Singularity properties of convolutions of algebraic morphisms and applications

Yotam Hendel

Weizmann Institute of Science
Joint work with Itay Glazer
October 18, 2018

Motivation: convolution in analysis

Motivation: convolution in analysis

Let $f, g \in L^{1}(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition

$$
f * g(x)=\int_{\mathbb{R}} f(t) g(x-t) d t
$$

Motivation: convolution in analysis

Let $f, g \in L^{1}(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition

$$
f * g(x)=\int_{\mathbb{R}} f(t) g(x-t) d t
$$

This operation improves smoothness properties of functions.

Motivation: convolution in analysis

Let $f, g \in L^{1}(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition

$$
f * g(x)=\int_{\mathbb{R}} f(t) g(x-t) d t
$$

This operation improves smoothness properties of functions.
(1) we have $(f * g)^{\prime}=f^{\prime} * g=f * g^{\prime}$,
(2) and if $f \in C^{k}(\mathbb{R})$ and $g \in C^{\prime}(\mathbb{R})$ then $f * g \in C^{k+1}(\mathbb{R})$.

In particular, if either f or g is smooth then $f * g$ is a smooth function.

Motivation: convolution in analysis

Let $f, g \in L^{1}(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition

$$
f * g(x)=\int_{\mathbb{R}} f(t) g(x-t) d t
$$

This operation improves smoothness properties of functions.
(1) we have $(f * g)^{\prime}=f^{\prime} * g=f * g^{\prime}$,
(2) and if $f \in C^{k}(\mathbb{R})$ and $g \in C^{\prime}(\mathbb{R})$ then $f * g \in C^{k+1}(\mathbb{R})$.

In particular, if either f or g is smooth then $f * g$ is a smooth function.

Question

Is there a geometric analogue to this phenomenon?

Convolution in algebraic geometry: definition

Convolution in algebraic geometry: definition

From here onwards we assume our varieties and groups are defined over a field K of characteristic 0 .

Convolution in algebraic geometry: definition

From here onwards we assume our varieties and groups are defined over a field K of characteristic 0 .

Definition

Let X_{1} and X_{2} be algebraic varieties, G an algebraic group and let $\varphi_{1}: X_{1} \rightarrow G$ and $\varphi_{2}: X_{2} \rightarrow G$ be algebraic morphisms. Define their convolution $\varphi_{1} * \varphi_{2}: X_{1} \times X_{2} \rightarrow G$ by $\varphi_{1} * \varphi_{2}\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right) \cdot \varphi_{2}\left(x_{2}\right)$.

Convolution in algebraic geometry: definition

From here onwards we assume our varieties and groups are defined over a field K of characteristic 0 .

Definition

Let X_{1} and X_{2} be algebraic varieties, G an algebraic group and let $\varphi_{1}: X_{1} \rightarrow G$ and $\varphi_{2}: X_{2} \rightarrow G$ be algebraic morphisms. Define their convolution $\varphi_{1} * \varphi_{2}: X_{1} \times X_{2} \rightarrow G$ by $\varphi_{1} * \varphi_{2}\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right) \cdot \varphi_{2}\left(x_{2}\right)$.

Example

Convolution in algebraic geometry: definition

From here onwards we assume our varieties and groups are defined over a field K of characteristic 0 .

Definition

Let X_{1} and X_{2} be algebraic varieties, G an algebraic group and let $\varphi_{1}: X_{1} \rightarrow G$ and $\varphi_{2}: X_{2} \rightarrow G$ be algebraic morphisms. Define their convolution $\varphi_{1} * \varphi_{2}: X_{1} \times X_{2} \rightarrow G$ by $\varphi_{1} * \varphi_{2}\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right) \cdot \varphi_{2}\left(x_{2}\right)$.

Example

(1) Take $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ with $\varphi(x)=x^{3}$. Then $\varphi^{* 2}:=\varphi * \varphi(x, y)=x^{3}+y^{3}$.

Convolution in algebraic geometry: definition

From here onwards we assume our varieties and groups are defined over a field K of characteristic 0 .

Definition

Let X_{1} and X_{2} be algebraic varieties, G an algebraic group and let $\varphi_{1}: X_{1} \rightarrow G$ and $\varphi_{2}: X_{2} \rightarrow G$ be algebraic morphisms. Define their convolution $\varphi_{1} * \varphi_{2}: X_{1} \times X_{2} \rightarrow G$ by $\varphi_{1} * \varphi_{2}\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right) \cdot \varphi_{2}\left(x_{2}\right)$.

Example

(1) Take $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ with $\varphi(x)=x^{3}$. Then $\varphi^{* 2}:=\varphi * \varphi(x, y)=x^{3}+y^{3}$.
(2) Let G be any algebraic group and let $[]:, G \times G \rightarrow G$ be the commutator map $[x, y]=x y x^{-1} y^{-1}$. Then

$$
[,] *[,]\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left[x_{1}, y_{1}\right] \cdot\left[x_{2}, y_{2}\right]=x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} x_{2} y_{2} x_{2}^{-1} y_{2}^{-1} .
$$

Convolution in algebraic geometry: definition

Convolution in algebraic geometry: definition

Let $\varphi_{i}: X_{i} \rightarrow G, i=1,2$ be morphisms, and consider the functions

$$
F_{\varphi_{i}}: G \rightarrow \text { Schemes by } F_{\varphi_{i}}(g)=\varphi_{i}^{-1}(g) .
$$

Convolution in algebraic geometry: definition

Let $\varphi_{i}: X_{i} \rightarrow G, i=1,2$ be morphisms, and consider the functions

$$
F_{\varphi_{i}}: G \rightarrow \text { Schemes by } F_{\varphi_{i}}(g)=\varphi_{i}^{-1}(g) .
$$

Note that as sets we have the following:

$$
F_{\varphi_{1} * \varphi_{2}}(s)=\left(\varphi_{1} * \varphi_{2}\right)^{-1}(s)=\bigcup_{g \in G} \varphi_{1}^{-1}(g) \times \varphi_{2}^{-1}\left(g^{-1} s\right) .
$$

Convolution in algebraic geometry: definition

Let $\varphi_{i}: X_{i} \rightarrow G, i=1,2$ be morphisms, and consider the functions

$$
F_{\varphi_{i}}: G \rightarrow \text { Schemes by } F_{\varphi_{i}}(g)=\varphi_{i}^{-1}(g) .
$$

Note that as sets we have the following:

$$
F_{\varphi_{1} * \varphi_{2}}(s)=\left(\varphi_{1} * \varphi_{2}\right)^{-1}(s)=\bigcup_{g \in G} \varphi_{1}^{-1}(g) \times \varphi_{2}^{-1}\left(g^{-1} s\right) .
$$

Observation (convolution commutes with counting points over finite rings)
Let A be a finite ring, and consider the maps $\left(\varphi_{i}\right)_{A}: X(A) \rightarrow G(A)$.

Convolution in algebraic geometry: definition

Let $\varphi_{i}: X_{i} \rightarrow G, i=1,2$ be morphisms, and consider the functions

$$
F_{\varphi_{i}}: G \rightarrow \text { Schemes by } F_{\varphi_{i}}(g)=\varphi_{i}^{-1}(g) .
$$

Note that as sets we have the following:

$$
F_{\varphi_{1} * \varphi_{2}}(s)=\left(\varphi_{1} * \varphi_{2}\right)^{-1}(s)=\bigcup_{g \in G} \varphi_{1}^{-1}(g) \times \varphi_{2}^{-1}\left(g^{-1} s\right) .
$$

Observation (convolution commutes with counting points over finite rings)
Let A be a finite ring, and consider the maps $\left(\varphi_{i}\right)_{A}: X(A) \rightarrow G(A)$.

- Define $\left|F_{\left(\varphi_{i}\right)_{A}}\right|: G(A) \rightarrow \mathbb{N}$ by $\left|F_{\left(\varphi_{i}\right)_{A}}\right|(g)=\left|\left(\varphi_{i}\right)_{A}^{-1}(g)\right|$.

Convolution in algebraic geometry: definition

Let $\varphi_{i}: X_{i} \rightarrow G, i=1,2$ be morphisms, and consider the functions

$$
F_{\varphi_{i}}: G \rightarrow \text { Schemes by } F_{\varphi_{i}}(g)=\varphi_{i}^{-1}(g) .
$$

Note that as sets we have the following:

$$
F_{\varphi_{1} * \varphi_{2}}(s)=\left(\varphi_{1} * \varphi_{2}\right)^{-1}(s)=\bigcup_{g \in G} \varphi_{1}^{-1}(g) \times \varphi_{2}^{-1}\left(g^{-1} s\right) .
$$

Observation (convolution commutes with counting points over finite rings)
Let A be a finite ring, and consider the maps $\left(\varphi_{i}\right)_{A}: X(A) \rightarrow G(A)$.

- Define $\left|F_{\left(\varphi_{i}\right)_{A}}\right|: G(A) \rightarrow \mathbb{N}$ by $\left|F_{\left(\varphi_{i}\right)_{A}}\right|(g)=\left|\left(\varphi_{i}\right)_{A}^{-1}(g)\right|$.
- By (\dagger) we have,

$$
\left|F_{\left(\varphi_{1}\right)_{A}}\right| *\left|F_{\left(\varphi_{2}\right)_{A}}\right|(s)=\sum_{g \in G(A)}\left|F_{\left(\varphi_{1}\right)_{A}}\right|(g) \cdot\left|F_{\left(\varphi_{2}\right)_{A}}\right|\left(g^{-1} s\right)=\left|F_{\left.\left(\varphi_{1}\right)_{A} *\left(\varphi_{2}\right)_{A}\right)}\right|(s) .
$$

Convolution in algebraic geometry: properties

Convolution in algebraic geometry: properties

Question

(1) Does our convolution operation improve singularity properties of morphisms?

Convolution in algebraic geometry: properties

Question

(1) Does our convolution operation improve singularity properties of morphisms?
(2) Which properties of morphisms are preserved under convolution?

Convolution in algebraic geometry: properties

Question

(1) Does our convolution operation improve singularity properties of morphisms?
(2) Which properties of morphisms are preserved under convolution?

Fact

Convolution in algebraic geometry: properties

Question

- Does our convolution operation improve singularity properties of morphisms?
(2) Which properties of morphisms are preserved under convolution?

Fact

(1) A morphism $\varphi: X \rightarrow Y$ between smooth irreducible varieties is flat at $x \in X$ if and only if $\operatorname{dim} \varphi^{-1} \circ \varphi(x)=\operatorname{dim} X-\operatorname{dim} Y$.

Convolution in algebraic geometry: properties

Question

(1) Does our convolution operation improve singularity properties of morphisms?
(2) Which properties of morphisms are preserved under convolution?

Fact

(1) A morphism $\varphi: X \rightarrow Y$ between smooth irreducible varieties is flat at $x \in X$ if and only if $\operatorname{dim} \varphi^{-1} \circ \varphi(x)=\operatorname{dim} X-\operatorname{dim} Y$.
(2) A flat morphism $\varphi: X \rightarrow Y$ is smooth \Longleftrightarrow all its fibers are smooth.

Convolution in algebraic geometry: properties

Question

(1) Does our convolution operation improve singularity properties of morphisms?
(2) Which properties of morphisms are preserved under convolution?

Fact

(1) A morphism $\varphi: X \rightarrow Y$ between smooth irreducible varieties is flat at $x \in X$ if and only if $\operatorname{dim} \varphi^{-1} \circ \varphi(x)=\operatorname{dim} X-\operatorname{dim} Y$.
(3) A flat morphism $\varphi: X \rightarrow Y$ is smooth \Longleftrightarrow all its fibers are smooth.

- Properties preserved under convolutions: dominance, flatness, flatness with reduced or normal fibers, smoothness.

Convolution in algebraic geometry: properties

Question

(1) Does our convolution operation improve singularity properties of morphisms?
(2) Which properties of morphisms are preserved under convolution?

Fact

(1) A morphism φ : $X \rightarrow Y$ between smooth irreducible varieties is flat at $x \in X$ if and only if $\operatorname{dim} \varphi^{-1} \circ \varphi(x)=\operatorname{dim} X-\operatorname{dim} Y$.
(2) A flat morphism $\varphi: X \rightarrow Y$ is smooth \Longleftrightarrow all its fibers are smooth.

- Properties preserved under convolutions: dominance, flatness, flatness with reduced or normal fibers, smoothness.
- If S is a property of morphisms which is preserved under base change and compositions and $X \rightarrow \operatorname{Spec}(K)$ satisfies S, then it is preserved under convolutions.

Convolution in algebraic geometry: properties

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.
(2) $\varphi^{*(\operatorname{dim} G+1)}: X^{\operatorname{dim} G+1} \rightarrow G$ is flat with reduced fibers.

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.
(2) $\varphi^{*(\operatorname{dim} G+1)}: X^{\operatorname{dim} G+1} \rightarrow G$ is flat with reduced fibers.
(3) $\varphi^{*(\operatorname{dim} G+2)}: X^{\operatorname{dim} G+2} \rightarrow G$ is flat with normal fibers.

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.
(2) $\varphi^{*(\operatorname{dim} G+1)}: X^{\operatorname{dim} G+1} \rightarrow G$ is flat with reduced fibers.
(3) $\varphi^{*(\operatorname{dim} G+2)}: X^{\operatorname{dim} G+2} \rightarrow G$ is flat with normal fibers.
(1) These bounds are tight.

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.
(2) $\varphi^{*(\operatorname{dim} G+1)}: X^{\operatorname{dim} G+1} \rightarrow G$ is flat with reduced fibers.
(3) $\varphi^{*(\operatorname{dim} G+2)}: X^{\operatorname{dim} G+2} \rightarrow G$ is flat with normal fibers.
(1) These bounds are tight.

Remark

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.
(2) $\varphi^{*(\operatorname{dim} G+1)}: X^{\operatorname{dim} G+1} \rightarrow G$ is flat with reduced fibers.
(3) $\varphi^{*(\operatorname{dim} G+2)}: X^{\operatorname{dim} G+2} \rightarrow G$ is flat with normal fibers.
(1) These bounds are tight.

Remark

(1) To see (4), take $\varphi\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}^{2},\left(x_{1} x_{2}\right)^{2},\left(x_{1} x_{3}\right)^{2}, \ldots,\left(x_{1} x_{m}\right)^{2}\right)$.

Convolution in algebraic geometry: properties

Proposition (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi: X \rightarrow G$ a dominant morphism.
(1) $\varphi^{* \operatorname{dim} G}: X^{\operatorname{dim} G} \rightarrow G$ is flat.
(2) $\varphi^{*(\operatorname{dim} G+1)}: X^{\operatorname{dim} G+1} \rightarrow G$ is flat with reduced fibers.
(3) $\varphi^{*(\operatorname{dim} G+2)}: X^{\operatorname{dim} G+2} \rightarrow G$ is flat with normal fibers.
(1) These bounds are tight.

Remark

(1) To see (4), take $\varphi\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}^{2},\left(x_{1} x_{2}\right)^{2},\left(x_{1} x_{3}\right)^{2}, \ldots,\left(x_{1} x_{m}\right)^{2}\right)$.
(3) In general, we should not expect to get a smooth morphism if we start from a non-smooth morphism (e.g. $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ by $\varphi(x)=x^{2}$, then $d \varphi_{(0, \ldots, 0)}^{* n}=0$ for all $\left.n \in \mathbb{N}\right)$.

Rational singularities

Rational singularities

Definition

A variety X has rational singularities if it is normal and for every resolution of singularities $\pi: \widetilde{X} \rightarrow X$ we have $R^{i} \pi_{*}\left(O_{\bar{X}}\right)=0$ for $i \geq 1$.

Rational singularities

Definition

A variety X has rational singularities if it is normal and for every resolution of singularities $\pi: \widetilde{X} \rightarrow X$ we have $R^{i} \pi_{*}\left(O_{\bar{X}}\right)=0$ for $i \geq 1$.

Locally, this is equivalent to the following:

Definition

An affine variety X has rational singularities if it is Cohen-Macaulay, normal and if for every strong resolution of singularities $p: X \rightarrow X$ and regular top differential form $\omega \in \Omega_{X_{\mathrm{sm}}}^{\mathrm{top}}\left(X^{\mathrm{sm}}\right)$ there exists a regular top differential form $\widetilde{\omega} \in \Omega_{\widetilde{X}}^{\text {top }}(\widetilde{X})$ such that $\omega=\left.\widetilde{\omega}\right|_{X \mathrm{~m}}$.

Rational singularities

Definition

A variety X has rational singularities if it is normal and for every resolution of singularities $\pi: \widetilde{X} \rightarrow X$ we have $R^{i} \pi_{*}\left(O_{\bar{X}}\right)=0$ for $i \geq 1$.

Locally, this is equivalent to the following:

Definition

An affine variety X has rational singularities if it is Cohen-Macaulay, normal and if for every strong resolution of singularities $p: \bar{X} \rightarrow X$ and regular top differential form $\omega \in \Omega_{X_{\mathrm{m}}}^{\mathrm{top}}\left(X^{\mathrm{sm}}\right)$ there exists a regular top differential form $\widetilde{\omega} \in \Omega_{\widetilde{X}}^{\text {top }}(\widetilde{X})$ such that $\omega=\left.\widetilde{\omega}\right|_{X \mathrm{~m}}$.

Example

Consider the variety $X=\left\{\sum_{i=1}^{k} x_{i}^{n_{i}}=0\right\} \subseteq \mathbb{A}^{k}(k>1)$. X has rational singularities if $\sum_{i=1}^{k} \frac{1}{n_{i}}>1$ (and $(0, \ldots, 0)$ is not a rational singularity if $\sum_{i=1}^{k} \frac{1}{n_{i}}<1$).

The (FRS) property and our main result

The (FRS) property and our main result

Definition

We say that a morphism φ between smooth varieties satisfies the (FRS) property if φ is flat with reduced fibers of rational singularities.

The (FRS) property and our main result

Definition

We say that a morphism φ between smooth varieties satisfies the (FRS) property if φ is flat with reduced fibers of rational singularities.

Remark

The (FRS) property is preserved under convolutions.

The (FRS) property and our main result

Definition

We say that a morphism φ between smooth varieties satisfies the (FRS) property if φ is flat with reduced fibers of rational singularities.

Remark

The (FRS) property is preserved under convolutions.

Theorem (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible variety, G be an algebraic group and let $\varphi: X \rightarrow G$ be a dominant morphism. Then there exists $N \in \mathbb{N}$ such that for any $n>N$ the n-th convolution power $\varphi^{* n}$ is (FRS).

Main result - example

Example
 Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,

Main result - example

Example
Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Consider the n-fold self convolution $\varphi^{* n}:=\varphi * \ldots * \varphi$ of φ :

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$. Consider the n-fold self convolution $\varphi^{* n}:=\varphi * \ldots * \varphi$ of φ :

$\varphi^{* n}$	fiber over 0: $\left(\varphi^{* n}\right)^{-1}(0)$	reduced	normal	rat'l singularities

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Consider the n-fold self convolution $\varphi^{* n}:=\varphi * \ldots * \varphi$ of φ :

$\varphi^{* n}$	fiber over 0: $\left(\varphi^{* n}\right)^{-1}(0)$	reduced	normal	rat'l singularities
φ	$\left\{x^{3}=0\right\}$	X	X	X

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$. Consider the n-fold self convolution $\varphi^{* n}:=\varphi * \ldots * \varphi$ of φ :

$\varphi^{* n}$	fiber over 0: $\left(\varphi^{* n}\right)^{-1}(0)$	reduced	normal	rat'I singularities
φ	$\left\{x^{3}=0\right\}$	x	X	X
$\varphi^{* 2}$	$\left\{x^{3}+y^{3}=0\right\}$	\checkmark	x	X

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Consider the n-fold self convolution $\varphi^{* n}:=\varphi * \ldots * \varphi$ of φ :

$\varphi^{* n}$	fiber over 0: $\left(\varphi^{* n}\right)^{-1}(0)$	reduced	normal	rat'l singularities
φ	$\left\{x^{3}=0\right\}$	X	X	X
$\varphi^{* 2}$	$\left\{x^{3}+y^{3}=0\right\}$	\checkmark	X	X
$\varphi^{* 3}$	$\left\{x^{3}+y^{3}+z^{3}=0\right\}$	\checkmark	\checkmark	X

Main result - example

Example

Let $\varphi: \mathbb{A}^{1} \rightarrow G=\left(\mathbb{A}^{1},+\right)$ be the $\operatorname{map} \varphi(x)=x^{3}$.

- It is flat,
- its only non-smooth point is 0 , and
- as we've seen before $\varphi^{* n}$ is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Consider the n-fold self convolution $\varphi^{* n}:=\varphi * \ldots * \varphi$ of φ :

$\varphi^{* n}$	fiber over 0: $\left(\varphi^{* n}\right)^{-1}(0)$	reduced	normal	rat'I singularities
φ	$\left\{x^{3}=0\right\}$	X	X	X
$\varphi^{* 2}$	$\left\{x^{3}+y^{3}=0\right\}$	\checkmark	X	x
$\varphi^{* 3}$	$\left\{x^{3}+y^{3}+z^{3}=0\right\}$	\checkmark	\checkmark	x
$\varphi^{* 4}$	$\left\{x^{3}+y^{3}+z^{3}+w^{3}=0\right\}$	\checkmark	\checkmark	\checkmark

$\Rightarrow \varphi^{* 4}$ is (FRS).

Rational singularities and counting points over finite rings

Rational singularities and counting points over finite rings

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}:=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is absolutely irreducible.

Rational singularities and counting points over finite rings

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}:=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$
\left|X\left(\mathbb{F}_{p^{k}}\right)\right|=p^{k \operatorname{dim} X_{Q}}\left(1+O\left(p^{-k / 2}\right)\right) \text { for } p \gg 0 .
$$

Rational singularities and counting points over finite rings

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}:=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$
\left|X\left(\mathbb{F}_{p^{k}}\right)\right|=p^{k \operatorname{dim} X_{Q}}\left(1+O\left(p^{-k / 2}\right)\right) \text { for } p \gg 0 .
$$

In particular, the asymptotics of $\left|X\left(\mathbb{F}_{p^{k}}\right)\right|$ in p only depend on $\operatorname{dim} X_{\mathbb{Q}}$.

Rational singularities and counting points over finite rings

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}:=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$
\left|X\left(\mathbb{F}_{p^{k}}\right)\right|=p^{k \operatorname{dim} X_{0}}\left(1+O\left(p^{-k / 2}\right)\right) \text { for } p \gg 0 .
$$

In particular, the asymptotics of $\left|X\left(\mathbb{F}_{p^{k}}\right)\right|$ in p only depend on $\operatorname{dim} X_{\mathbb{Q}}$. If X is smooth, we have for almost all primes,

$$
\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=\left|X\left(\mathbb{F}_{p}\right)\right| p^{(k-1) \operatorname{dim} X_{Q}} \Longrightarrow \lim _{p \rightarrow \infty} \frac{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{p^{k \operatorname{dim} X_{Q}}}=1 .
$$

Rational singularities and counting points over finite rings

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}:=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$
\left|X\left(\mathbb{F}_{p^{k}}\right)\right|=p^{k \operatorname{dim} X_{Q}}\left(1+O\left(p^{-k / 2}\right)\right) \text { for } p \gg 0 .
$$

In particular, the asymptotics of $\left|X\left(\mathbb{F}_{p^{k}}\right)\right|$ in p only depend on $\operatorname{dim} X_{Q}$. If X is smooth, we have for almost all primes,

$$
\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=\left|X\left(\mathbb{F}_{p}\right)\right| p^{(k-1) \operatorname{dim} X_{Q}} \Longrightarrow \lim _{p \rightarrow \infty} \frac{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{p^{k \operatorname{dim} X_{Q}}}=1 .
$$

If X is singular, we might get a much larger point count over $\mathbb{Z} / p^{k} \mathbb{Z}$:

Rational singularities and counting points over finite rings

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}:=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$
\left|X\left(\mathbb{F}_{p^{k}}\right)\right|=p^{k \operatorname{dim} X_{Q}}\left(1+O\left(p^{-k / 2}\right)\right) \text { for } p \gg 0
$$

In particular, the asymptotics of $\left|X\left(\mathbb{F}_{p^{k}}\right)\right|$ in p only depend on $\operatorname{dim} X_{\mathbb{Q}}$. If X is smooth, we have for almost all primes,

$$
\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=\left|X\left(\mathbb{F}_{p}\right)\right| p^{(k-1) \operatorname{dim} X_{Q}} \Longrightarrow \lim _{p \rightarrow \infty} \frac{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{p^{k \operatorname{dim} X_{Q}}}=1
$$

If X is singular, we might get a much larger point count over $\mathbb{Z} / p^{k} \mathbb{Z}$:

Example

Let $X=\operatorname{Spec}\left(\mathbb{Z}[x] /\left(x^{2}\right)\right)$, then $\left|X\left(\mathbb{Z} / p^{2 k} \mathbb{Z}\right)\right|=p^{k}$ but $\operatorname{dim} X_{\mathbb{Q}}=0$.

Rational singularities and counting points over finite rings

Question
How does $\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|$ depend on the singularity type of X ?

Rational singularities and counting points over finite rings

Question

How does $\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|$ depend on the singularity type of X ?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

Rational singularities and counting points over finite rings

Question

How does $\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|$ depend on the singularity type of X ?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z}-scheme such that X_{Q} is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

- X_{Q} has rational singularities.

Rational singularities and counting points over finite rings

Question

How does $\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|$ depend on the singularity type of X ?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

- X_{Q} has rational singularities.
(2) For any $k \in \mathbb{N}$ we have $\lim _{p \rightarrow \infty} \frac{\left|X\left(Z / p^{k} Z\right)\right|}{p^{k d i m} x_{Q}}=1$.

Rational singularities and counting points over finite rings

Question

How does $\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|$ depend on the singularity type of X ?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

- X_{Q} has rational singularities.
(2) For any $k \in \mathbb{N}$ we have $\lim _{p \rightarrow \infty} \frac{\left|X\left(Z / \rho^{k} Z\right)\right|}{p^{k d i m} x_{Q}}=1$.
(3) For any p, the sequence $\left\{\frac{\left|X\left(Z / p^{k} Z\right)\right|}{p^{\text {dim }} x_{Q}}\right\}_{k}$ is bounded.

Rational singularities and counting points over finite rings

Question

How does $\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|$ depend on the singularity type of X ?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z}-scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

- X_{Q} has rational singularities.
(2) For any $k \in \mathbb{N}$ we have $\lim _{p \rightarrow \infty} \frac{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{p^{k \operatorname{dim} X_{Q}}}=1$.
(3) For any p, the sequence $\left\{\frac{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{p^{k \operatorname{dim} X_{Q}}}\right\}_{k}$ is bounded.

Proposition

Let $\varphi: X \rightarrow Y$ be a Z-morphism with absolutely irreducible fibers. Then
φ_{Q} is $(F R S) \Rightarrow$ for every k we have $\lim _{p \rightarrow \infty} \sup _{y \in Y\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)} \frac{\left|\varphi_{Z}^{-1} / \rho^{k}(y)\right|}{p^{k(\operatorname{dim} X-\operatorname{dim} Y)}}=1$.

The (FRS) property and random walks

The (FRS) property and random walks

Let $\varphi: X \rightarrow G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_{g}:=\varphi^{-1}(g)$.

The (FRS) property and random walks

Let $\varphi: X \rightarrow G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_{g}:=\varphi^{-1}(g)$.
(1) Pushing-forward the uniform probability measure $v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}$ on $X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$, we get a family of probability measures $\left\{\mu_{p^{k}}:=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)\right\}_{p, k}$ on $\left\{G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}$ s.t. $\mu_{p^{k}}(\{g\})=\frac{\left|X_{g}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}$.

The (FRS) property and random walks

Let $\varphi: X \rightarrow G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_{g}:=\varphi^{-1}(g)$.
(1) Pushing-forward the uniform probability measure $v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}$ on $X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$, we get a family of probability measures $\left\{\mu_{p^{k}}:=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)\right\}_{p, k}$ on $\left\{G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}$ s.t. $\mu_{p^{k}}(\{g\})=\frac{\left|X_{g}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}$.
(2) Consider the family of random walks $R_{p, k}=\left\{\left(\mu_{p^{k}}, G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}\right.$. The probability distribution of the n-th step of $R_{p, k}$ is as follows:

$$
\mu_{\rho^{k}}^{* n}=\mu_{p^{k}} * \ldots * \mu_{p^{k}}=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right) * \ldots * \varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)=\varphi_{*}^{* n}\left(v_{X \times \ldots \times x\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right) .
$$

The (FRS) property and random walks

Let $\varphi: X \rightarrow G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_{g}:=\varphi^{-1}(g)$.
(1) Pushing-forward the uniform probability measure $v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}$ on $X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$, we get a family of probability measures

$$
\left\{\mu_{\rho^{k}}:=\varphi_{*}\left(v_{X\left(\mathbb{Z} / \rho^{k} \mathbb{Z}\right)}\right)\right\}_{p, k} \text { on }\left\{G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k} \text { s.t. } \mu_{\rho^{k}}(\{g\})=\frac{\left|X_{g}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{\left|X\left(\mathbb{Z} / \rho^{k} \mathbb{Z}\right)\right|} \text {. }
$$

(2) Consider the family of random walks $R_{p, k}=\left\{\left(\mu_{p^{k}}, G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}\right.$. The probability distribution of the n-th step of $R_{p, k}$ is as follows:

$$
\mu_{p^{k}}^{* n}=\mu_{\rho^{k}} * \ldots * \mu_{p^{k}}=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right) * \ldots * \varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)=\varphi_{*}^{* n}\left(v_{X X \ldots \times x\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right) .
$$

(3) Now: $\varphi^{* n}$ (FRS) for some $n \in \mathbb{N}$

The (FRS) property and random walks

Let $\varphi: X \rightarrow G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_{g}:=\varphi^{-1}(g)$.
(1) Pushing-forward the uniform probability measure $v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}$ on $X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$, we get a family of probability measures

$$
\left\{\mu_{p^{k}}:=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)\right\}_{p, k} \text { on }\left\{G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k} \text { s.t. } \mu_{\rho^{k}}(\{g\})=\frac{\left|X_{g}\left(\mathbb{Z} / \rho^{k} \mathbb{Z}\right)\right|}{\left|X\left(\mathbb{Z} / \rho^{k} \mathbb{Z}\right)\right|} \text {. }
$$

(2) Consider the family of random walks $R_{p, k}=\left\{\left(\mu_{p^{k}}, G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}\right.$. The probability distribution of the n-th step of $R_{p, k}$ is as follows:
$\mu_{p^{k}}^{* n}=\mu_{\rho^{k}} * \ldots * \mu_{p^{k}}=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right) * \ldots * \varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)=\varphi_{*}^{* n}\left(v_{X \times \ldots \times\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)$.
(3) Now: $\varphi^{* n}$ (FRS) for some $n \in \mathbb{N}$
\Rightarrow good point count of fibers of $\varphi^{* n}$ over $\mathbb{Z} / p^{k} \mathbb{Z}$ for $p \gg 0$

The (FRS) property and random walks

Let $\varphi: X \rightarrow G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_{g}:=\varphi^{-1}(g)$.
(1) Pushing-forward the uniform probability measure $v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}$ on $X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$, we get a family of probability measures $\left\{\mu_{p^{k}}:=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)\right\}_{p, k}$ on $\left\{G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}$ s.t. $\mu_{p^{k}}(\{g\})=\frac{\left|X_{g}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}{\left|X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|}$.
(2) Consider the family of random walks $R_{p, k}=\left\{\left(\mu_{p^{k}}, G\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right\}_{p, k}\right.$. The probability distribution of the n-th step of $R_{p, k}$ is as follows:
$\mu_{\rho^{k}}^{* n}=\mu_{\rho^{k}} * \ldots * \mu_{p^{k}}=\varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right) * \ldots * \varphi_{*}\left(v_{X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)=\varphi_{*}^{* n}\left(v_{X \times \ldots \times X\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}\right)$.
(3) Now: $\varphi^{* n}$ (FRS) for some $n \in \mathbb{N}$
\Rightarrow good point count of fibers of $\varphi^{* n}$ over $\mathbb{Z} / p^{k} \mathbb{Z}$ for $p \gg 0$
$\Longleftrightarrow n$-th step of $R_{p, k}$ is uniformly close to the stationary distribution for $p \gg 0$.

The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [,] : $G \times G \rightarrow G$ be the commutator map $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Then $[,]^{* 21}:(G \times G)^{21} \rightarrow G$ is (FRS).

The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [,] : $G \times G \rightarrow G$ be the commutator map $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Then $[,]^{* 21}:(G \times G)^{21} \rightarrow G$ is (FRS).

Corollary (Aizenbud-Avni)
Let G be a semi-simple algebraic group defined over \mathbb{Z}, and let Γ be either of the following:

The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [,] : $G \times G \rightarrow G$ be the commutator map $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Then $[,]^{* 21}:(G \times G)^{21} \rightarrow G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over \mathbb{Z}, and let Γ be either of the following:
(1) A compact open subgroup of $G\left(\mathbb{Q}_{p}\right)$ for some prime p; or

The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [,] : $G \times G \rightarrow G$ be the commutator map $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Then $[,]^{* 21}:(G \times G)^{21} \rightarrow G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over \mathbb{Z}, and let Γ be either of the following:
(1) A compact open subgroup of $G\left(\mathbb{Q}_{p}\right)$ for some prime p; or
(2) of the form $\Gamma=G(\mathbb{Z})$ with rank at least 2 .

The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [,] : $G \times G \rightarrow G$ be the commutator map $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Then $[,]^{* 21}:(G \times G)^{21} \rightarrow G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over \mathbb{Z}, and let Γ be either of the following:
(1) A compact open subgroup of $G\left(\mathbb{Q}_{p}\right)$ for some prime p; or
(2) of the form $\Gamma=G(\mathbb{Z})$ with rank at least 2 .

Then there exists a constant C such that for all integers N,

$$
r_{N}(\Gamma):=\#\{\text { irreducible } N \text {-dimensional } \mathbb{C} \text {-reps of } \Gamma\}<C \cdot N^{41} .
$$

The (FRS) property and representation growth

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let [,]: $G \times G \rightarrow G$ be the commutator map $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Then $[,]^{* 21}:(G \times G)^{21} \rightarrow G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over \mathbb{Z}, and let Γ be either of the following:
(1) A compact open subgroup of $G\left(\mathbb{Q}_{p}\right)$ for some prime p; or
(2) of the form $\Gamma=G(\mathbb{Z})$ with rank at least 2 .

Then there exists a constant C such that for all integers N,

$$
r_{N}(\Gamma):=\#\{i r r e d u c i b l e ~ N \text {-dimensional C-reps of } \Gamma\}<C \cdot N^{41} .
$$

Conjecture

Let G be a semi-simple group, then $[] *,[]:,(G \times G)^{2} \rightarrow G$ is (FRS).

Proof of main theorem

Proof of main theorem

Let K be a field of characteristic 0 .

Proof of main theorem

Let K be a field of characteristic 0 . Recall we want to show the following:

Theorem (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible K-variety, G be an algebraic K-group and let $\varphi: X \rightarrow G$ be a dominant morphism. Then there exists $N \in \mathbb{N}$ such that for any $n>N$ the n-th convolution power $\varphi^{* n}$ is (FRS).

Proof of main theorem: Step 1 - reduce to a Q-morphism

Proof of main theorem: Step 1 - reduce to a \mathbb{Q}-morphism

(Can assume K is finitely generated.

Proof of main theorem: Step 1 - reduce to a Q-morphism

(c) Can assume K is finitely generated.
(2) $\varphi: X \rightarrow G$ is defined over a ring A which is of finite type over \mathbb{Q} and whose generic point is K. Denote by $\varphi_{A}: X_{A} \rightarrow G_{A}$ the morphism φ considered as a family of \mathbb{Q}-morphisms parametrized over $\operatorname{Spec}(A)$.

Proof of main theorem: Step 1 - reduce to a \mathbb{Q}-morphism

(1) Can assume K is finitely generated.
(2) $\varphi: X \rightarrow G$ is defined over a ring A which is of finite type over \mathbb{Q} and whose generic point is K. Denote by $\varphi_{A}: X_{A} \rightarrow G_{A}$ the morphism φ considered as a family of \mathbb{Q}-morphisms parametrized over $\operatorname{Spec}(A)$.

Proposition

Assume a K-morphism $\psi: X^{* N} \rightarrow G$ is (FRS) at (x, \ldots, x) for every $x \in X(\bar{K})$, then $\psi^{* 2 N}: X^{2 N} \rightarrow G$ is (FRS).

Proof of main theorem: Step 1 - reduce to a \mathbb{Q}-morphism

(1) Can assume K is finitely generated.
(2) $\varphi: X \rightarrow G$ is defined over a ring A which is of finite type over \mathbb{Q} and whose generic point is K. Denote by $\varphi_{A}: X_{A} \rightarrow G_{A}$ the morphism φ considered as a family of \mathbb{Q}-morphisms parametrized over $\operatorname{Spec}(A)$.

Proposition

Assume a K-morphism $\psi: X^{* N} \rightarrow G$ is (FRS) at (x, \ldots, x) for every $x \in X(\bar{K})$, then $\psi^{* 2 N}: X^{2 N} \rightarrow G$ is (FRS).
(3) It is enough to show that for each $a \in \operatorname{Spec}(A)(\overline{\mathbb{Q}})$ there exists $n_{a} \in \mathbb{N}$ such that $\varphi_{a}^{* n_{a}}: X_{a}^{n_{a}} \rightarrow G_{a}$ is (FRS); consider the collection

$$
U_{n}:=\left\{x \in X_{A}(\overline{\mathbb{Q}}): \varphi_{A}^{n} \text { is (FRS) at }(x, \ldots, x)\right\} \text {, then } \bigcup_{i=1}^{\infty} U_{n}=X_{A}(\overline{\mathbb{Q}}) .
$$

Proof of main theorem: Step 1 - reduce to a \mathbb{Q}-morphism

(1) Can assume K is finitely generated.
(2) $\varphi: X \rightarrow G$ is defined over a ring A which is of finite type over \mathbb{Q} and whose generic point is K. Denote by $\varphi_{A}: X_{A} \rightarrow G_{A}$ the morphism φ considered as a family of \mathbb{Q}-morphisms parametrized over $\operatorname{Spec}(A)$.

Proposition

Assume a K-morphism $\psi: X^{* N} \rightarrow G$ is (FRS) at (x, \ldots, x) for every $x \in X(\bar{K})$, then $\psi^{* 2 N}: X^{2 N} \rightarrow G$ is (FRS).
(3) It is enough to show that for each $a \in \operatorname{Spec}(A)(\overline{\mathbb{Q}})$ there exists $n_{a} \in \mathbb{N}$ such that $\varphi_{a}^{* n_{a}}: X_{a}^{n_{a}} \rightarrow G_{a}$ is (FRS); consider the collection

$$
U_{n}:=\left\{x \in X_{A}(\overline{\mathbb{Q}}): \varphi_{A}^{n} \text { is (FRS) at }(x, \ldots, x)\right\} \text {, then } \bigcup_{i=1}^{\infty} U_{n}=X_{A}(\overline{\mathbb{Q}}) .
$$

(3) Can assume K / \mathbb{Q} is a Galois extension.

Proof of main theorem: Step 1 - reduce to a Q-morphism

(1) Can assume K is finitely generated.
(2) $\varphi: X \rightarrow G$ is defined over a ring A which is of finite type over \mathbb{Q} and whose generic point is K. Denote by $\varphi_{A}: X_{A} \rightarrow G_{A}$ the morphism φ considered as a family of \mathbb{Q}-morphisms parametrized over $\operatorname{Spec}(A)$.

Proposition

Assume a K-morphism $\psi: X^{* N} \rightarrow G$ is (FRS) at (x, \ldots, x) for every $x \in X(\bar{K})$, then $\psi^{* 2 N}: X^{2 N} \rightarrow G$ is (FRS).
(3) It is enough to show that for each $a \in \operatorname{Spec}(A)(\overline{\mathbb{Q}})$ there exists $n_{a} \in \mathbb{N}$ such that $\varphi_{a}^{* n_{a}}: X_{a}^{n_{a}} \rightarrow G_{a}$ is (FRS); consider the collection

$$
U_{n}:=\left\{x \in X_{A}(\overline{\mathbb{Q}}): \varphi_{A}^{n} \text { is (FRS) at }(x, \ldots, x)\right\} \text {, then } \bigcup_{i=1}^{\infty} U_{n}=X_{A}(\overline{\mathbb{Q}}) .
$$

(9) Can assume K / \mathbb{Q} is a Galois extension.
(6) Restrict scalars to get a \mathbb{Q}-morphism $\operatorname{Res}_{\mathbb{Q}}^{K}(\varphi)$. Now, if the morphism $\operatorname{Res}_{\mathbb{Q}}^{K}(\varphi)^{N}=\operatorname{Res}_{Q}^{K}\left(\varphi^{N}\right)$ is (FRS) then so is φ^{N} by noting the structure of $\operatorname{Res}_{\mathbb{Q}}^{K}\left(\varphi^{N}\right) \times_{\text {Spec }(\mathbb{Q})} \operatorname{Spec}(K)$.

Proof of main theorem: Step 2 - the analytic criterion

Proof of main theorem: Step 2 - the analytic criterion

Definition
Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on $X(F)$.

Proof of main theorem: Step 2 - the analytic criterion

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on $X(F)$.

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_{x}$ and an analytic diffeomorphism $D: U_{x} \rightarrow O_{F}^{\operatorname{dim} X}$ such that $D_{*}\left(\mu_{\mid U_{x}}\right)$ is a Haar measure on $O_{F}^{\operatorname{dim} X}$.

Proof of main theorem: Step 2 - the analytic criterion

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on $X(F)$.

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_{x}$ and an analytic diffeomorphism $D: U_{x} \rightarrow O_{F}^{\text {dim } X}$ such that $D_{*}\left(\mu_{\mid U_{X}}\right)$ is a Haar measure on $O_{F}^{\operatorname{dim} X}$.
- μ has continuous density if $\mu=f v$ where $f: X(F) \rightarrow \mathbb{C}$ is continuous and v is a smooth measure on $X(F)$.

Proof of main theorem: Step 2 - the analytic criterion

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on $X(F)$.

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_{x}$ and an analytic diffeomorphism $D: U_{x} \rightarrow O_{F}^{\operatorname{dim} X}$ such that $D_{*}\left(\mu_{\mid U_{x}}\right)$ is a Haar measure on $O_{F}^{\operatorname{dim} X}$.
- μ has continuous density if $\mu=f v$ where $f: X(F) \rightarrow \mathbb{C}$ is continuous and v is a smooth measure on $X(F)$.

Theorem (Aizenbud-Avni)

Let $\varphi: X \rightarrow Y$ be a map between smooth varieties defined over a finitely generated field K of characteristic 0 , and let $x \in X(K)$. Then TFAE:

Proof of main theorem: Step 2 - the analytic criterion

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on $X(F)$.

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_{x}$ and an analytic diffeomorphism $D: U_{x} \rightarrow O_{F}^{\operatorname{dim} x}$ such that $D_{*}\left(\mu_{\mid U_{X}}\right)$ is a Haar measure on $O_{F}^{\operatorname{dim} X}$.
- μ has continuous density if $\mu=f v$ where $f: X(F) \rightarrow \mathbb{C}$ is continuous and v is a smooth measure on $X(F)$.

Theorem (Aizenbud-Avni)

Let $\varphi: X \rightarrow Y$ be a map between smooth varieties defined over a finitely generated field K of characteristic 0 , and let $x \in X(K)$. Then TFAE:
(1) φ is (FRS) at x.

Proof of main theorem: Step 2 - the analytic criterion

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on $X(F)$.

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_{x}$ and an analytic diffeomorphism $D: U_{x} \rightarrow O_{F}^{\operatorname{dim} X}$ such that $D_{*}\left(\mu_{\mid U_{x}}\right)$ is a Haar measure on $O_{F}^{\operatorname{dim} X}$.
- μ has continuous density if $\mu=f v$ where $f: X(F) \rightarrow \mathbb{C}$ is continuous and v is a smooth measure on $X(F)$.

Theorem (Aizenbud-Avni)

Let $\varphi: X \rightarrow Y$ be a map between smooth varieties defined over a finitely generated field K of characteristic 0 , and let $x \in X(K)$. Then TFAE:
(1) φ is (FRS) at x.
(2) For any finite extension K^{\prime} / K, there exists a non-Archimedean local field $F \supseteq K^{\prime}$ and a non-negative Schwartz measure μ on $X(F)$ that does not vanish at x such that $\left(\left.\varphi\right|_{X(F)}\right) *(\mu)$ has continuous density.

Proof of main theorm: Step 3 - finding a good collection of measures

Proof of main theorm: Step 3 - finding a good collection of measures

Enough to show the following:

```
Theorem
Let \(\varphi: X \rightarrow G\) be as before with \(K=\mathbb{Q}\).
```


Proof of main theorm: Step 3 - finding a good collection of measures

Enough to show the following:

Theorem

Let $\varphi: X \rightarrow G$ be as before with $K=\mathbb{Q}$. Then there exists a collection $\left\{\mu_{\mathbb{Q}_{p}}\right\}_{p>M}$ of smooth measures on $\left\{X\left(\mathbb{Q}_{p}\right)\right\}_{p>M}$ where $\operatorname{supp}\left(\mu_{\mathbb{Q}_{p}}\right)=X\left(\mathbb{Z}_{p}\right)$

Proof of main theorm: Step 3 - finding a good collection of measures

Enough to show the following:

Theorem

Let $\varphi: X \rightarrow G$ be as before with $K=\mathbb{Q}$. Then there exists a collection $\left\{\mu_{\mathbb{Q}_{p}}\right\}_{p>M}$ of smooth measures on $\left\{X\left(\mathbb{Q}_{p}\right)\right\}_{p>M}$ where $\operatorname{supp}\left(\mu_{\mathbb{Q}_{p}}\right)=X\left(\mathbb{Z}_{p}\right)$ and a number $n \in \mathbb{N}$ such that the measure
$\varphi_{*}^{* n}\left(\mu_{\mathbb{Q}_{p}} \times \ldots \times \mu_{\mathbb{Q}_{p}}\right)=\left(\varphi_{*}\left(\mu_{\mathbb{Q}_{p}}\right)\right)^{* n}$ has continuous density with respect to a Haar measure on $G\left(\mathbb{Z}_{p}\right)$.

Proof of main theorm: Step 3 - finding a good collection of measures

Enough to show the following:

Theorem

Let $\varphi: X \rightarrow G$ be as before with $K=\mathbb{Q}$. Then there exists a collection
$\left\{\mu_{\mathbb{Q}_{p}}\right\}_{p>M}$ of smooth measures on $\left\{X\left(\mathbb{Q}_{p}\right)\right\}_{p>M}$ where $\operatorname{supp}\left(\mu_{\mathbb{Q}_{p}}\right)=X\left(\mathbb{Z}_{p}\right)$ and a number $n \in \mathbb{N}$ such that the measure
$\varphi_{*}^{* n}\left(\mu_{\mathbb{Q}_{p}} \times \ldots \times \mu_{\mathbb{Q}_{p}}\right)=\left(\varphi_{*}\left(\mu_{\mathbb{Q}_{p}}\right)\right)^{* n}$ has continuous density with respect to a Haar measure on $G\left(\mathbb{Z}_{p}\right)$.

Fact

Let $h: G\left(\mathbb{Z}_{p}\right) \rightarrow \mathbb{C}$ be a function. If the Fourier transform $\mathcal{F}(h)$ of h is absolutely integrable, then h is continuous.

Proof of main theorm: Step 3 - finding a good collection of measures

Enough to show the following:

Theorem

Let $\varphi: X \rightarrow G$ be as before with $K=\mathbb{Q}$. Then there exists a collection $\left\{\mu_{Q_{p}}\right\}_{p>M}$ of smooth measures on $\left\{X\left(\mathbb{Q}_{p}\right)\right\}_{p>M}$ where $\operatorname{supp}\left(\mu_{\mathbb{Q}_{p}}\right)=X\left(\mathbb{Z}_{p}\right)$ and a number $n \in \mathbb{N}$ such that the measure
$\varphi_{*}^{* n}\left(\mu_{Q_{p}} \times \ldots \times \mu_{Q_{p}}\right)=\left(\varphi_{*}\left(\mu_{Q_{p}}\right)\right)^{* n}$ has continuous density with respect to a Haar measure on $G\left(\mathbb{Z}_{p}\right)$.

Fact

Let $h: G\left(\mathbb{Z}_{p}\right) \rightarrow \mathbb{C}$ be a function. If the Fourier transform $\mathcal{F}(h)$ of h is absolutely integrable, then h is continuous.

Question

Can we find a collection of measures $\left\{\mu_{\mathrm{Q}_{p}}\right\}_{p>M}$ as in the theorem and an integer N such that $\mathcal{F}\left(\varphi_{*}\left(\mu_{\mathbb{Q}_{p}}\right)^{* N}\right)=\mathcal{F}\left(\varphi_{*}\left(\mu_{Q_{p}}\right)\right)^{N}$ is absolutely integrable for every p ?

Digression: motivic functions

Languages, formulas and theories

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

(1) The language of rings $(+,-, \cdot, 0,1)$.

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

(1) The language of rings $(+,-, \cdot, 0,1)$.
(2) The language of ordered abelian groups $(+,-, \leq, 0)$.

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

(1) The language of rings $(+,-, \cdot, 0,1)$.
(2) The language of ordered abelian groups $(+,-, \leq, 0)$.

- A structure of a language is a set which interprets this language.

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

(1) The language of rings $(+,-, \cdot, 0,1)$.
(2) The language of ordered abelian groups $(+,-, \leq, 0)$.

- A structure of a language is a set which interprets this language.
- A formula in the language \mathcal{L} is defined recursively using equalities and relation symbols in variables and constant symbols (and function symbols applied to these) and by using logical symbols (i.e. if η and χ are formulas then so are $\neg \eta, \forall x \eta, \eta \rightarrow \chi, \eta \wedge \chi$ etc.).

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

(1) The language of rings $(+,-, \cdot, 0,1)$.
(2) The language of ordered abelian groups $(+,-, \leq, 0)$.

- A structure of a language is a set which interprets this language.
- A formula in the language \mathcal{L} is defined recursively using equalities and relation symbols in variables and constant symbols (and function symbols applied to these) and by using logical symbols (i.e. if η and χ are formulas then so are $\neg \eta, \forall x \eta, \eta \rightarrow \chi, \eta \wedge \chi$ etc.).
- A formula without free variable is called a sentence, and a theory is a consistent set of sentences which contain all its logical implications.

Languages, formulas and theories

- A language \mathcal{L} is a set consisting of all logical symbols (and, or, not, implies, iff, \exists, \forall, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

(1) The language of rings $(+,-, \cdot, 0,1)$.
(2) The language of ordered abelian groups $(+,-, \leq, 0)$.

- A structure of a language is a set which interprets this language.
- A formula in the language \mathcal{L} is defined recursively using equalities and relation symbols in variables and constant symbols (and function symbols applied to these) and by using logical symbols (i.e. if η and χ are formulas then so are $\neg \eta, \forall x \eta, \eta \rightarrow \chi, \eta \wedge \chi$ etc.).
- A formula without free variable is called a sentence, and a theory is a consistent set of sentences which contain all its logical implications.
- A model of a theory is a structure which satisfies all its sentences.

An example of a theory

An example of a theory

Let $\mathcal{L}=(+,-, \cdot, 0,1)$ be the language of rings. The theory TF of fields consists of the following sentences (along with their logical implications):

An example of a theory

Let $\mathcal{L}=(+,-, \cdot, 0,1)$ be the language of rings. The theory TF of fields consists of the following sentences (along with their logical implications):
(1) $\forall x, y, z[(x+y)+z=x+(y+z)]$
(2) $\forall x[x+0=x]$
(3) $\forall x[x+(-x)=0]$
(9) $\forall x[x+y=y+x]$
(6) $\forall x, y, z[(x \cdot y) \cdot z=x \cdot(y \cdot z)]$
(c) $\forall x[x \cdot 1=x]$
(3) $\forall x, y[x, y \neq 0 \rightarrow x \cdot y \neq 0]$
(3) $\forall x, y[x \cdot y=y \cdot x]$
(2) $\forall x[x \cdot(y+z)=x \cdot y+x \cdot z]$
(1) $0 \neq 1$
(1) $\forall x \neq 0 \exists y[x y=1]$

An example of a theory

Let $\mathcal{L}=(+,-, \cdot, 0,1)$ be the language of rings. The theory TF of fields consists of the following sentences (along with their logical implications):
(1) $\forall x, y, z[(x+y)+z=x+(y+z)]$
(2) $\forall x[x+0=x]$
(3) $\forall x[x+(-x)=0]$
(1) $\forall x[x+y=y+x]$
(6) $\forall x, y, z[(x \cdot y) \cdot z=x \cdot(y \cdot z)]$
(0) $\forall x[x \cdot 1=x]$
(1) $\forall x, y[x, y \neq 0 \rightarrow x \cdot y \neq 0]$
(3) $\forall x, y[x \cdot y=y \cdot x]$
(2) $\forall x[x \cdot(y+z)=x \cdot y+x \cdot z]$
(1) $0 \neq 1$
(1) $\forall x \neq 0 \exists y[x y=1]$

Models of this theory are fields.

The Denef-Pas language $\mathcal{L}_{D P}$

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

- The language of rings $\mathcal{L}_{\text {Val }}=(+,-, \cdot, 0,1)$ for the valued field sort VF.

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

- The language of rings $\mathcal{L}_{\text {Val }}=(+,-, \cdot, 0,1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{\text {Res }}=(+,-, \cdot, 0,1)$ for the residue field sort RF.

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

- The language of rings $\mathcal{L}_{\text {Val }}=(+,-, \cdot, 0,1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{\text {Res }}=(+,-, \cdot, 0,1)$ for the residue field sort RF.
- The language $\mathcal{L}_{\text {Pres }}^{\infty}=\mathcal{L}_{\text {Pres }} \cup\{\infty\}$ for the value group sort VG,

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

- The language of rings $\mathcal{L}_{\text {Val }}=(+,-, \cdot, 0,1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{\text {Res }}=(+,-, \cdot, 0,1)$ for the residue field sort RF.
- The language $\mathcal{L}_{\text {Pres }}^{\infty}=\mathcal{L}_{\text {Pres }} \cup\{\infty\}$ for the value group sort VG, where ∞ is a constant, and $\mathcal{L}_{\text {Pres }}=\left(+,-, \leq,\left\{\equiv_{\bmod n\}_{n>0}}, 0,1\right)\right.$ is the Presburger language consisting of the language of ordered abelian groups along with constants 0,1 and a family of 2-relations $\left\{\equiv_{\bmod n}\right\}_{n>0}$ of congruence modulo n.

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

- The language of rings $\mathcal{L}_{\text {Val }}=(+,-, \cdot, 0,1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{\text {Res }}=(+,-, \cdot, 0,1)$ for the residue field sort RF.
- The language $\mathcal{L}_{\text {Pres }}^{\infty}=\mathcal{L}_{\text {Pres }} \cup\{\infty\}$ for the value group sort VG, where ∞ is a constant, and $\mathcal{L}_{\text {Pres }}=\left(+,-, \leq,\left\{\equiv_{\bmod n\}_{n>0}}, 0,1\right)\right.$ is the Presburger language consisting of the language of ordered abelian groups along with constants 0,1 and a family of 2-relations $\left\{\equiv_{\bmod n}\right\}_{n>0}$ of congruence modulo n.
- A function val : VF \rightarrow VG for a valuation map.

The Denef-Pas language $\mathcal{L}_{D P}$

Definition

The Denef-Pas language $\mathcal{L}_{D P}$ consists of the following:

- The language of rings $\mathcal{L}_{\text {Val }}=(+,-, \cdot, 0,1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{\text {Res }}=(+,-, \cdot, 0,1)$ for the residue field sort RF.
- The language $\mathcal{L}_{\text {Pres }}^{\infty}=\mathcal{L}_{\text {Pres }} \cup\{\infty\}$ for the value group sort VG, where ∞ is a constant, and $\mathcal{L}_{\text {Pres }}=\left(+,-, \leq,\left\{\equiv_{\bmod n\}_{n>0}}, 0,1\right)\right.$ is the Presburger language consisting of the language of ordered abelian groups along with constants 0,1 and a family of 2-relations $\left\{\equiv_{\bmod n}\right\}_{n>0}$ of congruence modulo n.
- A function val : VF \rightarrow VG for a valuation map.
- A function ac : VF \rightarrow RF for an angular component map.

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

Let Loc_{M} be the collection of non-archimedean local fields with residual characteristic> M.

Definition

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

Let Loc_{M} be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X=\left(X_{F}\right)_{F \in \operatorname{Loc}_{M}}$ is a collection of sets such that there exists an $\mathcal{L}_{\mathrm{DP}}$ formula η and $X_{F}=\eta(F) \subseteq F^{n} \times k_{F}^{m} \times \mathbb{Z}^{\prime}$ for all $F \in \operatorname{Loc}_{M}$ where M is large enough.

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

Let Loc_{M} be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X=\left(X_{F}\right)_{F \in \operatorname{Loc}_{M}}$ is a collection of sets such that there exists an $\mathcal{L}_{\mathrm{DP}}$ formula η and $X_{F}=\eta(F) \subseteq F^{n} \times k_{F}^{m} \times \mathbb{Z}^{\prime}$ for all $F \in \operatorname{Loc}_{M}$ where M is large enough.
- A definable function $f: X \rightarrow Y$ between $\mathcal{L}_{D P}$-definable sets is a collection of functions $\left(f_{F}: X_{F} \rightarrow Y_{F}\right)_{F \in \operatorname{Loc}_{M}}$ such that the collection of their graphs is an $\mathcal{L}_{\mathrm{DP}}$-definable set.

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

Let Loc_{M} be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X=\left(X_{F}\right)_{F \in \operatorname{Loc}_{M}}$ is a collection of sets such that there exists an $\mathcal{L}_{\mathrm{DP}}$ formula η and $X_{F}=\eta(F) \subseteq F^{n} \times k_{F}^{m} \times \mathbb{Z}^{\prime}$ for all $F \in \operatorname{Loc}_{M}$ where M is large enough.
- A definable function $f: X \rightarrow Y$ between $\mathcal{L}_{D P}$-definable sets is a collection of functions $\left(f_{F}: X_{F} \rightarrow Y_{F}\right)_{F \in \operatorname{Loc}_{M}}$ such that the collection of their graphs is an $\mathcal{L}_{\mathrm{DP}}$-definable set.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

Let Loc_{M} be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X=\left(X_{F}\right)_{F \in \operatorname{Loc}_{M}}$ is a collection of sets such that there exists an $\mathcal{L}_{\mathrm{DP}}$ formula η and $X_{F}=\eta(F) \subseteq F^{n} \times k_{F}^{m} \times \mathbb{Z}^{\prime}$ for all $F \in \operatorname{Loc}_{M}$ where M is large enough.
- A definable function $f: X \rightarrow Y$ between $\mathcal{L}_{D P}$-definable sets is a collection of functions $\left(f_{F}: X_{F} \rightarrow Y_{F}\right)_{F \in \operatorname{Loc}_{M}}$ such that the collection of their graphs is an $\mathcal{L}_{\mathrm{DP}}$-definable set.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $\eta=(\operatorname{val}(x)=2) \vee(\operatorname{ac}(y)=3)$ and $X=\left\{(x, y) \in \mathrm{VF}^{2}: \eta(x, y)\right\}$.

$\mathcal{L}_{\mathrm{DP}}$-definable sets and $\mathcal{L}_{\mathrm{DP}}$-definable functions

Let Loc_{M} be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X=\left(X_{F}\right)_{F \in \operatorname{Loc}_{M}}$ is a collection of sets such that there exists an $\mathcal{L}_{\mathrm{DP}}$ formula η and $X_{F}=\eta(F) \subseteq F^{n} \times k_{F}^{m} \times \mathbb{Z}^{\prime}$ for all $F \in \operatorname{Loc}_{M}$ where M is large enough.
- A definable function $f: X \rightarrow Y$ between $\mathcal{L}_{D P}$-definable sets is a collection of functions $\left(f_{F}: X_{F} \rightarrow Y_{F}\right)_{F \in \operatorname{Loc}_{M}}$ such that the collection of their graphs is an $\mathcal{L}_{\mathrm{DP}}$-definable set.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $\eta=(\operatorname{val}(x)=2) \vee(\operatorname{ac}(y)=3)$ and $X=\left\{(x, y) \in \mathrm{VF}^{2}: \eta(x, y)\right\}$.
- Let $\eta_{1}=(\operatorname{val}(x)=z) \wedge(\operatorname{ac}(y)=w), \eta_{2}=(\operatorname{val}(t)>0)$ and let

$$
X=\left\{(x, y, t, z, w, v) \in \mathrm{VF}^{3} \times \mathrm{RF} \times \mathrm{VG}: \eta_{1}(x, y, z, w) \wedge \eta_{2}(t)\right\} .
$$

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $X \subset \mathbb{A}^{n}$ be an affine \mathbb{Z}-scheme of finite type. Then X has a natural structure of an $\mathcal{L}_{\mathrm{DP}}$-definable set where $X_{F}=X(F)$ for every $F \in$ Loc.

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $X \subset \mathbb{A}^{n}$ be an affine \mathbb{Z}-scheme of finite type. Then X has a natural structure of an $\mathcal{L}_{\text {DP }}$-definable set where $X_{F}=X(F)$ for every $F \in$ Loc.
- This can be generalized to non-affine finite type \mathbb{Z}-schemes and to Q-varieties.

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $X \subset \mathbb{A}^{n}$ be an affine \mathbb{Z}-scheme of finite type. Then X has a natural structure of an $\mathcal{L}_{\mathrm{DP}}$-definable set where $X_{F}=X(F)$ for every $F \in$ Loc.
- This can be generalized to non-affine finite type \mathbb{Z}-schemes and to Q-varieties.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable functions.

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $X \subset \mathbb{A}^{n}$ be an affine \mathbb{Z}-scheme of finite type. Then X has a natural structure of an $\mathcal{L}_{\mathrm{DP}}$-definable set where $X_{F}=X(F)$ for every $F \in$ Loc.
- This can be generalized to non-affine finite type \mathbb{Z}-schemes and to Q-varieties.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable functions.

- $\{P(x)\}_{F \in L_{\text {oc }}^{M}}$ where $P: F^{n} \rightarrow F$ is a polynomial with coefficients in \mathbb{Z} and s an integer.

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $X \subset \mathbb{A}^{n}$ be an affine \mathbb{Z}-scheme of finite type. Then X has a natural structure of an $\mathcal{L}_{\text {DP }}$-definable set where $X_{F}=X(F)$ for every $F \in$ Loc.
- This can be generalized to non-affine finite type \mathbb{Z}-schemes and to Q-varieties.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable functions.

- $\{P(x)\}_{F \in L_{\text {oc }}^{M}}$ where $P: F^{n} \rightarrow F$ is a polynomial with coefficients in \mathbb{Z} and s an integer.
- $\left\{\operatorname{val}_{F}(P(x))\right\}_{F \in \operatorname{Loc}_{M}}$ where $P: F^{n} \rightarrow F$ is a polynomial with coefficients in \mathbb{Z}.

More examples

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

- Let $X \subset \mathbb{A}^{n}$ be an affine \mathbb{Z}-scheme of finite type. Then X has a natural structure of an $\mathcal{L}_{\mathrm{DP}}$-definable set where $X_{F}=X(F)$ for every $F \in$ Loc.
- This can be generalized to non-affine finite type \mathbb{Z}-schemes and to Q-varieties.

Example

The following are $\mathcal{L}_{\mathrm{DP}}$-definable functions.

- $\{P(x)\}_{F \in L_{\text {oc }}^{M}}$ where $P: F^{n} \rightarrow F$ is a polynomial with coefficients in \mathbb{Z} and s an integer.
- $\left\{\operatorname{val}_{F}(P(x))\right\}_{F \in \operatorname{Loc}_{M}}$ where $P: F^{n} \rightarrow F$ is a polynomial with coefficients in \mathbb{Z}.
- $\left\{1_{X\left(O_{F}\right)}\right\}_{F \in \operatorname{Loc} M}$ where X is a \mathbb{Q}-variety.

Motivic functions

Motivic functions

Definition
 Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set.

Motivic functions

Definition

Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set. A motivic function is a collection $h=\left(h_{F}: X_{F} \rightarrow \mathbb{R}\right)_{F \in \operatorname{Loc}_{M}}$ such that for every $x \in X_{F}$ it can be written as

$$
h_{F}(x)=\sum_{i=1}^{N}\left|Y_{i, F, x}\right| q_{F}^{\alpha_{i, F}(x)}\left(\prod_{j=1}^{N^{\prime}} \beta_{i j, F}(x)\right)\left(\prod_{l=1}^{N^{\prime \prime}} \frac{1}{1-q_{F}^{\text {a}_{i / l}}}\right)
$$

Motivic functions

Definition

Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set. A motivic function is a collection $h=\left(h_{F}: X_{F} \rightarrow \mathbb{R}\right)_{F \in \operatorname{Loc}_{M}}$ such that for every $x \in X_{F}$ it can be written as

$$
h_{F}(x)=\sum_{i=1}^{N}\left|Y_{i, F, x}\right| q_{F}^{\alpha_{i, F}(x)}\left(\prod_{j=1}^{N^{\prime}} \beta_{i j, F}(x)\right)\left(\prod_{l=1}^{N^{\prime \prime}} \frac{1}{1-q_{F}^{\mathbf{a}_{i, l}}}\right)
$$

- where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i j}\right\}$ are \mathbb{Z}-valued $\mathcal{L}_{\mathrm{DP}}$-definable functions,

Motivic functions

Definition

Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set. A motivic function is a collection $h=\left(h_{F}: X_{F} \rightarrow \mathbb{R}\right)_{F \in \operatorname{Loc} M}$ such that for every $x \in X_{F}$ it can be written as

$$
h_{F}(x)=\sum_{i=1}^{N}\left|Y_{i, F, x}\right| q_{F}^{\alpha_{i, F}(x)}\left(\prod_{j=1}^{N^{\prime}} \beta_{i j, F}(x)\right)\left(\prod_{l=1}^{N^{\prime \prime}} \frac{1}{1-q_{F}^{\mathbf{a}_{i, l}}}\right)
$$

- where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i j}\right\}$ are \mathbb{Z}-valued $\mathcal{L}_{\mathrm{DP}}$-definable functions,
- $q_{F}=\left|O_{F} / \mathfrak{m}_{F}\right|$ is the size of the residue field of O_{F} and

Motivic functions

Definition

Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set. A motivic function is a collection $h=\left(h_{F}: X_{F} \rightarrow \mathbb{R}\right)_{F \in \operatorname{Loc}_{M}}$ such that for every $x \in X_{F}$ it can be written as

$$
h_{F}(x)=\sum_{i=1}^{N}\left|Y_{i, F, x}\right| q_{F}^{\alpha_{i, F}(x)}\left(\prod_{j=1}^{N^{\prime}} \beta_{i j, F}(x)\right)\left(\prod_{l=1}^{N^{\prime \prime}} \frac{1}{1-q_{F}^{a_{i j}}}\right)
$$

- where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i j}\right\}$ are \mathbb{Z}-valued $\mathcal{L}_{\mathrm{DP}}$-definable functions,
- $q_{F}=\left|O_{F} / \mathfrak{m}_{F}\right|$ is the size of the residue field of O_{F} and
- $Y_{i, F, x}=\left\{y \in k_{F}^{r_{i}}:(x, y) \in Y_{i F}\right\}$ is the fiber over x where $Y_{i} \subseteq X \times \mathrm{RF}^{r_{i}}$ are $\mathcal{L}_{\mathrm{DP}}$-definable sets.

Motivic functions

Definition

Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set. A motivic function is a collection $h=\left(h_{F}: X_{F} \rightarrow \mathbb{R}\right)_{F \in \operatorname{Loc}_{M}}$ such that for every $x \in X_{F}$ it can be written as

$$
h_{F}(x)=\sum_{i=1}^{N}\left|Y_{i, F, x}\right| q_{F}^{\alpha_{i, F}(x)}\left(\prod_{j=1}^{N^{\prime}} \beta_{i j, F}(x)\right)\left(\prod_{l=1}^{N^{\prime \prime}} \frac{1}{1-q_{F}^{\mathbf{a}_{i, l}}}\right)
$$

- where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i j}\right\}$ are \mathbb{Z}-valued $\mathcal{L}_{\mathrm{DP}}$-definable functions,
- $q_{F}=\left|O_{F} / \mathfrak{m}_{F}\right|$ is the size of the residue field of O_{F} and
- $Y_{i, F, x}=\left\{y \in k_{F}^{r_{i}}:(x, y) \in Y_{i F}\right\}$ is the fiber over x where $Y_{i} \subseteq X \times \mathrm{RF}^{r_{i}}$ are $\mathcal{L}_{\mathrm{DP}}$-definable sets.
We denote the ring of motivic functions on X by $C(X)$.

Motivic functions

Definition

Let X be an $\mathcal{L}_{\mathrm{DP}}$-definable set. A motivic function is a collection $h=\left(h_{F}: X_{F} \rightarrow \mathbb{R}\right)_{F \in \operatorname{Loc} M}$ such that for every $x \in X_{F}$ it can be written as

$$
h_{F}(x)=\sum_{i=1}^{N}\left|Y_{i, F, x}\right| q_{F}^{\alpha_{i, F}(x)}\left(\prod_{j=1}^{N^{\prime}} \beta_{i j, F}(x)\right)\left(\prod_{l=1}^{N^{\prime \prime}} \frac{1}{1-q_{F}^{a_{i j}}}\right)
$$

- where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i j}\right\}$ are \mathbb{Z}-valued $\mathcal{L}_{\mathrm{DP}}$-definable functions,
- $q_{F}=\left|O_{F} / \mathfrak{m}_{F}\right|$ is the size of the residue field of O_{F} and
- $Y_{i, F, x}=\left\{y \in k_{F}^{r_{i}}:(x, y) \in Y_{i F}\right\}$ is the fiber over x where $Y_{i} \subseteq X \times \mathrm{RF}^{r_{i}}$ are $\mathcal{L}_{\mathrm{DP}}$-definable sets.
We denote the ring of motivic functions on X by $C(X)$.
- Every definable function $f: X \rightarrow \mathrm{VG}$ is motivic.

Integration theorem for motivic functions

Integration theorem for motivic functions

Example

$$
\int_{\mathbb{Z}_{p}}|x|_{p}^{k} d x=\sum_{n=0}^{\infty} \frac{p-1}{p} p^{-n} p^{-n k}=\frac{p-1}{p} \frac{1}{1-p^{-(1+k)}} .
$$

Integration theorem for motivic functions

Example

$$
\int_{\mathbb{Z}_{p}}|x|_{p}^{k} d x=\sum_{n=0}^{\infty} \frac{p-1}{p} p^{-n} p^{-n k}=\frac{p-1}{p} \frac{1}{1-p^{-(1+k)}} .
$$

The ring of motivic functions is preserved under integration.

Theorem (Cluckers-Loeser, Cluckers-Gordon-Halupczok)

Let X and Y be $\mathcal{L}_{\mathrm{DP}}$-definable sets and let $f \in C(X \times Y)$ be a motivic function.

Integration theorem for motivic functions

Example

$$
\int_{Z_{p}}|x|_{p}^{k} d x=\sum_{n=0}^{\infty} \frac{p-1}{p} p^{-n} p^{-n k}=\frac{p-1}{p} \frac{1}{1-p^{-(1+k)}} .
$$

The ring of motivic functions is preserved under integration.

Theorem (Cluckers-Loeser, Cluckers-Gordon-Halupczok)

Let X and Y be $\mathcal{L}_{\mathrm{DP}}$-definable sets and let $f \in C(X \times Y)$ be a motivic function. Then there exists a function $g \in C(Y)$ and $M \in \mathbb{N}$ such that for every $F \in \operatorname{Loc}_{M}$ we have

$$
g_{F}(y)=\int_{X_{F}} f_{F}(x, y) d x
$$

for every $y \in Y_{F}$ such that $f_{F}(x, y) \in L^{1}\left(X_{F}\right)$.

- Denote by $\mathcal{T}_{H, a c, 0}$ the $\mathcal{L}_{\text {DP }}$-theory of Henselian valued fields F of residue characteristic zero with an angular component map ac : $F \rightarrow k_{F}$.

The theory $\mathcal{T}_{H, a c, 0}$ and elimination of quantifiers

- Denote by $\mathcal{T}_{H, a \mathrm{c}, 0}$ the $\mathcal{L}_{\mathrm{DP}}$-theory of Henselian valued fields F of residue characteristic zero with an angular component map ac : $F \rightarrow k_{F}$.

Lemma

Let ϕ be a sentence in $\mathcal{L}_{\mathrm{DP}}$. Assume that ϕ holds in all models of $\mathcal{T}_{\text {H,ac, } 0}$. Then there exists an integer $M(\phi)$ such that ϕ holds in all non-Archimedean local fields with residue characteristic larger than $M(\phi)$.

The theory $\mathcal{T}_{H, a c, 0}$ and elimination of quantifiers

- Denote by $\mathcal{T}_{H, a \mathrm{c}, 0}$ the $\mathcal{L}_{\mathrm{DP}}$-theory of Henselian valued fields F of residue characteristic zero with an angular component map ac : $F \rightarrow k_{F}$.

Lemma

Let ϕ be a sentence in $\mathcal{L}_{\mathrm{DP}}$. Assume that ϕ holds in all models of $\mathcal{T}_{\text {H,ac }, 0}$.
Then there exists an integer $M(\phi)$ such that ϕ holds in all non-Archimedean local fields with residue characteristic larger than $M(\phi)$.

Theorem (Denef-Pas)

Let η be an $\mathcal{L}_{\mathrm{DP}}$-formula. Then there exists an $\mathcal{L}_{\mathrm{DP}}$-formula η^{\prime} without quantifiers of the valued field sort and an integer M such that η and η^{\prime} are equivalent for every non-Archimedean local field of residue characteristic larger than M.

proof of the main theorem: Step 3.5 - defining a motivic measure

proof of the main theorem: Step 3.5 - defining a motivic measure

Back to our question:

Question

Can we find a collection of smooth measures $\left\{\mu_{F}\right\}_{F \in \operatorname{Loc}}^{M}$ such that $\operatorname{supp}\left(\mu_{F}\right)=X\left(O_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$ and $\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)^{* N}\right)=\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)\right)^{N}$ is absolutely integrable for some N (which does not depend on F)?

proof of the main theorem: Step 3.5 - defining a motivic measure

Back to our question:

Question

Can we find a collection of smooth measures $\left\{\mu_{F}\right\}_{F \in \operatorname{Loc} M}$ such that $\operatorname{supp}\left(\mu_{F}\right)=X\left(O_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$ and $\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)^{* N}\right)=\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)\right)^{N}$ is absolutely integrable for some N (which does not depend on F)?

- Set $\mu_{F}:=1_{X\left(O_{F}\right)}$ and consider the collection $\mu=\left\{\mu_{F}\right\}_{F \in \operatorname{Loc}_{M}}$.

proof of the main theorem: Step 3.5 - defining a motivic measure

Back to our question:

Question

Can we find a collection of smooth measures $\left\{\mu_{F}\right\}_{F \in \operatorname{Loc} M}$ such that $\operatorname{supp}\left(\mu_{F}\right)=X\left(O_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$ and $\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)^{* N}\right)=\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)\right)^{N}$ is absolutely integrable for some N (which does not depend on F)?

- Set $\mu_{F}:=1_{X\left(O_{F}\right)}$ and consider the collection $\mu=\left\{\mu_{F}\right\}_{F \in \operatorname{Loc}_{M}}$.
- The collection μ forms a motivic function.

proof of the main theorem: Step 3.5 - defining a motivic measure

Back to our question:

Question

Can we find a collection of smooth measures $\left\{\mu_{F}\right\}_{F \in \operatorname{Loc} M}$ such that $\operatorname{supp}\left(\mu_{F}\right)=X\left(O_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$ and $\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)^{* N}\right)=\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)\right)^{N}$ is absolutely integrable for some N (which does not depend on $F)$?

- Set $\mu_{F}:=1_{X\left(O_{F}\right)}$ and consider the collection $\mu=\left\{\mu_{F}\right\}_{F \in \operatorname{Loc}_{M}}$.
- The collection μ forms a motivic function.
- Since the ring of motivic functions is preserved under integration, the collection $\sigma=\left\{\varphi_{*}\left(\mu_{F}\right)\right\}_{F \in \operatorname{Loc}_{M}}$ is motivic as well.

proof of the main theorem: Step 3.5 - defining a motivic measure

Back to our question:

Question

Can we find a collection of smooth measures $\left\{\mu_{F}\right\}_{F \in \operatorname{Loc}}$ such that $\operatorname{supp}\left(\mu_{F}\right)=X\left(O_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$ and $\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)^{* N}\right)=\mathcal{F}\left(\varphi_{*}\left(\mu_{F}\right)\right)^{N}$ is absolutely integrable for some N (which does not depend on F)?

- Set $\mu_{F}:=1_{X\left(O_{F}\right)}$ and consider the collection $\mu=\left\{\mu_{F}\right\}_{F \in \operatorname{Loc}_{M}}$.
- The collection μ forms a motivic function.
- Since the ring of motivic functions is preserved under integration, the collection $\sigma=\left\{\varphi_{*}\left(\mu_{F}\right)\right\}_{F \in \operatorname{Loc}}$ is motivic as well.

Claim

Let $h \in C(G)$ be an absolutely integrable, compactly supported motivic function. Then there exists $N \in \mathbb{N}$ such that $h_{F}^{* N}$ has continuous density for every $F \in \operatorname{Loc}_{M}$.

Proof of the main theorem: final step - prove a theorem on motivic functions

Proof of the main theorem: final step - prove a theorem on motivic functions

Theorem (Glazer-H. 2018)

Let h be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^{k}.

Proof of the main theorem: final step - prove a theorem on motivic functions

Theorem (Glazer-H. 2018)

Let h be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^{k}. Then there exists a real constant $\alpha<0$ and $M \in \mathbb{N}$ such that

$$
\left|\mathscr{F}\left(h_{F}\right)(y)\right|<d(F) \min \left\{|y|^{\alpha}, 1\right\}
$$

for every $F \in \operatorname{Loc}_{M}$, where $d(F)$ depends only on F.

Proof of the main theorem: final step - prove a theorem on motivic functions

Theorem (Glazer-H. 2018)

Let h be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^{k}. Then there exists a real constant $\alpha<0$ and $M \in \mathbb{N}$ such that

$$
\left|\mathcal{F}\left(h_{F}\right)(y)\right|<d(F) \min \left\{|y|^{\alpha}, 1\right\}
$$

for every $F \in \operatorname{Loc}_{M}$, where $d(F)$ depends only on F.

Theorem ($L^{1} \Rightarrow L^{1+\epsilon}$, Glazer-H. 2018)

Let X be a smooth algebraic variety, let μ be a motivic measure on X, and let h be a compactly supported motivic function on X such that $h_{F} \in L^{1}\left(X(F), \mu_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$.

Proof of the main theorem: final step - prove a theorem on motivic functions

Theorem (Glazer-H. 2018)

Let h be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^{k}. Then there exists a real constant $\alpha<0$ and $M \in \mathbb{N}$ such that

$$
\left|\mathcal{F}\left(h_{F}\right)(y)\right|<d(F) \min \left\{|y|^{\alpha}, 1\right\}
$$

for every $F \in \operatorname{Loc}_{M}$, where $d(F)$ depends only on F.

Theorem ($L^{1} \Rightarrow L^{1+\epsilon}$, Glazer-H. 2018)

Let X be a smooth algebraic variety, let μ be a motivic measure on X, and let h be a compactly supported motivic function on X such that $h_{F} \in L^{1}\left(X(F), \mu_{F}\right)$ for every $F \in \operatorname{Loc}_{M}$. Then there exists $\epsilon>0$ such that $h_{F} \in L^{1+\epsilon}\left(X(F), \mu_{F}\right)$ for every $F \in \operatorname{Loc}_{M^{\prime}}$ for some $M^{\prime} \in \mathbb{N}$.

Proof of the main theorem: $L^{1} \Rightarrow L^{1+\epsilon}$

Assume h is a definable function and $X=\mathbb{A}^{n}$.

Proof of the main theorem: $L^{1} \Rightarrow L^{1+\epsilon}$

Assume h is a definable function and $X=\mathbb{A}^{n}$.

- Let $h \in L^{1}(X, \mu)$ be a definable function on X where μ is a motivic measure on X, and set $I_{h}(s, F)=\int_{X(F)}\left|h_{F}\right|^{s} d \mu_{F}$.

Proof of the main theorem: $L^{1} \Rightarrow L^{1+\epsilon}$

Assume h is a definable function and $X=\mathbb{A}^{n}$.

- Let $h \in L^{1}(X, \mu)$ be a definable function on X where μ is a motivic measure on X, and set $I_{h}(s, F)=\int_{X(F)}\left|h_{F}\right|^{s} d \mu_{F}$.
- Write $I_{h}(s, F)=\sum_{k \in \mathbb{Z}} a_{k} q_{F}^{-k s}$ where $a_{k}:=\mu_{F}\left(\left\{x \in X(F): \operatorname{val}\left(h_{F}(x)\right)=k\right\}\right)$.

Proof of the main theorem: $L^{1} \Rightarrow L^{1+\epsilon}$

Assume h is a definable function and $X=\mathbb{A}^{n}$.

- Let $h \in L^{1}(X, \mu)$ be a definable function on X where μ is a motivic measure on X, and set $I_{h}(s, F)=\int_{X(F)}\left|h_{F}\right|^{s} d \mu_{F}$.
- Write $I_{h}(s, F)=\sum_{k \in \mathbb{Z}} a_{k} q_{F}^{-k s}$ where $a_{k}:=\mu_{F}\left(\left\{x \in X(F): \operatorname{val}\left(h_{F}(x)\right)=k\right\}\right)$.
- Each a_{k} can be simplified, and $I_{h}(s, F)$ can be written as

$$
q_{F}^{-n} \sum_{\eta \in k_{F}^{\prime}} \sum_{\substack{l_{1}, \ldots, I_{n}, k \in \mathbb{Z} \\ \sigma\left(\eta, l_{1}, \ldots, l_{n}, k\right)}} q_{F}^{-k s-l_{1}-\ldots-l_{n}}
$$

where σ is an $\mathcal{L}_{\mathrm{DP}}$-formula.

Proof of the main theorem: $L^{1} \Rightarrow L^{1+\epsilon}$

Assume h is a definable function and $X=\mathbb{A}^{n}$.

- Let $h \in L^{1}(X, \mu)$ be a definable function on X where μ is a motivic measure on X, and set $I_{h}(s, F)=\int_{X(F)}\left|h_{F}\right|^{s} d \mu_{F}$.
- Write $I_{h}(s, F)=\sum_{k \in \mathbb{Z}} a_{k} q_{F}^{-k s}$ where
$a_{k}:=\mu_{F}\left(\left\{x \in X(F): \operatorname{val}\left(h_{F}(x)\right)=k\right\}\right)$.
- Each a_{k} can be simplified, and $I_{h}(s, F)$ can be written as

$$
q_{F}^{-n} \sum_{\eta \in k_{F}^{r}} \sum_{\substack{I_{1}, \ldots, I_{n}, k \in \mathbb{Z} \\ \sigma\left(\eta, l_{1}, \ldots, I_{n}, k\right)}} q_{F}^{-k s-l_{1}-\ldots-I_{n}}
$$

where σ is an $\mathcal{L}_{\mathrm{DP}}$-formula.

- Using elimination of quantifiers and certain uniformization theorems, we can write the above expression as finitely many sums of the form

$$
\sum_{\left(e_{1}, \ldots, e_{l}\right) \in \mathbb{N}^{\prime}} p^{b_{1}(s) e_{1}+\ldots+b_{l}(s) e_{l}}
$$

where $b_{i}(s)$ are simple functions.

Questions?

