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Abstract. This paper illustrates the construction of a Chevalley group for a

finite dimensional semisimple Lie algebra over an algebraically complete field.
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Part 1. Introduction

In this paper, the theory of Lie algebras is introduced, with a special focus on
the analysis of finite dimensional semisimple Lie algebras. The theory is devel-
oped essentially from the ground up, the only prerequisites are a basic knowledge
of linear algebra and ring theory. We do not explore the connection between Lie
algebras and Lie groups, in particular the definition of Lie algebra does not arise
from studying differentiable manifolds. Instead, we present the Lie algebra axioms,
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motivated by the algebraic structure of End(V ), the ring of endomorphisms of a
vector space V .

Part two deals with an introduction to the theory of Lie algebras, which are vec-
tor spaces equipped with a bilinear product called the bracket product and de-
noted [xy] or [x, y], satisfying certain axioms. In the case of End(V ), [xy] = xy−yx
and when we view this space as a Lie algebra we denote it by gl(V ) and call it the
general linear algebra. In section two we have the basic algebraic definitions (eg
homomorphism, subalgebra) familiar to anyone who has studied algebra. In sec-
tion three we discuss representations, maps from a Lie algebra L to gl(V ) for some
V . Representations, especially the adjoint representation, will be a central tool for
studying Lie algebras, since they allow many theorems about gl(V ) to be applied to
L. Section four deals with some more advanced definitions, including the notion of
a semisimple Lie algebra, which will encompass most of our discussion in the rest of
the paper. We also prove Engel’s theorem, which gives an important criterion for
the nilpotency of a Lie algebra. Section 5 discusses Jordan decomposition, which
states that a matrix can be written as the sum of a semisimple and nilpotent ma-
trix. Section 6 introduces the Killing form, a symmetric bilinear associative form
on an arbitrary Lie algebra, which is central to the analysis that follows. Weyl’s
Theorem, in section seven, is a cruicial theorem about representations of semisimple
Lie algebras. Finally, section 8 introduces an analogue of Jordan decomposition for
an arbitrary semisimple Lie algebra.

In part 3 we discuss the root space decomposition, root systems, and the con-
struction of a Chevalley group. Section 9 discusses representations of a very impor-
tant Lie algebra, sections 10 and 11 introduce the idea of a root space decomposition
for a semisimple Lie algebra and prove some properties. Section 12 discusses root
systems, which arise naturally from considering root space decompositions, but
are an interesting geometric concept in their own right (and the analysis requires
no Lie algebra concepts, only linear algebra ones). Finally section 13 gives us a
much-needed theorem about the existence of isomorphisms between semisimple Lie
algebras (and in particular, automorphisms of a particular Lie algebra), and section
14 explains the construction of a Chevalley group (of adjoint type), which is the
goal of the paper.

1. Linear Algebra Review

Here we review the interaction of a vector space V (over F ) and its endomor-
phism ring End(V ) with the ring of polynomials F [T ] over F .

If F is a field and V is a vector space over F , there is a natural homomorphism
F → End(V ) sending each element to scalar multiplication. This allows us to take
a polynomial with coefficients in F and evaluate it at some T ∈ End(V ). To em-
phasize the fact that the indeterminant will be a linear transformation, we write
F [T ] for the polynomial ring over F and p(T ) for some polynomial in F [T ].

Now assume V is finite dimensional. Since F [T ] is a principal ideal domain, for
any x ∈ End(V ) we can find a minimal polynomial that has x has a root, this
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is called the minimal polynomial of x and is denoted mx(T ). We also have the
characteristic polynomial cx(λ) = det(λI − x). In this case we have λ ∈ F and
the expression on the right is just the evaluation of the determinant of a linear
transformation, which turns out to be a polynomial in λ. We will usually write this
as cx(T ), which agrees with our usual notation, but remember cx(T ) 6= det(T −x).
It is a consequence of the Cayley-Hamilton theorem that mx(T ) divides cx(T ).

The Chinese Remainder theorem says given polynomials pi(T ) and qi(T ), we can
satisfy the relations p(T ) ≡ pi(T ) (mod qi(T )) as long as the qi(T ) are relatively
prime.

Finally, if we fix x ∈ End(V ) we can regard V as an F [T ]−module, that is for
a polynomial p(T ), v ∈ V , the action of p(T ) on v is p(x)(v). Then it is a theorem
of module theory that if p(T ) = p1(T ) · · · pn(T ) is a decomposition into pairwise
relatively prime polynomials, the kernel (In V ) of the action by p(T ) is the direct
sum of the kernels of the actions of the pi(T ). In particular, if p(T ) = cx(T ), and
F is algebraically closed, we can write cx(T ) =

∏
i(T − ai)mi . Thus ker cx(x) = ⊕

ker (x− ai)mi where the polynomials on the right are the factors of cx(T ) to their
linear powers. Finally, by the Cayley-Hamilton theorem, cx(x) = 0 so we get a
decomposition of V into subspaces which are invariant under x.

Lastly, recall that the trace of an endomorphism T of a finite dimensional vector
space V (written Tr(T )) is the sum of the diagonal entries of the matrix represen-
tation

Part 2. Lie Algebras

2. Introduction to Lie Algebras

We begin our discussion with a definition:

Definition 2.1. A Lie Algebra is a vector space L endowed with an operation
[· ·] : L × L → L, called a bracket product. The bracket product satisfies the
following three axioms:

(L1) The bracket product is bilinear.
(L2) [xx] = 0 for all x ∈ L
(L3) [x[yz]] + [y[zx]] + [z[xy]] = 0 for all x, y, z ∈ L

Note that the bracket product is not necessarily associative, instead we have
axiom (L3) which is called the Jacobi identity. It is also worth remarking at this
point that we will occasionally write [x, y] instead of [xy] for clarity.

The motivation for the above axioms comes from the following idea: Consider,
for a vector space V , the vector space End(V ) consisting of endomorphisms of V
(that is, linear operators x : V → V ). For x, y ∈ End(V ), define [xy] = xy − yx.
The reader should check that End(V ) endowed with this bracket product is a Lie
algebra, which we denote by gl(V ).We call it the general linear algebra. (Note
that End(V ) and gl(V ) are the same objects. We use the latter notation when we
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want to emphasize the Lie algebra structure).

We now introduce some terminology, which is standard for any kind of algebraic
analysis and should feel familiar:

Definition 2.2. Let L be a Lie algebra over a field F .

• A (vector) subspace K of L is a subalgebra if it is closed under the bracket
product: x ∈ K and y ∈ K imply [xy] ∈ K.

• A subspace I of L is an ideal if for x ∈ L, y ∈ I, [xy] ∈ I. (obviously ideals
are subalgebras)

• If A and B are subspaces of L, A + B = {x + y|x ∈ A, y ∈ B} and
[AB] = {

∑
i[xiyi]|xi ∈ A, yi ∈ B}. These are also subspaces of L. If I and

J are ideals of L, then I + J and [IJ ] are also ideals (proof left to reader).

• [LL] is called the derived algebra of L, and L is abelian if [LL] = 0.

• L is simple if it is nonabelian and has exactly two ideals: itself and 0.

• If K is a subspace of L, NL(K) = {x ∈ L|[xk] ∈ K for all k ∈ K} is called
the normalizer of K in L. NL(K) is a subalgebra of L, and If K is a
subalgebra of L, NL(K) is the largest subalgebra of L having K as an ideal
(proof left to reader).

• If K is a subalgebra of L, K is self-normalizing if K = NL(K)

• If X is a subset of L, CL(X) = {y ∈ L|[xy] = 0 for all x ∈ X} is called the
centralizer of X in L. CL(X) is a subalgebra of L, and is an ideal if X
is an ideal (proof left to reader). If K is a subalgebra of CL(X), we say K
centralizes X.

• CL(L) is written Z(L) and is called the center of L.

• If L and L′ are Lie algebras over a common field F , a linear map ψ : L→ L′

is a homomorphism if ψ[xy] = [ψ(x)ψ(y)] for all x, y ∈ L. If ψ is injective
it is called a monomorphism and if it is surjective it is called a epimor-
phism. If it is both mono- and epi- it is an isomorphism, and L and L′

are said to be isomorphic (written L ∼= L′)

The following elementary proposition is should also look familiar:

Proposition 2.3. Suppose L and L′ are Lie algebras over F , and ψ : L→ L′ is a
homomorphism. Then Ker ψ = {x ∈ L|ψ(x) = 0} is an ideal of L, and ψ(L), the
image of L, is a subalgebra of L′.

Proof. Left to reader.
�
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If I is an ideal of a Lie algebra L, then we can construct the quotient algebra
L/I, and the familiar homomorphism theorems all hold. This is the content of the
following proposition:

Proposition 2.4. Let L be a Lie algebra, and I ⊂ L an ideal. Then we can define
a bracket product on the quotient space L/I by [a + I, b + I] = [ab] + I. With this
bracket product, L/I is a Lie algebra, and the canonical map ψ : L → L/I is a
homomorphism. The following results also hold:

a) If L and L′ are Lie algebras over a field F and ψ : L→ L′ is a homomor-
phism, then Ker ψ, the kernel of ψ, is an ideal of L. We have L/Ker ψ ∼=
L′, in particular there is a unique isomorphism φ : L/Ker ψ → L′ such
that ψ = φ ◦ π.

b) If I and J are ideals of L with I ⊂ J , then J/I is an ideal of L/I and
(L/I)/(J/I) ∼= L/J .

c) If I and J are ideals of L, (I + J)/J ∼= I/(I ∩ J).

Proof. Straightforward. This imitates the proof for other algebraic structures (eg.
rings) nearly exactly.

�

We end this section with a final elementary proposition (again, the reader should
supply the proof if he or she so desires):

Proposition 2.5. If L and L′ are Lie algebras over F , ψ : L → L′ a homomor-
phism, and I, J ideals of L, then ψ(I+J) = ψ(I)+ψ(J) and ψ([IJ ]) = [ψ(I)ψ(J)].
Also, these are all ideals in ψ(L).

Proof. Easy �

3. Representations

As we shall see, an incredibly useful tool for studying a lie algebra is the notion
of a representation:

Definition 3.1. If L is a Lie algebra over a field F , a representation of L is a
homomorphism φ : L → gl(V ), where V is a vector space over F . φ is said to be
finite dimensional if V is.

If φ : L → gl(V ) is a representation, we will sometimes say L acts on V via
φ. What this means is that given an element x ∈ L we can interpret x as taking
elements of V and moves them (this is the action) to other elements of V , explicitly
x takes v ∈ V to φ(x)(v) (as φ(x) is a function from V to V ). For clarity of nota-
tion, if T is an element of gl(V ) we will occasionally write T.v for T (v), so when
φ : L→ gl(V ) is a representation we can write φ(x).v for φ(x)(v).

Now if L is any Lie algebra, we have a representation called ”ad” as follows: for
x ∈ L, ad x : L→ L is defined by ad x(y) = [xy]. Then one can easily verify that
ad : L → gl(L) is a representation, it is called the adjoint representation of L.
Every Lie algebra has an adjoint representation, and we can add in a subscript, as
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in adL, to distinguish the adjoint representation of L from, say, the adjoint repre-
sentation adK of a subalgebra K of L.

Using ad, we can transfer notions from vector spaces of the form End(V ) to
arbitrary Lie algebras. For example, a linear operator x ∈ End(V ) is said to be
nilpotent if xn = 0 for some n ∈ N. Then if L is any Lie algebra, x ∈ L is ad-
nilpotent if ad x ∈ End(L) is nilpotent. Similarly, if V is finite dimensional over
F , x ∈ End(V ) is said to be semisimple if the roots in F of mx(T ), the minimal
polynomial of x, are all distinct. Then if L is any finite dimensional Lie algebra,
x ∈ L is ad-semisimple if ad x ∈ End(L) is semisimple. Note that, if F is an
algebraically closed field, x ∈ End(V ) semisimple if and only if it is diagonalizable.

Proposition 3.2. Let V be a vector space over a field F , and x ∈ gl(V ).

(a) If x is nilpotent, then x is ad-nilpotent.
(b) If V is finite dimensional, F algebraically closed, x semisimple, then x is ad-

semisimple.

Proof. (a): Fix x, (xn = 0) and consider two endomorphisms of End(V ): λx and
ρx where for y ∈ End(V ), λx(y) = xy and ρx(y) = yx. Then λnx(y) = xny = 0, and
ρnx(y) = yxn = 0, so they are both nilpotent endomorphisms of End(V ). They also
commute: λxρx(y) = ρxλx(y) = xyx. Then ad x = λx − ρx, and since the sum or
difference of nilpotent endomorphisms is nilpotent, ad x is nilpotent.

(b): Let v1, v2, . . . , vn be a basis for V that diagonalizes x, and say a1, . . . , an
are the eigenvalues. Now consider the basis eij for gl(V ), where eij(vk) = δikvj ,
δ the Kronecker delta. We will see that the basis eij diagonalizes ad x. We have
ad x(eij)(vk) = (xeij− eijx)vk = xδikvj− eijakvk = ajδikvj−akδikvj . But akδik =
aiδik (since if i 6= k both sides are zero), so ad x(eij)(vj) = (aj − ai)δikvj =
(aj − ai)eij(vk). We get that eij is an eigenvector of ad x, with eigenvalue aj − ai.

�

Now if L acts on V via some representation φ, and W is a subspace of V stabi-
lized by L (φ(x).w ∈ W for all x ∈ L, w ∈ W ), then by restricting the action of L
to W we get L acting on W . Similarly, if L stabilizes U ⊂W , with U and W sub-
spaces of V , then the action of L on W/U via φ is well-defined (as the reader should
check). The most general case of this phenomenon is explained in the proposition
below:

Proposition 3.3. L acts on V via φ. K is a subalgebra of L and I is an ideal of
K. U ⊂ W are subspaces of V . K stabilizes U and W , and the action of I maps
U into 0. Then K/I acts on W/U via φ.

Remark 3.4. Since restricted actions satisfy the same equations as the original
actions, (formally, restricting the range to a subspace or quotient subspace is a
ring homomorphism) this restriction to a subspace/quotient preserves nilpotency
(characterized by the equation xn = 0 for some n) and semisimplicity (characterized
by x being the root of a polynomial with no duplicate roots in F ). Examples:
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• If K is a subalgebra of L, and adL x is nilpotent for some x ∈ K, so is
adK x
• x as above. K stabilizes L and K so (even when K is not an ideal) K acts

on (the vector space) L/K via ad, and the action of x is nilpotent.
• I is an ideal of L, and x ∈ L with ad Lx nilpotent, then adL/I x is nilpotent.
• Respectively, semisimple in each of the above cases (L finite dimensional)

We end this section with a final definition which will be useful later:

Definition 3.5. If φ : L → gl(V ) is a representation, we say φ is irreducible if
there are no proper subspaces of V stabilized by L. φ is completely reducible if
V is the direct sum of subspaces Vi stabilized by L such that the restricted action
of L on Vi is irreducible.

4. Solvable, Semisimple, and Nilpotent

We now introduce three more concepts which are slightly more intricate than
those discussed in Definition 2.3. The first is the notion of solvability of a Lie
algebra, which mimics solvability in group theory. Given a Lie algebra L, we define
a sequence of ideals of L as follows: L(0) = L, L(1) = [LL], L(2) = [L(1)L(1)], and
in general L(i) = [L(i−1)L(i−1)].

Definition 4.1. A Lie algebra L is solvable if L(n) = 0 for some n.

We have the following proposition:

Proposition 4.2. Let L be a Lie algebra over a field F .
(a) If L is solvable and K is a subalgebra of L, K is solvable.
(b) Homomorphic images of L are solvable.
(c) If I is an ideal of L such that I and L/I are solvable, then L is solvable.
(d) If I, J are solvable ideals of L, then so is I + J .

Proof. (a): Suppose L(n) = 0. If K is a subalgebra of L, then clearly [KK] is
a subalgebra of [LL]. It follows by induction that K(i) ⊂ L(i) for all i, hence
K(n) ⊂ L(n) = 0, so K is solvable.

(b): Suppose L(n) = 0, L′ is a Lie algebra over F , and ψ : L→ L′ is a homomor-
phism. Write M = ψ(L), a subalgebra of L′. By proposition 2.6, it is clear that
ψ(L(i)) = M (i) for all i, hence M (n) = ψ(L(n)) = 0, so M is solvable.

(c): Suppose (L/I)(n) = 0 and I(m) = 0. Let π : L → L/I be the canonical
homomorphism. Then by part (b), π(L(n)) = π(L)(n) = (L/I)(n) = 0, so L(n) ⊂ I.
By part (a), (L(n))(m) ⊂ I(m) = 0. It is clear that (L(n))(m) = L(n+m), hence L is
solvable.

(d): By part (c) of proposition 2.5, (I + J)/J ∼= I/(I ∩ J), the latter of which is
the homomorphic image of the solvable Lie algebra I. Part (a) above then implies
(I + J)/J is solvable. On the other hand, J is also solvable. So part(c) above
implies I + J is solvable. �

The concept of solvability also inspires the following definition:
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Definition 4.3. A Lie algebra L is semisimple if is finite dimensional and its
only solvable ideal is the 0 ideal.

We now move on to the notion of nilpotency, which at first glance seems quite
similar to solvability. We define a sequence of ideals as follows: L0 = L, L1 = [LL],
L2 = [LL1], and in general Li = [LLi−1].

Definition 4.4. A Lie algebra L is nilpotent if Ln = 0 for some n.

It is easy to see that L(i) ⊂ Li, hence nilpotent Lie algebras are solvable. We
have the following elementary proposition for nilpotent Lie algebras, analogous to
proposition 4.2 above:

Proposition 4.5. Let L be a Lie algebra over a field F .
(a) If L is nilpotent and K is a subalgebra of L, K is nilpotent.
(b) Homomorphic images of L are solvable.
(c) If L/Z(L) is nilpotent, then so is L.
(d) If L is nilpotent and nonzero, then Z(L) 6= 0.

Proof. (a): Suppose Ln = 0. We can show by induction that Ki ⊂ Li. By assump-
tion, K0 ⊂ L0. Then by induction Ki+1 = [KKi] ⊂ [LKi] ⊂ [LLi] = Li+1. Then
Kn ⊂ Ln = 0, so K is nilpotent.

(b): Suppose Ln = 0, L′ is a Lie algebra over F , and ψ : L→ L′ is a homomor-
phism. Write M = ψ(L), a subalgebra of L′. By proposition 2.6, it is clear that
ψ(Li) = M i for all i, hence Mn = ψ(Ln) = 0, so M is solvable.

(c): Suppose (L/Z(L))n = 0, and let π : L→ L/Z(L) be the canonical homomor-
phism. By (b), π(Ln) = (L/Z(L))n = 0, hence Ln ⊂ Z(L), so Ln+1 ⊂ [LZ(L)] = 0.

(d): Pick m such that Lm is nonzero, but Lm+1 = 0. Then for x 6= 0 ∈ Lm,
y ∈ L we have [xy] ∈ Lm+1 = 0, so x ∈ Z(L). �

The reader will surely notice an overlap in terminology: We have used the words
”semisimple” and ”nilpotent” to describe both Lie algebras and elements of gl(V ).
One may wonder why this is so. In fact, there is a beautiful relationship between
nilpotent Lie algebras and nilpotent endomorphisms: If L is a finite-dimensional
Lie algebra, then L is nilpotent iff all its elements are ad-nilpotent. This is Engel’s
theorem, which we will prove shortly. First we introduce a theorem which is a
valuable result in and of itself:

Theorem 4.6. If V is any nonzero vector space and L is a finite dimensional
subalgebra of gl(V ) consisting of nilpotent elements, then there exists nonzero v ∈ V
such that x.v = 0 for all x ∈ L.

Proof. Induct on the dimension of L. If L = 0 there is nothing to prove. If dim
L = 1, pick x 6= 0 ∈ L. By hypothesis x is nilpotent so find n ∈ N such that xn 6= 0
but xn+1 = 0. Then there exists w ∈ V such that xn.w 6= 0. Letting v = xn.w., we
have x.v = 0.

Now let dim L > 1 and let K be a maximal proper subalgebra of L. Then
(Remark 3.4) K acts on L/K via ad, and the action of each element is nilpotent.



SEMISIMPLE LIE ALGEBRAS AND THE CHEVALLEY GROUP CONSTRUCTION 9

Let M ⊂ gl(L/K) be the image of K under this representation, then dim M ¡ dim
L so by induction there exists z + K ∈ L/K sent to zero by M . So for x ∈ K,
0 +K = ad x(z +K) = [xz] +K, or [xz] ∈ K.

So consider K + Fz. (F the underlying field). This a subalgebra of L properly
containing K, hence it equals L (by maximality). Let W be the subspace of V such
that x.w = 0 for all x ∈ K, w ∈ W , by induction W is nonzero. If w ∈ W and
x ∈ K, x(z.w) = [xz].w + z(x.w) = 0, since [xz] ∈ K. This implies z.w ∈ W , so
Fz can be regarded as a subspace of gl(W ). Since Fz has dimension 1 and z is
nilpotent, we know there exists nonzero w ∈ W such that z.w = 0. Then for all
y = x+ αz ∈ K + Fz, y.w = x.w + αz.w = 0, but K + Fz = L so we are done.

�

Corollary 4.7. If L is a finite-dimensional Lie algebra and φ : L → gl(V ) is a
representation such that φ(x) is nilpotent for all x ∈ L, there exists nonzero v ∈ V
such that φ(x).v = 0 for all x ∈ L.

Proof. Immediately clear from Theorem 4.6.
�

Theorem 4.8. Engel’s Theorem If L is a finite dimensional Lie algebra, L is
nilpotent if and only if all elements of L are ad-nilpotent.

Proof. First assume L is nilpotent. if x ∈ L, y ∈ Li, ad x(y) ∈ Li+1. In other
words, ad x(Li) ⊂ Li+1, so ad xn(L) ⊂ Ln = 0. Therefore, ad x is nilpotent.

On the other hand, assume L consists of ad-nilpotent elements. We proceed
by induction. If dim L equals 0 or 1, L is nilpotent. If dim L > 1, by Corollary
3.8 there exists nonzero x ∈ L such that ad y(x) = 0 for all y ∈ L. This means
x ∈ Z(L), so Z(L) 6= 0. Then L/Z(L) consists of ad-nilpotent endomorphisms
(Remark 3.4), hence by induction L/Z(L) is nilpotent, and by proposition 4.5 we
are done.

�

We end this section with another application of Theorem 4.6 (via Corollary 4.7):

Lemma 4.9. Let L is a nilpotent finite dimensional Lie algebra, K a nonzero ideal
of L. Then K ∩ Z(L) 6= 0.

Proof. L acts on K via ad, so Corollary 4.7 gives nonzero z ∈ K such that ad x(z) =
0 for all x ∈ L. This implies z ∈ Z(L).

�

5. Jordan Decomposition

Recall from linear algebra that if V is a finite dimensional vector space over an
algebraically closed field we can write any linear transformation T as an upper-
triangular matrix with respect to some basis. Then we can write T = S+N , where
S is a diagonal matrix and N is strictly upper-triangular (zeroes on the diagonal).
Note also that S andN commute. In fact, we have the following general proposition:
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Proposition 5.1. Let V be a finite dimensional vector space over F , F an alge-
braically closed field, x ∈ End(V )

(a) There exist unique xs, xn ∈ End(V ) satisfying x = xs + xn, xs semisimple, xn
nilpotent, and xs and xn commute.

(b) xs and xn commute with any endomorphism commuting with x.
(c) If A and B are subspaces of V such that x maps A into B, then xs and xn both

map A into B.

Proof. (If necessary, the reader should consult the introduction for a brief review
of End(V ) as an F [x]−module).

Since F is algebraically closed we can completely factor the characteristic polyno-
mial of x: cx(T ) =

∏
i(T−ai)mi where ai are the roots and mi are the multiplicities.

Then we can write V as a direct sum of Vi = Ker (x− ai)mi , each stable under x.
Using the Chinese Remainder Theorem (in F [T ]), find p(T ) such that p(T ) ≡ ai
(mod (T − ai)mi), p(T ) ≡ 0 (mod T ). Note that the last equation is unnecessary
if ai = 0 for some i, and if all the ai are nonzero then T is relatively prime to the
other moduli. Let q(T ) = T − p(T ).

Now set xn = q(x), xs = p(x). Since they are each polynomials in x they com-
mute with each other (and every endomorphism commuting with x), and their sum
is clearly x. Now if v ∈ Vi, we know we can write xs = ai + r(x)(x − ai)mi for
some r(x), hence xs(v) = aiv + r(x)(x − ai)mi(v) = aiv, so any basis of Vi will
consist of eigenvectors of xs (with eigenvalue ai). Hence we can diagonalize xs, so
xs is semisimple. Lastly, if v ∈ Vi, we have xn(v) = (x − xs)(v) = x(v) − xs(v) =
x(v) − aiv = (x − ai)(v), hence xmin (v) = (x − ai)mi(v) = 0. So xMn = 0, where
M = max(mi), therefore xn is nilpotent.

(c) is now clear, since q(T ) and p(T ) are both polynomials with no constant term.

We have shown everything but the ”uniqueness” clause in part (a). Suppose x =
s+ n is a different decomposition of x. Then s and n commute with x, hence with
xs and xn (part (b)). The sum of commuting nilpotent endomorphisms is nilpotent
(clear) and the sum of commuting semisimple endomorphisms is semisimple, since
they can be simultaneously diagonalized (a standard linear algebra fact, see Lemma
9.3: Simultaneous Diagonalization for details). So we have xs − s = n − xn is a
semisimple, nilpotent endomorphism, hence it must be identically zero. �

This decomposition is known as the Jordan decomposition, or Chevalley-
Jordan decomposition. Note that part (a) of the theorem justifies the word
”the” (as the decomposition is unique). We also have:

Lemma 5.2. Let x ∈ End(V ), V a finite dimensional vector space over an al-
gebraically closed field F , x = xs + xn its Jordan decomposition. Then ad x =
ad xs + ad xn is the Jordan decomposition in End( End(V )).

Proof. By Proposition 3.2, ad xs is semisimple, ad xn is nilpotent, and we know
[ ad xs, ad xn] = ad [xs, xn] = 0. �
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6. Killing Form

From here on, we will be primarily working with algebraically closed fields of
characteristic zero. We will call such fields ”typical”. In addition, we will use ”typ-
ical Lie algebra” to denote a finite-dimensional Lie algebra over a typical field.

Jordan decomposition is one of the central tools we will use in our analysis of
Lie algebras. The second central tool is known as the Killing form, and is defined
as follows:

Definition 6.1. Let L be a finite dimensional Lie algebra. If x, y ∈ L, define
κ(x, y) = Tr( ad x ad y) (The trace of the linear transformation- see the introduc-
tion). κ is called the Killing form.

Recall that a form on a vector space is simply a function from L × L to the
underlying field F (an example is the dot product in Rn). The Killing form enjoys
some useful properties:

Proposition 6.2. The Killing form κ of L is:
(a) Symmetric: κ(x, y) = κ(y, x).
(b) Bilinear
(c) Associative: κ([xy], z) = κ(x, [yz])

Proof. All of these proofs will hinge on an elementary fact about trace established
in the introduction: that if A,B ∈ End(V ), Tr(AB) = Tr(BA).

(a): Obvious from the fact stated above.

(b): We know that ad : L→ gl(L) is linear, and that the trace functional is linear.

(c): We see for any x, y, z ∈ gl(V ), V finite dimensional, Tr([xy]z) = Tr(xyz)−
Tr(y(xz)) = Tr(xyz)−Tr((xz)y) = Tr(x[yz]). Hence κ([xy], z) = Tr( ad [xy] ad z) =
Tr([ ad x ad y] ad z) = Tr( ad x[ ad y ad z]) = Tr( ad x ad [yz]) = κ(x, [yz]).

�

As with the adjoint representation, when K is a subalgebra of L we can distin-
guish between the Killing form of K and the Killing form of L with a subscript:
κK versus κL. We do, however, have the following useful lemma:

Lemma 6.3. Let L be a finite dimensional Lie algebra, I an ideal of L. Then if
x, y ∈ I, κI(x, y) = κL(x, y)

Proof. Create a basis for L by first creating a basis for I and extending it to
L : (x1, x2, . . . , xm, xm+1, . . . , xn) (say dim I = m). Now if x ∈ I, consider the
matrix representation for adL x. For i > 0, xm+i /∈ I but since I is an ideal
adL x(xm+i) ∈ I. This implies the m + i diagonal entry in the matrix is zero,
so the terms that contribute to the trace correspond to the basis elements of I:
Tr( adL x) = Tr( adI x). Similarly, Tr(( adL x)( adL y)) = Tr((( adL x)( adL y)) |I
) = Tr(( adI x)( adI y)). �

We also have the following definition:
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Definition 6.4. Let L be a finite dimensional Lie algebra, κ its Killing form. The
radical S of κ is the set {x ∈ L|κ(x, y) = 0 for all y ∈ L}. κ is nondegenerate if
its radical is 0.

Since κ is associative, its radical S is an ideal: If x ∈ S, y ∈ L, we want
to show [xy] ∈ S. This amounts to showing κ([xy], z) = 0 for any z ∈ L, but
κ([xy], z) = κ(x, [yz]) = 0. We want to find conditions on L for the Killing form κ
to be nondegenerate. It turns out that (provided char F = 0) this is exactly the
same as L being semisimple. This result is the goal for the rest of this section. We
begin with a lemma:

Lemma 6.5. Let A ⊂ B be two subspaces of gl(V ), V a finite dimensional vector
space over a typical field F . Let M = {x ∈ gl(V )|[x, b] ⊂ A for all b ∈ B}. If
x ∈M satisfies Tr(xy) = 0 for all y ∈M , x is nilpotent.

Proof. Let x = xs + xn be the Jordan decomposition of x. Then xs is diago-
nalizable, so fix a basis v1, . . . , vm of V consisting of eigenvectors of xs and let
a1, . . . , am be the corresponding eigenvalues. If we can show each ai = 0, then
xs = 0 so x = xn is nilpotent, as desired. To do this, consider the smallest sub-
field E of F containing all the ai. Then E is a vector space over Q, the prime
subfield of F , of finite dimension (at most m). We need to show E = 0, equiva-
lently the dual space E∗ = 0. In other words, any linear function f : E → Q is zero.

To show this, pick f : E → Q and let y ∈ gl(V ) be defined by y(vi) = f(ai)vi.
We can find a polynomial without constant term r(T ) ∈ F [T ] satisfying r(ai−aj) =
f(ai − aj) for all pairs i, j (this follows from Lagrange interpolation). Remember
from proposition 3.2 that we have a basis eij of gl(V ), where ad xs(eij) = (ai−aj)eij
and ad y(eij) = (f(ai) − f(aj))eij = f(ai − aj)eij = r(ai − aj)eij . It follows that
ad y = r( ad s).

Now since ad xs is the semisimple part of ad x and ad x maps B into A, ad xs
maps B into A. Then since ad y is a polynomial in ad xs without constant term,
ad y maps B into A. This means y ∈ M , so Tr(xy) = 0, or

∑
i aif(ai) = 0.

Applying f to this sum yields
∑
i f(ai)2 = 0, but the numbers f(ai) are rational

so they are all zero. Since the ai span E, f must be zero.
�

Note that we used the hypothesis that F had ch. 0 when we asserted that its
prime subfield was isomorphic to Q. We now prove a theorem known as Cartan’s
criterion, which is a criterion for solvability of a Lie algebra:

Theorem 6.6. (Cartan’s Criterion) Let L be a subalgebra of gl(V ), V a finite di-
mensional vector space over a typical field. If Tr(xy) = 0 for all x ∈ [LL], y ∈ L,
then L is solvable.

Proof. Use the lemma: V is as above, B = L, A = [LL]. Then M = {z ∈
gl(V )|[zy] ∈ [LL] for all y ∈ L}. We want to show that for x ∈ [LL], z ∈ M ,
Tr(xz) = 0. Then the theorem will give us x is nilpotent, so adgl(V ) x is nilpotent,
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so ad[LL] x is nilpotent. Then Engel’s theorem gives us [LL] nilpotent, which im-
plies that L is solvable (since L(i+1) = ([LL])(i) ⊂ ([LL])i).

It is enough to show that, for an arbitrary generator [xy] ∈ [LL] (x, y ∈ L), and
some z ∈M , Tr([xy]z) = 0. But we have Tr([xy]z) = Tr(x[yz]) = Tr([yz]x). But
since z ∈M and y ∈ L, [yz] ∈ [LL], so by hypothesis Tr([yz]x) = 0.

�

Now, the Killing form enters the picture:

Corollary 6.7. Let L be a typical Lie algebra, and S is the radical of the Killing
form κ.
(a) If [LL] ⊂ S, then L is solvable.
(b) If I ⊂ L is an ideal and [II] ⊂ S, then I is solvable.

Proof. (a) Apply the theorem to ad L ⊂ gl(L): Since ad [LL] = [ ad L ad L], if
ad x ∈ [ ad L ad L] we can assume x ∈ [LL] ⊂ S. So for ad y ∈ L we have
Tr( ad x ad y) = κ(x, y) = 0. Hence ad L is solvable. But ad L ∼= L/Z(L) and
Z(L) is solvable, so L is solvable.

(b) By Lemma 6.3, if SI is the radical of the Killing form on I, I ∩S ⊂ SI . Then
the assertion is obvious from (a). �

Now all the pieces are in place for the big theorem of this section:

Theorem 6.8. Let L be a typical Lie algebra. Then L is semisimple if and only if
its Killing form is nondegenerate.

Proof. S is an ideal and [SS] ⊂ S so by Corollary 6.7(b), S is solvable. Since L is
semisimple, this means S = 0.

Now assume S = 0 and let I be an abelian ideal of L. If x ∈ I and y ∈ L,
ad x ad y maps L into I, and ( ad x ad y)2 maps L into [II] = 0. Hence ad x ad y is
nilpotent, so κ(x, y) = Tr( ad x ad y) = 0. Therefore I ⊂ S = 0. Now if J were any
nonzero solvable ideal of L, the last nonzero J (i) would be an abelian ideal. This
is a contradiction, so L is nilpotent. �

We are now in a position to prove that any semisimple typical Lie algebra can be
written as the direct sum of simple Lie algebras (sometimes used as the definition
of semisimplicity), but first a simple lemma:

Lemma 6.9. If L is a typical Lie algebra and I is an ideal of L, let I⊥ = {x ∈
L|κ(x, y) = 0 for all y ∈ I}. Then I⊥ is an ideal and L = I ⊕ I⊥ (I⊥ is called the
ideal perpendicular to I (in L)

Proof. I⊥ is a subspace of L because of the bilinearity of κ. Now if x ∈ I⊥, z ∈ L
we want to show [zx] ∈ I⊥. For y ∈ I, note [yz] ∈ I. Then by the associativity
of κ, κ(y, [zx]) = κ([yz], x) = 0. Then since I ∩ I⊥ is an ideal, the Killing form is
trivial when restricted (Lemma 6.3) so by Corollary 6.7(a), I ∩ I⊥ is solvable and
hence 0.
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�

Theorem 6.10. (Decomposition of Semisimple Lie Algebras) Let L be a semisimple
typical Lie algebra. Then there exist ideals L1, . . . , Lt of L which are simple Lie
algebras such that L = L1 ⊕ · · · ⊕Lt, and any ideal of L is a direct sum of some of
the Li (in particular the simple ideals of L are the Li).

Proof. Use induction on the dimension of L. If L is already simple, we are done. If
not let I be a proper ideal of L. Then (Lemma 6.9 above) we can write L = I⊕I⊥,
where I⊥ is also a (proper) ideal of L. Now any ideal of I is also an ideal of L, so
that means I must be semisimple, and similarly I⊥ is semisimple. By induction, we
can write I as a direct sum of simple ideals, which are therefore also ideals of L, and
likewise for I⊥. This gives us a decomposition of L into a direct sum of simple ideals.

Now let I be a simple ideal of L, L = L1⊕L2⊕· · ·⊕Ln. Then [IL] is an ideal of
I, and [IL] 6= 0 because Z(L) = 0. So [IL] = I. Then I = [IL] = [IL1]⊕· · ·⊕[ILn],
so all but one of the sums, say [ILi], equal zero. So I = [ILi], hence I ⊂ Li but
this means I = Li since Li is simple.

Finally, let I be any ideal of L. I is semisimple, so we can write I as a direct sum
of simple ideals, which are also simple ideals of L. But by the above paragraph,
each simple ideal of L is one of the Li.

�

Corollary 6.11. If L is semisimple, then L = [LL] and all ideals and homomorphic
images of L are semisimple.

Proof. Clear from Theorem 6.10. �

7. Weyl’s Theorem

In this section we are concerned with representations φ : L→ gl(V ) of a semisim-
ple typical Lie algebra. First, remember that a form on L is a function from L×L
to F . We have the following helpful lemma:

Lemma 7.1. If L is a finite dimensional Lie algebra, β any nongenerate bilinear
form on L, and (x1, . . . , xn) a basis of L, there is a uniquely determined dual basis
(y1, . . . , yn) relative to β such that β(xi, yj) = δij

Proof. Let L∗ denote the dual space of L. For x ∈ L, define λx ∈ L∗ by λx(y) =
β(x, y). Then by bilinearity, we have both that λx is actually in L∗ as asserted, and
that the map λ : x 7→ λx is a linear map. Since β is nondegenerate, λ has kernel 0,
and since L is finite-dimensional this implies λ is an isomorphism. Then if fi ∈ L∗
is the linear functional mapping xj to δij , we must have yi = λ−1(fi). �

Now let L be a Lie algebra over F , and φ : L → gl(V ) be a representation of
L with V finite dimensional. If we have β(x, y) = Tr(φ(x)φ(y)), β is a symmetric
associative bilinear form- simply use the argument of proposition 5.4 for the Killing
form. Also, if F is typical, and φ is faithful (1-1), the radical S of β is isomorphi-
cic to φ(S), and the argument from the previous section then implies S. solvable.
Therefore if L is semisimple, β is nondegenerate.
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Now pick a basis x1, . . . , xn of L, and a basis y1, . . . , yn which is dual to the xi
relative to β (as in the lemma). Write cφ =

∑
i φ(xi)φ(yi), and call it the Casimir

element of φ. Its trace is
∑
i Tr(φ(xi)φ(yi)) =

∑
i β(xi, yi) = n, where n is the

dimension of L.

Proposition 7.2. If x ∈ L, L a typical Lie algebra, and φ : L→ gl(V ) is a faithful
representation. Then cφ commutes with φ(x).

Proof. Write [xxi] =
∑
j aijxj and [xyi] =

∑
j bijyj . Then aik =

∑
j aijβ(xj , yk) =

β([xxi], yk) = β(−[xix], yk) = −β(xi, [xyk]) = −
∑
j bkjβ(xi, yj) = −bki (using

associativity of β). Now in End(V ) we have [x, yz] = [x, y]z + y[x, z], therefore:

[φ(x), cφ(β)] =
∑
i

[φ(x), φ(xi)φ(yi)] =
∑
i

[φ(x), φ(xi)]φ(yi) +
∑
i

φ(xi)[φ(x), φ(yi)]

We have [φ(x), φ(xi)] =
∑
j aijφ(xj) and [φ(x), φ(yi)] =

∑
j bijφ(yj). So:

[φ(x), cφ(β)] =
∑
i,j

aijφ(xj)φ(yi) +
∑
i,j

bijφ(xi)φ(yj) = 0

Since aij = −bji.
�

Lemma 7.3. (Schur’s Lemma) L a Lie algebra over an algebraically closed field
F , V a finite dimensional vector space over F . φ : L → gl(V ) an irreducible
representation. If T ∈ gl(V ) commutes with all φ(x), T = λI for some λ ∈ F .

Proof. Pick an eigenvalue λ of T (possible since V is finite dimensional and F is an
ACF), and let T = T −λI. Then if v ∈ Ker T , x ∈ L, since T commutes with φ(x)
we have T (φ(x).v) = T (φ(x).v)−λφ(x).v = φ(x).T v−λφ(x).v = φ(x).(Tv−λv) = 0.
Hence kerT is stable under action by L, it is nonzero since λ is an eigenvalue of T ,
and by irreducibility this implies kerT = V so T = T − λI = 0. �

Corollary 7.4. L, φ : L → gl(V ), cφ as in proposition ??, V finite dimensional.
If φ is faithful and irreducible, cφ = λI where λ = dim L/ dim V .

Proof. By Schur’s Lemma, cφ = λI for some λ, and we get the value of λ using
Tr(cφ) = dim L. �

Lemma 7.5. If L is a typical semisimple Lie algebra, φ : L → gl(V ) is a repre-
sentation, and V is one dimensional, then L acts trivially on V (for any x ∈ L,
v ∈ V , φ(x).v = 0).

Proof. �

Now we proceed with the main theorem of this section:

Theorem 7.6. (Weyl’s Theorem) If L is a typical semisimple Lie algebra and φ :
L→ gl(V ) a is a finite dimensional representation, then φ is completely reducible.

Proof. Consult [1], page 28
�
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8. Abstract Jordan Decomposition

In this section we prove an analogue for Jordan decomposition (section 5) for an
arbitrary typical semisimple Lie algebra. The idea is: write x ∈ L as x = xs + xn
where xs is ad-semisimple and xn is ad-nilpotent, and xs and xn commute. First
we need a simple definition, motivated by the product rule for derivatives:

Definition 8.1. If L is a Lie algebra, a derivation of L is an element δ ∈ gl(L)
such that δ([a, b]) = [a, δ(b)]+ [δ(a), b]. Denote by Der L the set of derivations of L.
It is easily checked (left to the reader) that Der L is a subalgebra of gl(L) (though
not necessarily a subring).

Lemma 8.2. L a typical Lie algebra, δ ∈ gl(L). If δ = σ + ν is the Jordan
decomposition of δ and δ ∈ Der L, then σ, ν ∈ Der L.

Proof. Write La = {x ∈ L|(δ − a)k.x = 0 for some k (depending on x)}. Then L is
the direct some of the nonzero La, and σ acts on La as scalar multiplication by a.
Suppose x ∈ La and y ∈ Lb By induction on n, we can show (δ − (a+ b))n.[xy] =∑n
i=0

(
n
i

)
((δ−a)n−i.x) · ((δ− b)i).y), hence for big enough n (δ− (a+ b))n.[xy] = 0.

This means [xy] ∈ La+b, so σ([xy]) = (a+b)([xy]) = [(ax), y]+[x, (by)] = [σ(x), y]+
[x, σ(y)]. Since L is a direct sum of the La, it follows that σ ∈ Der L, and therefore
so is ν. �

One more lemma is necessary before proceeding with out main theorem:

Lemma 8.3. If L is a typical, semisimple Lie algebra, then ad L = Der L.

Proof. Let M = ad L, D = Der L. The first thing to notice is that M is
an ideal of D: If x ∈ L then by the Jacobi identity ad x([yz]) = [x[yz]] =
[[xy]z] + [y[xz]] = [ ad x(y), z] + [y, ad x(z)]. This implies M ⊂ D. Then if δ ∈ D,
[δ, ad x](y) = δ([xy])− ad x(δ.y) = [δ.x, y] + [x, δ.y]− [x, δ.y] = [δ.x, y] = ad δ.x(y).

By Corollary 6.11, M and D are semisimple. So we can write D = M ⊕M⊥
(Lemma 6.9). Pick δ ∈M⊥. Since M and M⊥ are both ideals, if x ∈ L, [δ, ad x] =
ad δ.x ∈M⊥∩M = 0, so ad δ.x = 0 for all x ∈ L. But the kernel of ad is Z(L) = 0
(L being semisimple), so δ.x = 0 for all x ∈ L, meaning δ = 0. So: M⊥ = 0 and
we have D = M . �

We are ready for the main theorem of this section:

Theorem 8.4. Let L be a semisimple typical Lie algebra, and x ∈ L.
(a) There exist unique xs, xn ∈ L with x = xs + xn, xs ad-semisimple, xn ad-

nilpotent, [xs, xn] = 0. (This is called the Abstract Jordan Decomposition
of x).

(b) If L is a subalgebra of gl(V ) for a finite dimensional vector space V , the abstract
and usual Jordan decompositions coincide.

(c) Let φ : L → gl(V ) be a finite dimensional representation of L, x ∈ L. If
x = xs +xn is the abstract Jordan decomposition of x and φ(x)s +φ(x)n is the
normal Jordan decomposition of φ(x), then φ(x)s = φ(xs) and φ(x)n = φ(xn).
(Note that (b) is a special case of (c) when φ is the inclusion map).
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Proof. (a): If ad x = ( ad x)s + ( ad x)n is the Jordan decomposition of ad x,
since ad x ∈ Der L, by Lemma 8.2 we have ( ad x)s, ( ad x)n ∈ Der L. But
then by Lemma 8.3, ( ad x)s, ( ad x)n ∈ ad L, hence ( ad x)s = ad xs for some
xs ∈ L (which is consequently ad-semisimple) and similarly for ( ad x)n. Then
ad [xs, xn] = [ ad xs, ad xn] = 0, and since ad is 1-1 this implies [xs, xn] = 0. Fi-
nally, if x = s+n were another abstract decomposition, by uniqueness of the normal
Jordan decomposition we have ad xs = ad s, so xs = s (similarly xn = n).

(b): If W is a subspace of V stabilized by L, let LW = {y ∈ gl(V )|y stabilizes
W and Tr(y |W ) = 0}. Since L = [LL] (Corollary 6.11), and Tr([xy]) = 0 for any
x, y ∈ L, L s a subspace of each LW . Let L′ be the intersection of all the LW with
N = Ngl(V )(L). If x ∈ L and x = xs + xn is the normal Jordan decomposition of
x, we know xn and xs must both stabilize W for any W stabilized by L. As xn
is nilpotent, Tr(xn |W ) = 0 so xn ∈ LW , so we must have xs = x − xn ∈ LW as
well. Furthermore, ad x = ad xs + ad xn is the Jordan decomposition of ad x in
ad gl(V ) (Lemma 5.2), and ad x maps L into L so ad xn, ad xs must map L into
L, (Proposition 5.1(b)) ie xn, xs ∈ N . This means xs, xn ∈ L′ for any x.

We now show L = L′. We know L acts on L′ via ad, and since L is semisimple
by Weyl’s theorem we can write L′ = L + M where the sum is direct and M is a
subspace of L′ stabilized by L. But since L′ ⊂ N , ad x(y) ∈ L for x ∈ L, y ∈ L′,
and this implies the action of L on M is trivial, ie for every y ∈M , x ∈ L, [xy] = 0.
Now let W be subspace of V such that the action of L on W is irreducible. Schur’s
Lemma implies that any y ∈M acts on W as a scalar. But since y ∈M ⊂ L′ ⊂ LW ,
Tr(y |W ) = 0. So y acts on W as zero. But by Weyl’s Theorem, V can be written
as a direct sum of subspaces Vi stabilized by L such that the action of L on Vi is
irreducible. Then the action of y on each Vi is zero, and so y = 0. This implies
M = 0, so L = L′.

Now we have, for x ∈ L, xn, xs ∈ L. But xs (resp. xn) is semisimple (resp.
nilpotent) and therefore ad-semisimple (resp. ad-nilpotent), and [xs, xn] = 0, so by
the uniqueness clause in (a) this must also be the abstract Jordan decomposition
of x.

(c): Write x = xs + xn. L is spanned by eigenvectors of ad Lxs (xs being ad-
semisimple) and if y is an eigenvector of adL xs we have [φ(xs), φ(y)] = φ([xs, y]) =
φ(αy) = αφ(y), ie φ(y) is an eigenvector of adφ(L) φ(xs). This means φ(L) is
spanned by eigenvectors of adφ(L) φ(xs), and so φ(xs) is ad-semisimple (in φ(L)).
Similarly, if adL xkn = 0, adφ(L) φ(xn)k = 0 so φ(xn) is ad-nilpotent. Since φ(L) is
semisimple (Corollary 6.11), we have φ(x) = φ(xs) + φ(xn) is the abstract Jordan
decomposition of φ(x) in φ(L), hence by (b) also the normal Joradn decomposition
of φ(x) in gl(V ).

�
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Part 3. Construction of the Chevalley group

9. The algebra sl(2, F )

Given a field F , sl(2, F ) is the Lie algebra of 2-by-2 matrices with entries in F
that have zero trace. This is a three dimensional vector space which has a standard
basis:

x =
(

0 1
0 0

)
y =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
It is a straightforward matter to compute the bracket product of pairs of basis

vectors: [hx] = 2x, [hy] = −2y, [xy] = h.

Lemma 9.1. If F is typical, sl(2, F ) is semisimple.

Proof. Theorem 6.8 says that sl(2, F ) is semisimple if its Killing form is non-
degenerate. The Killing form is non-degenerate if the 3-by-3 matrix whose i, j
entry is κ(xi, xj) (x1 = x, x2 = h, x3 = y) has non-zero determinant. To compute
κ(xi, xj), first we compute the matrices of the adjoint representations:

ad x =

 0 −2 0
0 0 1
0 0 0

 ad h =

 2 0 0
0 0 0
0 0 −2

 ad y =

 0 0 0
−1 0 0
0 2 0


From here it is straightforward to compute the matrix of κ: 0 0 4

0 8 0
4 0 0


Which has determinant −128, hence κ is non-degenerate. �

Now let F be typical, and φ : sl(2, F )→ gl(V ) be a finite dimensional represen-
tation of sl(2, F ). Since h is semisimple, φ(h) is semisimple by Theorem ??, and we
can write V as a direct sum of eigenspaces: Vλ = {v ∈ V |φ(h).v = λv}, for λ ∈ F .
Whenever Vλ 6= 0, we say λ is a weight of h in V and we call Vλ a weight space.

We have the following elementary lemma:

Lemma 9.2. If v ∈ Vλ, then φ(x).v ∈ Vλ+2 and φ(y).v ∈ Vλ−2.

Proof.

φ(h).(φ(x).v) = [φ(h), φ(x)].v + φ(x).(φ(h).v)

= φ([hx]).v + φ(x).(λv)

= 2φ(x).v + λφ(x).v

= (2 + λ)φ(x).v

The proof for y is identical. �

We are now in position to prove the main result of this section: a classification
of irreducible representations of sl(2, F ):
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Theorem 9.3. Let F be typical, and φ : sl(2, F ) → gl(V ) be an irreducible finite
dimensional representation. Then there exists a basis v0, v1, . . . , vm of V such that
the following formulas (which completely determine φ) hold:

(a) φ(h).vi = (m− 2i)vi
(b) φ(y).vi = (i+ 1)vi+1 (φ(y).vm = 0)
(c) φ(x).vi = (m− i+ 1)vi−1 (φ(x).v0 = 0)

In particular, the weights of h in V are the integers m,m − 2, . . . ,−(m − 2),−m,
and the weight spaces Vi are all one-dimensional.

Proof. Since V is finite-dimensional, there exists a maximal weight of h in V , call
it λ. Now pick a nonzero v0 ∈ Vλ, and for i > 0 write vi = (1/i!)φ(y)i.v0. We prove
the following formulas:

(a) φ(h).vi = (λ− 2i)vi
(b) φ(y).vi = (i+ 1)vi+1

(c) φ(x).vi = (λ− i+ 1)vi−1 (i > 0)

(a) follows from the above lemma. For (b), just use the definition of vi. For (c),
we make the following computation (i > 0):

iφ(x).vi = φ(x).(φ(y).vi−1)

= [φ(x), φ(y)].vi−1 + φ(y).(φ(x).vi−1)

= φ([xy]).vi−1 + φ(y).(φ(x).vi−1)

= φ(h).vi−1 + φ(y).(φ(x).vi−1)

Now we proceed by induction on i. Since λ is maximal, φ(x).v0 ∈ Vλ+2 = 0,
so by the above computation φ(x).v1 = φ(h).v0 = λv0 as desired (this is the base
case). Now for i > 1 we have:

iφ(x).vi = φ(h).vi−1 + φ(y).(φ(x).vi−1)

= (λ− 2(i− 1))vi−1 + (λ− (i− 1) + 1)φ(y).vi−2

= (λ− 2i+ 2)vi−1 + (λ− i+ 2)(i− 1)vi−1

= i(λ− i+ 1)vi−1

And dividing by i gives the desired result. What does this tell us? First of all,
the vi span a vector subspace of V which is invariant under the action of sl(2, F ),
and since φ is irreducible this means the vi span V . Since by formula (a) vi ∈ Vλ−2i

and V is the direct sum of weight spaces, the collection of nonzero vi are linearly
independent, so they form a basis (and therefore must be finite in number). Then
we can find the largest integer m with vm 6= 0, and it follows that v0, v1, . . . , vm
must all be nonzero and therefore form a basis of V . We showed that φ(x).v0 = 0,
and formula (b) tells us φ(y).vm = (m+ 1)vm+1 = 0.

So all that is left to show is λ = m. We use formula (c): φ(x).vm+1 = (λ−m)vm.
But the left side is zero, hence the right side must be zero, but vm 6= 0 so λ−m =
0. �
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Corollary 9.4. Let F be typical, and φ : sl(2, F ) → gl(V ) be an irreducible finite
dimensional representation. Then the eigenvalues of h on V are all integers, and
dim Vn = dim V−n. If we decompose V into a direct sum of subspaces such that
the action on each subspace is irreducible (as in Weyl’s theorem), the number of
summands is dim V0+ dim V1.

Proof. Use Weyl’s theorem to write V as a direct sum of subspaces such that the
action on each subspace is irreducible. The previous theorem completely describes
the action of sl(2, F ) on each of these subspaces, which makes the first assertion
clear. In addition, in each of these subspaces, either 0 is an eigenvalue or 1 is an
eigenvalue but not both, which makes the second assertion clear. �

10. Root Space Decomposition

Engel’s Theorem said that any finite dimensional Lie algebra consisting of ad-
nilpotent elements is itself nilpotent (and vise-versa). Now we discuss algebras
consisting of ad-semisimple elements:

Definition 10.1. If L is a finite-dimensional Lie algebra and T is a subalgebra of
L, T is toral if it consists of ad-semisimple elements.

We then have the following lemma:

Lemma 10.2. If T is a toral subalgebra of a finite-dimensional Lie algebra L over
an algebraically closed field, T is abelian

Proof. Pick x ∈ T . Since adL x is semisimple (therefore diagonalizable), so is
adT x. Pick a nonzero eigenvector y of adT x, so [xy] = ay. We can find a basis
of T which diagonalizes adT y : y1, y2, . . . , yn, with eigenvalues α1, . . . , αn. Then if
x = β1y1 + · · ·+βnyn, we have ( adT y)2(x) = α2

1β1y1 + · · ·+α2
nβnyn. On the other

hand, ( adT y)2(x) = [y[yx]] = [y(−ay)] = −a[yy] = 0. By linear independence,
α2
iβi = 0 for all i, so αiβi = 0 for all i, so 0 = adT y(x) = [yx] = −ay. Thus a = 0.

Hence 0 is the only eigenvalue of adT x, so adT x = 0 for all x ∈ T . �

We are in need of a standard lemma of linear algebra:

Lemma 10.3. (Simultaneous Diagonalization) Let W be a subspace of End(V ),
V a finite dimensional vector space over an algebraically closed field, consisting of
commuting semisimple elements. Then we can find a basis of V that simultaneously
diagonalizes every endomorphism in L.

Proof. Work by induction on the dimension of W , dim W = 1 is obvious. If U is
a subspace of W of codimension 1, we can form a basis v1, . . . , vn of V that simul-
taneously diagonalizes U . Now if u ∈ U , then u(vi) equals some scalar multiple
of vi, write u(vi) = α(u)vi. Then α is a function from U to F , and it is easy to
see that α is linear, that is α ∈ U∗, the dual space of U . Now for α ∈ U∗, let
Vα = {v ∈ V |u(v) = α(u)v for all u ∈ U}, and we can write V as a direct sum of
the nonzero Vα.

Now if v ∈ Vα, u ∈ U and w ∈W−U , by commutativity of W we have u(w(v)) =
w(u(v)) = w(α(u)v) = α(u)(w(v)), hence w(v) ∈ Vα. Then by proposition 3.3,
w |Vα is semisimple, so we can form a basis for Vα that diagonalizes w. Repeating
this for each Vα we can construct a basis for V that diagonalizes w, but then it also
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diagonalizes each u ∈ U (since each element of Vα is an eigenvector of each u ∈ U),
so it diagonalizes U + Fw = W . �

Now for a typical semisimple Lie algebra L, pick a maximal toral subalge-
bra H. Since H is abelian, ad LH consists of semisimple endomorphisms of L
which commute. Following the above lemma, we can simultaneously diagonalize
the elements of ad LH. In particular, we can consider subalgebras of the form
Lα = {x ∈ L|[hx] = α(h)x for all h ∈ H}, where α ∈ H∗, and note that we can
write L as a direct sum of the nonzero Lα. This is called the root space decom-
position or Cartan decomposition of L. The set of nonzero α ∈ H∗ with Lα
nonzero is Φ, and the elements of Φ are called roots of L relative to H.

Proposition 10.4. For all α, β ∈ H∗, [LαLβ ] ⊂ Lα+β. If x ∈ Lα, α 6= 0, then
ad x is nilpotent. If α, β ∈ H∗ and α+ β 6= 0 then κ(x, y) = 0 for x ∈ Lα, y ∈ Lβ.
(κ the Killing form of L)

Proof. If [xy] is a generator of [LαLβ ], we have [h[xy]] = [[hx]y] + [x[hy]] =
α(h)[xy] + β(h)[xy] = (α + β)(h)[xy] (this is the Jacobi identity). As for the
second assertion, notice that Lα is nonzero for only finitely many α, on the other
hand if x ∈ Lα and y ∈ Lβ the first assertion implies ( ad x)n(y) ∈ Lnα+β . Since
α 6= 0 and ch. F = 0, we can pick n big enough such that Lnα+β will be 0 for any
β ∈ Φ.

For the last assertion, find h ∈ H such that (α+ β)(h) 6= 0. Then if x ∈ Lα, y ∈
Lβ , we have κ([hx], y) = −κ([xh], y) = −κ(x, [hy]), so α(h)κ(x, y) = −β(h)κ(x, y),
so (α+ β)(h)κ(x, y) = 0. Thus κ(x, y) = 0. �

Corollary 10.5. The restriction of the Killing form to L0 = CL(H) is non-
degenerate.

Proof. If x ∈ L0 is orthogonal to all y ∈ L0 (that is, if κ(x, y) = 0), then by the
proposition x is orthogonal to every element of L, hence x is contained in the radical
of L. But since L is semisimple, theorem 5.10 says κ is nondegenerate. �

Proposition 10.6. CL(H) = H

Proof. We prove this in seven steps:
Step 1:CL(H) contains the semisimple and nilpotent parts of its elements. If

x ∈ CL(H), ad x maps the subspace H into the subspace 0. Then if ( ad x)s and
( ad x)n are the semisimple and nilpotent parts of ad x, by Proposition 5.1(b) they
both map H into 0. But by Theorem 8.4(c), ( ad x)s = ad xs, hence xs ∈ CL(H)
and similarly for xn.

Step 2: If x ∈ CL(H) is ad-semisimple (in L), x ∈ H. H + Fx is a subalgebra
of L (since x centralizes H) and since the sum of commuting semisimple elements
is semisimple, H + Fx is toral. By maximality of H, H = H + Fx so x ∈ H.

Step 3: The restriction of κ to H is nondegenerate. Suppose h ∈ H and
κ(h, x) = 0 for all x ∈ H. Now pick y ∈ CL(H), y = ys + yn the abstract
Jordan decomposition, yn, ys ∈ CL(H) by step 1. Now ad h and ad yn commute:
[ ad h, ad yn] = ad [hyn] = 0, and since ad yn is nilpotent, ad h ad yn is nilpotent.
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So 0 = Tr( ad h ad yn) = κ(h, yn). But by step 2, ys ∈ H so κ(h, ys) = 0. Hence
κ(h, y) = 0 for all y ∈ CL(H), but the restriction of κ to CL(H) is nondegenerate
(Corollary 10.5) so h = 0.

Step 4: CL(H) is nilpotent. Pick x = xn+xs ∈ CL(H). Then by step 1 xs, xn ∈
CL(H) and then by step 2 xs ∈ H, so adCL(H) xs = 0. So adCL(H) x = adCL(H) xn
which is nilpotent since adL xn is nilpotent. Then by Engel’s Theorem, CLH is
nilpotent.

Step 5: H∩[CL(H), CL(H)] = 0. If [xy] is a typical generator of [CL(H), CL(H)]
and z ∈ H, κ([xy], z) = κ(x, [yz]) = κ(x, 0) = 0. So κ(x, z) = 0 for x ∈
[CL(H), CL(H)], z ∈ H. Now pick h ∈ [CL(H), CL(H)] ∩H. We have κ(h, z) = 0
for z ∈ H, and by step 3 this implies h = 0.

Step 6: [CL(H), CL(H)] = 0. By Lemma 4.9, if [CL(H), CL(H)] is nonzero, since
CL(H) is nilpotent (step 4), we can find z ∈ Z(CL(H)) ∩ [CL(H), CL(H)], z 6= 0.
By step 5, z is not in H, so by step 2 z is not ad-semisimple and hence has a nonzero
nilpotent part zn. Then since ad z maps CL(H) into 0, ( ad z)n = ad zn must also
map CL(H) into 0, so zn ∈ Z(CL(H)). This implies for any x ∈ CL(H), ad zn
commutes with ad x, so ad zn ad x is nilpotent, so 0 = Tr( ad zn ad x) = κ(zn, x).
But this contracts the non-degeneracy of κ.

Step 7: CL(H) = H. Otherwise CL(H) has a nonzero ad-nilpotent element x,
by steps 1 and 2. For any y ∈ CL(H), [ ad x, ad y] = ad [xy] = 0 by step 6, so
ad x ad y is nilpotent and so 0 = Tr( ad x ad y) = κ(x, y). But this contradicts the
non-degeneracy of κ.

�

Now since the restriction of κ to H is nondegenerate (step 3), the map λ : H →
H∗ defined by λ : x 7→ λx where λx(y) = κ(x, y) is injective and therefore (H
being finite-dimensional) bijective. Then for ψ ∈ H∗, let tψ = λ−1(ψ). Then
κ(tψ, h) = λtψ (h) = ψ(h). This property actually characterizes tψ: tψ is the unique
element of H such that for all h ∈ H, κ(tψ, h) = ψ(h). We can use this to define
a symmetric bilinear product in H∗: (α, β) = κ(tα, tβ). (note that this also equals
α(tβ) and β(tα).)

11. Properties of the Root Space Decomposition

We are now in a position to introduce the connection to the Lie algebra sl(2, F ):

Proposition 11.1. (a) Φ spans H∗

(b) If α ∈ Φ, x ∈ Lα nonzero, there exists y ∈ L−α such that κ(x, y) 6= 0.
(c) If α ∈ Φ, −α ∈ Φ.
(d) If α ∈ Φ, x ∈ Lα, y ∈ L−α, then [xy] = κ(x, y)tα.
(e) If α ∈ Φ, then [Lα, L−α] is nonzero and spanned by tα.
(f) (α, α) 6= 0 for α ∈ Φ.
(g) If α ∈ Φ and xα is a nonzero element of Lα, there exists yα ∈ L−α such that

xα, yα, hα = 2tα
(α,α) span a three dimensional subalgebra of L isomorphic to

sl(2, F ). (via xα 7→ x, yα 7→ y, hα 7→ h.
(h) hα = −h−α.
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Proof. (a): If not, pick ψ ∈ H∗ not in the span of Φ. Then there exists ĥ ∈ H∗∗
such that ĥ(ψ) = 1 but ĥ(α) = 0 for α ∈ Φ. But by duality, there exists h ∈ H
such that α(h) = 0 for all α ∈ Φ and ψ(h) = 1 (so h 6= 0). Now for x ∈ Lα,
[hx] = α(h)x = 0, and for x ∈ L0, [hx] = 0. Since L is the direct sum of the Lα
and L0, h ∈ Z(L) = 0 (since L is semisimple), which is a contradiction.

(b): Let α ∈ Φ, and pick x ∈ Lα, x 6= 0. Since the Killing form is nondegenerate
and L is the direct sum of the root spaces, there exists y ∈ Lβ for some β ∈ H∗
such that κ(x, y) 6= 0. But by Proposition 10.4, if α+β 6= 0 then κ(x, y) = 0, hence
α+ β = 0, and β = −α.

(c): If α ∈ Φ, pick x ∈ Lα nonzero. By part (b), there exists y ∈ L−α such that
κ(x, y) 6= 0, hence y 6= 0 and so −α ∈ Φ.

(d): Let α ∈ Φ, x ∈ Lα, y ∈ L−α. Then for any h ∈ H we have:

κ(h, [xy]) = κ([hx], y)

= α(h)κ(x, y)

= κ(tα, h)κ(x, y)

= κ(κ(x, y)tα, h)

= κ(h, κ(x, y)tα)

So κ(h, [xy] − κ(x, y)tα) = 0 for all h ∈ H. Then tα ∈ H, and by Proposi-
tion 10.4 we have [xy] ∈ L0 and by Proposition 10.6 L0 = CL(H) = H. Hence
[xy] − κ(x, y)tα ∈ H, and by the nondegeneracy of the Killing form on H (step 3
of proposition 10.6) we have [xy]− κ(x, y)tα = 0.

(e): In light of (d), we only need to show [LαL−α] 6= 0. Pick x ∈ Lα nonzero,
and using (b) pick y ∈ L−α such that κ(x, y) 6= 0. Then by (d), [xy] = κ(x, y)tα,
so [xy] 6= 0.

(f) Suppose (α, α) = 0 for some α ∈ Φ. Recall that (α, α) = κ(tα, tα) = α(tα).
Using (b) pick x ∈ Lα, y ∈ L−α such that κ(x, y) 6= 0. Scaling x if necessary, we
can assume κ(x, y) = 1. Then [xy] = tα by (d), and [tαx] = α(tα)x = 0, similarly
[tαy] = 0, so x, y, tα span a subspace S of L. Now suppose β ∈ Φ and pick u ∈ Lβ .
Then by the Jacobi identity, adL tα([xu]) = [x[tαu]] − [u[tαx]] = β(tα)[xu] and
similarly for y, which implies S acts on Lβ via ad.

But then ad tα acts diagonally on Lβ with a constant eigenvalue β(tα). However
ad tα |Lβ= ad [xy] |Lβ= [ ad x |Lβ , ad y |Lβ ], implying ad tα |Lβ has trace 0. So we
must have β(tα) = 0 (F having characteristic 0). This holds for any β ∈ Φ. But
since Φ spans H∗, we must have tα = 0, contradicting the choice of tα.

(g) Given nonzero xα ∈ Lα, using (b) we can find yα ∈ L−α such that κ(xα, yα) 6=
0. By part (f), scaling yα if necessary, we can choose yα so κ(xα, yα) = 2

(α,α) . Using
straightforward computation, the reader can verify that [xαyα] = hα (using (d)),
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[hαxα] = α(hα)xα = 2xα and [hαyα] = −α(hα)yα−2yα (remember α(tα) = (α, α)).

(h) We have κ(tα + t−α, h) = α(h) − α(h) = 0 for all h ∈ H, and by the
nondegeneracy of κ we must have tα = −t−α. Then the assertion follows. �

Let us fix the definition of hα as stated in the previous proposition. Furthermore,
write Hα = [LαL−α]. Now that we have a subalgebra isomorphic so sl(2, F ),we can
use the results of the previous section for the following proposition.

Proposition 11.2. (a) If α ∈ Φ, dim Lα = 1. In particular, Sα = Lα+L−α+Hα

(as vector spaces) is isomorphic to sl(2, F ), and for nonzero xα ∈ Lα there
exists a unique yα ∈ L−α satisfying [xαyα] = hα.

(b) If α ∈ Φ, the only scalar multiples of α which are roots are α and −α.
(c) If α, β ∈ Φ, then β(hα) ∈ Z and β − β(hα)α ∈ Φ (Z is really the isomorphic

copy of Z lying in F ).
(d) Let α, β ∈ Φ, β 6= ±α. Let r, q be the largest integers for which β − rα, β + qα

are roots. Then β + iα ∈ Φ for all −r ≤ i ≤ q, and β(hα) = r − q.
(e) If α, β, α+ β ∈ Φ then [LαLβ ] = Lα+β.
(f) H is spanned by the hα (hence L is generated as a Lie algebra by the Lα)

Proof. (a), (b): Suppose α ∈ Φ, and let Sα be the Lie algebra spanned by xα, yα, hα
as in the previous proposition, so Sα is isomorphic to sl(2, F ). Consider the sub-
space M of L spanned by H and root spaces of the form Lcα for c ∈ F nonzero.
By Proposition 10.4, Sα acts on M via ad. Now the weights of hα on M are the
integers 0 and cα(hα) = 2c where cα ∈ Φ.

Now (by duality) Ker α is a subspace of codimension 1 in H complementary to
Fhα. If t ∈ Ker α, [txα] = α(t)xα = 0, [tyα] = −α(t)yα = 0 and [thα] = 0 so
Sα acts trivially on Ker α. Also, Sα acts on itself. But the elements which have
weight zero are exactly those in H, which is contained in Ker α⊕Sα. Now consider
(by Weyl’s theorem) breaking M up into subspaces Mi such that the action of Sα
on Mi is irreducible. If Mi has 0 as a root, then either Mi ⊂ Ker α (so Sα acts
trivially on Mi) or Mi = Sα. But by Theorem 9.3, each Mi has only even weights
or only odd weights, this means the only even weights are 0,±2. Therefore, 2α
(having weight 4) is not a root, so we have shown that twice a root is never a root.
But then 1 cannot be a weight either (otherwise both α/2 and α would be roots)
and so M = Ker α⊕ Sα. This means Lα must be spanned by xα, L−α by yα, and
Sα = Lα +L−α +Hα as asserted. Also, the only multiples of α which are roots are
±α.

(c), (d), (e): Now suppose β ∈ Φ, β 6= ±α, and let K be the subspace of L
spanned by Lβ+iα, where i ∈ Z and β + iα ∈ Φ. Then Sα acts on K via ad. Since
β+ iα 6= 0 for any i (by (b)), K is a direct sum of one-dimensional subspaces Lβ+iα

having distinct integral weights β(hα)+2i. Then β(hα) ∈ Z (c). Furthermore, 0 and
1 cannot both be written in that form, meaning the action of Sα on K is irreducible.
By Theorem 9.3, we conclude that each β(hα) + 2i is a root between the maximum
β(hα) + 2q and minimum β(hα)− 2r, meaning β + iα ∈ Φ for all −r ≤ i ≤ q. Fur-
thermore, the highest and lowest roots are opposites: β(hα) + 2q = −(β(hα)− 2r)
so β(hα) = r− q. Then since q ≥ 0, r ≥ β(hα) so β − β(hα)α ∈ Φ. Lastly, if β + α
is a root then, since the action maps each weight space onto the adjacent weight
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spaces, the action maps Lβ onto Lβ+α. This establishes (e).

(f): It is enough to show that the tα span H. If not, there exists nonzero ψ ∈ H∗
such that ψ(tα) = 0 for all α ∈ Φ. But ψ(tα) = α(tψ), and since Φ span H∗ this
implies tψ = 0, hence ψ = 0, a contradiction.

�

Proposition 11.3. Let EQ be the Q-subspace of H∗ spanned by Φ, where H∗ (ie,
EQ is rational linear combinations of Φ). Then any basis in Φ of H∗ (over F ) is also
a basis of EQ over Q in particular the dimension of H∗ over F is the same as the
dimension of EQ over Q. Furthermore, (α, β) = κ(tα, tβ) defines a nondegenerate,
symmetric, bilinear form on EQ which is positive definite: (λ, λ) > 0 for λ 6= 0.

Proof. Pick a basis in Φ of H∗: α1, α2, . . . , αk. To prove the first assertion, we need
to show that any root β ∈ Φ is a rational linear combination of the αi. Since the
αi span H∗, we have β =

∑k
i=1 ciαi where the ci ∈ F . For 1 ≤ j ≤ k, consider the

equation (β, αj) =
∑k
i=1 ci(αi, αj). Multiplying by 2/(αj , αj) we get:

2
(β, αj)
(αj , αj)

=
k∑
i=1

2(αi, αj)
(αj , αj)

ci for all 1 ≤ j ≤ k

Or: β(hαj ) =
∑k
i=1 αi(hαj )ci. In view of Proposition 11.2(c), we have k equa-

tions with k unknowns and integral (importantly, rational) coefficients. Now since
the αi form a basis on H∗ and the form is nondegenerate, the k by k matrix
Aij = (αi, αj) is nonsingular, therefore the same holds for the coefficient matrix for
this system. Hence the system has a solution in Q, and that must be the unique
solution.

For the second assertion, pick h1, h2 ∈ H. Since each of the Lα are one-
dimensional, ad h1 (resp. h2) is a diagonal matrix with one occurrence of α(h1)
for each α ∈ Φ (and the rest of the entries are 0). It follows that κ(h1, h2) =
Tr( ad h1 ad h2) =

∑
α∈Φ α(h1)α(h2). So in particular for any λ ∈ H∗, (λ, λ) =

κ(tλ, tλ) =
∑
α∈Φ α(tλ)2 =

∑
α∈Φ(α, λ)2. This implies (λ, λ) > 0 unless λ = 0. It

remains to show that (α, β) ∈ Q for α, β ∈ Φ. Notice that (β, β) =
∑
α∈Φ(α, β)2.

Dividing by (β, β)2 we get 1/(β, β) =
∑
α∈Φ(α, β)2/(β, β)2 =

∑
α∈Φ α(hβ)2/4, and

by Proposition 11.2(c) this means (β, β) ∈ Q. Then (α, β) = (β, β)α(hβ)/2 is in Q
as well.

�

12. Root Systems

If L is a typical semisimple Lie algebra and H is a maximal toral subalgebra, we
showed in the previous section how to construct a vector space EQ ⊂ H∗ over Q
with a positive definite symmetric bilinear form. It is a simple manner to extend the
base field from Q to R to obtain a vector space E with a positive definite symmetric
bilinear form, E is then called a Euclidean space. Then Φ is a subset of E which
spans E (although note that E cannot necessarily be regarded as a subspace of
H∗). The results from the previous section inspire the following definition:

Definition 12.1. If E is a Euclidean space and Φ ⊂ E, Φ is called a root system
if:
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(R1) Φ is finite, spans E and does not contain 0.
(R2) The only multiples of α ∈ Φ which lie in Φ are ±α.
(R3) If α, β ∈ Φ, β − 2(β,α)

(α,α) α ∈ Φ

(R4) If α, β ∈ Φ, 2(β,α)
(α,α) ∈ Z

It is immediately clear from Propositions 11.1 and 11.2 that if (L,H) is a typical
semisimple Lie algebra/maximal toral subalgebra pair, Φ ⊂ H∗ is the set of roots
and E is the Euclidean space described above, then Φ is a root system of E.

While the definition of a root system is motivated by the work done on root space
decompositions, it is important to realize that the definition is purely geometric.
That is, we can talk all about root systems without even mentioning Lie algebras
once. This is what we plan to do for the rest of this section.

First we introduce some useful notation: Write 〈β, α〉 for 2(β, α)/(α, α), which
if α, β ∈ Φ is in Z by (R4). Now write σα(β) = β − 〈β, α〉α. Then σα is a linear
isomorphism of E of order 2, which geometrically can be viewed as reflection over
the hyperplane perpendicular to α. If α, β ∈ Φ, σα(β) ∈ Φ by (R3).

Lemma 12.2. If α, β ∈ Φ, β 6= ±α and (α, β) > 0, α− β ∈ Φ.

Proof. We have 〈β, α〉 · 〈α, β〉 = 4 (α,β)2

(α,α)(β,β) . But the Cauchy-Schwartz inequal-
ity implies the fraction on the right is strictly less than 4 (strict since α, β not
proportional), hence 〈β, α〉 and 〈α, β are two positive integers whose product is
less than 4. Therefore one of them must equal 1. If 〈β, α〉 = 1, then by (R3)
σα(β) = β − 〈β, α〉α = β − α ∈ Φ, so by (R1) α − β ∈ Φ. Similarly, if 〈α, β〉 = 1,
σβ(α) = α− β ∈ Φ. �

We know that Φ spans E, so we can find a subset of Φ which is a basis of E.
However, we are especially interested in a more special kind of subset of Φ:

Definition 12.3. A subset ∆ of Φ is a base of Φ if:
(B1) ∆ is a basis of E, and
(B2) Each root β ∈ Φ can be written

∑
α∈∆ kαα which each kα is an integer,

and they are either all nonnegative or all nonpositive.

Unfortunately, it is not obvious that such a set even exists. This is our next
goal. First we prove a simple lemma:

Lemma 12.4. Given a Euclidean space E and nonzero vectors v1, . . . , vn in E,
there exists w ∈ E such that (w, vi) 6= 0 for all i.

Proof. Induct on n. If n = 1, we can simply choose w = v1. If n > 1, by induction
pick w0 such that (w0, vi) 6= 0 for 1 ≤ i ≤ n − 1. If (w0, vn) 6= 0 we are done.
Otherwise, pick nonzero a ∈ R not equal to (vi, vn)/(w0, vn) for 1 ≤ i ≤ n − 1
(possible since R has infinitely many elements). Then setting w = w0 − avn,
(w, vn) = −a(vn, vn) 6= 0, and (w, vi) is nonzero by our choice of a. �

Now if γ ∈ E satisfies (γ, α) 6= 0 for all α ∈ Φ, call γ regular. The lemma estab-
lishes the existence of regular elements of E. Now let Φ+(γ) = {α ∈ Φ|(γ, α) > 0}
and Φ−(γ) = {α ∈ Φ|(γ, α) < 0}. If γ is regular, call α ∈ Φ+(γ) decomposable
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if α = β1 + β2, where β1, β2 ∈ Φ+(γ). α ∈ Φ+(γ) is indecomposable otherwise.
Finally, let ∆(γ) be the set of indecomposable roots. Then we have the following
theorem:

Theorem 12.5. ∆(γ) is a base of Φ, and any base of Φ can be written as ∆(γ)
for some regular element γ.

Proof. This is a proof in steps.
Step 1: If α, β ∈ ∆(γ), α 6= β, (α, β) ≤ 0. If (α, β) > 0, then β − α and α − β

are roots (Lemma 12.2). At least one of them is in Φ+(γ), suppose α−β. But then
α = β + (α − β), so α is decomposable, and in the other case β is decomposable.
So (α, β) ≤ 0.

Step 2: If K is any finite subset of E such that (γ, k) > 0 for k ∈ K and
(k1, k2) ≤ 0 for k1 6= k2 in K, then K is a linearly independent set.

Suppose
∑
i riki = 0, and separate the positive coefficients from the negative

coefficients to get
∑
siki =

∑
tjkj = ε, where each of the si, tj > 0 and the ki’s

and kj ’s are distinct elements of K. Then (ε, ε) =
∑
i,j sitj(ki, kj) ≤ 0, meaning

ε = 0. Now 0 = (γ, ε) =
∑
i si(γ, ki) and since all the (γ, ki) > 0 we know all the

si = 0 (similarly, all tj = 0).

Step 3: Any element in Φ+(γ) can be written as a linear combination of elements
in ∆(γ) where the coefficients are nonnegative integers

If not, pick α ∈ Φ+(γ) which cannot be written in this way such that (γ, α)
is minimal. Then α is not in ∆(γ), so α = β1 + β2, β1, β2 ∈ Φ+(γ). Then
(γ, α) = (γ, β1) + (γ, β2), and both the (γ, βi) are positive and hence less than
(γ, α). This means each of the βi can be written as a linear combination in the
desired way, hence so can α.

Step 4: ∆(γ) is a base.
By steps 1 and 2, ∆(γ) is linearly independent. Then if β ∈ Φ, if β ∈ Φ+(γ)

we know β can be written as a linear combination of elements in ∆(γ) with non-
negative integral coefficients (step 3). Then if β ∈ Φ−(γ), −β ∈ Φ+(γ) so β can
be written as a linear combination with nonpositive integral coefficients. Since γ is
regular, Φ = Φ+(γ) ∪ Φ−(γ), so this establishes property (B2). Then the fact that
∆(γ) spans follows from the fact that Φ is a spanning set.

Step 5: If ∆ is a base, there exists γ such that (γ, α) > 0 for all α ∈ ∆.
Let ∆ = α1, . . . , αk. Then for 1 ≤ i ≤ k, we can find nonzero ui such that

(αj , ui) = 0 for i 6= j: Just pick a vector orthogonal to the subspace spanned by the
αj with j 6= i. Then (αi, ui) 6= 0 (this would force ui = 0). Now let δi = 〈αi, ui〉ui,
and γ =

∑
i δi. Then (αi, γ) = 〈αi, ui〉(αi, ui) = (αi,ui)

2

(ui,ui)
> 0.

Step 6: If ∆ is a base, ∆ = ∆(γ) for some γ.
Pick γ such that (γ, α) > 0 for all α ∈ ∆ (by step 5). Now if β ∈ Φ, β =∑
α∈∆ kαα where (by (B2)) the kα are all either nonnegative or nonpositive. In

the first case (γ, β) > 0, in the second case (γ, β) < 0. So γ is regular. Then
∆ ⊂ Φ+(γ). Suppose α ∈ ∆ is decomposable: α = β1 + β2, each βi ∈ Φ+(γ).
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Then both βi can be written as a nonnegative integral linear combination of the
elements in ∆, so the sum of the coefficients in each combination is at least one.
That means α can be written as a nonnegative linear combination of the elements
in ∆ with the sum of the coefficients at least 2 (but can also be written α = 1 · α,
which contradicts the linear independence of ∆. That means each element in ∆ is
indecomposable, so ∆ ⊂ ∆(γ). But since each is a basis of the same vector space,
∆ = ∆(γ).

�

Now we have some simple lemmas about bases that will help us out in the next
section:

Lemma 12.6. If ∆ is a base of Φ, then (α, β) ≤ 0 for α 6= β in ∆, and α − β is
not a root.

Proof. α − β cannot be a root, as this violates (B2) (the coefficients are not all
nonnegative or all nonpositive). But by Lemma 12.2, if (α, β) > 0, since α 6= β
(and obviously α 6= −β) we have α− β is a root. �

We say an element in Φ is positive (relative to a base ∆) if the coefficients (as
in (B2)) are all nonnegative, and negative otherwise. Note that if ∆ = ∆(γ), then
the positive elements are exactly Φ+(γ), and the negative elements Φ−(γ).

Lemma 12.7. If α is a positive root (relative to ∆) and α /∈ ∆, there exists β ∈ ∆
such that α− β is a root (and α− β is necessarily positive).

Proof. By Theorem 12.5, ∆ = ∆(γ) for some γ ∈ E. Then (γ, α) > 0. If (α, β) ≤ 0
for all β ∈ ∆, Step 2 of Theorem 12.5 would imply ∆∪{α} is a linearly independent
set, which is a contradiction. So pick β ∈ ∆ with (α, β) > 0, Lemma 12.2 implies
α − β ∈ Φ. Then α − β is positive, otherwise β = (β − α) + α would be a
decomposition of β would be a decomposition of β into a sum of positive roots. �

Corollary 12.8. Each β ∈ Φ+ can be written in the form α1 + · · · + αk, each
α ∈∈ ∆ (not necessarily distinct), such that each partial sum α1 + · · ·+αi is a root.

Proof. Use the lemma and induct on the sum of the coefficients of β when written
as a nonnegative integral linear combination of elements in ∆. �

Here we introduce the fairly straightforward idea of a root system isomorphism:

Definition 12.9. Φ and Φ′ (in E, E′ respectively) are said to be isomorphic if
there exists φ : E → E′, a vector space isomorphism, such that 〈φ(β), φ(α)〉 = 〈β, α〉
for each pair of roots β, α. φ is called a root system isomorphism.

The last major notion of root systems is the idea of reducibility:

Definition 12.10. A root system Φ is called irreducible if it cannot be partitioned
into the union of two proper subsets such that each root in one is orthogonal to
each root in the other.

A useful proposition follows:

Proposition 12.11. If ∆ is a base of Φ, Φ is irreducible iff ∆ cannot be partitioned
in the same way, ie into two proper subsets such that each root in one is orthogonal
to each root in the other.
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Proof. First suppose Φ = Φ1∪Φ2 is such a partition. Then ∆ = (∆∩Φ1)∪(∆∩Φ2).
This is a valid partition unless either of those is empty. But if, say ∆ ∩ Φ1 = ∅,
then every root in ∆ is orthogonal to every root in Φ1, implying Φ1 = ∅.

Now suppose ∆ = ∆1 ∪ ∆2 is such a partition. Let Φ1 be the intersection
of Φ with the span of ∆1 and Φ2 be the intersection of Φ with the span of ∆2.
Then clearly every root in Φ1 is orthogonal to every root in Φ2 and both these
sets are nonempty, it remains to show that Φ = Φ1 ∪ Φ2. Suppose not. Pick β ∈
Φ− (Φ1∪Φ2), WLOG β is positive. By Corollary 12.8, write β = α1 +α2 + · · ·+αk
such that each partial sum is a root. WLOG, α1 ∈ ∆1. Since β /∈ Φ1, there exists
a first αi ∈ ∆2, call it γ. So α1 +α2 + · · ·+αj + γ ∈ Φ, and αi ∈ ∆1 for 1 ≤ i ≤ j.
Call this sum δ.

Now consider σγ(δ). Since for 1 ≤ i ≤ j, (αi, γ) = 0 we have σγ(αi) = αi. Also
σγ(γ) = −γ. So σγ(δ) = α1 + · · ·+ αj − γ is a root (R3). But since γ is not equal
to any of the αi, we have just written a root as a linear combination of roots in
∆ with some coefficients positive and some negative, contradicting (B2). Hence
Φ = Φ1 ∪ Φ2 as desired. �

We end with a useful feature of irreducible root systems. First, call β ∈ Φ
maximal if β is positive and for any positive root α, β + α is not a root.

Theorem 12.12. If Φ is an irreducible root system, there exists a unique maximal
root.

Proof. Existence of a maximal root is easy: simply start with a positive root α and
keep adding positive roots to get new roots. You will never repeat a root (since the
sum of positive roots can’t be zero) so eventually you will reach a root and not be
able to add a positive root. Then you will have a maximal root.

For uniqueness, let β be a maximal root, and write β =
∑
α∈∆ kαα. Let ∆1 be

the set of α with kα > 0, and ∆2 be the set of α with kα = 0 (then ∆ = ∆1 ∪∆2).
Then for α ∈ ∆2, (β, α) ≤ 0 (Lemma 12.6) and since Φ is irreducible α ∈ ∆2 must
be nonorthogonal to some α′ ∈ ∆1, hence (α, α′) < 0. This forces (α, β) < 0, so
α+ β is a root (Lemma 12.2) which is a contradiction. Hence ∆2 is empty and all
kα > 0 for all α. We also (β, α) ≥ 0 for all α ∈ ∆.

Now let β′ be another maximal root. The same facts must be true of β′, and
there must be at least one α ∈ ∆ for which (α, β) > 0, hence (β, β′) > 0. Then
(Lemma 12.2) β − β′ is a root. WLOG it is positive (otherwise use β′ − β), but
then β = (β − β′) + β′ which contradicts the maximality of β′. �

13. Isomorphism Theorem

Suppose L is a typical semisimple Lie algebra, H a maximal toral subalgebra
and Φ ⊂ H∗ the set of roots. Then we showed that we can consider Φ as a subset
of a Euclidean space E, by first considering the rational span of Φ in H∗ and then
extending the base field from Q to R. Then Φ is a root system in E.

One might ask whether, if two semisimple typical Lie algebra/maximal toral
subalgebra pairs yield isomorphic root systems, are the original Lie algebras/toral



30 ALEX ZORN

subalgebras isomorphic? The answer is, in fact, yes. That is the goal of this section.

For the rest of this section, all the terminology is as before: L is a typical semisim-
ple Lie algebra, H is a maximal toral subalgebra, Φ the set of nonzero roots of L,
L = H +

∑
α∈Φ Lα the root space decomposition. For α ∈ H∗, tα ∈ H is defined

such that for all h ∈ H, κ(tα, h) = α(h). Then for α ∈ Φ, we define hα = 2tα
(α,α) ,

where the inner product on H∗ is defined by (α, β) = κ(tα, tβ). We showed that if
xα ∈ Lα 6= 0 there exists a unique yα ∈ L−α such that [xαyα] = hα.

Proposition 13.1. If ∆ is a base of Φ, L is generated (as a Lie algebra) by
arbitrary nonzero root vectors xα ∈ Lα, yα ∈ L−α.

Proof. Let β be an arbitrary positive root (relative to ∆). By Corollary 12.8, β can
be written as α1 + · · · + αs where each partial sum is also a root and all αi ∈ ∆.
We also know that if γ, δ ∈ Φ and γ + δ ∈ Φ, [LγLδ] = Lγ+δ (Proposition 11.2(e)).
Then by induction on s we see that Lβ must lie in any subalgebra of L containing
each Lα for α ∈ ∆. Similarly if β is negative, Lβ lies in any subalgebra of L
containing each L−α (α ∈ ∆). Finally, each [xαyα] is some nonzero multiple of hα,
and the hα span H (Proposition 11.2(f)). This proves the proposition. �

This leads naturally into the following definition:

Definition 13.2. If ∆ is a base of Φ, 0 6= xα ∈ Lα, 0 6= yα ∈ L−α for α ∈ ∆, and
[xα, yα] = hα, we call the set {xα, yα|α ∈ ∆} a standard set of generators for
L.

Now we can relate the notion of irreducible root systems to simple Lie algebras:

Proposition 13.3. If L is simple, Φ is an irreducible root system.

Proof. Suppose Φ = Φ1 ∩ Φ2 is a partition of Φ into nonempty orthogonal com-
ponents. Consider the subalgebra K of L generated by all the Lα for α ∈ Φ1.
Then for β ∈ Φ2, (α + β, α) 6= 0 and (α + β, β) 6= 0 so α + β cannot be a root.
Hence [LαLβ ] = 0, so the Lβ centralize K. Since Z(L) = 0, K cannot be all of L.
Furthermore, the Lα for α ∈ Φ1 must normalize K, and therefore all Lα for α ∈ Φ,
and therefore all of L (Proposition 13.1). �

Now we state a useful theorem that allows us to restrict our attention to simple
Lie algebras:

Theorem 13.4. Let L be a semisimple typical Lie algebra with maximal toral
subalgebra H and root system Φ. If L = L1 ⊕ L2 ⊕ · · · ⊕ Ln is a the decomposition
of L into simple ideals, and Hi = Li ∩H, then Hi is a maximal toral subalgebra of
Li with (irreducible) root system Φi. Then the Φi can be thought of as subsets of Φ
such that Φ = Φ1 ∪ · · · ∪Φn is the decomposition of Φ into irreducible components.

Proof. Each Hi is toral in Li. Suppose T were a larger toral algebra. Then since
any element in Li acts (via ad) trivially on any Lj with j 6= i, T is toral in L. But
then the direct sum of T and the Hj with j 6= i would be a toral subalgebra of L
containing H (since T centralizes each of the Hj).
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Now if α ∈ Φi (so α ∈ H∗i ) we can think of α ∈ H∗ by simply saying α(Hj) = 0
for j 6= i. Then α is clearly a root of L relative to H, and Lα ⊂ Li. On the other
hand, if α ∈ Φ, since [HLα] 6= 0 we must have [HiLα] 6= 0 for some i, and then
Lα ⊂ Li so α |Hi is a root of Li. �

Theorem 13.5. Let L, L′ be simple typical Lie algebras with respective maximal
toral subalgebras H,H ′ and root systems Φ,Φ′. Suppose φ : Φ→ Φ′ is a root system
isomorphism. Furthermore, pick a base ∆ ⊂ Φ, so ∆′ = φ(∆) ⊂ Φ′ is a base of
Φ′. For each α ∈ ∆, choose arbitrary nonzero xα, xφ(α) in Lα, Lφ(α) respectively.
Then there exists a unique isomorphism π : L → L′ such that π(hα) = hφ(α) and
π(xα) = xφ(α).

Now we prove the isomorphism theorem, which essentially says that isomorphic
irreducible root systems arise from isomorphic Lie algebra/maximal toral subalge-
bra pairs:

Proof. Let α ∈ ∆ and α′ = φ(α) ∈ ∆′. Then there exist unique yα ∈ L−α,
yα′ ∈ L−α′ such that [xαyα] = hα and [xα′yα′ ] = hα′ But if such a π exists,
we would have [xα′ , π(yα)] = [π(xα), π(yα)] = π([xαyα]) = π(hα) = hα′ , hence
π(yα) = yα′ . Then since these xα, yα generate L and the value of π on these ele-
ments is completely determined, π is unique.

Now we proceed with existence. Consider L ⊕ L′ be the direct sum of L and
L′, it is therefore a typical semisimple Lie algebra with unique simple ideals L,L′.
Let D be the subalgebra generated by the elements xα = (xα, xα′), yα = (yα, yα′),
hα = (hα, hα′).

Now since L and L′ are simple, Φ and Φ′ are irreducible and so have unique max-
imal roots β, β′ which must be mapped to each other by φ. Choose x ∈ Lβ , x′ ∈ Lβ′

nonzero, and set x = (x, x′) ∈ K. Let M be the subspace of L⊕ L′ spanned by all
ad yα1

ad yα2
· · · ad yαm(x) where αi ∈ ∆ (not necessarily distinct). Now consider

the L ”coordinate” of this expression: We have yαm ∈ L−αm hence ad yαm(x) ∈
Lβ−αm (??). Continuing this, we see that ad yα1 ad yα2 · · · ad yαm(x) ∈ Lβ−∑

i
αi

.

Repeating this logic for L′, we see the original expression lies in Lβ−
∑

i
αi
⊕

L′
β−
∑

i
αi

. It follows that M ∩ (Lβ ⊕ L′β) is only one dimensional (and so M is

not all of L⊕ L′).

We now claim that the action of D on L⊕L′ via ad stabilizes M . By definition,
ad yα stabilizes M for α ∈ ∆. For hα we proceed by induction on m in the
expression ad yα1

ad yα2
· · · ad yαm(x). First note that ad hα(x) = 2x (this is the

case m = 0. Now for the case m > 0, write the expression as ad yαm(u) where by
induction ad hα(u) ∈M . Then:

ad hα ad yαm(u) = [hα[yαmu]]

= [[hαyαm ]u] + [yαm [hαu]]

= −2[yαmu] + [yαm [hαu]]
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Which is clearly in M . Similarly for xα: ad xα(x) = 0 since it is an element of
Lα+β which is 0 by maximality of β (this is the case m = 0). Now for the case
m = 0 we write u as above. Then:

ad xα ad yαm(u) = [xα[yαmu]]

= [[xαyαm ]u] + [yαm [xαu]]

Now in the last expression, the term on the right is in M by induction. For
the term on the right, if α 6= αm we have [xαyαm ] ∈ Lα−αm , but by (??), since
α, αm ∈ ∆, α − αm is not a root, so [xαyαm ] = 0. If α = αm, then we get
[xαyα] = hα, and we have already established that hα stabilizes M .

Then if D = L⊕ L′, since D stabilizes M we have M is a proper nonzero ideal
of L⊕L′. But by the simplicity of L and L′, the only such ideals are L and L′, but
clearly M 6= L and M 6= L′.

Now consider the projections of D onto its first and second coordinates, π1 and
π2. The projections are Lie algebra homomorphisms, and onto since the xα and yα
generate L. Now let I = Ker π2, ie elements in D whose second coordinate is 0.
Since π1 is onto, π1(I) is an ideal of L. If π1(I) is nonzero, by simplicity it equals
L, which means D contains all elements of the form (x, 0) for x ∈ L. But then D
contains (xα, 0) for all α ∈ ∆, so x− (xα, 0) = (0, xα′) ∈ D. Similarly, (0, yα′) ∈ D,
and so (since these elements generate L′) D contains all elements of the form (0, x)
with x ∈ L′. Then we have D = L ⊕ L′ which we just showed could not be the
case. That means I = 0, so π2 is an isomorphism (similarly π1 is an isomorphism).

Now the isomorphism L→ L′ obtained by D is exactly the isomorphism we want
to show exists. �

We end with a straightforward result using the isomorphism theorem:

Proposition 13.6. L, H, Φ, etc. as stated at the beginning of this section. Fix a
base ∆ of Φ and pick xα ∈ Lα and yα ∈ L−α with [xαyα] = hα for α ∈ ∆. Then
there is an automorphism σ of order 2 satisfying σ(xα) = −yα, σ(yα) = −xα,
σ(h) = −h.

Proof. Let Li be a simple subalgebra of L with maximal toral subalgebra Hi and
root system Φi. Then the map sending Φi to −Φi is a root system isomorphism
inducing π : Hi → Hi which sends h to −h. Furthermore for each α with Lα ⊂ Li,
we can say that xα is sent to −yα, then we have an automorphism σi : Li → Li by
Theorem 13.3. Then this allows us to define σ on all of L and it must satisfy the
desired properties. �

14. Construction of a Chevalley Group

We are in the same boat as previous sections: L a semisimple Lie algebra, H a
maximal toral subalgebra, Φ the root system, and all other notions as previously
established.

Proposition 14.1. Let α, β ∈ Φ be linearly independent roots. Suppose r is the
greatest integer such that β− rα is a root, and q is the greatest integer with β+ qα
a root (call β − rα, . . . , β + qα the α−string through β. Then:
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(a) 〈β, α〉 = r − q
(b) If α+ β ∈ Φ, then r + 1 = q(α+β,α+β)

β,β .

Proof. (a): This is 11.2(d).
(b): Consult [1] (page 146). �

We have a simple lemma:

Lemma 14.2. Let α, β be linearly independent roots. Choose xα ∈ Lα, yα ∈ L−α
for which [xαyα] = hα and let xβ ∈ Lβ be arbitrary. Then if β − rα, . . . , β + qα is
the α−string through β, [yα[xαxβ ]] = q(r + 1)xβ.

Proof. If α + β /∈ Φ then q = 0 and [xαxβ ] = 0 so both sides are 0. Otherwise we
can consider Sα acting on Lβ−rα ⊕ · · · ⊕ Lβ+qα. Then (using the notation as in
section 9) the highest weight is r+q and xβ is a nonzero multiple of vq, so applying
xα followed by yα results in q(r + 1)xβ . �

Now our task is to construct a Chevalley basis of L: A set {xα, α ∈ Φ} ∪
{hα, α ∈ ∆} where ∆ is some base of Φ, and whenever α, β, α + β ∈ Φ with
[xαxβ ] = cα,βxα+β , cα,β = −c−α,−β .

Proposition 14.3. There exists a Chevalley basis.

Proof. Using Proposition 13.6, take the automorphism σ which sends Lα to L−α
and acts on H by multiplication by −1. If xα ∈ Lα, write x−α = −σ(xα), which
is nonzero. Then κ(xα, x−α) 6= 0 (proposition 11.1(b)). By scaling xα if necessary,
we can make κ(xα, x−α) = 2

(α,α) . Then [xαx−α] = hα (proposition 11.1(d)). For
each pair of roots {α,−α} we fix a pair xα, x−α satisfying this relation.

Now let α, β, α + β ∈ Φ so [xαxβ ] = cα,β for some cα,β ∈ F . Applying σ,
[−x−α,−x−β ] = −cα,βx−α−β . So this choice of xα, x−α satisfy the conditions of
being a Chevalley basis. �

The important fact about a Chevalley basis is the following theorem:

Theorem 14.4. Let {xα, α ∈ Φ hα, α ∈ ∆} be a Chevalley basis of L. Then the
structure constants lie in Z:
(a) [hαhβ ] = 0
(b) [hαxβ ] = 〈β, α〉xβ
(c) [xβx−β ] = hβ is a linear combination of hα, α ∈ ∆ where the coefficients are

integers.
(d) α, β linearly independent roots, β−rα, . . . , β+qα the α−string through β, then

[xαxβ ] = 0 if q = 0 or ±(r + 1)xα+β otherwise.

Proof. (a) is clear, since H is abelian. (b) follows from the fact that β(hα) = 〈β, α〉.

(c): For α ∈ Φ, consider αv = 2α
(α,α) . Then:

〈βv, αv〉 = 2
(αv, βv)
(αv, αv)

= 2
(α, β)
(β, β)

= 〈α, β〉
.

Also, for α ∈ Φ, recall σα is an isometry, so:
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σβv (αv) = αv − 〈αv, βv〉βv =
2α

(α, α)
− 〈β, α〉 2β

(β, β)

=
2(α− 〈α, β〉β)

(α, α)

=
2σβ(α)

(σβ(α), σβ(α))
= (σβ(α))v

This means that, if we let Φv = {αv|α ∈ Φ}, Φv is a root system (called the
system dual to Φ). We will show that if ∆ is a base of Φ, ∆v is a base of Φv. We
know ∆ = ∆(γ) for some γ, and (α, γ) > 0 iff (αv, γ) > 0, so consider ∆v(γ), the
nondecomposable elements of Φv relative to gamma. We will show ∆v ⊂ ∆v(γ),
and considering cardinalities ∆v = ∆v(γ) is a base.

Suppose α ∈ ∆, but αv is decomposable, ie αv = βv1 + βv2 where βvi are positive.
So βi are positive, and we have α = (α,α)

(β1,β1)β1 + (α,α)
(β2,β2)β2. But then both βi are

linear combinations of elements of ∆ with nonnegative coefficients, meaning each
βi can only have a positive coefficient associated with α. But then each βi is a
multiple of α, meaning β1 = β2 = α. But this gives us αv = αv + αv, which is
absurd.

Now note that the linear map λ : H∗ → H sending α to tα sends αv to hα.
We have showed that if ∆ is a base of Φ, ∆v is a base of Φv, ie each βv can be
written as an integral linear combination of elements αv ∈ ∆v. Applying λ, we see
that each hβ can be written as an integral linear combination of elements hα, α ∈ ∆.

(d): If q = 0 then α + β is not a root and the result is clear. Otherwise, since
tα+β = tα + tβ , we get:

[cα,βxα+β , cα,βx−α−β ] = c2α,βhα+β =
2c2α,β

(α+ β, α+ β)
(tα + tβ)

But the left side also equals−[[xαxβ ][x−αx−β ]] = [xα[xβ [x−βx−α]]]+[xβ [xα[x−αx−β ]]].
If the β−string through α is α− r′β, . . . , α+ q′β, then we can use Lemma 14.2 to
compute this (note that replacing α with −α, β with −β does not change q, q′, r, r′):

[xα[xβ [x−βx−α]]] + [xβ [xα[x−αx−β ]]] = q′(r′ + 1)[xαx−α] + q(r + 1)[xβx−β ]

=
2q′(r′ + 1)

(α, α)
tα +

2q(r + 1)
(β, β)

tβ

Now we can compare the tβ coefficients (since the tα, tβ are linearly independent)
and use Proposition 4.1(c) to get:

c2α,β =
q(r + 1)
(β, β)

(α+ β, α+ β) = (r + 1)2

And the result follows. �
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We can now consider, for a semisimple Lie algebra L with Chevalley basis
{xα, α ∈ Φ;hα, α ∈ ∆}, the set L(Z), the integral span of the basis elements.
We have just showed that L(Z) is closed under the bracket product. We are on the
verge of being able to construct Chevalley groups. First a proposition:

Proposition 14.5. Let α ∈ Φ, m ∈ Z+. Then ( ad xα)m/m! leaves L(Z) invariant.

Proof. It is enough to consider the action on the elements of the Chevalley basis.
We have ( ad xα)(hβ) = [xαhβ ] = −〈α, β〉xα ∈ L(Z), and for m > 1 we have
( ad xα)m/m!(hβ) = 0. Also, ad xα(xα) = 0. Now ( ad xα)(x−α) = hα ∈ L(Z),
( ad xα)2/2(x−α) = 1

2 [xαhα] = −xα ∈ L(Z), and ( ad xα)m/m!(x−α) = 0 for m >
2. Finally consider ( ad xα)m/m!(xβ) where β is not ±α. We know [xαxβ ] =
±(r + 1), and the numbers which play the role of r for β, β + α, . . . , β + (m− 1)α
are r, r + 1, . . . , r + (m − 1), if each of these are roots. Then ( ad xα)m/m!(xβ) =
± (r+1)(r+2)···(r+m)

m! xβ+mα =
(
m+r
m

)
xβ+mα ∈ L(Z). If β+mα is not a root, then the

expression is just equal to zero. �

Now, each xα being nilpotent, we can consider the endomorphisms exp ad xα =
1 + ad xα = ( ad xα)2/2! + · · · + ( ad xα)m/m! + · · · , which is a finite sum. (This
definition is based off the Taylor expansion for exp in the real numbers). It follows
that exp ad xα stabilizes L(Z). Also, it is a simple theorem from ring theory that
if u is nilpotent, 1 + u is invertible. Hence exp ad xα is invertible, and so together
the exp ad xα generate a matrix group (relative to the Chevalley basis) that acts
on L(Z), hence has integral coefficients.

More generally, we can consider exp ad Txα, where T is an indeterminant, which
is an invertible matrix with coefficients in Z[T ]. These matrices generate a matrix
group G, reducing the coefficients mod p and considering T to be an element of
an arbitrary extension field K of Fp we get a matrix group G(K) over K. This is
called the Chevalley group (of adjoint type).

This concludes the work of this paper.
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