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Horospheres in Riemannian symmetric spaces

Let X = G/K be a Riemannian symmetric space of noncompact
type. Here G be a connected semisimple Lie group with a finite
center and K be its maximal compact subgroup. Let us fix an
Iwasawa decomposition

G = KAN,

where N,A are transversal to K maximal unpotent and Cartanian
subgroups. Let M be the centralizer of A in K , We call the
homogeneous space

Ξ = G/MN

by the horospheric space. The spaces X and Ξ have equal
dimensions. The natural projections

X → G/M ← Ξ

define an incidence relation between X ,Ξ. If ξ ∈ Ξ we take its
preimage in G/M and then its projection in X . Such sets
E (ξ) ⊂ X called horospheres.
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Horospheres

Their codimension in X are equal the rank l of the symmetric space
X - the dimension of the Cartanian subgroup A. The horospheres
are orbits on X of subgroups conjugateed to N. Correspondingly
points x ∈ X have on Ξ the incidence subsets U(x) which we call
pseudospheres. They are just parameters of horospheres passing
through x . Since A normalizes MN we have on Ξ the "left" action
of A (which commutes with the "right"action of G ); it fibers Ξ on
the left orbits of A over the flag space

F = G/AMN.

Here P = AMN is a parabolic subgroup and F is compact and
isomorphic K/M. The pseudospheres U(x) are sections of the
fibering Ξ→ F .
As the result on Ξ acta the extended group A× G and the actions
of A,G commutate,
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Horospherical transform

The horospherical transform is the operator of integration along the
horospheres. We want to invert this operator. Using the invariancy
it is sufficient to in one point, let x0 ∈ X . Let K . is its isotropy
subgroup. Our parameterization of horospheres will be associated
with x0 and the corresponding Iwasawa decomposition G = KAN.
The horospheres passing through x0 has form

E (x0|k)K = {x0 · Nk}k ∈ K}.

Here we can consider k mod M so as elment of the flag manifold
F = K/M In intermediate computations we will sometime omit x0.
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Horospherical transform2

Transformations by A transform horospheres in the parallel ones:

E (x0|a, k) = {x0 · aNk}, a ∈ A, k ∈ F = k/M.

For fixed a the parameters give the sections of the fibering Ξ→ F .
We will work with the Lie algebra Lie(A) and the dual space
Lie(A)∗ and use the operations exp, log. Let us fix the system of
positive roots Σ ⊂ Lie(A)∗ and a subsystem of prime roots Π ⊂ Σ
and let ρ be the half-sum of positive roots.
For x ∈ X let a(x), n(x) are projections on the corresponding
Iwasawa factors. We have a(x0) = e(the unit in A). Let us fixed
the invariant forms da, dn, dk on A,N,F = K/M correspondingly.
Then

dx = a(x)−2ρda(x) ∧ dn(x)

be the invariant form on X .
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Horospherical transform3

Let f (x) ∈ C∞0 . We define its horospherical transform as the
integral along the horopheres E (x0|a, k):

Hf (a, k) =

∫
f (x0 · ank)dn, a ∈ A, k ∈ K/M.

So we integrate on the horosphere E (a, k) = {x0 · aNk} on dn.
This definition is not G -invariant: for the invariance we need to add
the factor a−2ρ. For our aims is more convenient an intermediate
correction:

f̂ (a, k) = a−ρHf (a, k).

It is connected with the factor a−2ρ. in the connection with the
spherical Fourier transform. Our principal aim is to inverse the
horospherical transform: to recostruct f (x0) through Hf (a, k).
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The principal result

Let us state our principal result.

Theorem
There is the nest formula for the inversion of the horospherical
tranform

f (x0) = c
∫

F
dk

∫
A

da
∧
α∈Σ

Dmα
α f̂ (a, k))Π1≤i≤l (sinh(πj(ln(a)−i0)/2)−1.

Here we apply the operators of differentiation along the positive
roots Dα counting the multiplicity mα to f̂ (a, k) = a−ρHf (a, k).
Then we substitute t = sinh(πj(ln(a)) in the distribution

(t − i0)−1 = iπδ(t) + t−1

for all prime roots πj .
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The principal result2

This inversion formula has an universal structure for all roo systems
and use only the subsystem of prime roots. in the difference in other
known systems which essentially depend of the type of root system.
If to break up the distribution (t − i0)−1 in even and odd parts in
all factors then the 2nd part of the formula will transform in a sum
of many terms with different symmetry relative Weyl’s group W .
Some od them will disappear after the integration along F . So if all
multiplicities mα but purely local one disappear. Let us emphasize
that the structure of the operator in the inversion formula is non
unique since there many operators a similar structure which are
trivial on the image of the horospherical transform. Suggested here
structure is not W -invariant.
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The horospherical Cauchy transform

The factor with the hyperbolic sinuses has a deep sense: it is
connected with the replace of the δ-function with a Cauchy kernel.
Let us consider the characters

aπj = exp(πj(ln a)), πj ∈ Π

and aπ for π = π1 + · · ·+ πl . We can rewrite the definition of the
horospherical transform as

Hf (a, v) = aπ/2
∫

X
f (x)Π1≤i≤lδ((a(x)πi − aπi ))a(x)2ρ+π/2dx ,

where a(x) is the Iwasawa projection of X on A. Let us remark the
identity

exp((u + v)/2)δ(eu − ev ) = δ(u − v).
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The horospherical Cauchy transform2

We define the horospherical Cauchy transform as

Cf (b, v) = bπ/2
∫

A
Hf (a, v)Π1≤i≤l (χj(a)−χj(b)−i0)−1(a)Π/2+ρda,

where v ∈ F , b ∈ A. It is possible to rewrite this definition as the
integral on X :

Cf (b, v) = bπ/2
∫

X
f (x)Π1≤i≤l (a(x)πi − bπi − i0)−1a(x)2ρ+π/2dx ,

=

∫
X

f (x)Π1≤i≤l (sinh(πj(ln(a(x))− ln(b)− i0)−1dx .

where a, b ∈ A, v ∈ F
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The horospherical Cauchy transform3

We use the identity

exp((u + v)/2
eu − ev =

1
sinh(u − v)/2

.

We can give another interpretation of this construction. We
identified elements of A with the vectors of their chracters {aπi}.
Let us extend this correspondance in the complexification CA and
take the domain CA− of a ∈ CA with −π < Im(aπj < 0), j ≤ l .
Then A will be the edge of the boundary of CA− and we can
extend the horospherical Cauchy transform.

Cf (a, v) = (a)π/2
∫

X
f (x)Π1≤i≤l (a(x)πj − aπj ))−1a(x)2ρ+π/2dx

=

∫
X

f (x)Π1≤i≤l (sinh(πj(ln(a(x)−ln(a)−i0)−1dx .v ∈ F , a ∈ CA−.

.
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The Cauchy version of the principal result

There are no singularities in the kernel and tresult will be
holomorphic in CA−. Our "real" horospherical transform can be
interpret as boundary values as a ∈ CA− tends to A.e
Using the language of the horospherical Cauchy transform we we
can reformulate the princial result.

Theorem
There is a horospherical Cauchy inversion formyla

f (x0) = c
∫

F
dv

∧
α∈Σ

Dmα
α Cf (a, v)|a=e .

To see it we need to remark that the our inversion frmula has the
of convolution (on a) wth f̂ (a, k) pf 2 distributions: the differential
operator and a"Cauchy" kernel. If we change thir order we will
obtain the horospherical Cauchy inversion formula.

Simon Gindikin Horospherical transform as a curved version of the Radon transform.



The Cauchy version of the principal result2

Let us discuss this construction in a more broad environment. The
Radon inversion formula is different for odd and even dimensions: it
is local in the first case and non local in the second one. Each of
these formulas can be written for all dimensions, but of some
dimensions they give zero as a consequence of evenness or oddness
of dimensions.
Using the distribution (t − i0)−1 we can unify to type of inversion
formulas. We can rech the same aim by replacing the δ-function in
the definition of the Radon transform on the Cauchy kernel - the
Radon-Cauchy transform. In a sense in this construction we destroy
the symmetr which transforms potential inversions in zeroes.
It is remarkable that in much more complicaye case of symmetric
spaces where instead one dimensions we have many root
multiplicities the conception of Cauchy transform continues to work.
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Spherical Fourier transform

Informaly the horospherical Fourier transform gives a projection on
irreducible components of L2(X ). It can be defined by different
ways (f.e. through zonal spherical functions).We will use by the
form associated with the horospherical transform. Namely we
consider (for fixed x0) the corrected horospherical transform
f̂ (a, v), a ∈ A, v ∈ K/M) for the fixed v and take the Euclidean
Fourier transform on u = ln a ∈ Lie(A) w Rl :

F f (r , v) =

∫
Lie(A)

f̂ (a, v) exp(i < ln a, r >)da, v ∈ K/M, r ∈ (Lie(A)∗.

Here we identify Lie(A)∗ with Lie(A) using the Cartanian form.
We can rewrite the definition of the spherical Fourier transform:

F f (r , v) =

∫
X

a(x)−ρf (x) exp(i < ln a(x), r >)dx .
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Analogue of thee Plancherel formula

The inversion of the spherical Fourier transform - the
reconstruction of f (x0) through F f is the central problem of
harmonic analysis on the symmetric space X - the analogue of
Plancherel formula. Apparently, it is equivalent to the inversion of
the horospherical transform.
. Namely we compute the Plansherel density PX (r):

f (x0) = c
∫

F
dv

∫
ln A
F f (r , v)PX (r)dr , r ∈ Lie(A).

Apparently PX (r) is exactly the Fourier transform (on A) of the
kernel in the horospherical inversion formula which is the operator
of convolution and the convolution of 2 distributions.
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Analogue of thee Plancherel formula2

We have

Corollary

PX (r) =
∏
πj∈Π

(tanh(π
< πj ,+r >
< πj , πj >

) + 1)
∏
α∈Σ

< α, ir >
< α,α >

.

We use the formula

1
2πi
F(

1
sinh(u/2)

) = tanh(πξ)

which givs the Fourier transform for the distribution
(sinh(u/2)− i0)−1.
Our version of the Plancherel density is different from
Harish-Chandra formula through c-function.
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The structure of the proof

1.Principal result for the flat(tangential) model.
2. Curved perturbation of Radon’s type transforms.
3. Specialization for thr horospherical transform.
However we will start from the detailed illustration the method on
the example of the hyperbolic plane.
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The curved Radon transform on the plane

Our next step is the construction of a general method of a
perturbation of inversion formulas in the flat integral geometry up
some curved inversion formulas. We will start from the Radon
transform on the plane. Before the consideration of the curved
versions of Radon’s inversion formula let us remind of the Radon’s
inversion formula for lines. All our considerations are local and
generic. Radon’s inversion formula on the plane reconstructs a
smooth function f (x), x ∈ R2, at a fixed point, let x = 0, through
its integrals on lines. Let us remind of this formul. Let
f ∈ C∞0 (R2). We consider lines L(θ, p) defined by the equations

x1 cos θ + x2 sin θ = p, 0 ≤ θ ≤ 2π, p > 0.

They admit the parametric representation

x = ϕθ,p(t) = (p cos θ − t sin θ, p sin θ + t cos θ), t ∈ R.
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The curved Radon transform on the plane

We define the Radon transform of f :

Rf (θ, p) =

∫ ∞
−∞

f (ϕθ,p(t))dt.

Then Radon’s inversion formula is

f (0) = c
∫ ∞

0

dp
p

∫ 2π

0
R′pf (θ, p)dθ, c = − 1

2π2 .

Let us remark that there is no singularity at p = 0 since R′pf is an
odd function of p. We will transfer this formula from on arbitrary
curves. In reality we will generalized only the interior integral (on
θ): it is enough for our applications. Let E be the family of all
smooth curves E = {ϕE (t)}, t ∈ R. We define the curved Radon
transform as the integrals along curves of f (x):

Rf (E ) =

∫ ∞
−∞

f (ϕE (t))dt.
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Geometry of curves

For a curve E we call the trivial variation

εE (t) = {ϕE (t)′}.

It is the tangent vector field on E with the unit norm. For the
Radon transform Rf (E ) the variational derivative in the direction
εE is zero.
For any fixed curve γ on the plane we denote through Eγ the subset
of such curves E that ϕE (0) is a point of γ and E is tangent to γ
in this point. We include in our considerations the degenerate case
Ex when the curve γ is reduces to a point x. So EX consist from
curves with ϕE (0) = x.
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The operator κ

Let us give the basic construction on Eγ .For a functional F on this
space we define

κγF (E |δE ) = dF (E |(δE − cεE )/t),E ∈ Eγ , δE ∈ TEγ ,

where
c = δE (0)/ϕE (0).

It is well defined since we take the quotient of 2 vectors which are
collinear as tangent to γ in the same point. So we take the
evaluation of the differential dF on the variation

δ̃E = (δE − cεE )/t

The variation Ẽ has no singularities at t = 0 sinde the difference iz
zero for t = 0 and our operation has a sense. Let us remark that
the variation δ̃E will already not be tangent to Eγ but only to E . In
the case of Ex we do not need to make the correction by εE snce
then δE (0) = 0.
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The operator κ 1

The operator κγ will interesting for us for in the case when
F = Rf . Then

κγ(Rf )(E |dE ) =

∫ ∞
−∞

Dδ̃E f (ϕE (t)dt, E ∈ Eγ .

Let us emphasize that the differential operator along the vector
field acts for fixed t.
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The example of lines

Let us consider the subfamily L ⊂ E of lines and let γ = Sp be the
circle of the radius p > 0 with the center 0. Then Lp = Sγ

⋂
L

consists from lines L(θ, p) with this p.
The tangent variation to Lp at E = L(θ, p) is

δE (t) = (−p sin θ − t cos θ, p cos θ − t sin θ)dθ.

Then we separate the trivial part εE (t) ≡ (−p sin θ, p cos θ)dθ and

δ̃E (t) ≡ (− cos θ,− sin θ).

As result the operator κ on Lp wich we denote as κp is

κpRf (θ, dθ) =∫ 2π

0

∫ ∞
−∞
{− cos θf ′x1

+sin θf ′x2
}(p cos θ−t sin θ, p sin θ+t cos θ)dtdθ,

it is exactly −Rf ′p(θ, p)dθ and we have exactly the interior integral
in the Radon inversion formula for lines.
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The basic fact on κ

So the operator κ transfers this interior integral from lines on
arbitrary curves. The basic fact is

Proposition

1-form κγRf (E |dE ) is closed on Eγ .

The proof of Proposition is a straightforward verification. The kea
is that the operator κ differs from the differential just the factor
1/t under the integral and follows from the coincidence of mixed
derivatives of f (x). The crucial circumstance is that κRf in the
difference with dRf is closed (but not exact!). The singularity of
the factor in t = 0 is essential.
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Tangency Ptinciple

From Proposal follows Tangency Principle. Let us now γ be a cycle
in R2

x . We have the projection Eγ → γ by taking the tangent points
to γ. For simplicity, we suppose that these points are unique. Let
Γγ be sections of this fibering. They are cycles in Eγ . Let
τ(Γγ) ⊂ Eγ be the cycle of tangents τ(E ) to curves E ∈ Eγ (at the
tangency to γ points).

Corollary ∫
Γγ

κγRf =

∫
τ(Γγ)

κγRf .

We integrate the closed 1-form in Eγ along homolical cycles: the
cycle of curves can be contract to the cycle of tangents.
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An application of Tangency Ptinciple

Tangency Principle gives a possibility in some cases to reduce the
inversion of the curved Radon transform to cases of lines. Let us
state one such kind result. Let Σ ⊂ E be a generic 2-parametric
family of curve on the plane such that for generic
p > 0, 0 ≤ θ ≤ 2π there is an unique curve E (θ, p) tangent to the
circle Sp in the point θ.Then

Corollary

f (0) = c
∫ ∞

0

dp
p

∫ 2π

0
κSpRf (E (θ, p)).

Here we just for γ = Sp apply Tangecy principle. and use for each
p tangency principle reducing the general case to the Radon’s
inversion formula. Of course , the using circles Sp in this statement
makes in non invariant, but we need in this paper just this case,
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Horocyclic hyperbolic transform

Let us consider the model of the hyperbolic plane on the
2-dimensional hyperboloid X in R2:

x2 − y2 − z2 = 1, x > 0.

The horocycleses E (a, θ) - isotropic sections of X by the planes
x + cos θy + sin θz = ea, parallel to the asymptots of the
hyperboloid X :

x = cosh a +
1
2
eat2,

y = sinh a cos θ − sin θeat − 1
2
cos θeat2,

z = sinh a sin θ + cos θeat − 1
2
sin θeat2.

Here 0 ≤ a <∞, 0 ≤ θ < 2π. The parametrization is assotiated
with the point (1, 0, 0) in which we want to reconstruct functions.
This family of parabolas is invariant relative to rotations around the
line y = z = 0.
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Horocyclic hyperbolic transform2

We can consider the problem on the (y , z)-plane taking the
projection plane along the x-axis (just considering 2nd and 3rd
equations). We preserve the notation E (a, θ). Let L is this family
of parabolas on the plane and compute the operator κ for it. For
each a we have subfamily La of parabolas tangent to circles Sa
with the center (0, 0) of the radius sinh a. Tangent points θ ∈ Sa
are vertexes of the parabolas. Let us compute κa on La. Thanks to
the rotation symmetry it is enough to make computations for one
θ, let θ = 0. The equations of E (a, 0) are

y = sinh a − 1
2
eat2, z = eat.

Then on the tangent variation δE ((a, 0)|dθ) we have

dy = −eatdθ, dz = (sinh a − 1
2
eat2)dθ.
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Horocyclic hyperbolic transform3

The trivial variation is

ε(dθ) = (−eat, ea)dθ.

Now we need to make the correction ov the variation δE by the
substruction of the multiple of ε such, that the resulting variation
δ̃E would be zero at t = 0. It means that we need substract
sinh a

ea ε(dθ) and the result to divide on t:

δ̃E (a, 0)θ) = (−ea − sinh a,−1
2
eat)dθ = (− cosh a,−1

2
eat)dθ.

So we consider for any fixed a

κaRf (E (a, 0)|δ̃E ) =

(

∫ ∞
−∞
{− cosh a

∂

∂y
− 1

2
eat

∂

∂z
}f (sinh−1

2
eat2, eat)dt)dθ.
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Horocyclic hyperbolic transform3

In this point we met the characterictical problem: if we can to
express this integral through the curved Radon transform for our
family of parabolas. Other words, if we can in a sense to change
the order of the differentiation and the integration. Let us consider

− ∂

∂a
(ea/2Rf (E (a, 0)|dθ)

and use the factor ea for thr change of the parameter
t → t̃ = ea/2t. The result will coincide with

ea/2κaRf (E (a, 0)|δ̃E )

Using the θ-invariancy - we found how to express κaRf rhrough
Rf on all Sa.
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Horocyclic hyperbolic inversion formula

We can now apply Corollary from Tangency Principle and write
down the inversion formula:

f (0, 0) = c
∫ ∞

0

da
sinh a

∂

∂a
(ea/2

∫ 2π

0
Rf (a, θ)dθ)

f (0, 0) =

c
∫ ∞

0

da
sinh a

∂

∂a
(ea/2

∫ 2π

0
dθ

∫ ∞
−∞

f (sinh a cos θ − sin θeat

−1
2
cos θeat2, sinh a sin θ + cos θeat − 1

2
sin θeat2)a)dt.

We just need to see that the tangential part coincies with Radon’s
inversion formula up to a changw of variables.
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Multidimensional curved Radon’s inversion formula

Let us explained how to transfer to the multidimensional situation
starting from the construction of the operator κ.By an induction we
will generalize our construction from curves to m-dimensional
surfaces E ∈ E :

x = ϕE (t1, t2, . . . , tm), x ∈ Rn.

Again everything is smoothed and local. We consider the tangent
space of δE (t) ∈ TEE .For a fixed point y let Ey and the subspace
TEEy be the set with the condition

ϕE (0) = y .

We have δE (0) = 0 if δE ∈ TEEy .
We construct a decomposition of this subpace of tangent variations
in the direct sum with components

δ(j)E (t) = δE (t1, t2, . . . , tj , 0. . . . , 0)−δE (t1, t2, . . . , tj−1, 0. . . . , 0).
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Multidimensional curved Radon’s inversion formula2

We have
δ(j)(t)|tj=0 ≡ 0.

IfF (E ) is a functional on Ey we can consider the partial variational
derivatives

δ(j)F
δ(j)E

(E )

and the variational differentials

dF (E |dE ) =
∑

j

δ(j)F
δ(j)E

(E )d (j)E .

Then we can define the multidimensional operator κ from
functionals to m-forms, through partial operators κ(j):

κ(j) = dF (E |δ(j)/tj).

This operator is well defined, since δ(j)E/tj is a regular variation.
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Multidimensional curved Radon’s inversion formula 3

Then we define
κ =

∧
j

κ(j).

The direct computation shows that the m-form κRf (E |δE ) is
closed on Ey .
Now we want to transfer this construction to the case of surfaces
tangent to a a fixed m-dimensional submanifold. Let γ be such a
surface with parameters θ and Eγ be a subset of surfaces which are
tangent to γ.
We can define the curved multidimensional Radon transform Rf
and then m-form κRf is closed and the tangency principle holds.
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Horospherical transform

Let us consider the specialization of this construction in the case of
horospheres. Let us consider a neighborhood of a point x0 of the
symmetric space X and let Ξ ⊂ E be the set of horospheres and E0
be an initial horosphere, passing through x0. We fixed a system of
positive restricted roots α ∈ Σ. Let us take a base of their root
vectors ej and let α(ej) be the corresponding root. It could be
α(ei ) = α(ej).
Let N̄ be the opposite unipotent subgroup and {e−j} be compatible
base of negative root vectors: α(e−j) = −α(ej). Let

fj = [e−j , ej ], fj ∈ Lie(A).

We have
E0 = exp{t1e1 + · · ·+ tmem}

and will use dt = dt1 ∧ · · · ∧ tp for the definition of Hf (E0).
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Horospherical transform 2

Let E (a, v), a ∈ A, v ∈ F = K/M be the parameterization of
horospheres. For x ∈ X we denote Ξx the set of horospheres
passing through x . We have Ξx = F = K/M. The horospheres
E (a, v) give the cycle of horospheres Ξ(a), a ∈ A which are tangent
to the cycle γ(a) = {x0aK}; γ(a) are flag manifolds.We can use for
the parameterization k ∈ K/M; but for computations it is more
convenient to use on the open set elements ζ ∈ N̄ as local
coordinates.
We want to compute the action of the operator κ on Ξx and Ξ(a).
Let us start with Ξx ; the case Ξ(a) is reduced to it,
We take ζ ∈ N̄ = exp{s1e−1 + · · ·+ sme−m} as parameters. So the
variations δE will correspond to dζ = ds1e−1 + · · ·+ dsme−m and
we have

δE (t|dζ) = [
∑

tjej ,
∑

dsie−i ].
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Horospherical transform 3

Then
δ(j)E (dζ) = tj [ej ,

∑
dsie−i ]

and

κ(j)F (E , dζ) = df (E , δ̃(j)E/tj). = df (E , [ej ,
∑

dsie−i ]),

We see that here δ(j)E/tj are independent of t.
To investigate these components of the variations chose any order
of the positive root vectors such that

α(ep) + α(eq) = α(er )⇒ r > p, r > q.

Simon Gindikin Horospherical transform as a curved version of the Radon transform.



Horospherical transform 4

Then we can present the commutator in δjE/tj as the sum of 3
terms:

δjE/tj = −dsj fj + δj1E/tj + δj2E/tj .

We receive the first term when we take i = j . For the next term we
collect i < j and for the last one we take i > j . The variation
δj1E/tj just corresponds to an unipotent change of the
parameterization on the horosphere and the variational derivative of
Hf on it equal zero and we can omit it in the computation of κHf .
It exactly corresponds to the trvial deformations.
Let us compute κHf =

∧
j κ

(j)Hf by the induction on decreasing
j .For j = m it will be only one term with dsm. For i = m − 1 there
will be 2 terms with dsm and dsm−1. However we can omit the term
with dsm as the result of the symmetry and by induction we see that
only the variation −dsj fj participates in the computation of κHf .

Simon Gindikin Horospherical transform as a curved version of the Radon transform.



Horospherical transform 5

Similar computations hold for Ξ(a) - the set of horospheres tangent
to the cycle γ(a). So we have

κHf (a, ζ, dζ) =
∧
α∈Σ

(Dα)mαHf (a, ζ)dζ;

where we unify root vectors with a joint root α and mα is the
multiplicity; Dα is the derivative in the direction of α
(corresponding to fj). We can replace in this formula
parameterization ζ ∈ N̄ on k ∈ K/M. Then we can write the
similar operator for the cycle of tangents and apply the tangency
principle: ∫

γ(a)
κHf (a, ζ, dζ) =

∫
γ(a)

κHtang f (a, ζ, dζ).

Simon Gindikin Horospherical transform as a curved version of the Radon transform.



Horospherical Cauchy transform

Next we construct the horospherical Cauchy transform
Cf (a, k)a ∈ A, k ∈ F = K/M on X and its tangential version
Cf (b, k).b ∈ B = Lie A, k ∈ K/M). We define both by a
convolution with some Cauchy kernels on the group A either on its
Lie algebra.
We have in the tangential case

Cf (k , c − i0) =

∫
B

Hf (k , b)∏
j≤l (πj(b)− cj − i0)

db,

where πJ are prime roots. On X we must take as the kernel

1∏
j≤l (sinh(πj(ln a))− i0)

.

We calibrate the Cauchy kernels such that the tangency principle
holds for the horospherical Cauchy kernels.
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Horospherical Cauchy transform 2

Since our Cauchy convolutions in the constructions of the
horospherical Cauchy transforms commutate with the operator κ,
we have the tangency principle for the horospherical Cauchy
transforms , which immediately give the inversion formulas. As a
result we have∫

K/M
κC(x , k , dk) =

∫
K/M

κCtang (x , k , dk) = cf (x).

We just use here that this inversion was already proven for the
tangential horospherical Cauchy transform and apply the tangency
principle.
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Horospherical Cauchy transform 3

Then it gives the inversion formula

f (x) =

∫
S(x)

(
∏
α∈Σ

Dmα
α )Cf (a(x), k)dk ,

where we integrate along the pseudosphere S(x) parameterizing the
horospheres passing through x ; correspondingly a(x) chosen.
This formula is true simultaneously for X and its tangent model.
However the tangent version was found a long time ago. It means
that the curved version on X holds as well.

Simon Gindikin Horospherical transform as a curved version of the Radon transform.


