
A CATEGORICAL INTRODUCTION TO SHEAVES

DAPING WENG

Abstract. Sheaf is a very useful notion when defining and computing many different
cohomology theories over topological spaces. There are several ways to build up sheaf
theory with different axioms; however, some of the axioms are a little bit hard to remember.
In this paper, we are going to present a “natural” approach from a categorical viewpoint,
with some remarks of applications of sheaf theory at the end. Some familiarity with basic
category notions is assumed for the readers.
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1. Motivation

In many occasions, we may be interested in algebraic structures defined over local neigh-
borhoods. For example, a theory of cohomology of a topological space often concerns with
sets of maps from a local neighborhood to some abelian groups, which possesses a natural
Z-module struture. Another example is line bundles (either real or complex): since R or C
are themselves rings, the set of sections over a local neighborhood forms an R or C-module.

To analyze this local algebraic information, mathematians came up with the notion of
sheaves, which accommodate local and global data in a natural way. However, there are
many fashion of introducing sheaves; Tennison [2] and Bredon [1] have done it in two very
different styles in their seperate books, though both of which bear the name “Sheaf Theory”.
In this paper, we would use category theory as a tool (which is closer to Tennison yet some
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proofs of this paper may be more categorical) to give an introductory survey to this useful
notion, sheaves.

2. Definitions and Constructions

2.1. Presheaf. Before we define sheaves, we first want to introduce the notion of presheaves,
which is simpler and yet very helpful in understanding sheaf theory. The idea of a presheaf
over a space is to associate each open set with an algebraic object, which often carries data
about the open set itself, in such a way that we can establish a map from a bigger open set to
a smaller open set inside it. We can think of it as there are layers of open sets where smaller
ones are sitting above the bigger ones, and we want to assign each layer some algebraic
object in a compactible way from bottom to top. For simplicity, throughout this paper, we
are going to use R for a commutative ring and X for a topological space unless otherwise
specified.

For any space X, we want to define a category called the category of open sets OpnX . The
objects in OpnX are open sets of X and morphisms are inclusions. Then we define presheaf
as following

Definition 2.1. A presheaf of R-modules on a space X is a contravariant functor

A : OpnopX →ModR.

Elements in each such R-module are called sections of the presheaf over a particular open
set.

By this definition, for any inclusion map V ⊂ U , we get an R-module homomorphism
j : A(U) → A(V ). To distinguish this R-module homomorphism j from others, we name
this particular functorial one the restriction from A(U) to A(V ), and by convention write

j(s) = s|V
for any s ∈ A(U).

Remark 2.2. We can define presheaf of many other categories using this definition as well.
In particular, since abelian groups are Z-modules, presheaf of abelian groups fits into this
definition.

The name “restriction” maps may not be very meaningful in this context, since in presheaves
restriction maps may not even be surjective. However, as we will see in the case of sheaves,
the name “restriction” is in fact our familiar restriction in the common sense.

Notice that there can be more than one possible presheaf on a space X, and between two
presheaves A and B there can be natural transformation η such that the following diagram
commutes

(2.3) A(U)

jA
��

ηU
// B(U)

jB
��

A(V ) ηV
// B(V )

for any open sets V ⊂ U .
If we regard these presheaf functors as objects and natural transformations between them

as morphisms, we get a new category called the category of presheaves over X, denoted
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by Mod
OpnopX
R or simply by PrshfX . By convention, the morphisms (natural transformation

between presheaves) are called presheaf homomorphisms.

Examples 2.4. (1) If we associate every open subset of space X to the trivial R-module
and let the restrictions be the trivial homomorphism, we get the zero presheaf (the
trivial presheaf), denoted by 0. Notice that this is both the initial and terminal
object in PrshfX , and hence the zero object in PrshfX .

(2) Let X be a singleton set {∗}. Then Prshf{∗} is the same as the category ModR.
(3) Consider a smooth manifold M . For each open subset U , consider the set CM(U) of

all complex-valued smooth maps over U . It is easy to see that CM(U) is a complex
vector space (a C-module). For two open subsets V ⊂ U , we can define the restriction
map to be the restriction of maps in CM(U) to the smaller open subset. This gives
us a perfectly good presheaf, which will appear many times in this paper.

One fact about category of functors is that most constructions can be carried out compo-
nentwise in the codomain category. In the case of PrshfX , since the codomain category is
the algebraic category ModR, we will expect some basic algebraic notions to be well-defined
for presheaves.

(1) A subpresheaf of a presheaf A is a presheaf B together with a presheaf monomorphism
η : B → A. In particular, the zero presheaf is a subpresheaf of any presheaf.

(2) The kernel of a presheaf homomorphism η : A→ B is categorically defined to be the
unique object ker(η) with a presheaf homomorphism into A that makes the following
diagram on the left commute:

ker(η) // A //

η

770 // B

C

<<

∃!

OO
ker (ηU)

i //

∃!
��

A(U)

jA
��

ηU // B(U)

jB
��

ker (ηV )
i
// A(V ) ηV

// B(V )

To show existence, we just need to take kernels of R-module homomorphism at every
open set level, and by the categorical property of kernels we get all the restriction
maps naturally, which fit into the definition of a presheaf (diagram on the right).

(3) The product presheaf A × B of two presheaves A and B is categorically defined as
usual with the diagram below. One can verify that open set level-wise product in
the category of ModR gives the right construction for product presheaf, i.e., setting
A×B(U) = A(U)×B(U) for each open set U .

C

{{
∃!
�� ##

A A×BπA
oo

πB
// B

In fact, this definition of sheaf products can be generalized to products among a
collection of presheaves of any cardinality.

(4) The cokernel of a presheaf homomorphism is the dual notion of kernel, as in the dia-
gram on the left. Construction is also carried out open set level-wise, and restrictions
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are natural result of cokernels in the category ModR.

B //

η

''
0 // A

q //

!!

A/B

∃!
��
C

A(U)
ηU //

j

��

B(U)
q //

j

��

coker(U)

∃!
��

A(V ) ηV
// B(V ) q

// coker(V )

(5) In particular, a quotient presheaf B/A is a cokernel of a monomorphism A→ B.
(6) By a categorical convention, we define the image of a homomorphism η : A → B to

be the kernel of the cokernel of η, denoted by img(η) [2]. (For the readers who know
more category theory, this definition can be used in any abelian category, to which
PrshfX belongs.) Notice that a unique homomorphism can be obtained from A to
img(η) via the universal property of kernels:

A

η

++

η &&

// 0 // B

q
++

// 0 // coker(η)

img(η) = ker(q)

88

Readers can easily verify that img(η) is infact a presheaf consisting of (img(η))U =
ηU(A(U)). By convention, this resulting homomorphism from A to img(η) is also
named η.

2.2. Sheaf. From the discussion above, we can see that a presheaf may carry a lot of data and
we can always find out data about smaller open sets via restriction maps. However, ideally
we would also want to process information in the opposite direction, namely obtaining data
about a bigger open set by just looking at its open cover. Thus we would like to impose
one condition to specify this particular kind of presheaf, which are the ones that allow us to
“glue” the pieces over every open set in an open cover, and this is the notion of a sheaf.

Definition 2.5. A presheaf A is a sheaf if it satisfies the following equalizer diagram

A(U)
f //
∏

αA (Uα)
g //
h
//
∏

β,γ A (Uβ ∩ Uγ)

whenever U =
⋃
α Uα. The map f is the product of restrictions, whereas g and h are defined

by

g (
∏

α sα) =
∏

α,β sα|Uα∩Uβ , h (
∏

α sα) =
∏

β,α sα|Uβ∩Uα

One may wonder how this definition helps us “glue” pieces together. For demonstration,
let A be a sheaf over X. Suppose {Uα} is an open cover of an open set U . Upon each of
the Uα, suppose we pick a section sα in a compatible way, namely whenever Uα intersect Uβ
non-trivially, we require that

sα
∣∣
Uα∩Uβ

= sβ
∣∣
Uα∩Uβ

.

Then this definition basically says that there must be a unique section s ∈ A(U) such that

s|Uα = sα
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for each α.
An important property of sheaves arises from this definition. If we consider the empty set

as an open set in X and cover it with the empty covering, then the equalizer diagram above
becomes

A(∅) f // {0} //// {0}
where {0} is the terminal object of the category ModR. (Recall that the 0-fold categorical
product gives the terminal object.) Thus for any sheaf A, A(∅) is always the trivial R-module.

There are alternative definitions for sheaves, some involves a topology defined on the sheaf
a priori; right now we just want to stick with our algebraic definition, and later we will show
how this gives a natural topology on a sheaf. Another common algebraic definition uses two
sheaf axioms called “monopresheaf” and “conjunctive” [1], which is essentially equivalent to
the equalizer diagram above.

Since any sheaf is a presheaf, we have morphisms between sheaves in the same sense
as presheaves, i.e., natural transformations between functors. Notice that any presheaf
homomorphism between sheaves automatically commutes with the equalizer diagrams as
illustrated below

A(U)
f //

ηU

��

∏
αA (Uα)

∏
α ηUα

��

g //
h
//
∏

β,γ A (Uβ ∩ Uγ)∏
β,γ ηUβ∩Uγ

��
B(U)

f //
∏

αB (Uα)
g //
h
//
∏

β,γ B (Uβ ∩ Uγ)

Hence we can define a new category called the category of sheaves over X, denoted by
ShfX , to be the full subcategory of PrshfX whose objects satisfies Definition 2.5. Also by
convention, we would call the morphisms in this category sheaf homomorphism.

Examples 2.6. (1) The zero presheaf obviously satisfies the equalizer diagram and hence
is a sheaf as well.

(2) An example of a presheaf that is not a sheaf. Take a two-point space {x, y} with the
discrete topology. Let A be a presheaf defined as follows:

A({x, y}) = Z, A({x}) = Z2, A({y}) = Z2, A(∅) = 0

with the obvious R-module homomorphisms. However, this is not a sheaf since the
map

A({x, y})→ A({x})× A({y})
is not injective.

3. Sheafification

3.1. Direct Limit and Stalks. We have not yet explained why this mathematical notion
defined above is called “sheaf”, or in other words, what these sheaves actually consist of.
Thus in this section we want to tell the readers what the “stalks” inside a sheaf are so that
we have some intuitive picture to make sense of this term. We would like to start with the
notion of direct limit.

Definition 3.1. In a category C, a directed system is a set of objects

{Ci | i ∈ I, I has a preorder ≤ }
5



together with morphisms fij : Ci → Cj for i ≤ j such that

(1) fii = IdAi ;
(2) fik = fjk ◦ fij for i ≤ j ≤ k.

Example 3.2. An example of a directed system can be found in presheaves. Fix a point
x ∈ X and consider all open sets U containing x. Notice that inclusion is a preorder on the
collection of open sets (say U ≥ V if U ⊂ V ). Thus for a presheaf A over X, we form a
directed system {A(U) | x ∈ U} in ModR, with the morphisms being the presheaf restriction
maps.

Since a directed system is a small category, sometimes we want to know whether a colimit
exists for its diagram. Thus we have the following definition:

Definition 3.3. A direct limit of a directed system in the category C is the colimit of the
directed system, i.e., an object C together with morphisms φi : Ci → C such that the
following diagram commutes for every i ≤ j.

Ci //

""

φi

��

Cj
φj

~~

||

C

∃!
��
D

For a category in which every directed system has a colimit, we say that this category
possesses direct limits. (It may sound confusing that the direct limit is actually a colimit.
The dual notion of the direct limit is called “inverse limit”, which is defined to be the limit
of a directed system.)

The following is an important proposition for the category of R-modules.

Proposition 3.4. The category ModR possesses direct limits.

Proof. Let {Mi | i ∈ (I,≤)} be a directed system in ModR. Take the direct sum
⊕

i∈IMi

in ModR and consider the submodule N generated by the elements in the form mi− fij(mi)
where i ≤ j. Now we can take the quotient R-module M =

(⊕
i∈IMi

) /
N . For each i ∈ I,

define a morphism φi : Mi → M to be the composition of the inclusion map from Mi into
the direct sum followed by the quotient map by N . It is easy to see that M satisfies the
commutative diagram above and hence is the direct limit of the directed system {Mi}. �

As we described in Example 3.2, {A(U) | x ∈ U} is a directed system in ModR for any
presheaf A, and hence we are welcome to take its direct limit:

Definition 3.5. The stalk Ax of presheaf A at x is the direct limit of directed system
{A (Ui) | i ∈ I}, where {Ui | i ∈ I} is a direct set of open neighborhoods of x.

Elements in a stalk are called germs. In particular, if a germ comes out as the direct limit
of a section s ∈ A(U), then we denote it by sx.

We denote natural homomorphism that sends s ∈ A(U) to sx by θx.
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The following diagram comes from the definition of direct limit (V ⊂ U):

A(U)
j //

θx ""

A(V )

θx||
Ax

Remark 3.6. Notice that stalks are actually defined for all presheaves; nevertheless, which will
be clear by the end of the next section, sheaves are exactly the presheaves that successfully
tie its stalks into a bundle and that is how the name comes out.

The following is a useful fact that we should keep in mind:

Proposition 3.7. If A is a sheaf and s, t are two sections in A(U), then s = t if and only
if sx = tx for all x ∈ U .

Proof. The forward direction is trivial. In the backward direction, we know that sx = tx if
and only if there exists a neighborhood Ux of x, Ux ⊂ U , such that

s|Ux = t|Ux .
However, if we take all such neighborhoods Ux for all x, we get an open cover for U , and by
the definition of sheaves,

A(U)→
∏
x∈U

A(Ux)

should be injective, and hence we have s = t. �

Another natural question to ask is how stalks from two presheaves relate. Fix a point
x ∈ X and suppose η is a homomorphism from presheaf A to presheaf B. Immediately from
the definition of presheaf homomorphism we know that η gives R-module homomorphisms
ηU : A(U)→ B(U) for each open set U , and Diagram 2.3 gives the compatibility of directed
systems {A(U) | x ∈ U} and {B(U) | x ∈ U}. Now follow the universal property of direct
limit, we obtain a unique R-module homomorphism ηx from Ax to Bx such that the following
diagram commutes for any x ∈ V ⊂ U :

A(U) //

ηU
�� ""

A(V )

ηV
��||

B(U)
77

""

Ax

��

B(V )

||
Bx

This seems to have some categorical implication: for each presheaf A over X, we can take
stalks at each point in X, and there are R-module homomorphisms on corresponding stalks
whenever there is a homomorphism between two presheaves - all of these look like that we
have produced a new category! To make it precise, for any presheaf A over X, we define an
object LA by taking

LA =
⋃
x∈X

Ax.
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Between two objects LA and LB, if there is a morphism η : A→ B in PrshfX , we can define
a map

Lη : LA→ LB, Lη(sx) = ηx(sx).

It is easy to see that

L Id(sx) =sx

and L(η ◦ ξ)(sx) =(η ◦ ξ)x(sx) = ηx ◦ ξx(sx) = Lη ◦ Lξ(sx)
Thus L can be view as a functor from PrshfX to this new category.

However, these objects and maps are not exciting enough. At first glance, LA looks like a
principal bundle, except for the lack of a topology. Thus, one way to make LA interesting is
to put a topology onto it, in such a way that the maps Lη becomes continuous. As a result,
we have the following proposal: consider an open set U in X and define

sU = {sx | x ∈ U, s ∈ A(U)} .
It is not hard to verify that {sU | U open, s ∈ A(U)} gives a topological basis for LA. Now
we just need to show the continuity of Lη : LA→ LB:

Proposition 3.8. Lη is continuous.

Proof. It is enough to show that the preimage of tV is open for any t ∈ B(V ). Suppose
Lη (sx) = ηx (sx) = tx. By the definition of direct limit, this means there exists some
neighborhood W ⊂ V such that ηW : s|W 7→ t|W . But then this implies that ηy (sy) = ty for
all y ∈ W , i.e., Lη (sW ) ⊂ tV . �

Now since in this new category, objects are topological spaces and morphisms are contin-
uous, it is a subcategory of Top, the category of topological spaces. We shall name this new
category the sheaf spaces over X, denoted by ShfSpcX . We need to point out that when L
is regarded as a functor from PrshfX to ShfSpcX .

We can see that by applying the functor L to any presheaf A, what it does is sorting
out the stalks over X and putting a topology such that each cross-section over an open set
is open and homeomorphic to the underlying open set. A sheaf space almost looks like a
sheaf; in fact, as we will see in the next section, all we need to do is just “tie up” the stalks
naturally and the sheaf space will automatically turns into a sheaf. This is precisely the idea
of “sheafifying” a presheaf into a sheaf.

3.2. Sheafification in Action. As indicated in the previous section, there seems to be a
way to make every presheaf into a sheaf: we have already defined a functor L that can turn
a presheaf into something close to be a sheaf; we just need to finish the “tie up” process,
which will be realized by a functor Γ : ShfSpcX → ShfX .

For each object LA in ShfSpcX , we define ΓLA to be the presheaf that associates an
open set U with

ΓLA(U) = {µU ⊂ LA | µU is homeomorphic to U via the map p : sx 7→ x}
.

This construction may seem to be too weak and rather arbitrary. Elements in ΓLA(U)
are homeomorphic sets in the sheaf space LA; but what we need is an R-module structure
on ΓLA(U), so how are addition and scalor multiplication defined over homeomorphic open
sets?
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Recall that the topology on LA is defined by the basis {sU | s ∈ A(U)}. Therefore a
typical element µU ∈ ΓLA(U) would be a union of some sUα in which {Uα} is a open cover
of U . Moreover, since we demand the map p : sx 7→ x to be a homeomorphism, there must
be one and only one germ over each point from the corresponding stalk. Therefore wherever
Uβ intersects Uγ non-trivially, sUβ must agree with sUγ on the germs over the intersection,
i.e., for x ∈ Uβ ∩ Uγ,

sx ∈ sUβ ⇐⇒ sx ∈ sUγ .
Thus, µU can be understood as many pieces of sUα “gluing” together at the intersections.

Since in µU , there is one and only one germ for each point, we can define addition and
scalor multiplication stalk-wise. The only thing we need to verify is that we still get a
homeomorphic image of U after addition and scalor multiplication. Notice that locally at
the point x, µU is just sV for some neighborhood V of x. Observe that for any r ∈ R,

rsV + tV = {rsx + tx | x ∈ V } = (rs+ t)V .

Therefore both addition and scalor multiplication are well-defined.
Between an open set and one of its open subsets, the restriction map is just truncating

each section to the homeomoprhic part corresponding to the open subset, i.e., for open sets
V ⊂ U ,

(µU)
∣∣
V

= {sx ∈ µU | x ∈ V } .
It is not hard to see that this restriction map is an R-module homomorphism.

Up to this point, we have shown that ΓLA is a presheaf; now the task is to verify the
sheaf condition (Definition 2.5):

ΓLA(U) //
∏

α ΓLA (Uα) ////
∏

β,γ ΓLA (Uβ ∩ Uγ)

Suppose we have another R-module M such that the following two composite maps are
the same

M
f //
∏

α ΓLA (Uα) ////
∏

β,γ ΓLA (Uβ ∩ Uγ)

Then we obtain a well defined map f̃ : M → ΓLA(U) by sending

f̃ : m 7→
⋃
α

πα ◦ f(m)

(where πα is the projection map of the product R-module). Notice that the commutativity

of the above diagram guarantees that this map is well-defined. Furthermore, f̃ is the unique
map that makes the following diagram commute:

ΓLA(U) //
∏

α ΓLA (Uα) ////
∏

β,γ ΓLA (Uβ ∩ Uγ)

M

f̃

OO

f

77

(Uniqueness follows from the fact that the map f already determines the germ sx over every
x ∈ U in f(m).) Thus, we can conclude that ΓLA does in fact form a sheaf for each presheaf
A.
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To finish the definition of the functor Γ, we still need to define ΓLη : ΓLA → ΓLB for a
presheaf homomorphism Lη : LA→ LB. The most obvious thing to do is

ΓLηU (µU) = Lη (µU) = {ηx(sx) | sx ∈ µU} .
Lastly, it is easy to see the following two functorial properties of Γ:

ΓL IdU(µU) =L Id (µU) = µU

and ΓL(η ◦ ξ)U(µU) =L(η ◦ ξ) (µU) = Lη ◦ Lξ (µU) = ΓLη ◦ ΓLξ (µU)

In conclusion, we have the following diagram showing the functors that we have so far (I is
the inclusion functor):

ShfSpcX
Γ

%%
PrshfX

L
88

ShfX
Ioo

One interesting question to ask is what if we apply this functor to a sheaf? Is the new
sheaf any different from the original one?

The answer is no. If we recall that for each section s ∈ A(U), there is a corresponding
basis element sU ∈ ΓLA(U), and the map σU : s 7→ sU is an R-module homomorphism. We
claim that this homomorphism is bijective and hence we have the following:

Proposition 3.9. If A is a sheaf over X, then A(U) and ΓLA(U) are isomorphic (via θU).

Proof. For surjectivity, let µU be an element in ΓLA(U), which can be thought of as a union
of sUα , in which {Uα} is an open cover of U . But then wherever Uβ and Uγ intersect non-
trivially, the germs in s′Uβ and s′′Uγ over these points must be identical. By Proposition 3.7,
we can deduce that

s′|(Uβ∩Uγ) = s′′|(Uβ∩Uγ).

Now by Definition 2.5, we know that there must be a section s ∈ A(U) such that

s|Uβ = sUβ

and therefore θU(s) = µU .
For injectivity, suppose sU = 0U . Then at each stalk, we know that sx = 0 for all x ∈ U .

Proposition 3.7 yields immediately s = 0, and we are done. �

This shows that ΓLA is essentially the same sheaf as A; for simplicity, we are not going
to distinguish the sheafification of a sheaf from the sheaf itself. Moreover, on the morphism
level, we also have the following:

Proposition 3.10. If η : A→ B is a sheaf homomorphism, then ΓLη = η.

Proof. If ηU sends s ∈ A(U) to t ∈ B(U), then by the definition of ΓLη,

ΓLηU (sU) = {ηx(sx) | x ∈ U} = {tx | x ∈ U} = tU . �

We now know that the sheafification functor is the same as the identity functor when
restricted to the subcategory ShfX . Moreover, since when A is a sheaf, the sections in
ΓLA(U) are just sU = {sx | x ∈ U}, with restriction map between V ⊂ U being sU |V = sV ,
it is easy to see that (sU)x = sx. Thus we also have the following proposition
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Proposition 3.11. The stalk Ax of a presheaf A is naturally isomorphic to the stalk (ΓLA)x
for each point x.

Remark 3.12. Notice that midway through sheafification, we get a sheaf space as a union of
stalks. Thus we can identify the sheaf space with the original sheaf and thereby get a nice
topology on a sheaf, in which each section is a basis open set that is homeomorphic to the
associated open set in the underlying space. Therefore in many texts, a sheaf is identified
with the corresponding sheaf space and is defined with topological properties a priori [1].
Next we are going to rediscover the necessary and sufficient condition for a topological space
to be a sheaf over some subspace.

Theorem 3.13. For a topological space A and a subspace X with a continuous map p : A→
X, we say that (A, p) is a sheaf over X if it satisfies the following:

(1) p is a local homeomorphism onto X;
(2) each “stalk” Ax = p−1(x) is an R-module;
(3) the R-module operations are continuous in the following manner: define

A∆A = {(α, β) ∈ A× A | p(α) = p(β),

and we demand that both addition and scalor multiplication by r

+ : A∆A → A r : A → A
(α, β) 7→ α + β α 7→ rα

to be continuous.

Proof. To show that they are sufficient, we just need to set A(U) = p−1(U) for each open set
U ⊂ X and define the R-module structure by addition and scalor multiplication point-wise.
Check with Definition 2.5, this does give rise to a sheaf.

To show that they are necessary, let A be a sheaf over X as in Definition 2.5. By the
remark above, we know that A is equiped naturally with a topology. Now let the map p be
defined as

p : A = LA→ X

α ∈ Ax 7→ x

Since the sections of A are basis open sets and homeomorphic to the open sets that they are
over, the map p is obviously local homeomorphic.

Stalks Ax are R-modules by construction.
Lastly, for r ∈ R and s, t ∈ A(U), we have

rs+ t = rsU + tU = (rs+ t)U .

Since sU , tU and (rs+ t)U are all basis open sets, addition and scalor multiplication defined
in (3) are continuous. �

We would also want some equivalent topological definition of a sheaf homomorphism.

Corollary 3.14. A map η from a sheaf A to a sheaf B over X is a sheaf homomorphism
if and only if η is open and the restriction of η to Ax (denoted by ηx) is an R-module
homomorphism into Bx.

11



Proof. The forward direction is clear. In the backward direction, fix any open set U in X.
Since both A and B are sheaves, we know that

A(U) =
⋃
x∈U

Ax and B(U) =
⋃
x∈U

Bx

and hence the restriction of η to A(U) (denoted by ηU) is a map into B(U). Now we need
to show that ηU is an R-module homomorphism with respect to the R-module structures on
A(U) and B(U).

Pick a section s ∈ A(U). We know that

ηU(s) = ηU (sU) = {ηx(sx) | x ∈ U} .
Since η is an open map, ηU (sU) = η (sU) must be open. Thus there exists some basis open
set tVx in B such that

ηx(sx) ∈ tVx ⊂ ηU (sU) .

Notice that {Vx | x ∈ U} form an open cover for U , and there is one and only one germ over
every point x ∈ U . This forces the union of all tVx to be a section in B(U), i.e.,⋃

x∈U

tVx = tU = t ∈ B(U).

Thus, we can conclude that at least ηU maps sections to sections. But then it is not hard to
see that ηU preseves the algebraic operations since ηx preserves them stalk-wise. Therefore
the conditions stated are sufficient for η to be a sheaf homomorphism. �

The above theorem and corollary provide an alternative way of defining a sheaf and sheaf
homomorphism. Though maybe not as natural as Definition 2.5, sometimes it is easier to
just give out the topology and stalk-wise R-module struture. From now on, we are going to
use both definitions of sheaves in this paper interchangeably, without further explanation.

3.3. Sheafification as an Adjoint Functor. Now between the two categories PrshfX and
ShfX , we have the sheafification functor ΓL going in one direction and the inclusion functor I
going in the other. If we consider a presheaf A and a sheaf B on some space X, by convention
we can denote the set of presheaf homomorphisms between A and B (regarded as a presheaf)
by PrshfX(A, IB), and similarly denote the set of sheaf homomorphisms between ΓLA and
B by ShfX(ΓLA,B).

First notice that any section s ∈ A(U) in the presheaf A is turned into a basis open
set sU , which is an element in ΓLA(U) of the generated sheaf. It is easy to see that this
association σU : s 7→ sU is indeed an R-module homomorphism from A(U) to ΓLA(U),
which is compatible with restriction maps. Thereby we obtain a presheaf homomorphism
σ : A→ ΓLA. By easy computation, we can also see that ΓLσ = Id.

A(U)
σU //

��

ΓLA(U)

��
A(V ) σV

// ΓLA(V )

Now for any sheaf homomorphism η : ΓLA→ B, we can pre-compose σ and get a presheaf
homomorphism σ ◦ η : A→ B. Sheafify the composition map, we get

ΓL(σ ◦ η) = ΓLσ ◦ ΓLη = ΓLη = η.
12



From this, we can see that any sheaf homomorphism in ShfX(ΓLA,B) comes from some
presheaf homomorphism in PrshfX(A, IB). Therefore the map

ΓL : PrshfX(A, IB)→ ShfX(ΓLA,B)

η 7→ ΓLη

is at least surjective.
We further claim that this map is also injective. Suppose η and ξ are two presheaf

morphisms between A and B such that ΓLη = ΓLξ. This implies that for any open set U
and s ∈ A(U), we have

ΓLηU (sU) = ΓLξU (sU) .

By the definition of ΓLη and properties of direct limits, we have

ΓLηU (sU) = {ηx(sx) | x ∈ U} = (ηU(s))U .

Thus, there must be

(ηU(s))U = (ξU(s))U .

But we just showed in Proposition 3.9 that B(U) ∼= ΓLB(U) for any sheaf B. Thus we can
conclude that ηU(s) = ξU(s), and hence η = ξ. This assertion gives the following conclusion:

Theorem 3.15. The sheafification functor is left adjoint to the inclusion functor and the
inclusion functor is right adjoint to the sheafification functor, i.e., ΓL a I.

One important categorical fact about adjunction of functors is the following theorem,
which we will not prove in this paper but readers can find easily accessible proof in texts
such as Awodey [3]; we will apply it to notions that we have introduced before in the category
PrshfX and once for all define and prove the existence of equivalent notions in the category
ShfX .

Theorem 3.16 (RAPL & LAPC). Right adjoints preserve limits and left adjoints preserve
colimits.

Corollary 3.17. There exist products and kernels in the category ShfX , which are isomor-
phic to the presheaf products and presheaf kernels. A sheaf monomorphism is also a presheaf
monomorphism, and hence a subsheaf is automatically a subpresheaf.

Proof. Notice that products and kernels are limits; therefore they commute with the right
adjoint functor I. Thus, if sheaf products and sheaf kernels exist, they must be isomorphic to
their presheaf counterparts. To show existence, we just need to check whether the presheaf
products and kernels actually satisfy Definition 2.5; and fortunately, they do.

For monomorphisms, notice that a monomorphism η : A → B in any category can be
realized as a map such that the following pull-back diagram yields A:

C

��

""

∃!

��
A

Id
//

Id
��

A

η
��

A η
// B

13



Since pull-backs are limits, they are preserved under the right adjoint functors, such as I.
Thus, sheaf monomorphisms are also presheaf monomorphisms when regarded as presheaf
homomorphisms. �

Now we should look at the notion of cokernels. Suppose η : A → B is a presheaf homo-
morphism. Since the sheafification functor is a left adjoint functor, colimts such as cokernels
are preserved under it. Thus we can say that the sheaf cokernel of the map ΓLη is nothing
but ΓL(coker(η)). Notice that sheafification is exactly the identity functor when restricted
to the subcategory of sheaves. Therefore we have the following:

Corollary 3.18. If η : A→ B is a sheaf homomorphism, then the sheaf cokernel is isomor-
phic to the sheafification of the presheaf cokernel obtained when regarding η as a presheaf
homomorphism. Recall that a quotient is the cokernel of a monomorphism, and a sheaf
monomorphism is also a presheaf monomorphism. Thus, for two sheaves B ⊂ A, the quo-
tient sheaf is given by ΓL(A/B).

Without all the categorical machinaries, the results above would seem rather arbitrary;
however, if we look at them from a categorical viewpoint, they are in fact natural construc-
tions! Just to convince the readers that sheafification is necessary in producing categorical
cokernels ans quotients in ShfX , the following is an example in which the presheaf quotient
of two sheaves is not a sheaf.

Example 3.19. Let X be the interval [0, 1] with the usual topology. Let A be the sheaf
defined by

A(U) = {f : U → R | f is continuous}

(Notice that A(U) possesses an R-module structure) with the restriction maps being trun-
cation. On the other hand, let B be the subsheaf of A defined by

B(U) =

{
f ∈ A(U)

∣∣∣ lim
x=1/2

f(x) = 0 if 1/2 is a limit point of U

}
.

If we just carry out the quotient presheaf construction, we have

A/B(U) =

{
R if 1/2 is a limit point of U
0 otherwise

Now consider the open set [0, 1/2) and its open cover

{[0, 1/2− 1/n) | n > 2, n ∈ Z}.

By construction, A/B[0, 1/2) ∼= R, but A/B[0, 1/2 − 1/n) = 0 for all n > 2, n ∈ Z, which
cannot satisfy the sheaf condition in Definition 2.5.

Remarks 3.20. As in the case of monomorphism, epimorphism can be defined to be a map
η : A→ B such that the following push-out diagram yields B. Since push-outs are colimits,

14



the sheafification of η remains epimorphic from ΓLA to ΓLB.

A
η //

η
��

B

Id
��

��

B
Id //

//

B

∃! ��
C

In particular, an immediate result is that a sheaf homomorphism that is epimorphic as a
presheaf homomorphism is automatically epimorphic as a sheaf homomorphism.

Similar to presheaves, the image of a sheaf homomorphism η is defined to be the kernel of
the cokernel of η. Similar to presheaf images, for every sheaf homomorphism η : A→ B, we
get a unique sheaf homomorphism from A to img(η) via the universal property of kernels,
which we shall name η as well by convention. Since sheaf cokernel may not agree with
presheaf cokernel, the sheaf image may also not coincide with the presheaf image.

From now on, we are going to use (A/B)s, cokers(η) and imgs(η) for sheaf quotients,
cokernels and images, just to distinguish from their presheaf counterparts (A/B)p, cokerp(η)
and imgp(η). As for the case of sheaf kernels and other notions that are isomorphic to their
presheaf counterparts, we are going to just use ker(η) and so on without further distinguish-
ment.

4. Exact Sequence

As in other categories with kernels and images, we can define the notion of an exact
sequence of sheaves, and there are interesting properties that we need to pay attention to
before we go into further investigation of sheaf theory.

Definition 4.1. A sequence of presheaves (sheaves) with presheaf (sheaf) homomorphisms

// A
η // B

ξ // C //

is said to be exact if ker(ξ) ∼= imgp(η) (ker(ξ) ∼= imgs(η)) for every place B. In particular,
the following exact sequence is call a short exact sequence:

0 // A // B // C // 0

Readers may sometimes think of short exact sequences as in the form 0 → A → B →
A/B → 0. However, we should remark here that this is not generally true in all categories.
In fact, trivial kernels and cokernels are a little bit weaker than being monomorphic and
epimorphic. Nontheless, fortunately we can show that these notions are equivalent in our
interest categories PrshfX and ShfX , and we don’t have to worry about their distinction
here.

Proposition 4.2. Let η : A→ B be a presheaf homomorphism. Then

(1) η is monomorphic if and only if ker(η) = 0;
(2) η is epimorphic if and only if cokerp(η) = 0.

In particular, both statements also hold for sheaf homomorphisms (of course, we need to
replace cokerp(η) by cokers(η)).
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Proof. The forward direction of both statements are true in any categories with a zero,
kernels and cokernels. Consider the following commutative diagrams:

ker(η) // 0 // A

η

''// 0 // B

ker(η) // 0

aa AA A

η

''// 0 // B

��

// 0 // cokerp(η)

{{
0 // cokerp(η)

Since these two diagrams are dual to each other, we will just reason for the diagram on the
left. The fact that η is a monomorphism guarantees the map ker(η)→ A factors through 0.
But then by the universal property of kernels, we get a map from 0 back to ker(η), which can
be easily shown to be an isomorphism. Since this proof is purely categorical, it automatically
applies to the case of sheaf homomorphisms.

The backward direction deserves more careful treatment. Suppose ξ and ζ are two presheaf
homomorphisms from presheaf C to presheaf A such that ηξ = ηζ : C → B. We can define
a presheaf homomorphism ξ − ζ : C → A by

(ξ − ζ)U = ηU − ξU .

It is not hard to verify that this is in fact a presheaf homomorphism. Moreover, it can be
shown that η(ξ − ζ) = 0. Therefore we get the commutative diagram below on the left
from the universal property of kernels. But then this diagram tells us that ξ − ζ = 0, i.e.,
ξU − ζU = 0. Thus we can conclude that ξ = ζ.

Since sheaf kernels coincides with presheaf kernels, the same argument and diagram works
for the case of sheaf homomorphisms.

ker(η) = 0 // A

η

''// 0 // B

C

OO

ξ−ζ

:: A

η

''// 0 // B

ξ−ζ
&&

// cokerp(η) = 0

��
C

A similar argument can be formulated for the case of epimorphism. Let ξ and ζ be two
presheaf homomorphisms from B to C such that ξη = ζη. Define the presheaf homomor-
phism ξ − ζ as above and we can see that ξ − ζ = 0 from the above commutative diagram
on the right, which implies ξ = ζ. Replacing cokerp(η) with cokers(η) gives the argument to
prove the backward direction for the case of sheaf homomorphism. �

So what does this proposition tell us? Suppose 0 → A
η→ B

ξ→ C → 0 is a short exact
sequence of presheaves. By definition, this implies that ker(η) = 0, and by the proposition
above, η is hence monomorphic, i.e., A is in fact a subpresheaf of B. Now we have another
short exact sequence from the definition of quotient presheaf (cokernel of a monomorphism):

0 // A
η // B

q // (A/B)p // 0 .

Notice that

ker(q) = imgp(η) = ker(ξ),
16



which implies that at each open set level, we have ker(qU) = ker(ξU). But then if we now
compare the R-module homomorphism qU and ξU , their images must be isomorphic! This
shows that C(U) is in fact isomorphic to (A/B)p at each open set level, and therefore we
can conclude that C ∼= (A/B)p.

The same argument works for the case of short exact sequence of sheaves, except that we
need to use imgs(η) instead of imgp(η).

Thus we can now safely say that short exact sequece of presheaves (sheaves) does take the
form

0 // A // B // (A/B)∗ // 0

(∗ is either p or s, depending on the context). The following corollary is another way of
stating the same thing:

Corollary 4.3. If 0→ A
η→ B

ξ→ C → 0 is a short exact sequence of presheaves (sheaves),
then we have A = ker(ξ) and C = cokerp(η) (C = cokers(η)).

In many occasions when we have two categories where exactness is defined in both, we
may want to ask the question how well a functor preserves exactness. Hence mathematicians
came up with the following definition:

Definition 4.4. Let C and D be two categories with zero and exactness and let 0 → A →
B → C → 0 be a short exact sequence in the category C. We say a functor F : C→ D (zero
preserving) to be

(1) left-exact if the sequence 0→ FA→ FB → FC is exact;
(2) right-exact if the sequence FA→ FB → FC → 0 is exact;
(3) exact if F is both left-exact and right-exact.

Let’s try to apply this definition to the two functors between PrshfX and ShfX that
we know, namely the sheafification functor ΓL and the inclusion functor I, and see if they
preserve exactness or not.

Examples 4.5. (1) Let 0→ A
η→ B

ξ→ C → 0 be a short exact sequence of presheaves,

then by Corollary 4.3, we know that C = cokerp(η). Sheafifying A
η→ B →

cokerp(η)→ 0, we get

ΓLA
ΓLη // ΓLB // cokers(ΓLη) // 0

in which cokers(ΓLη) = ΓL cokerp(η) = ΓLC since ΓL is a left adjoint functor. Thus
the sheafification functor is at least right-exact.

How about left-exactness? Well, it turns out that the sheafification functor does
also preserve left-exactness and hence it is exact. However, this fact is more of an
algebraic result than a categorical result, and we would omit the proof here.

(2) On the other hand, if we start with a short exact sequence of sheaves 0→ A
η→ B

ξ→
C → 0, Corollary 4.3 tells us that A = ker(ξ). Including 0→ ker(ξ)→ B

ξ→ C it into
the category PrshfX , nothing changes (recall that presheaf kernel and sheaf kernel
are identical for a sheaf homomorphism). Thus the inclusion functor I is left-exact.
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Remark 4.6. In the examples above, the only categorical property we used is Theorem 3.16.
Thus the proof can be generalized to any adjoint pair of functors between categories of sheaves
or presheaves, and gives the conclusion that the left adjoint functor being right-exact and
the right adjoint functor being left-exact.

5. Induced Sheaf

So far we have been staying in a single topological space X and working on presheaves or
sheaves over it. But since the motivation behind sheaf theory is to compute cohomology, we
should be able to related sheaves over different topological spaces, especially the ones where
there are continuous maps between them. Throughout this section, we will use X and Y for
topological spaces and f : X → Y for a continuous map between them.

5.1. Direct Image. We should start with a simple observation: since f is continuous, the
preimage of any open set in Y is still a open set in X, and taking preimages should preserve
inclusion. Thus, f naturally induces a functor f−1 from OpnY to OpnX . Moreover, we can
flip the arrows in both categories and f−1 retains its functoriality. Now let A be a presheaf
over X and consider the following

OpnopY
f−1

// OpnopX
A //ModR

It seems to be natural to just pre-compose f−1 with a presheaf A over X to get a presheaf
f−1 ◦A over Y ! Furthermore, for a presheaf homomorphism (natural transformation) η from
presheaf A over X to a presheaf B over X, we have the following for open sets U ⊂ V ⊂ Y :

f−1 ◦ A(U) = A (f−1(U))

��

ηf−1(U)// B (f−1(U)) = f−1 ◦B(U)

��
f−1 ◦ A(V ) = A (f−1(V ))ηf−1(V )

// B (f−1(V )) = f−1 ◦B(V )

Thus ηf−1(−) gives a good natural transformation from f−1◦A to f−1◦B. We can now thereby
define a functor f∗ : PrshfX → PrshfY by assigning f∗(A) = f−1 ◦ A and f∗η = ηf−1(−).
This functor is called the direct image of presheaves over X.

It is also not hard to verify that the direct image of a sheaf is still a sheaf, for the reason
that the preimage of an open cover in the codomain is still an open cover in the domain.
Therefore f∗ is also a functor from ShfX to ShfY .

Example 5.1. One particular case is when we map the whole space X into a singleton
space {∗}. The preimage of the only non-trivial open set in {∗} is the whole set X, and
therefore the functor f∗ actually takes a sheaf A and gives out the “global section” A(X)
(on the empty set level, any sheaf is trivial, and therefore we may as well disregard that).
Equivalently speaking, this functor can be regarded as a functor from ShfX to ModR, which
we would denote it by G.

5.2. Inverse Image. There is actually another way to induce a sheaf. Suppose instead, we
only know a presheaf B over the codomain space Y , and we would want to know whether
it is possible to induce a presheaf over the domain X. Obviously, we don’t have a natural
way of associating an open set in X to a R-module just by looking at the map f , since
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the continuous image of an open set may not be open. Nonetheless, we can mimic the
construction of stalks and get a direct limit over each open set in X, and hopefully this will
give us some fruitful result.

The detailed procedure goes as follows. For an open set U ⊂ X, we can look at its image
f(U) ⊂ Y ; all open sets in Y containing f(U) will give rise to a directed system

{B(W ) | f(U) ⊂ W}

Now take the direct limit (which we know to be exist from Section 3) and name it fpB(U).
Notice that if U ⊂ V , then any open set containing f(V ) will automatically contain f(U).
Thus, we obtain a natural restriction map from the universal property of direct limit (suppose
f(V ) ⊂ f(U) ⊂ W2 ⊂ W1):

B (W1) //

%%

$$

B (W2)

yy

zz

fpB(U)

��
fpB(V )

Thus from this construction, we can see that fpB is a presheaf over X.
Moreover, for a presheaf homomorphism η : B → B′ where B and B′ are both presheaves

over Y , we can also get a map from fpB(U) to fpB′(U) from the universal property of direct
limit, which we shall name fpη (suppose f(U) ⊂ W ):

B(W )
ηW //

��

B′(W )

��
fpB(U)

fpηU

// fpB′(U)

It is not hard to verify that fp IdU = IdU and fp(η ◦ξ)U = fpηU ◦fpξU by using the universal
property of direct limit again. Therefore we can conclude that fp is in fact a functor from
the category PrshfY to PrshfX .

Now the next question is whether we still get a sheaf over X if we apply fp to a sheaf
over Y . Unfortunately, the answer is not positive as we may expect. Consider the following
example:

Example 5.2. Let X and Y both be the circle S1 with the usual topology. Upon Y ,
construct

B = [0, 1]× Z
/
{(0, n) ∼ (1,−n)}

and define a map p : B → Y by sending (m,n) to 2mπ. If we check with Theorem 3.13, this
defines a sheaf B over Y . Notice that by simple calculation, B(Y ) = 0 and B(ϕ, ψ) = Z for
any open arc (ϕ, ψ).

Now consider the map f : X → Y that wraps the circle twice around itself, i.e., ϕ 7→ 2ϕ.
The induced presheaf fpB over X has the following properties:

(1) B(X) = 0, since the only open set that contains f(X) is Y .
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(2) B(ϕ, ψ) = Z whenever the length of (ϕ, ψ) is less than π, since it will be mapped to
an open arc in Y under f .

Now we can devide the circle X into three open arcs as shown in the picture. These three
arcs form an open cover of X. However, the sheaf condition is not satisfied by fpB: the
equalizer of the following map is Z, not B(X) = 0.

Z
0
× Z

1
× Z

2

// // Z
0∩0
× Z

0∩1
× Z

0∩2
× · · · × Z

2∩2

Thus, if we want a functor that goes from ShfY to ShfX , we need more than just fp. One
easy way to get to the correct destination is to apply the sheafification functor right after
fp, and we would call this the “inverse image” functor f ∗, i.e., f ∗ = ΓLfp. The following is
an example as well as a new way of looking at one of our old friends:

Example 5.3. If we let X be the singleton space {∗} and map this single point to a point
y ∈ Y , then the inverse image of a presheaf B over Y is just the direct limit of the directed
system

{B(W ) | y ∈ W} ,
which is exactly the stalk By! Therefore stalks are just a special kind of inverse image.

5.3. Adjunction. We have introduced two induced sheaf functors f∗ and f ∗ for any con-
tinuous map f : X → Y . Since these two functors are going forward and backward between
ShfX and ShfY , we may have a feeling that it would be great if they were adjoints. In the
rest of this section, we are going to examine this conjecture and see if it is truly the case.

Let A and B be two sheaves over X and Y respectively. Essentially we would like to
show that there is an isomorphism between ShfX(f ∗B,A) and ShfY (B, f∗A). Notice that
f ∗ = ΓLfp, and by the ΓL a I adjunction, ShfX(f ∗B,A) ∼= PrshfX(fpB,A). Thus we just
need an isomorphism between PrshfX(fpB,A) and ShfY (B, f ∗A).

First suppose η is a map in ShfY (B, f∗A). This means that ηW is an R-module homo-
morphism from B(W ) to f∗A(W ) = A (f−1(W )), for an open set W ⊂ Y . By definition,
fpB(U) is the direct limit of

{B(W ) | f(U) ⊂ W}.
Thus we have the following commutative diagram, where the arrow on the right is the
restriction map and the arrow at the bottom is given by the universal property of direct
limits, which we would name (Φ(η))U .

B(W )
ηW //

θU
��

A (f−1(W ))

��
fpB(U)

(Φ(η))U

// A(U)

It is not hard to see that (Φ(η))U is compatible with restriction maps in presheaves over X.
Therefore Φ(η) is in fact a presheaf homomorphism from fpB to A. Here Φ serves as a map
from ShfY (B, f∗A) to PrshfX(fpB,A).

Next we would like to find an inverse map for Φ. Notice that if we take the direct image
of fpB,

f∗f
pB(W ) = fpB

(
f−1(W )

)
= B(W ).
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Thus we have the identity f∗f
p = IdShfY . This implies that for any presheaf homomorphism

ξ : fpB → A, we can get a sheaf homomorphism

f∗ξ : f∗f
pB = B → f∗A.

We claim that Φ and f∗ are inverse of each other (here f∗ is regarded as a map from
PrshfX(fpB,A) to ShfY (B, f∗A)). It is easy to see that f∗ ◦Φ(η) = η by just looking at the
following diagram:

B(W )
ηW // A (f−1(W ))

fpB (f−1(W ))
(Φ(η))f−1(W )

// A (f−1(W ))

On the other hand, Φ ◦ f∗(ξ) = ξ by the uniqueness from the universal property of direct
limit (the map on the right is the sheaf restriction map in A)

f∗f
pB(W )

f∗ξW //

θU
��

f∗A(W )

��
fpB(U)

(Φ◦f∗(ξ))U
//

ξU // A(U)

Up to this point, we have successfully demonstrated that

PrshfX(fpB,A) ∼= Shf)Y (B, f∗A).

As remarked previously, it follows immediately that

ShfX(f ∗B,A) ∼= ShfY (B, f∗A).

In other words, we have the following theorem:

Theorem 5.4. The inverse image functor f ∗ : ShfY → ShfX and the direct image functor
f∗ : ShfX → ShfY form an adjunction, i.e.,

f ∗ a f∗.

Since now we have another pair of adjoint functors between categories of sheaves, we can
invoke Remark 4.6 from last section and get the following easy corollary:

Corollary 5.5. The direct image functor f∗ is left-exact and the inverse image functor f ∗ is
right-exact. In particular, the global section functor G is left-exact and stalks are right-exact.
(With algebraic tools, one can actually show that stalks are left-exact as well, but this is out
of the scope of this paper and hence is omitted here.)

6. A Brief Introduction to Sheaf Cohomology

We would like to conclude our paper with an important and some what categorical ap-
plication of sheaf theory: sheaf cohomology. Since the existence of sheaf does not require
simplicial or cellular structures on the topological space a priori, it is more general and nat-
ural. We will skip all the detailed proofs here, and yet try our best to give the general idea
about what the construction does to formulate such a theory.
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Categorically speaking, a cohomology theory can be constructed by first hitting an injec-
tive resolution with a left-exact functor(ideally not right-exact at the same time) and then
measure the failure of resulting sequence being exact with the right-derived functor. Of
course, we should start with giving the definitions of the related terms.

Definition 6.1. In a category C, an object I is said to be injective if whenever there is a
monomorphism A → B together with an arrow A → I, there always exists (not necessary
unique) an arrow B → I such that the following diagram commutes:

A

��

// B

��
I

Definition 6.2. In a category C, a resolution of the object A is a graded long exact sequence

0 // A // K0 // K1 // K2 // . . .

We say K∗ is an injective resolution if all K∗ are injective.

One good thing about sheaves is that the category ShfX over any topological space X
possesses an abundant amount of injective objects, which always allow us to form an injective
resolution (not necessary unique) started with any sheaf A:

0 // A // I0 // I1 // I2 // . . .

Now in order to produce a cohomology theory, we need a left-exact functor. Fortunately
we have already encountered one: recall from the last corollary in the previous section, the
global section functor G is left-exact! Therefore after hitting the above sequence with G, we
get a sequence

0 // A(X)
d−1
// I0(X)

d0 // I1(X)
d1 // I2(X)

d2 // . . .

with the property that dk ◦dk−1 = 0 for any k ≥ 0. Thus as in the case of homology theories,
the failure of being exact can be measured by

Hk
A(X) = ker

(
dk
) /

imgs
(
dk−1

)
.

As a result, we call H∗A(X) the sheaf cohomology of X (with respect to the sheaf A). Of
course, since injective resolution is not unique, one also need to show the well-defined-ness of
this construction. The idea lies in the fact that the all objects I∗ are injective. Starting with
a sheaf homomorphism η : A→ B in ShfX , we can build a compatible set of maps between
injective resolutions 0 → A → I∗ and 0 → B → J∗, which is unique up to homotopy.
Detailed proof can be found in Bredon [1]:

0 // A //

η

��

I0 //

��

I1 //

��

. . .

0 // B // J0 // J1 // . . .

Just like singular cohomology, which is also naturally defined, sheaf cohomology may
sometimes be very difficult to compute, since the construction of an injective resolution
is generally non-trivial. Nevertheless, this construction is very important and useful. For
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example, the smooth maps from open sets on a manifold into R or C form a sheaf, and
the sheaf cohomology defined above gives a natural cohomology theory on the particular
manifold. We can also use the induced sheaf tools developed in the previous section to
analyze cohomologies over spaces with continuous maps in between.

Conclusion and Acknowlegdment

Sheaf theory also has more advanced application in other topics such as the classification
of line bundles, and now has become a very useful language to use in algebraic topology and
algebraic geometry. We hope that through this paper, readers can see the most naturality
of this language from a categorical perspective.
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