗W ) = f̂ · Ŵ

Proof. Observe that for all h ∈ S ,

< F (f ∗W ), h > = < f ∗W, ĥ >
= < W, f̃ ∗ ĥ >
= < Ŵ ,F−1(f̃ ∗ ĥ) >

= < Ŵ ,F−1(f̃) · h >

But F−1(f̃) = f̂ . Therefore,

< F (f ∗W ), h >=< Ŵ , f̂ · h >=< f̂ · Ŵ , h >

�
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An alternative way to define convolution of f ∈ S and W ∈ S ′ uses the
translation operator τx, given by τxf(y) = f(x+ y):

(6.11) (f ∗W )(x) = W (τ−xf̃)

Here, the convolution is a function. But one may verify that the tempered distri-
bution defined by this function is the same as that defined by Equation (6.9).

For later reference, it is worth noting that Plancherel’s Theorem is an immediate
corollary of Equation (6.6). The theorem states that the (inverse) Fourier transform
is an isometry from L2(Rn) onto itself:

||f̂ ||2 = ||f ||2
To prove this equation for f ∈ S , simply set f = ĝ in Equation (6.6), where the
bar indicates complex conjugation. Then use the density of S to extend F to L2,
and the result follows.

For a more thorough treatment of the material in this section, see Reed and
Simon [4] and Strichartz [6].

7. The Hilbert Transform

The convolution which defines the Hilbert transform is a principal value integral.
The principal value of integration against the kernel 1/x may be generally defined
as

p.v.
( 1
x

)
f = lim

ε→0+

∫
|x|>ε

f(x)
x

dx

where f is any function on R for which this limit is finite. As suggested before, the
limit is finite if f ∈ S (R). In fact, more is true:

Proposition 7.1. The functional W = p.v.( 1
x ) is a tempered distribution.

Proof. Clearly, the operator is linear. Given f ∈ S (R), observe that

(7.2) W (f) = lim
ε→0+

∫
ε<|x|<1

f(x)
x

dx+
∫
|x|≥1

f(x)
x

dx

We want to show that this quantity is bounded by a linear combination of semi-
norms. Because 1/x is odd and the range of integration is symmetric about the
origin, the first term equals

lim
ε→0+

∫
ε<|x|<1

f(x)− f(0)
x

dx

But f is smooth, so by the mean value theorem, there exists x∗ ∈ (0, x) such that

f(x)− f(0)
x

= f ′(x∗)

Hence, the first term in Equation (7.2) is dominated by 2||f ||0,1. For the second
term, ∫

|x|≥1

f(x)
x

dx =
∫
|x|≥1

f(x)
x

x2

x2
dx ≤ 2||f ||1,0

Thus, by Remark 6.3, W is continuous. �

Now the Hilbert transform can be defined as a convolution with W in the sense
of Equation (6.11).
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Definition 7.3. The Hilbert transform is the operator H on S (R) defined by

Hf(x) =
1
π
f ∗W (x) =

1
π

lim
ε→0+

∫
|y|>ε

f(x− y)
y

dy

The fact that W is a tempered distribution ensures that H is well-defined on the
Schwartz space. We use the tools developed in Section 6 to prove that H satisfies
the strong (2, 2) inequality on S and thereby extend H to all of L2.

Theorem 7.4. H is strong (2, 2).

Proof. Suppose f ∈ S (R). By Equation (6.7),

< Ŵ , f > = < W, f̂ >

= lim
ε→0+

∫
|x|>ε

1
x

∫
R
f(y)e−2πixy dydx

= lim
ε→0+

∫
R
f(y)

∫
|x|>ε

−isin(2πxy)
x

dxdy (Fubini’s Theorem)

= lim
ε→0+

∫
R
−isgn(y)f(y)

∫
|x|>2π|y|ε

sin(x)
x

dxdy

The inner integral is uniformly bounded above by∫
R

sin(x)
x

= π

Hence, by the dominated convergence theorem,

< Ŵ , f >=
∫

R
−iπsgn(y)f(y) dy

So in this case, Ŵ is a function satisfying Equation (6.5): namely, Ŵ (y) = −iπsgn(y).
Then by Proposition 6.10,

Ĥf(x) =
1
π

F (f ∗W )(x) = −isgn(x)f̂(x)

Therefore, ||Ĥf ||2 = ||f̂ ||2, and by Plancherel’s Theorem,

(7.5) ||Hf ||2 = ||f ||2
Now, take f ∈ L2(R). Because S is dense in L2, there exists a sequence {fn} ⊂

S (R) converging to f in L2 norm. Equation (7.5) implies that {Hfn} is Cauchy
and thus converges to an L2 function. Defining Hf , the Hilbert transform of f , as
this limit, we see that Equation (7.5) is satisfied on all of L2. �

Equation (7.5) is used along with C-Z decomposition to prove that H satisfies
the weak (1, 1) inequality on S (R).

Theorem 7.6. If f ∈ S (R), then ||Hf ||1,∞ ≤ C||f ||1 .

Proof. Fix λ > 0, and assume f ∈ S (R) is real-valued and nonnegative. Let {Ij}
be the sequence of dyadic intervals in the C-Z decomposition of f at height λ. Let
Ω =

⋃
j Ij , and write f = g + b in accordance with Equations (4.9). H is linear, so

if Hg and Hb are well-defined by Equation (1.1), then

(7.7) dHf (λ) ≤ dHg(
λ

2
) + dHb(

λ

2
)
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Consider the first term on the right side:

dHg(
λ

2
) ≤ 4

λ2

∫
R
Hg(x)2 dx (Chebyshev’s inequality)

=
4
λ2

∫
R
g(x)2 dx (Equation (7.5))

≤ 8
λ

∫
R
g(x) dx (Equation (4.10))

=
8
λ

(
∫

Ω

g +
∫

R\Ω
g) ≤ 16

λ
||f ||1 (Equations (4.9))

So Hg is well-defined.
Now, consider the second term on the right side of Inequality (7.7). Let Ω∗ =⋃
j Ĩj , where Ĩj is the the interval with the same center cj as Ij but is twice as long.

Then

dHb(
λ

2
) ≤ |Ω∗|+ |{x /∈ Ω∗ : |Hb(x)| > λ

2
}|

≤ 2
λ
||f ||1 +

2
λ

∫
R\Ω∗

|Hb(x)| dx (Lemma 4.8 and Chebyshev)(7.8)

We want to show that the last integral is bounded above by ||f ||1. To this end, we
make two remarks.

(1) For x /∈ Ω∗,

Hbj(x) =
1
π

lim
ε→0+

∫
|y|>ε

bj(y)
x− y

dy =
1
π

∫
Ij

bj(y)
x− y

dy <∞

because bj vanishes outside Ij . Hence, the Hilbert transform of bj in the
sense of Equation (1.1) is well-defined.

(2) We claim that |Hb(x)| ≤
∑
j |Hbj(x)| a.e. This inequality follows immedi-

ately if the sum has a finite number of terms; otherwise, one may prove it
using the fact that Hbj converges to Hb in L2 norm.

So we reduce the problem to showing

(7.9)
∫

R\Ω∗

∑
j

|Hbj(x)| dx ≤ C||f ||1

Note that

(7.10)
∑
j

∫
R\Ω∗

|Hbj(x)| dx =
1
π

∑
j

∫
R\Ω∗

∣∣ ∫
Ij

bj(y)
x− y

dy
∣∣ dx

First, consider the inner integral. Because bj has zero average and x /∈ Ω∗,∣∣ ∫
Ij

bj(y)
x− y

dy
∣∣ =

∣∣ ∫
Ij

bj(y)
x− y

− bj(y)
x− cj

dy
∣∣ ≤ ∫

Ij

∣∣ bj(y)(y − cj)
(x− y)(x− cj)

∣∣ dy
But |y − cj | ≤ |Ij |/2 and |x− y| ≥ |x− cj |/2, so the last term is at most

(7.11)
∫
Ij

|bj(y)| |Ij |
(x− cj)2

dy
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Now, observe that

(7.12)
∫

R\Ω∗

|Ij |
(x− cj)2

dx ≤
∫

R\Ij

|Ij |
(x− cj)2

dx ≤ 4

So substituting Expression (7.11) into Equation (7.10) and applying Fubini’s The-
orem gives∑

j

∫
R\Ω∗

|Hbj(x)| dx ≤ 1
π

∑
j

∫
R\Ω∗

∫
Ij

|bj(y)| |Ij |
(x− cj)2

dydx

≤ 4
π

∑
j

∫
Ij

|bj(y)| dy

≤ 8
π
||f ||1

Therefore, Inequality (7.7) can be rewritten as

(7.13) dHf (λ) ≤ (
16
λ

+
2
λ

+
16
πλ

)||f ||1

If f is complex, apply this argument to the positive and negative parts of the real
and imaginary parts of f . �

For f ∈ L1(R), let {fn} ⊂ S (R) be a sequence converging to f in L1 norm. Then
by Equation (7.13), {Hfn} is Cauchy in measure and thus converges to a measurable
function. Defining Hf , the Hilbert transform of f , to be this measurable function,
we see that H satisfies Equation (7.13) on all L1. So H is weak (1, 1).

SinceH is weak (1, 1) and strong (2, 2), the Marcinkiewicz Interpolation Theorem
indicates that H is strong (p, p) for all p ∈ (1, 2). Consequently, the following
duality argument, which uses the adjoint of H, shows that H satisfies the strong
(p, p) inequality on S , where p ∈ (2,∞).

The adjoint of H is the operator H ′ defined by

(7.14)
∫

R
Hf · g =

∫
R
f ·H ′g ∀f, g ∈ S

From this equation, one can determine that Ĥ ′f(x) = isgn(x)f̂(x), implying that
H ′ = −H. Then a density argument shows that Equation (7.14) holds with g ∈ Lq,
q ∈ (1, 2).

Theorem 7.15. If f ∈ S (R), then ||Hf ||p ≤ ||f ||p for all p ∈ (2,∞).

Proof. Suppose f ∈ S , and let q be the Hölder conjugate of p. The map

g →
∫

R
Hf g

is a linear functional on Lq with norm equal to ||Hf ||p. So

||Hf ||p = sup
||g||q=1

|
∫
Hf g|

= sup
||g||q=1

|
∫
f Hg|

≤ sup
||g||q=1

||f ||p||Hg||q (Hölder’s inequality)

≤ C||f ||p (strong (q, q) boundedness)
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�

As before, we extend H to Lp by considering sequences of Schwartz functions
converging in Lp norm.

8. The Truncated Hilbert Transform

Dropping the limit in Definition 7.3 gives a new operator which is defined on Lp:

Definition 8.1. The truncated Hilbert transform at height ε > 0 is the operator
Hε on Lp(R), 1 ≤ p <∞, given by

Hεf(x) =
1
π

(
1
y
χ{|y|>ε}) ∗ f(x) =

1
π

∫
|y|>ε

f(x− y)
y

dy

To see that Hε is well-defined, observe that

|Hεf(x)| ≤ C||f ||p||
1
y
χ{|y|>ε}||q <∞ (Hölder’s inequality)

if and only if q > 1. Hence, any p ∈ [1,∞) is permitted.
Similar calculation as that in Proposition 7.4 shows that Hε is strong (2, 2) with

a uniform bound for all ε; that is, the constant C in the definition of boundedness is
independent of ε. Then the proof that Hε is weak (1, 1) and strong (p, p), p ∈ (1,∞),
with uniform bounds follows as in Theorems 7.6 and 7.15. By these inequalities, if
{fn} converges to f in Lp norm or in measure for p = 1, then {Hεfn} converges
to Hεf in norm or in measure, respectively. But we want to know if and how Hε

converges to H.

Proposition 8.2. Suppose f ∈ Lp. Then Hεf converges to Hf in norm for
p ∈ (1,∞) and in measure for p = 1.

Proof. Suppose {fn} converges to f in Lp norm, 1 < p < ∞. Then the following
chain of equalities holds.

||Hf ||p = lim
n→∞

||Hfn||p = lim
n→∞

lim
ε→0+

||Hεfn||p = lim
ε→0+

lim
n→∞

||Hεfn||p = lim
ε→0+

||Hεf ||p

The second and third equalities result from the strong (uniform) (p, p) boundedness
of H and Hε. If p = 1, replace convergence in norm with convergence in measure.

�

Proposition 8.2 implies that, for a given f ∈ Lp, there exists a subsequence of
{Hεf} converging to Hf pointwise a.e. We want to show that the sequence itself
converges to Hf pointwise:

Theorem 8.3. If f ∈ Lp(R), 1 ≤ p <∞, then

(8.4) lim
ε→0+

Hεf(x) = Hf(x) a.e.

The burden is only to show that the limit exists. By Definition 7.3, Equation
(8.4) holds for f ∈ S . The Schwartz space is dense in Lp, so by Theorem 2.6, it
suffices to prove that the maximal operator H∗ given by

H∗f(x) = sup
ε>0
{|Hεf(x)|}

is weak (p, p) for all p ∈ [1,∞). In fact, H∗ is strongly bounded if p > 1, as implied
by the next theorem.
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Theorem 8.5 (Cotlar’s Inequality). If f ∈ S (R), then

H∗f(x) ≤MHf(x) + CMf(x)

where C is independent of f .

Proof. It suffices to show

|Hεf(x)| ≤MHf(x) + CMf(x)

for all ε > 0. Fix φ ∈ S (R) that is nonnegative, even, decreasing, and integrable
with ||φ||1 = 1, and that has support {x ∈ R : |x| ≤ 1

2}. Recall that φε(x) =
ε−1φ(ε−1x). Letting W = p.v.( 1

x ), we have

1
y
χ{|y|>ε} = φε ∗W (y) +

(1
y
χ{|y|>ε} − φε ∗W (y)

)
which implies that

|Hεf(x)| ≤ | 1
π

(φε ∗W ) ∗ f(x)|+ 1
π

∣∣∣1
y
χ{|y|>ε} − φε ∗W (y)

∣∣∣ ∗ |f |(x)

By Proposition 5.4, the first term on the right side satisfies

| 1
π

(φε ∗W ) ∗ f(x)| = | 1
π
φε ∗ (W ∗ f)(x)| ≤MHf(x)

Now consider the second term. Assume ε = 1. We find a pointwise estimate for
the kernel by examining two cases for the value of y.

(1) |y| > 1. Then

|1
y
− φ ∗W (y)| = |1

y
−
∫
|x|<1/2

φ(x)
y − x

dx|

= |
∫
|x|<1/2

φ(x)(
1
y
− 1
y − x

) dx| (||φ||1 = 1)

≤
∫
|x|<1/2

φ(x)|x|
|y||y − x|

dx

Observe that
|y|
|y − x|

≤ |y|
|y ± 1/2|

≤ 2

where (+) is chosen if y is negative and (−) is chosen if y is positive. So
the last integral above is at most∫

|x|<1/2

φ(x)
y2

dx =
1
y2

(2) |y| < 1. Then by the argument in Proposition 7.1,

| − φ ∗W (y)| = | lim
δ→0

∫
|x|>δ

φ(y − x)
x

dx|

= | lim
δ→0

∫
δ<|x|<2

φ(y − x)− φ(y)
x

dx|

≤ 4||φ||0,1 := C ′

To combine these two bounds, note that
(1) if |y| > 1, then (1 + y2)/y2 ≤ 2, and
(2) if |y| < 1, then C ′(1 + y2) ≤ 2C ′.
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Hence,
1
π
|1
y
χ{|y|>1} − φ ∗W (y)| ≤ C ′′

1 + y2

So by Proposition 5.4,

(8.6)
1
π

∣∣∣1
y
χ{|y|>1} − φ ∗W (y)

∣∣∣ ∗ |f |(x) ≤ C ′′

1 + y2
∗ |f |(x) ≤ CMf(x)

The following dilation argument proves that this inequality holds when we re-
place 1 by ε. For any f ∈ S , let f ε be the dilation of f by ε, given by f ε(x) = f(εx).
Let g(y) = 1

π |
1
yχ{|y|>1}−φ ∗W (y)|. One may show that gε(y) = 1

π |
1
yχ{|y|>ε}−φε ∗

W (y)|. Then we have the following equations:

g ∗ f ε(ε−1x) =
∫

R
f(εy)g(ε−1x− y) dy

=
∫

R
f(y)ε−1g(ε−1x− ε−1y) dy

= gε ∗ f(x)

Mf ε(x) = sup
1
|Ir|

∫
Ir

|f(εx− εy)| dy

= sup
1
|εIr|

∫
|εIr|
|f(εx− y)| dy

= Mf(εx)

Therefore, by Inequality (8.6),

|gε ∗ f(x)| = |g ∗ f ε(ε−1x)| ≤ CMf ε(ε−1x) = CMf(x)

�

By the theorem, if p ∈ (1,∞) and f ∈ S , then

||H∗f ||p ≤ ||MHf ||p + ||CMf ||p ≤ C ′||f ||p
where the last inequality holds because both M and H are strong (p, p). The fact
that H∗ is strong (p, p) thus follows. It remains to show

Theorem 8.7. H∗ is weak (1, 1).

Proof. The argument proceeds initially as in Theorem 7.6. Fix λ > 0, and assume
f ∈ L1 is real-valued and nonnegative. Let {Ij} be the sequence of dyadic intervals
in the C-Z decomposition of f at height λ, and write f = g + b in accordance with
Equations (4.9). We have

dH∗f (λ) ≤ dH∗g(
λ

2
) + dH∗b(

λ

2
)

Because H∗ is strong (2, 2), bounding dH∗g follows in precisely the same way as
bounding dHg in Theorem 7.6. Recalling Inequality (7.8) and noting that ||b||1 ≤
2||f ||1, we reduce the problem to showing

|{x /∈ Ω∗ : H∗b(x) > λ}| ≤ C

λ
||b||1

where we have made the change λ/2→ λ for convenience.
Fix x /∈ Ω∗ and ε > 0, and consider bj , which has zero average and vanishes

outside Ij . Only one of the following holds:
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(1) (x− ε, x+ ε)
⋂
Ij = Ij . Then

Hεbj(x) =
1
π

∫
|y|>ε

bj(x− y)
y

dy = 0

because x− y /∈ Ij if |y| > ε.
(2) (x− ε, x+ ε)

⋂
Ij = ∅. Then

Hεbj(x) =
1
π

∫
Ij

bj(x− y)
y

dy = Hbj(x)

because Ij ⊂ {x− y : |y| > ε}. So by Equation (7.11),

|Hεbj(x)| ≤ |Ij |
(x− cj)2

||bj ||1

(3) either x− ε or x+ ε is in Ij . Then (x− 3ε, x+ 3ε) ⊃ Ij , and for all y ∈ Ij ,
|x− y| > ε

3 . Thus,

|Hεbj(x)| ≤
∫
Ij

|bj(y)|
|x− y|

dy ≤ 3
ε

∫ x+3ε

x−3ε

|bj(y)|

Hence, summing |Hεbj(x)| over all j, we see

|Hεb(x)| ≤
∑
j

[ |Ij |
(x− cj)2

||bj ||1 +
3
ε

∫ x+3ε

x−3ε

|bj(y)|
]

=
∑
j

|Ij |
(x− cj)2

||bj ||1 +
3
ε

∫ x+3ε

x−3ε

|b(y)|

=
∑
j

|Ij |
(x− cj)2

||bj ||1 + C ′Mb(x) (Definition 5.1)

The last estimate is independent of ε and so holds if we replace |Hεb(x)| with
H∗b(x). Therefore,

|{x /∈ Ω∗ : H∗b(x) > λ}|

≤ |{x /∈ Ω∗ :
∑
j

|Ij |
(x− cj)2

||bj ||1 >
λ

2
}|+ |{x ∈ R : Mb(x) >

λ

2C ′
}|

≤ 2
λ

∫
R\Ω∗

∑
j

|Ij |
(x− cj)2

||bj ||1 dx+
2C ′

λ
||b||1

≤ (
C ′′ + 2C ′

λ
)||b||1

where the second inequality follows from Chebyshev and the weak (1, 1) bound-
edness of M and the last inequality from Equation (7.12). If f is complex, apply
this argument to the positive and negative parts of the real and imaginary parts of
f . �

9. Conclusion

Using real-variable methods, we proved that Equation (1.1) holds for f ∈ Lp(R, µ),
p ∈ [1,∞), up to a µ-null set. But the techniques we used and the tools we con-
structed go beyond the special focus of this paper. The Hilbert transform is an
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important operator to investigate on its own, but it naturally segues into broader
studies in harmonic analysis.
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