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Motivation: convolution in analysis

Let f , g ∈ L1(R) be two real valued functions and recall their convolution
is defined by

Definition

f ∗ g(x) =

∫
R

f(t)g(x − t)dt .

This operation improves smoothness properties of functions.
1 we have (f ∗ g)′ = f ′ ∗ g = f ∗ g′,
2 and if f ∈ Ck (R) and g ∈ C l(R) then f ∗ g ∈ Ck+l(R).

In particular, if either f or g is smooth then f ∗ g is a smooth function.

Question

Is there a geometric analogue to this phenomenon?
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Convolution in algebraic geometry: definition

From here onwards we assume our varieties and groups are defined
over a field K of characteristic 0.

Definition

Let X1 and X2 be algebraic varieties, G an algebraic group and let
ϕ1 : X1 → G and ϕ2 : X2 → G be algebraic morphisms. Define their
convolution ϕ1 ∗ ϕ2 : X1 × X2 → G by ϕ1 ∗ ϕ2(x1, x2) = ϕ1(x1) · ϕ2(x2).

Example
1 Take ϕ : A1 → A1 with ϕ(x) = x3. Then ϕ∗2 := ϕ ∗ ϕ(x, y) = x3 + y3.
2 Let G be any algebraic group and let [ , ] : G × G → G be the

commutator map [x, y] = xyx−1y−1. Then
[ , ] ∗ [ , ](x1, y1, x2, y2) = [x1, y1] · [x2, y2] = x1y1x−1

1 y−1
1 x2y2x−1

2 y−1
2 .
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Convolution in algebraic geometry: definition

Let ϕi : Xi → G, i = 1, 2 be morphisms, and consider the functions

Fϕi : G → Schemes by Fϕi (g) = ϕi
−1(g).

Note that as sets we have the following:

Fϕ1∗ϕ2 (s) = (ϕ1 ∗ ϕ2)−1(s) =
⋃
g∈G

ϕ1
−1(g) × ϕ2

−1(g−1s). (†)

Observation (convolution commutes with counting points over finite rings)

Let A be a finite ring, and consider the maps (ϕi)A : X(A)→ G(A).

Define |F(ϕi)A | : G(A)→ N by |F(ϕi)A |(g) =
∣∣∣(ϕi)

−1
A (g)

∣∣∣.
By (†) we have,

|F(ϕ1)A |∗|F(ϕ2)A |(s) =
∑

g∈G(A)

|F(ϕ1)A |(g)·|F(ϕ2)A |(g
−1s) = |F(ϕ1)A ∗(ϕ2)A |(s).
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Convolution in algebraic geometry: properties

Question
1 Does our convolution operation improve singularity properties of

morphisms?
2 Which properties of morphisms are preserved under convolution?

Fact
1 A morphism ϕ : X → Y between smooth irreducible varieties is flat

at x ∈ X if and only if dimϕ−1 ◦ ϕ(x) = dimX − dimY.
2 A flat morphism ϕ : X → Y is smooth ⇐⇒ all its fibers are smooth.

Properties preserved under convolutions: dominance, flatness,
flatness with reduced or normal fibers, smoothness.

If S is a property of morphisms which is preserved under base
change and compositions and X → Spec(K) satisfies S, then it is
preserved under convolutions.
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Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group,
and ϕ : X → G a dominant morphism.

1 ϕ∗ dimG : XdimG → G is flat.
2 ϕ∗(dimG+1) : XdimG+1 → G is flat with reduced fibers.
3 ϕ∗(dimG+2) : XdimG+2 → G is flat with normal fibers.
4 These bounds are tight.

Remark
1 To see (4), take ϕ(x1, . . . , xm) = (x2

1 , (x1x2)2, (x1x3)2, . . . , (x1xm)2).
2 In general, we should not expect to get a smooth morphism if we

start from a non-smooth morphism (e.g. ϕ : A1 → A1 by ϕ(x) = x2,
then dϕ∗n

(0,...,0) = 0 for all n ∈ N).
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Rational singularities

Definition

A variety X has rational singularities if it is normal and for every
resolution of singularities π : X̃ → X we have R iπ∗(OX̃ ) = 0 for i ≥ 1.

Locally, this is equivalent to the following:

Definition

An affine variety X has rational singularities if it is Cohen-Macaulay,
normal and if for every strong resolution of singularities p : X̃ → X and
regular top differential form ω ∈ Ω

top
X sm (X sm) there exists a regular top

differential form ω̃ ∈ Ω
top
X̃

(X̃) such that ω = ω̃|X sm .

Example

Consider the variety X = {
∑k

i=1 xni
i = 0} ⊆ Ak (k > 1).

X has rational singularities if
∑k

i=1
1
ni
> 1 (and (0, . . . , 0) is not a rational

singularity if
∑k

i=1
1
ni
< 1).
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The (FRS) property and our main result

Definition

We say that a morphism ϕ between smooth varieties satisfies the (FRS)
property if ϕ is flat with reduced fibers of rational singularities.

Remark

The (FRS) property is preserved under convolutions.

Theorem (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G be an algebraic
group and let ϕ : X → G be a dominant morphism. Then there exists
N ∈ N such that for any n > N the n-th convolution power ϕ∗n is (FRS).
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Main result - example

Example

Let ϕ : A1 → G = (A1,+) be the map ϕ(x) = x3.

It is flat,

its only non-smooth point is 0, and

as we’ve seen before ϕ∗n is not smooth at (0, . . . , 0) for every n ∈ N.

Consider the n-fold self convolution ϕ∗n := ϕ ∗ . . . ∗ ϕ of ϕ:

ϕ∗n fiber over 0: (ϕ∗n)−1(0) reduced normal rat’l singularities
ϕ {x3 = 0} 7 7 7

ϕ∗2 {x3 + y3 = 0} 3 7 7

ϕ∗3 {x3 + y3 + z3 = 0} 3 3 7

ϕ∗4 {x3 + y3 + z3 + w3 = 0} 3 3 3

⇒ ϕ∗4 is (FRS).
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Rational singularities and counting points over finite rings

Let X be a finite type Z-scheme such that XQ := X ×Spec(Z) Spec(Q) is
absolutely irreducible. We have,

Theorem (Lang-Weil bounds)∣∣∣X(Fpk )
∣∣∣ = pkdimXQ

(
1 + O(p−k/2)

)
for p >> 0.

In particular, the asymptotics of |X(Fpk )| in p only depend on dim XQ.
If X is smooth, we have for almost all primes,

|X(Z/pkZ)| = |X(Fp)|p(k−1) dimXQ =⇒ lim
p→∞

|X(Z/pkZ)|

pk dimXQ
= 1.

If X is singular, we might get a much larger point count over Z/pkZ:

Example

Let X = Spec
(
Z[x]/(x2)

)
, then |X(Z/p2kZ)| = pk but dim XQ = 0.
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Rational singularities and counting points over finite rings

Question

How does |X(Z/pkZ)| depend on the singularity type of X?

Theorem (Aizenbud-Avni)

Let X be a finite type Z-scheme such that XQ is an absolutely irreducible
variety which is a local complete intersection. Then TFAE:

1 XQ has rational singularities.

2 For any k ∈ N we have lim
p→∞

|X(Z/pkZ)|

pk dimXQ
= 1.

3 For any p, the sequence
{
|X(Z/pkZ)|

pk dimXQ

}
k

is bounded.

Proposition

Let ϕ : X → Y be a Z-morphism with absolutely irreducible fibers. Then

ϕQ is (FRS)⇒ for every k we have lim
p→∞

sup
y∈Y(Z/pkZ)

|ϕ−1
Z/pk Z

(y)|

pk(dimX−dimY) = 1.
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The (FRS) property and random walks

Let ϕ : X → G be a dominant morphism from a smooth irreducible variety
X to an algebraic group G and set Xg := ϕ−1(g).

1 Pushing-forward the uniform probability measure νX(Z/pkZ) on
X(Z/pkZ), we get a family of probability measures{
µpk := ϕ∗(νX(Z/pkZ))

}
p,k

on
{
G(Z/pkZ)

}
p,k

s.t. µpk ({g}) =
|Xg(Z/pkZ)|

|X(Z/pkZ)|
.

2 Consider the family of random walks Rp,k =
{
(µpk ,G(Z/pkZ)

}
p,k

.
The probability distribution of the n-th step of Rp,k is as follows:

µ∗npk = µpk ∗. . .∗µpk = ϕ∗(νX(Z/pkZ))∗. . .∗ϕ∗(νX(Z/pkZ)) = ϕ∗n∗ (νX×...×X(Z/pkZ)).

3 Now: ϕ∗n (FRS) for some n ∈ N
⇒ good point count of fibers of ϕ∗n over Z/pkZ for p >> 0
⇐⇒ n-th step of Rp,k is uniformly close to the stationary distribution

for p >> 0.
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The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [ , ] : G × G → G be the
commutator map [g1, g2] = g1g2g−1

1 g−1
2 . Then [ , ]∗21 : (G × G)21 → G is

(FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over Z, and let Γ be
either of the following:

1 A compact open subgroup of G(Qp) for some prime p; or
2 of the form Γ = G(Z) with rank at least 2.

Then there exists a constant C such that for all integers N,

rN(Γ) := #{irreducible N-dimensional C-reps of Γ} < C · N41.

Conjecture

Let G be a semi-simple group, then [ , ] ∗ [ , ] : (G × G)2 → G is (FRS).
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Proof of main theorem

Let K be a field of characteristic 0. Recall we want to show the following:

Theorem (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible K-variety, G be an algebraic
K-group and let ϕ : X → G be a dominant morphism. Then there exists
N ∈ N such that for any n > N the n-th convolution power ϕ∗n is (FRS).
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Proof of main theorem: Step 1 - reduce to a Q-morphism

1 Can assume K is finitely generated.
2 ϕ : X → G is defined over a ring A which is of finite type over Q and

whose generic point is K . Denote by ϕA : XA → GA the morphism ϕ
considered as a family of Q-morphisms parametrized over Spec(A).

Proposition

Assume a K-morphism ψ : X∗N → G is (FRS) at (x,. . . ,x) for every
x ∈ X(K), then ψ∗2N : X2N → G is (FRS).

3 It is enough to show that for each a ∈ Spec(A)(Q) there exists
na ∈ N such that ϕ∗na

a : Xna
a → Ga is (FRS); consider the collection

Un :=
{
x ∈ XA (Q) : ϕn

A is (FRS) at (x, . . . , x)
}
, then

∞⋃
i=1

Un = XA (Q).

4 Can assume K/Q is a Galois extension.
5 Restrict scalars to get a Q-morphism ResK

Q(ϕ). Now, if the morphism
ResK

Q(ϕ)N = ResK
Q(ϕN) is (FRS) then so is ϕN by noting the structure

of ResK
Q(ϕN) ×Spec(Q) Spec(K).
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Proof of main theorem: Step 2 - the analytic criterion

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field
and µ be a measure on X(F).

µ is smooth if every point x ∈ X(F) has an analytic neighborhood
x ∈ Ux and an analytic diffeomorphism D : Ux → O

dimX
F such that

D∗(µ|Ux ) is a Haar measure on OdimX
F .

µ has continuous density if µ = fν where f : X(F)→ C is continuous
and ν is a smooth measure on X(F).

Theorem (Aizenbud-Avni)

Let ϕ : X → Y be a map between smooth varieties defined over a finitely
generated field K of characteristic 0, and let x ∈ X(K). Then TFAE:

1 ϕ is (FRS) at x.
2 For any finite extension K ′/K, there exists a non-Archimedean local

field F ⊇ K ′ and a non-negative Schwartz measure µ on X(F) that
does not vanish at x such that (ϕ|X(F))∗(µ) has continuous density.
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Proof of main theorm: Step 3 - finding a good collection
of measures

Enough to show the following:

Theorem

Let ϕ : X → G be as before with K = Q. Then there exists a collection{
µQp

}
p>M

of smooth measures on
{
X(Qp)

}
p>M

where supp(µQp ) = X(Zp)

and a number n ∈ N such that the measure
ϕ∗n∗ (µQp × . . . × µQp ) = (ϕ∗(µQp ))∗n has continuous density with respect to
a Haar measure on G(Zp).

Fact

Let h : G(Zp)→ C be a function. If the Fourier transform F (h) of h is
absolutely integrable, then h is continuous.

Question

Can we find a collection of measures {µQp }p>M as in the theorem and an
integer N such that F (ϕ∗(µQp )∗N) = F (ϕ∗(µQp ))N is absolutely integrable
for every p?
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Digression: motivic functions
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Languages, formulas and theories

A language L is a set consisting of all logical symbols (and, or, not,
implies, iff, ∃, ∀, = and variables) and can have constant symbols,
function symbols and relation symbols.

Example
1 The language of rings (+,−, ·, 0, 1).
2 The language of ordered abelian groups (+,−,≤, 0).

A structure of a language is a set which interprets this language.

A formula in the language L is defined recursively using equalities
and relation symbols in variables and constant symbols (and
function symbols applied to these) and by using logical symbols (i.e.
if η and χ are formulas then so are ¬η, ∀xη, η→ χ, η ∧ χ etc.).

A formula without free variable is called a sentence, and a theory is a
consistent set of sentences which contain all its logical implications.

A model of a theory is a structure which satisfies all its sentences.
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An example of a theory

Let L = (+,−, ·, 0, 1) be the language of rings. The theory TF of fields
consists of the following sentences (along with their logical implications):

1 ∀x, y, z[(x + y) + z = x + (y + z)]

2 ∀x[x + 0 = x]

3 ∀x[x + (−x) = 0]

4 ∀x[x + y = y + x]

5 ∀x, y, z[(x · y) · z = x · (y · z)]

6 ∀x[x · 1 = x]

7 ∀x, y[x, y , 0→ x · y , 0]

8 ∀x, y[x · y = y · x]

9 ∀x[x · (y + z) = x · y + x · z]

10 0 , 1
11 ∀x , 0∃y[xy = 1]

Models of this theory are fields.
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The Denef-Pas language LDP

Definition

The Denef-Pas language LDP consists of the following:

The language of rings LVal = (+,−, ·, 0, 1) for the valued field sort
VF.

The language of rings LRes = (+,−, ·, 0, 1) for the residue field sort
RF.

The language L∞Pres = LPres ∪ {∞} for the value group sort VG, where
∞ is a constant, and LPres = (+,−,≤, {≡mod n}n>0, 0, 1) is the
Presburger language consisting of the language of ordered abelian
groups along with constants 0, 1 and a family of 2-relations
{≡mod n}n>0 of congruence modulo n.

A function val : VF→ VG for a valuation map.

A function ac : VF→ RF for an angular component map.
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LDP-definable sets and LDP-definable functions

Let LocM be the collection of non-archimedean local fields with residual
characteristic> M.

Definition

A definable set X = (XF )F∈LocM is a collection of sets such that there
exists an LDP formula η and XF = η(F) ⊆ Fn × k m

F × Z
l for all

F ∈ LocM where M is large enough.

A definable function f : X → Y between LDP-definable sets is a
collection of functions (fF : XF → YF )F∈LocM such that the collection
of their graphs is an LDP-definable set.

Example

The following are LDP-definable sets.

Let η = (val(x) = 2) ∨ (ac(y) = 3) and X = {(x, y) ∈ VF2 : η(x, y)}.

Let η1 = (val(x) = z) ∧ (ac(y) = w), η2 = (val(t) > 0) and let

X = {(x, y, t , z,w, v) ∈ VF3 × RF × VG : η1(x, y, z,w) ∧ η2(t)}.
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More examples

Example

The following are LDP-definable sets.

Let X ⊂ An be an affine Z-scheme of finite type. Then X has a
natural structure of an LDP-definable set where XF = X(F) for every
F ∈ Loc.

This can be generalized to non-affine finite type Z-schemes and to
Q-varieties.

Example

The following are LDP-definable functions.

{P(x)}F∈LocM where P : Fn → F is a polynomial with coefficients in Z
and s an integer.

{valF (P(x))}F∈LocM where P : Fn → F is a polynomial with
coefficients in Z.

{1X(OF )}F∈LocM where X is a Q-variety.
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Motivic functions

Definition

Let X be an LDP-definable set. A motivic function is a collection
h = (hF : XF → R)F∈LocM such that for every x ∈ XF it can be written as

hF (x) =
N∑

i=1

|Yi,F ,x |q
αi,F (x)
F

 N′∏
j=1

βij,F (x)


 N′′∏

l=1

1
1 − qail

F

 ,
where {αi} and {βij} are Z-valued LDP-definable functions,

qF = |OF/mF | is the size of the residue field of OF and

Yi,F ,x = {y ∈ k ri
F : (x, y) ∈ YiF } is the fiber over x where Yi ⊆ X × RFri

are LDP-definable sets.

We denote the ring of motivic functions on X by C(X).

Every definable function f : X → VG is motivic.
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Integration theorem for motivic functions

Example ∫
Zp

|x |kpdx =
∞∑

n=0

p − 1
p

p−np−nk =
p − 1

p
1

1 − p−(1+k)
.

The ring of motivic functions is preserved under integration.

Theorem (Cluckers-Loeser, Cluckers-Gordon-Halupczok)

Let X and Y be LDP-definable sets and let f ∈ C(X × Y) be a motivic
function. Then there exists a function g ∈ C(Y) and M ∈ N such that for
every F ∈ LocM we have

gF (y) =

∫
XF

fF (x, y)dx

for every y ∈ YF such that fF (x, y) ∈ L1(XF ).
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The theory TH,ac,0 and elimination of quantifiers

Denote by TH,ac,0 the LDP-theory of Henselian valued fields F of
residue characteristic zero with an angular component map
ac : F → kF .

Lemma

Let φ be a sentence in LDP. Assume that φ holds in all models of TH,ac,0.
Then there exists an integer M(φ) such that φ holds in all
non-Archimedean local fields with residue characteristic larger than M(φ).

Theorem (Denef-Pas)

Let η be an LDP-formula. Then there exists an LDP-formula η′ without
quantifiers of the valued field sort and an integer M such that η and η′ are
equivalent for every non-Archimedean local field of residue characteristic
larger than M.
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proof of the main theorem: Step 3.5 - defining a motivic
measure

Back to our question:

Question

Can we find a collection of smooth measures {µF }F∈LocM such that
supp(µF ) = X(OF ) for every F ∈ LocM and F (ϕ∗(µF )∗N) = F (ϕ∗(µF ))N is
absolutely integrable for some N (which does not depend on F)?

Set µF := 1X(OF ) and consider the collection µ = {µF }F∈LocM .

The collection µ forms a motivic function.

Since the ring of motivic functions is preserved under integration, the
collection σ = {ϕ∗(µF )}F∈LocM is motivic as well.

Claim

Let h ∈ C(G) be an absolutely integrable, compactly supported motivic
function. Then there exists N ∈ N such that h∗NF has continuous density
for every F ∈ LocM .
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Proof of the main theorem: final step - prove a theorem
on motivic functions

Theorem (Glazer-H. 2018)

Let h be a compactly supported, absolutely integrable, motivic function
on Ak . Then there exists a real constant α < 0 and M ∈ N such that

|F (hF )(y)| < d(F) min{|y |α, 1}

for every F ∈ LocM , where d(F) depends only on F.

Theorem (L1 ⇒ L1+ε , Glazer-H. 2018)

Let X be a smooth algebraic variety, let µ be a motivic measure on X,
and let h be a compactly supported motivic function on X such that
hF ∈ L1(X(F), µF ) for every F ∈ LocM . Then there exists ε > 0 such that
hF ∈ L1+ε(X(F), µF ) for every F ∈ LocM′ for some M′ ∈ N.
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Proof of the main theorem: L1 ⇒ L1+ε

Assume h is a definable function and X = An.

Let h ∈ L1(X , µ) be a definable function on X where µ is a motivic
measure on X , and set Ih(s,F) =

∫
X(F) |hF |

sdµF .

Write Ih(s,F) =
∑

k∈Z
ak q−ks

F where

ak := µF ({x ∈ X(F) : val(hF (x)) = k }).
Each ak can be simplified, and Ih(s,F) can be written as

q−n
F

∑
η∈k r

F

∑
l1, . . ., ln, k ∈ Z
σ(η, l1, . . ., ln, k)

q−ks−l1−...−ln
F

where σ is an LDP-formula.
Using elimination of quantifiers and certain uniformization theorems,
we can write the above expression as finitely many sums of the form∑

(e1,...,el)∈Nl

pb1(s)e1+...+bl(s)el

where bi(s) are simple functions.
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Questions?

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 30 / 30


