Singularity properties of convolutions of algebraic morphisms and applications

Yotam Hendel

Weizmann Institute of Science

Joint work with Itay Glazer

October 18, 2018

イロト イポト イヨト イヨト

э

Let $f, g \in L^1(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition $f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt.$

くロト (得) () マラト (ヨト)

Let $f, g \in L^1(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition
$$f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt.$$

This operation improves smoothness properties of functions.

Let $f, g \in L^1(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition

$$f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt.$$

This operation improves smoothness properties of functions.

• we have
$$(f * g)' = f' * g = f * g'$$
,

② and if
$$f \in C^k(\mathbb{R})$$
 and $g \in C^l(\mathbb{R})$ then $f * g \in C^{k+l}(\mathbb{R})$.

In particular, if either f or g is smooth then f * g is a smooth function.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Let $f, g \in L^1(\mathbb{R})$ be two real valued functions and recall their convolution is defined by

Definition

$$f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt.$$

This operation improves smoothness properties of functions.

^② and if
$$f \in C^k(\mathbb{R})$$
 and $g \in C^{l}(\mathbb{R})$ then $f * g \in C^{k+l}(\mathbb{R})$.

In particular, if either f or g is smooth then f * g is a smooth function.

Question

Is there a geometric analogue to this phenomenon?

イロト 不得 トイヨト イヨト

From here onwards we assume our varieties and groups are defined over a field K of characteristic 0.

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Definition

Let X_1 and X_2 be algebraic varieties, G an algebraic group and let $\varphi_1 : X_1 \to G$ and $\varphi_2 : X_2 \to G$ be algebraic morphisms. Define their convolution $\varphi_1 * \varphi_2 : X_1 \times X_2 \to G$ by $\varphi_1 * \varphi_2(x_1, x_2) = \varphi_1(x_1) \cdot \varphi_2(x_2)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let X_1 and X_2 be algebraic varieties, G an algebraic group and let $\varphi_1 : X_1 \to G$ and $\varphi_2 : X_2 \to G$ be algebraic morphisms. Define their convolution $\varphi_1 * \varphi_2 : X_1 \times X_2 \to G$ by $\varphi_1 * \varphi_2(x_1, x_2) = \varphi_1(x_1) \cdot \varphi_2(x_2)$.

Example

Definition

Let X_1 and X_2 be algebraic varieties, G an algebraic group and let $\varphi_1 : X_1 \to G$ and $\varphi_2 : X_2 \to G$ be algebraic morphisms. Define their convolution $\varphi_1 * \varphi_2 : X_1 \times X_2 \to G$ by $\varphi_1 * \varphi_2(x_1, x_2) = \varphi_1(x_1) \cdot \varphi_2(x_2)$.

Example

• Take
$$\varphi : \mathbb{A}^1 \to \mathbb{A}^1$$
 with $\varphi(x) = x^3$. Then $\varphi^{*2} := \varphi * \varphi(x, y) = x^3 + y^3$.

くロト (得) () マラト (ヨト)

Definition

Let X_1 and X_2 be algebraic varieties, G an algebraic group and let $\varphi_1 : X_1 \to G$ and $\varphi_2 : X_2 \to G$ be algebraic morphisms. Define their convolution $\varphi_1 * \varphi_2 : X_1 \times X_2 \to G$ by $\varphi_1 * \varphi_2(x_1, x_2) = \varphi_1(x_1) \cdot \varphi_2(x_2)$.

Example

• Take $\varphi : \mathbb{A}^1 \to \mathbb{A}^1$ with $\varphi(x) = x^3$. Then $\varphi^{*2} := \varphi * \varphi(x, y) = x^3 + y^3$.

2 Let G be any algebraic group and let [,]: G × G → G be the commutator map [x, y] = xyx⁻¹y⁻¹. Then
[,]*[,](x₁, y₁, x₂, y₂) = [x₁, y₁] · [x₂, y₂] = x₁y₁x₁⁻¹y₁⁻¹x₂y₂x₂⁻¹y₂⁻¹.

くロト (得) () マラト (ヨト)

Let $\varphi_i : X_i \to G$, i = 1, 2 be morphisms, and consider the functions

$$F_{\varphi_i}: G \to \text{Schemes}$$
 by $F_{\varphi_i}(g) = {\varphi_i}^{-1}(g)$.

Let $\varphi_i : X_i \to G$, i = 1, 2 be morphisms, and consider the functions

$$F_{\varphi_i}$$
: $G \to$ Schemes by $F_{\varphi_i}(g) = {\varphi_i}^{-1}(g)$.

Note that as sets we have the following:

$$F_{\varphi_1 * \varphi_2}(s) = (\varphi_1 * \varphi_2)^{-1}(s) = \bigcup_{g \in G} \varphi_1^{-1}(g) \times \varphi_2^{-1}(g^{-1}s).$$
(†)

Let $\varphi_i : X_i \to G$, i = 1, 2 be morphisms, and consider the functions

$$F_{\varphi_i}: G \to \text{Schemes}$$
 by $F_{\varphi_i}(g) = {\varphi_i}^{-1}(g)$.

Note that as sets we have the following:

$$F_{\varphi_1 * \varphi_2}(s) = (\varphi_1 * \varphi_2)^{-1}(s) = \bigcup_{g \in G} \varphi_1^{-1}(g) \times \varphi_2^{-1}(g^{-1}s).$$
(†)

Observation (convolution commutes with counting points over finite rings)

Let A be a finite ring, and consider the maps $(\varphi_i)_A : X(A) \to G(A)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\varphi_i : X_i \to G$, i = 1, 2 be morphisms, and consider the functions

$$F_{\varphi_i}: G \to \text{Schemes}$$
 by $F_{\varphi_i}(g) = {\varphi_i}^{-1}(g)$.

Note that as sets we have the following:

$$F_{\varphi_1 * \varphi_2}(s) = (\varphi_1 * \varphi_2)^{-1}(s) = \bigcup_{g \in G} \varphi_1^{-1}(g) \times \varphi_2^{-1}(g^{-1}s).$$
(†)

Observation (convolution commutes with counting points over finite rings)

Let A be a finite ring, and consider the maps $(\varphi_i)_A : X(A) \to G(A)$.

• Define $|F_{(\varphi_i)_A}|$: $G(A) \to \mathbb{N}$ by $|F_{(\varphi_i)_A}|(g) = |(\varphi_i)_A^{-1}(g)|$.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Let $\varphi_i : X_i \to G$, i = 1, 2 be morphisms, and consider the functions

$$F_{\varphi_i}: G o ext{Schemes}$$
 by $F_{\varphi_i}(g) = {\varphi_i}^{-1}(g).$

Note that as sets we have the following:

$$F_{\varphi_1 * \varphi_2}(s) = (\varphi_1 * \varphi_2)^{-1}(s) = \bigcup_{g \in G} \varphi_1^{-1}(g) \times \varphi_2^{-1}(g^{-1}s).$$
(†)

Observation (convolution commutes with counting points over finite rings)

Let A be a finite ring, and consider the maps $(\varphi_i)_A : X(A) \to G(A)$.

- Define $|F_{(\varphi_i)_A}|$: $G(A) \to \mathbb{N}$ by $|F_{(\varphi_i)_A}|(g) = |(\varphi_i)_A^{-1}(g)|$.
- By (†) we have,

$$|F_{(\varphi_1)_A}|*|F_{(\varphi_2)_A}|(s) = \sum_{g \in G(A)} |F_{(\varphi_1)_A}|(g) \cdot |F_{(\varphi_2)_A}|(g^{-1}s) = |F_{(\varphi_1)_A*(\varphi_2)_A}|(s).$$

・ ロ ト ・ 雪 ト ・ ヨ ト ・

イロト 不得 トイヨト イヨト

Question

Does our convolution operation improve singularity properties of morphisms?

イロト イポト イヨト イヨト

Question

- Does our convolution operation improve singularity properties of morphisms?
- Which properties of morphisms are preserved under convolution?

< ロ > < 同 > < 回 > < 回 > < □ > <

Question

- Does our convolution operation improve singularity properties of morphisms?
- Which properties of morphisms are preserved under convolution?

Fact

Question

- Does our convolution operation improve singularity properties of morphisms?
- Which properties of morphisms are preserved under convolution?

Fact

A morphism φ : X → Y between smooth irreducible varieties is flat at x ∈ X if and only if dimφ⁻¹ ∘ φ(x) = dimX - dimY.

Question

- Does our convolution operation improve singularity properties of morphisms?
- Which properties of morphisms are preserved under convolution?

Fact

- A morphism φ : X → Y between smooth irreducible varieties is flat at x ∈ X if and only if dimφ⁻¹ ∘ φ(x) = dimX - dimY.
- **3** A flat morphism $\varphi : X \to Y$ is smooth \iff all its fibers are smooth.

Question

- Does our convolution operation improve singularity properties of morphisms?
- Which properties of morphisms are preserved under convolution?

Fact

- A morphism φ : X → Y between smooth irreducible varieties is flat at x ∈ X if and only if dimφ⁻¹ ∘ φ(x) = dimX - dimY.
- **3** A flat morphism $\varphi : X \to Y$ is smooth \iff all its fibers are smooth.
 - Properties preserved under convolutions: dominance, flatness, flatness with reduced or normal fibers, smoothness.

Question

- Does our convolution operation improve singularity properties of morphisms?
- Which properties of morphisms are preserved under convolution?

Fact

- A morphism φ : X → Y between smooth irreducible varieties is flat at x ∈ X if and only if dimφ⁻¹ ∘ φ(x) = dimX - dimY.
- **2** A flat morphism $\varphi : X \to Y$ is smooth \iff all its fibers are smooth.
 - Properties preserved under convolutions: dominance, flatness, flatness with reduced or normal fibers, smoothness.
 - If S is a property of morphisms which is preserved under base change and compositions and X → Spec(K) satisfies S, then it is preserved under convolutions.

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 6/30

イロト 不得 トイヨト イヨト

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

- 2 $\varphi^{*(\dim G+1)}$: $X^{\dim G+1} \to G$ is flat with reduced fibers.

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

$$\ \ \, \bullet^{*\dim G} : X^{\dim G} \to G \text{ is flat.}$$

- 2 $\varphi^{*(\dim G+1)}$: $X^{\dim G+1} \to G$ is flat with reduced fibers.
- $\varphi^{*(\dim G+2)}: X^{\dim G+2} \to G$ is flat with normal fibers.

くロト (得) () マラト (ヨト)

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

$$\ \ \, \bullet^{*\dim G} : X^{\dim G} \to G \text{ is flat.}$$

- ② $\varphi^{*(\dim G+1)}$: $X^{\dim G+1} \rightarrow G$ is flat with reduced fibers.
- ③ $\varphi^{*(\dim G+2)}$: $X^{\dim G+2} \to G$ is flat with normal fibers.

These bounds are tight.

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

- 2 $\varphi^{*(\dim G+1)}$: $X^{\dim G+1} \to G$ is flat with reduced fibers.
- $\varphi^{*(\dim G+2)}: X^{\dim G+2} \to G$ is flat with normal fibers.

These bounds are tight.

Remark

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

- 2 $\varphi^{*(\dim G+1)}$: $X^{\dim G+1} \to G$ is flat with reduced fibers.
- $\varphi^{*(\dim G+2)}: X^{\dim G+2} \to G$ is flat with normal fibers.

These bounds are tight.

Remark

To see (4), take
$$\varphi(x_1, \ldots, x_m) = (x_1^2, (x_1x_2)^2, (x_1x_3)^2, \ldots, (x_1x_m)^2).$$

Let X be a smooth, absolutely irreducible variety, G an algebraic group, and $\varphi : X \rightarrow G$ a dominant morphism.

- $\ \, \bullet \ \, \varphi^{*\dim G} : X^{\dim G} \to G \text{ is flat.}$
- 2 $\varphi^{*(\dim G+1)}$: $X^{\dim G+1} \to G$ is flat with reduced fibers.
- ③ $\varphi^{*(\dim G+2)}$: $X^{\dim G+2} \rightarrow G$ is flat with normal fibers.

These bounds are tight.

Remark

• To see (4), take $\varphi(x_1, \ldots, x_m) = (x_1^2, (x_1x_2)^2, (x_1x_3)^2, \ldots, (x_1x_m)^2)$.

In general, we should not expect to get a smooth morphism if we start from a non-smooth morphism (e.g. φ : A¹ → A¹ by φ(x) = x², then dφ^{*n}_(0,...,0) = 0 for all n ∈ N).

Rational singularities

イロト イポト イヨト イヨト

э
Rational singularities

Definition

A variety X has rational singularities if it is normal and for every resolution of singularities $\pi : \widetilde{X} \to X$ we have $R^i \pi_*(O_{\widetilde{X}}) = 0$ for $i \ge 1$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Definition

A variety X has rational singularities if it is normal and for every resolution of singularities $\pi : \widetilde{X} \to X$ we have $R^i \pi_*(O_{\widetilde{X}}) = 0$ for $i \ge 1$.

Locally, this is equivalent to the following:

Definition

An affine variety X has rational singularities if it is Cohen-Macaulay, normal and if for every strong resolution of singularities $p: \widetilde{X} \to X$ and regular top differential form $\omega \in \Omega_{X^{sm}}^{top}(X^{sm})$ there exists a regular top differential form $\widetilde{\omega} \in \Omega_{\widetilde{X}}^{top}(\widetilde{X})$ such that $\omega = \widetilde{\omega}|_{X^{sm}}$.

Definition

A variety X has rational singularities if it is normal and for every resolution of singularities $\pi : \widetilde{X} \to X$ we have $R^i \pi_*(O_{\widetilde{X}}) = 0$ for $i \ge 1$.

Locally, this is equivalent to the following:

Definition

An affine variety X has rational singularities if it is Cohen-Macaulay, normal and if for every strong resolution of singularities $p: \widetilde{X} \to X$ and regular top differential form $\omega \in \Omega_{X^{sm}}^{top}(X^{sm})$ there exists a regular top differential form $\widetilde{\omega} \in \Omega_{\widetilde{X}}^{top}(\widetilde{X})$ such that $\omega = \widetilde{\omega}|_{X^{sm}}$.

Example

Consider the variety $X = \{\sum_{i=1}^{k} x_i^{n_i} = 0\} \subseteq \mathbb{A}^k \ (k > 1).$ X has rational singularities if $\sum_{i=1}^{k} \frac{1}{n_i} > 1$ (and $(0, \dots, 0)$ is not a rational singularity if $\sum_{i=1}^{k} \frac{1}{n_i} < 1$).

▲ 伊 ▶ ▲ 三 ▶

The (FRS) property and our main result

イロト イポト イヨト イヨト 二日

The (FRS) property and our main result

Definition

We say that a morphism φ between smooth varieties satisfies the **(FRS)** property if φ is flat with reduced fibers of rational singularities.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Definition

We say that a morphism φ between smooth varieties satisfies the **(FRS)** property if φ is flat with reduced fibers of rational singularities.

Remark

The (FRS) property is preserved under convolutions.

< ロ > < 同 > < 回 > < 回 > < □ > <

Definition

We say that a morphism φ between smooth varieties satisfies the **(FRS)** property if φ is flat with reduced fibers of rational singularities.

Remark

The (FRS) property is preserved under convolutions.

Theorem (Glazer-H. 2018)

Let *X* be a smooth, absolutely irreducible variety, *G* be an algebraic group and let $\varphi : X \to G$ be a dominant morphism. Then there exists $N \in \mathbb{N}$ such that for any n > N the n-th convolution power φ^{*n} is (FRS).

イロト イポト イヨト イヨト

Example

Let $\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$ be the map $\varphi(x) = x^3$.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

• It is flat,

イロト イボト イヨト イヨト

æ

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and

< 口 > < 同 >

э

글 🖌 🖌 글 🕨

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Image: A matrix

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

|--|

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

φ^{*n}	fiber over 0: $(\varphi^{*n})^{-1}(0)$	reduced	normal	rat'l singularities
φ	${x^3 = 0}$	×	×	X

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

φ^{*n}	fiber over 0: $(\varphi^{*n})^{-1}(0)$	reduced	normal	rat'l singularities
φ	${x^3 = 0}$	X	×	X
$arphi^{*2}$	${x^3 + y^3 = 0}$	\checkmark	X	X

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

φ^{*n}	fiber over 0: $(\varphi^{*n})^{-1}(0)$	reduced	normal	rat'l singularities
φ	${x^3 = 0}$	X	X	×
$arphi^{*2}$	${x^3 + y^3 = 0}$	\checkmark	X	×
$arphi^{*3}$	$\{x^3 + y^3 + z^3 = 0\}$	1	\checkmark	×

Example

Let
$$\varphi : \mathbb{A}^1 \to G = (\mathbb{A}^1, +)$$
 be the map $\varphi(x) = x^3$.

- It is flat,
- its only non-smooth point is 0, and
- as we've seen before φ^{*n} is not smooth at $(0, \ldots, 0)$ for every $n \in \mathbb{N}$.

Consider the *n*-fold self convolution $\varphi^{*n} := \varphi * \ldots * \varphi$ of φ :

φ^{*n}	fiber over 0: $(\varphi^{*n})^{-1}(0)$	reduced	normal	rat'l singularities
φ	${x^3 = 0}$	X	X	X
$arphi^{*2}$	${x^3 + y^3 = 0}$	\checkmark	×	X
$arphi^{*3}$	$\{x^3 + y^3 + z^3 = 0\}$	1	\checkmark	X
$arphi^{*4}$	$\{x^3 + y^3 + z^3 + w^3 = 0\}$	\checkmark	\checkmark	\checkmark

 $\Rightarrow \varphi^{*4}$ is (FRS).

くロト (得) () マラト (ヨト)

э

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}} := X \times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{Q})$ is absolutely irreducible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}} := X \times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$\left|X(\mathbb{F}_{p^k})
ight|=p^{k\dim X_\mathbb{Q}}\left(1+O(p^{-k/2})
ight)$$
 for $p>>0.$

< ロ > < 同 > < 回 > < 回 > < □ > <

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}} := X \times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$\left|X(\mathbb{F}_{p^k})\right| = p^{k \operatorname{dim} X_{\mathbb{Q}}}\left(1 + O(p^{-k/2})\right) \text{ for } p >> 0.$$

In particular, the asymptotics of $|X(\mathbb{F}_{p^k})|$ in *p* only depend on dim $X_{\mathbb{Q}}$.

くロト (得) () マラト (ヨト)

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}} := X \times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$\left|X(\mathbb{F}_{p^k})\right| = p^{k \operatorname{dim} X_{\mathbb{Q}}}\left(1 + O(p^{-k/2})\right) \text{ for } p >> 0.$$

In particular, the asymptotics of $|X(\mathbb{F}_{p^k})|$ in *p* only depend on dim $X_{\mathbb{Q}}$. If *X* is smooth, we have for almost all primes,

$$|X(\mathbb{Z}/p^k\mathbb{Z})| = |X(\mathbb{F}_p)|p^{(k-1)\dim X_{\mathbb{Q}}} \Longrightarrow \lim_{p\to\infty} \frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k\dim X_{\mathbb{Q}}}} = 1.$$

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}} := X \times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$\left|X(\mathbb{F}_{p^k})\right| = p^{k \operatorname{dim} X_{\mathbb{Q}}}\left(1 + O(p^{-k/2})\right) ext{ for } p >> 0.$$

In particular, the asymptotics of $|X(\mathbb{F}_{p^k})|$ in *p* only depend on dim $X_{\mathbb{Q}}$. If *X* is smooth, we have for almost all primes,

$$|X(\mathbb{Z}/p^k\mathbb{Z})| = |X(\mathbb{F}_p)|p^{(k-1)\dim X_{\mathbb{Q}}} \Longrightarrow \lim_{p\to\infty} \frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k\dim X_{\mathbb{Q}}}} = 1.$$

If X is singular, we might get a much larger point count over $\mathbb{Z}/p^k\mathbb{Z}$:

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}} := X \times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{Q})$ is absolutely irreducible. We have,

Theorem (Lang-Weil bounds)

$$|X(\mathbb{F}_{p^k})| = p^{k \dim X_{\mathbb{Q}}} (1 + O(p^{-k/2}))$$
 for $p >> 0$.

In particular, the asymptotics of $|X(\mathbb{F}_{p^k})|$ in *p* only depend on dim $X_{\mathbb{Q}}$. If *X* is smooth, we have for almost all primes,

$$|X(\mathbb{Z}/p^k\mathbb{Z})| = |X(\mathbb{F}_p)|p^{(k-1)\dim X_{\mathbb{Q}}} \Longrightarrow \lim_{p\to\infty} \frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k\dim X_{\mathbb{Q}}}} = 1.$$

If X is singular, we might get a much larger point count over $\mathbb{Z}/p^k\mathbb{Z}$:

Example

Let
$$X = \operatorname{Spec}(\mathbb{Z}[x]/(x^2))$$
, then $|X(\mathbb{Z}/p^{2k}\mathbb{Z})| = p^k$ but dim $X_{\mathbb{Q}} = 0$

イロト イポト イヨト イヨト

Question

How does $|X(\mathbb{Z}/p^k\mathbb{Z})|$ depend on the singularity type of X?

ヘロト 人間 とくほ とくほ とう

Question

How does $|X(\mathbb{Z}/p^k\mathbb{Z})|$ depend on the singularity type of X?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

< ロ > < 同 > < 回 > < 回 > .

Question

How does $|X(\mathbb{Z}/p^k\mathbb{Z})|$ depend on the singularity type of X?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

• $X_{\mathbb{Q}}$ has rational singularities.

・ロト ・四ト・ヨト・

Question

How does $|X(\mathbb{Z}/p^k\mathbb{Z})|$ depend on the singularity type of X?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

• $X_{\mathbb{Q}}$ has rational singularities.

2 For any
$$k \in \mathbb{N}$$
 we have $\lim_{p \to \infty} \frac{|X(\mathbb{Z}/p^k \mathbb{Z})|}{p^{k \dim X_Q}} = 1$.

< ロ > < 同 > < 回 > < 回 > .

Question

How does $|X(\mathbb{Z}/p^k\mathbb{Z})|$ depend on the singularity type of X?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

•
$$X_{\mathbb{Q}}$$
 has rational singularities.

2 For any
$$k \in \mathbb{N}$$
 we have $\lim_{p \to \infty} \frac{|X(\mathbb{Z}/p^k \mathbb{Z})|}{p^{k \dim X_Q}} = 1.$

3 For any p, the sequence
$$\left\{\frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k\dim X_Q}}\right\}_k$$
 is bounded.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Question

How does $|X(\mathbb{Z}/p^k\mathbb{Z})|$ depend on the singularity type of X?

Theorem (Aizenbud-Avni)

Let X be a finite type \mathbb{Z} -scheme such that $X_{\mathbb{Q}}$ is an absolutely irreducible variety which is a local complete intersection. Then TFAE:

•
$$X_{\mathbb{Q}}$$
 has rational singularities.

3 For any
$$k \in \mathbb{N}$$
 we have $\lim_{p \to \infty} \frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k \dim X_Q}} = 1.$

So For any p, the sequence $\left\{\frac{|X(\mathbb{Z}/p^k\mathbb{Z})|}{p^{k\dim X_Q}}\right\}_L$ is bounded.

Proposition

Let $\varphi : X \to Y$ be a \mathbb{Z} -morphism with absolutely irreducible fibers. Then $\varphi_{\mathbb{Q}}$ is (FRS) \Rightarrow for every k we have $\lim_{p \to \infty} \sup_{y \in Y(\mathbb{Z}/p^k\mathbb{Z})} \frac{|\varphi_{\mathbb{Z}/p^k\mathbb{Z}}^{-1}(y)|}{p^{k(\dim x - \dim Y)}} = 1.$

イロト 不得 トイヨト イヨト 三日

Let $\varphi : X \to G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_g := \varphi^{-1}(g)$.

イロト 不得 トイヨト イヨト

Let $\varphi : X \to G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_g := \varphi^{-1}(g)$.

• Pushing-forward the uniform probability measure $\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}$ on $X(\mathbb{Z}/p^k\mathbb{Z})$, we get a family of probability measures $\{\mu_{p^k} := \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})})\}_{p,k}$ on $\{G(\mathbb{Z}/p^k\mathbb{Z})\}_{p,k}$ s.t. $\mu_{p^k}(\{g\}) = \frac{|X_g(\mathbb{Z}/p^k\mathbb{Z})|}{|X(\mathbb{Z}/p^k\mathbb{Z})|}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $\varphi : X \to G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_g := \varphi^{-1}(g)$.

- Pushing-forward the uniform probability measure $v_{X(\mathbb{Z}/p^k\mathbb{Z})}$ on $X(\mathbb{Z}/p^k\mathbb{Z})$, we get a family of probability measures $\{\mu_{p^k} := \varphi_*(v_{X(\mathbb{Z}/p^k\mathbb{Z})})\}_{p,k}$ on $\{G(\mathbb{Z}/p^k\mathbb{Z})\}_{p,k}$ s.t. $\mu_{p^k}(\{g\}) = \frac{|X_g(\mathbb{Z}/p^k\mathbb{Z})|}{|X(\mathbb{Z}/p^k\mathbb{Z})|}$.
- Consider the family of random walks $R_{p,k} = \{(\mu_{p^k}, G(\mathbb{Z}/p^k\mathbb{Z}))\}_{p,k}$. The probability distribution of the *n*-th step of $R_{p,k}$ is as follows:

$$\mu_{p^k}^{*n} = \mu_{p^k} * \ldots * \mu_{p^k} = \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) * \ldots * \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) = \varphi_*^{*n}(\nu_{X \times \ldots \times X(\mathbb{Z}/p^k\mathbb{Z})}).$$

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

Let $\varphi : X \to G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_g := \varphi^{-1}(g)$.

- Pushing-forward the uniform probability measure $v_{X(\mathbb{Z}/p^k\mathbb{Z})}$ on $X(\mathbb{Z}/p^k\mathbb{Z})$, we get a family of probability measures $\{\mu_{p^k} := \varphi_*(v_{X(\mathbb{Z}/p^k\mathbb{Z})})\}_{p,k}$ on $\{G(\mathbb{Z}/p^k\mathbb{Z})\}_{p,k}$ s.t. $\mu_{p^k}(\{g\}) = \frac{|X_g(\mathbb{Z}/p^k\mathbb{Z})|}{|X(\mathbb{Z}/p^k\mathbb{Z})|}$.
- Consider the family of random walks $R_{p,k} = \{(\mu_{p^k}, G(\mathbb{Z}/p^k\mathbb{Z}))\}_{p,k}$. The probability distribution of the *n*-th step of $R_{p,k}$ is as follows:

$$\mu_{p^k}^{*n} = \mu_{p^k} * \ldots * \mu_{p^k} = \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) * \ldots * \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) = \varphi_*^{*n}(\nu_{X \times \ldots \times X(\mathbb{Z}/p^k\mathbb{Z})}).$$

O Now: φ^{*n} (FRS) for some $n \in \mathbb{N}$

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

Let $\varphi : X \to G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_g := \varphi^{-1}(g)$.

- Pushing-forward the uniform probability measure $v_{X(\mathbb{Z}/p^k\mathbb{Z})}$ on $X(\mathbb{Z}/p^k\mathbb{Z})$, we get a family of probability measures $\{\mu_{p^k} := \varphi_*(v_{X(\mathbb{Z}/p^k\mathbb{Z})})\}_{p,k}$ on $\{G(\mathbb{Z}/p^k\mathbb{Z})\}_{p,k}$ s.t. $\mu_{p^k}(\{g\}) = \frac{|X_g(\mathbb{Z}/p^k\mathbb{Z})|}{|X(\mathbb{Z}/p^k\mathbb{Z})|}$.
- Consider the family of random walks $R_{p,k} = \{(\mu_{p^k}, G(\mathbb{Z}/p^k\mathbb{Z}))\}_{p,k}$. The probability distribution of the *n*-th step of $R_{p,k}$ is as follows:

$$\mu_{p^k}^{*n} = \mu_{p^k} * \ldots * \mu_{p^k} = \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) * \ldots * \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) = \varphi_*^{*n}(\nu_{X \times \ldots \times X(\mathbb{Z}/p^k\mathbb{Z})}).$$

Now: φ^{*n} (FRS) for some n ∈ N
 ⇒ good point count of fibers of φ^{*n} over Z/p^kZ for p >> 0
The (FRS) property and random walks

Let $\varphi : X \to G$ be a dominant morphism from a smooth irreducible variety X to an algebraic group G and set $X_g := \varphi^{-1}(g)$.

- Pushing-forward the uniform probability measure $v_{X(\mathbb{Z}/p^k\mathbb{Z})}$ on $X(\mathbb{Z}/p^k\mathbb{Z})$, we get a family of probability measures $\{\mu_{p^k} := \varphi_*(v_{X(\mathbb{Z}/p^k\mathbb{Z})})\}_{p,k}$ on $\{G(\mathbb{Z}/p^k\mathbb{Z})\}_{p,k}$ s.t. $\mu_{p^k}(\{g\}) = \frac{|X_g(\mathbb{Z}/p^k\mathbb{Z})|}{|X(\mathbb{Z}/p^k\mathbb{Z})|}$.
- Consider the family of random walks $R_{p,k} = \{(\mu_{p^k}, G(\mathbb{Z}/p^k\mathbb{Z}))\}_{p,k}$. The probability distribution of the *n*-th step of $R_{p,k}$ is as follows:

$$\mu_{p^k}^{*n} = \mu_{p^k} * \ldots * \mu_{p^k} = \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) * \ldots * \varphi_*(\nu_{X(\mathbb{Z}/p^k\mathbb{Z})}) = \varphi_*^{*n}(\nu_{X \times \ldots \times X(\mathbb{Z}/p^k\mathbb{Z})}).$$

Now: φ^{*n} (FRS) for some n ∈ N
 ⇒ good point count of fibers of φ^{*n} over Z/p^kZ for p >> 0
 ⇒ n-th step of R_{p,k} is uniformly close to the stationary distribution for p >> 0.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 13/30

イロト 不得 トイヨト イヨト 三日

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let $[,] : G \times G \to G$ be the commutator map $[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1}$. Then $[,]^{*21} : (G \times G)^{21} \to G$ is (FRS).

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let $[,] : G \times G \to G$ be the commutator map $[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1}$. Then $[,]^{*21} : (G \times G)^{21} \to G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over $\mathbb{Z},$ and let Γ be either of the following:

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let $[,] : G \times G \to G$ be the commutator map $[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1}$. Then $[,]^{*21} : (G \times G)^{21} \to G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over $\mathbb{Z},$ and let Γ be either of the following:

• A compact open subgroup of $G(\mathbb{Q}_p)$ for some prime p; or

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let $[,] : G \times G \to G$ be the commutator map $[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1}$. Then $[,]^{*21} : (G \times G)^{21} \to G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over $\mathbb{Z},$ and let Γ be either of the following:

- **O** A compact open subgroup of $G(\mathbb{Q}_p)$ for some prime p; or
- **2** of the form $\Gamma = G(\mathbb{Z})$ with rank at least 2.

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let $[,] : G \times G \to G$ be the commutator map $[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1}$. Then $[,]^{*21} : (G \times G)^{21} \to G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over $\mathbb{Z},$ and let Γ be either of the following:

- **(**) A compact open subgroup of $G(\mathbb{Q}_p)$ for some prime p; or
- **2** of the form $\Gamma = G(\mathbb{Z})$ with rank at least 2.

Then there exists a constant C such that for all integers N,

 $r_N(\Gamma) := \#\{\text{irreducible } N \text{-dimensional } \mathbb{C}\text{-reps of } \Gamma\} < C \cdot N^{41}.$

イロト 不得 トイヨト イヨト 三日

Theorem (Aizenbud-Avni)

Let G be a semi-simple group and let $[,] : G \times G \to G$ be the commutator map $[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1}$. Then $[,]^{*21} : (G \times G)^{21} \to G$ is (FRS).

Corollary (Aizenbud-Avni)

Let G be a semi-simple algebraic group defined over $\mathbb{Z},$ and let Γ be either of the following:

- **O** A compact open subgroup of $G(\mathbb{Q}_p)$ for some prime p; or
- **2** of the form $\Gamma = G(\mathbb{Z})$ with rank at least 2.

Then there exists a constant C such that for all integers N,

 $r_N(\Gamma) := \#\{\text{irreducible } N \text{-dimensional } \mathbb{C}\text{-reps of } \Gamma\} < C \cdot N^{41}.$

Conjecture

Let G be a semi-simple group, then $[,] * [,] : (G \times G)^2 \rightarrow G$ is (FRS).

Proof of main theorem

э

Let *K* be a field of characteristic 0.

э

Let K be a field of characteristic 0. Recall we want to show the following:

Theorem (Glazer-H. 2018)

Let X be a smooth, absolutely irreducible K-variety, G be an algebraic K-group and let $\varphi : X \to G$ be a dominant morphism. Then there exists $N \in \mathbb{N}$ such that for any n > N the n-th convolution power φ^{*n} is (FRS).

イロト 不得 トイヨト イヨト 三日

Can assume K is finitely generated.

イロト 不得 トイヨト イヨト 三日

- Can assume K is finitely generated.
- ② φ : X → G is defined over a ring A which is of finite type over Q and whose generic point is K. Denote by φ_A : X_A → G_A the morphism φ considered as a family of Q-morphisms parametrized over Spec(A).

- Can assume K is finitely generated.
- ② *φ* : *X* → *G* is defined over a ring *A* which is of finite type over Q and whose generic point is *K*. Denote by *φ_A* : *X_A* → *G_A* the morphism *φ* considered as a family of Q-morphisms parametrized over Spec(*A*).

Proposition

Assume a K-morphism $\psi : X^{*N} \to G$ is (FRS) at (x, \ldots, x) for every $x \in X(\overline{K})$, then $\psi^{*2N} : X^{2N} \to G$ is (FRS).

イロト 不得 トイヨト イヨト

- Can assume K is finitely generated.
- ② *φ* : *X* → *G* is defined over a ring *A* which is of finite type over Q and whose generic point is *K*. Denote by *φ_A* : *X_A* → *G_A* the morphism *φ* considered as a family of Q-morphisms parametrized over Spec(*A*).

Proposition

Assume a K-morphism $\psi : X^{*N} \to G$ is (FRS) at (x, ..., x) for every $x \in X(\overline{K})$, then $\psi^{*2N} : X^{2N} \to G$ is (FRS).

It is enough to show that for each a ∈ Spec(A)(Q) there exists n_a ∈ N such that φ^{*n_a}_a : X^{n_a}_a → G_a is (FRS); consider the collection

$$U_n := \left\{ x \in X_A(\overline{\mathbb{Q}}) : \varphi_A^n ext{ is (FRS) at } (x, \dots, x)
ight\}, ext{ then } igcup_{i=1}^\infty U_n = X_A(\overline{\mathbb{Q}}).$$

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

- Can assume K is finitely generated.
- ② *φ* : *X* → *G* is defined over a ring *A* which is of finite type over Q and whose generic point is *K*. Denote by *φ_A* : *X_A* → *G_A* the morphism *φ* considered as a family of Q-morphisms parametrized over Spec(*A*).

Proposition

Assume a K-morphism $\psi : X^{*N} \to G$ is (FRS) at (x, \ldots, x) for every $x \in X(\overline{K})$, then $\psi^{*2N} : X^{2N} \to G$ is (FRS).

It is enough to show that for each a ∈ Spec(A)(Q) there exists n_a ∈ N such that φ^{*n_a}_a : X^{n_a}_a → G_a is (FRS); consider the collection

$$U_n := \left\{ x \in X_A(\overline{\mathbb{Q}}) : \varphi_A^n ext{ is (FRS) at } (x, \dots, x)
ight\}, ext{ then } igcup_{i=1}^\infty U_n = X_A(\overline{\mathbb{Q}}).$$

Can assume K/Q is a Galois extension.

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

- Can assume K is finitely generated.
- ② *φ* : *X* → *G* is defined over a ring *A* which is of finite type over Q and whose generic point is *K*. Denote by *φ_A* : *X_A* → *G_A* the morphism *φ* considered as a family of Q-morphisms parametrized over Spec(*A*).

Proposition

Assume a K-morphism $\psi : X^{*N} \to G$ is (FRS) at (x, \ldots, x) for every $x \in X(\overline{K})$, then $\psi^{*2N} : X^{2N} \to G$ is (FRS).

It is enough to show that for each a ∈ Spec(A)(Q) there exists n_a ∈ N such that φ^{*n_a}_a : X^{n_a}_a → G_a is (FRS); consider the collection

$$U_n := \left\{ x \in X_A(\overline{\mathbb{Q}}) : \varphi_A^n \text{ is (FRS) at } (x, \dots, x) \right\}, \text{ then } \bigcup_{i=1}^{\infty} U_n = X_A(\overline{\mathbb{Q}}).$$

- Can assume K/\mathbb{Q} is a Galois extension.
- Restrict scalars to get a Q-morphism Res^K_Q(φ). Now, if the morphism Res^K_Q(φ)^N = Res^K_Q(φ^N) is (FRS) then so is φ^N by noting the structure of Res^K_Q(φ^N) ×_{Spec(Q)} Spec(K).

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 16/30

э

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on X(F).

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on X(F).

• μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_x$ and an analytic diffeomorphism $D : U_x \to O_F^{\dim X}$ such that $D_*(\mu_{|U_x})$ is a Haar measure on $O_F^{\dim X}$.

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on X(F).

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_x$ and an analytic diffeomorphism $D : U_x \to O_F^{\dim X}$ such that $D_*(\mu_{|U_x})$ is a Haar measure on $O_F^{\dim X}$.
- μ has continuous density if μ = fv where f : X(F) → C is continuous and v is a smooth measure on X(F).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on X(F).

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_x$ and an analytic diffeomorphism $D : U_x \to O_F^{\dim X}$ such that $D_*(\mu_{|U_x})$ is a Haar measure on $O_F^{\dim X}$.
- μ has continuous density if μ = fv where f : X(F) → C is continuous and v is a smooth measure on X(F).

Theorem (Aizenbud-Avni)

Let $\varphi : X \to Y$ be a map between smooth varieties defined over a finitely generated field K of characteristic 0, and let $x \in X(K)$. Then TFAE:

(1)

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on X(F).

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_x$ and an analytic diffeomorphism $D : U_x \to O_F^{\dim X}$ such that $D_*(\mu_{|U_x})$ is a Haar measure on $O_F^{\dim X}$.
- μ has continuous density if μ = fv where f : X(F) → C is continuous and v is a smooth measure on X(F).

Theorem (Aizenbud-Avni)

Let $\varphi : X \to Y$ be a map between smooth varieties defined over a finitely generated field K of characteristic 0, and let $x \in X(K)$. Then TFAE:

• φ is (FRS) at x.

16/30

Definition

Let X be a smooth algebraic variety, F be a non-archimedean local field and μ be a measure on X(F).

- μ is smooth if every point $x \in X(F)$ has an analytic neighborhood $x \in U_x$ and an analytic diffeomorphism $D : U_x \to O_F^{\dim X}$ such that $D_*(\mu_{|U_x})$ is a Haar measure on $O_F^{\dim X}$.
- μ has continuous density if μ = fv where f : X(F) → C is continuous and v is a smooth measure on X(F).

Theorem (Aizenbud-Avni)

Let $\varphi : X \to Y$ be a map between smooth varieties defined over a finitely generated field K of characteristic 0, and let $x \in X(K)$. Then TFAE:

- φ is (FRS) at x.
- Provide a state of the sta

Enough to show the following:

Theorem

Let $\varphi : X \to G$ be as before with $K = \mathbb{Q}$.

イロト イポト イヨト イヨト

Enough to show the following:

Theorem

Let $\varphi : X \to G$ be as before with $K = \mathbb{Q}$. Then there exists a collection $\{\mu_{\mathbb{Q}_p}\}_{p>M}$ of smooth measures on $\{X(\mathbb{Q}_p)\}_{p>M}$ where $\operatorname{supp}(\mu_{\mathbb{Q}_p}) = X(\mathbb{Z}_p)$

Enough to show the following:

Theorem

Let $\varphi : X \to G$ be as before with $K = \mathbb{Q}$. Then there exists a collection $\{\mu_{\mathbb{Q}_p}\}_{p>M}$ of smooth measures on $\{X(\mathbb{Q}_p)\}_{p>M}$ where $\operatorname{supp}(\mu_{\mathbb{Q}_p}) = X(\mathbb{Z}_p)$ and a number $n \in \mathbb{N}$ such that the measure $\varphi_*^{*n}(\mu_{\mathbb{Q}_p} \times \ldots \times \mu_{\mathbb{Q}_p}) = (\varphi_*(\mu_{\mathbb{Q}_p}))^{*n}$ has continuous density with respect to a Haar measure on $G(\mathbb{Z}_p)$.

マイビット イロー

Enough to show the following:

Theorem

Let $\varphi : X \to G$ be as before with $K = \mathbb{Q}$. Then there exists a collection $\{\mu_{\mathbb{Q}_p}\}_{p>M}$ of smooth measures on $\{X(\mathbb{Q}_p)\}_{p>M}$ where $\operatorname{supp}(\mu_{\mathbb{Q}_p}) = X(\mathbb{Z}_p)$ and a number $n \in \mathbb{N}$ such that the measure $\varphi_*^{*n}(\mu_{\mathbb{Q}_p} \times \ldots \times \mu_{\mathbb{Q}_p}) = (\varphi_*(\mu_{\mathbb{Q}_p}))^{*n}$ has continuous density with respect to a Haar measure on $G(\mathbb{Z}_p)$.

Fact

Let $h : G(\mathbb{Z}_p) \to \mathbb{C}$ be a function. If the Fourier transform $\mathcal{F}(h)$ of h is absolutely integrable, then h is continuous.

イロト 不得 トイヨト イヨト 三日

Enough to show the following:

Theorem

Let $\varphi : X \to G$ be as before with $K = \mathbb{Q}$. Then there exists a collection $\{\mu_{\mathbb{Q}_p}\}_{p>M}$ of smooth measures on $\{X(\mathbb{Q}_p)\}_{p>M}$ where $\operatorname{supp}(\mu_{\mathbb{Q}_p}) = X(\mathbb{Z}_p)$ and a number $n \in \mathbb{N}$ such that the measure $\varphi_*^{*n}(\mu_{\mathbb{Q}_p} \times \ldots \times \mu_{\mathbb{Q}_p}) = (\varphi_*(\mu_{\mathbb{Q}_p}))^{*n}$ has continuous density with respect to a Haar measure on $G(\mathbb{Z}_p)$.

Fact

Let $h : G(\mathbb{Z}_p) \to \mathbb{C}$ be a function. If the Fourier transform $\mathcal{F}(h)$ of h is absolutely integrable, then h is continuous.

Question

Can we find a collection of measures $\{\mu_{\mathbb{Q}_p}\}_{p>M}$ as in the theorem and an integer N such that $\mathcal{F}(\varphi_*(\mu_{\mathbb{Q}_p})^{*N}) = \mathcal{F}(\varphi_*(\mu_{\mathbb{Q}_p}))^N$ is absolutely integrable for every p?

Digression: motivic functions

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 19/30

э

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

ヘロト 人間 ト 人 臣 ト 人 臣 トー

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

• The language of rings $(+, -, \cdot, 0, 1)$.

イロト イポト イヨト イヨト
A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

- The language of rings $(+, -, \cdot, 0, 1)$.
- 2 The language of ordered abelian groups $(+, -, \le, 0)$.

くロト (得) () マラト (ヨト)

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

- The language of rings $(+, -, \cdot, 0, 1)$.
- 2 The language of ordered abelian groups $(+, -, \leq, 0)$.
 - A structure of a language is a set which interprets this language.

イロト 不得 トイヨト イヨト 二日

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

- The language of rings $(+, -, \cdot, 0, 1)$.
- 2 The language of ordered abelian groups $(+, -, \leq, 0)$.
 - A structure of a language is a set which interprets this language.
 - A formula in the language \mathcal{L} is defined recursively using equalities and relation symbols in variables and constant symbols (and function symbols applied to these) and by using logical symbols (i.e. if η and χ are formulas then so are $\neg \eta$, $\forall x \eta$, $\eta \rightarrow \chi$, $\eta \land \chi$ etc.).

イロト 不得 トイヨト イヨト 三日

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

- The language of rings $(+, -, \cdot, 0, 1)$.
- 2 The language of ordered abelian groups $(+, -, \le, 0)$.
 - A structure of a language is a set which interprets this language.
 - A formula in the language \mathcal{L} is defined recursively using equalities and relation symbols in variables and constant symbols (and function symbols applied to these) and by using logical symbols (i.e. if η and χ are formulas then so are $\neg \eta$, $\forall x \eta$, $\eta \rightarrow \chi$, $\eta \land \chi$ etc.).
 - A formula without free variable is called a sentence, and a theory is a consistent set of sentences which contain all its logical implications.

イロト 不得 トイヨト イヨト 三日

A language *L* is a set consisting of all logical symbols (and, or, not, implies, iff, ∃, ∀, = and variables) and can have constant symbols, function symbols and relation symbols.

Example

- The language of rings $(+, -, \cdot, 0, 1)$.
- 2 The language of ordered abelian groups $(+, -, \le, 0)$.
 - A structure of a language is a set which interprets this language.
 - A formula in the language \mathcal{L} is defined recursively using equalities and relation symbols in variables and constant symbols (and function symbols applied to these) and by using logical symbols (i.e. if η and χ are formulas then so are $\neg \eta$, $\forall x \eta$, $\eta \rightarrow \chi$, $\eta \land \chi$ etc.).
 - A formula without free variable is called a sentence, and a theory is a consistent set of sentences which contain all its logical implications.
 - A model of a theory is a structure which satisfies all its sentences.

くロト (得) () マラト (ヨト)

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 20/30

イロト イポト イヨト イヨト

Let $\mathcal{L} = (+, -, \cdot, 0, 1)$ be the language of rings. The theory TF of fields consists of the following sentences (along with their logical implications):

Let $\mathcal{L} = (+, -, \cdot, 0, 1)$ be the language of rings. The theory TF of fields consists of the following sentences (along with their logical implications):

•
$$\forall x, y, z[(x + y) + z = x + (y + z)]$$

- x[x + 0 = x]<math> x[x + (-x) = 0]
- $\exists \forall x[x+y=y+x]$
- $\forall x[x \cdot 1 = x]$

- 0 ≠ 1

< ロ > < 同 > < 回 > < 回 > 、 回

Let $\mathcal{L} = (+, -, \cdot, 0, 1)$ be the language of rings. The theory TF of fields consists of the following sentences (along with their logical implications):

I Y x[x + (-x) = 0]

$$0 \forall x \neq 0 \exists y [xy = 1]$$

Models of this theory are fields.

くロト (得) () マラト (ヨト)

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 21/30

3

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

• The language of rings $\mathcal{L}_{Val} = (+, -, \cdot, 0, 1)$ for the valued field sort VF.

イロト 不得 トイヨト イヨト 三日

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

- The language of rings $\mathcal{L}_{Val} = (+, -, \cdot, 0, 1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{Res} = (+, -, \cdot, 0, 1)$ for the residue field sort RF.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

- The language of rings $\mathcal{L}_{Val} = (+, -, \cdot, 0, 1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{Res} = (+, -, \cdot, 0, 1)$ for the residue field sort RF.
- The language $\mathcal{L}_{Pres}^{\infty}=\mathcal{L}_{Pres}\cup\{\infty\}$ for the value group sort VG,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

- The language of rings $\mathcal{L}_{Val} = (+, -, \cdot, 0, 1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{Res} = (+, -, \cdot, 0, 1)$ for the residue field sort RF.
- The language $\mathcal{L}_{Pres}^{\infty} = \mathcal{L}_{Pres} \cup \{\infty\}$ for the value group sort VG, where ∞ is a constant, and $\mathcal{L}_{Pres} = (+, -, \leq, \{\equiv_{mod n}\}_{n>0}, 0, 1)$ is the Presburger language consisting of the language of ordered abelian groups along with constants 0, 1 and a family of 2-relations $\{\equiv_{mod n}\}_{n>0}$ of congruence modulo n.

イロト 不得 トイヨト イヨト 二日

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

- The language of rings $\mathcal{L}_{Val} = (+, -, \cdot, 0, 1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{Res} = (+, -, \cdot, 0, 1)$ for the residue field sort RF.
- The language $\mathcal{L}_{Pres}^{\infty} = \mathcal{L}_{Pres} \cup \{\infty\}$ for the value group sort VG, where ∞ is a constant, and $\mathcal{L}_{Pres} = (+, -, \leq, \{\equiv_{mod n}\}_{n>0}, 0, 1)$ is the Presburger language consisting of the language of ordered abelian groups along with constants 0, 1 and a family of 2-relations $\{\equiv_{mod n}\}_{n>0}$ of congruence modulo n.
- A function val : $VF \rightarrow VG$ for a valuation map.

イロト 不得 トイヨト イヨト 二日

The Denef-Pas language \mathcal{L}_{DP} consists of the following:

- The language of rings $\mathcal{L}_{Val} = (+, -, \cdot, 0, 1)$ for the valued field sort VF.
- The language of rings $\mathcal{L}_{Res} = (+, -, \cdot, 0, 1)$ for the residue field sort RF.
- The language $\mathcal{L}_{Pres}^{\infty} = \mathcal{L}_{Pres} \cup \{\infty\}$ for the value group sort VG, where ∞ is a constant, and $\mathcal{L}_{Pres} = (+, -, \leq, \{\equiv_{mod n}\}_{n>0}, 0, 1)$ is the Presburger language consisting of the language of ordered abelian groups along with constants 0, 1 and a family of 2-relations $\{\equiv_{mod n}\}_{n>0}$ of congruence modulo n.
- A function val : $VF \rightarrow VG$ for a valuation map.
- A function $ac : VF \rightarrow RF$ for an angular component map.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

イロト 不得 トイヨト イヨト 三日

Let Loc_M be the collection of non-archimedean local fields with residual characteristic> M.

Definition

くロト (得) () マラト (ヨト)

Let Loc_M be the collection of non-archimedean local fields with residual characteristic> M.

Definition

• A definable set $X = (X_F)_{F \in Loc_M}$ is a collection of sets such that there exists an \mathcal{L}_{DP} formula η and $X_F = \eta(F) \subseteq F^n \times k_F^m \times \mathbb{Z}^l$ for all $F \in Loc_M$ where M is large enough.

Let Loc_M be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X = (X_F)_{F \in Loc_M}$ is a collection of sets such that there exists an \mathcal{L}_{DP} formula η and $X_F = \eta(F) \subseteq F^n \times k_F^m \times \mathbb{Z}^l$ for all $F \in Loc_M$ where M is large enough.
- A definable function f : X → Y between L_{DP}-definable sets is a collection of functions (f_F : X_F → Y_F)_{F∈Loc_M} such that the collection of their graphs is an L_{DP}-definable set.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Let Loc_M be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X = (X_F)_{F \in Loc_M}$ is a collection of sets such that there exists an \mathcal{L}_{DP} formula η and $X_F = \eta(F) \subseteq F^n \times k_F^m \times \mathbb{Z}^l$ for all $F \in Loc_M$ where M is large enough.
- A definable function f : X → Y between L_{DP}-definable sets is a collection of functions (f_F : X_F → Y_F)_{F∈Loc_M} such that the collection of their graphs is an L_{DP}-definable set.

Example

The following are \mathcal{L}_{DP} -definable sets.

・ロト ・ 一下・ ・ ヨト

Let Loc_M be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X = (X_F)_{F \in Loc_M}$ is a collection of sets such that there exists an \mathcal{L}_{DP} formula η and $X_F = \eta(F) \subseteq F^n \times k_F^m \times \mathbb{Z}^l$ for all $F \in Loc_M$ where M is large enough.
- A definable function f : X → Y between L_{DP}-definable sets is a collection of functions (f_F : X_F → Y_F)_{F∈Loc_M} such that the collection of their graphs is an L_{DP}-definable set.

Example

The following are \mathcal{L}_{DP} -definable sets.

• Let
$$\eta = (val(x) = 2) \lor (ac(y) = 3)$$
 and $X = \{(x, y) \in VF^2 : \eta(x, y)\}$.

イロト イボト イヨト イヨト

Let Loc_M be the collection of non-archimedean local fields with residual characteristic> M.

Definition

- A definable set $X = (X_F)_{F \in Loc_M}$ is a collection of sets such that there exists an \mathcal{L}_{DP} formula η and $X_F = \eta(F) \subseteq F^n \times k_F^m \times \mathbb{Z}^l$ for all $F \in Loc_M$ where M is large enough.
- A definable function f : X → Y between L_{DP}-definable sets is a collection of functions (f_F : X_F → Y_F)_{F∈Loc_M} such that the collection of their graphs is an L_{DP}-definable set.

Example

The following are \mathcal{L}_{DP} -definable sets.

• Let
$$\eta = (val(x) = 2) \lor (ac(y) = 3)$$
 and $X = \{(x, y) \in VF^2 : \eta(x, y)\}$.

• Let $\eta_1 = (\operatorname{val}(x) = z) \land (\operatorname{ac}(y) = w), \eta_2 = (\operatorname{val}(t) > 0)$ and let

$$X = \{(x, y, t, z, w, v) \in VF^3 \times RF \times VG : \eta_1(x, y, z, w) \land \eta_2(t)\}.$$

イロト イポト イヨト イヨト

Example

The following are \mathcal{L}_{DP} -definable sets.

イロト イポト イヨト イヨト

Example

The following are \mathcal{L}_{DP} -definable sets.

• Let $X \subset \mathbb{A}^n$ be an affine \mathbb{Z} -scheme of finite type. Then X has a natural structure of an \mathcal{L}_{DP} -definable set where $X_F = X(F)$ for every $F \in \text{Loc.}$

イロト イポト イヨト イヨト

Example

The following are \mathcal{L}_{DP} -definable sets.

- Let $X \subset \mathbb{A}^n$ be an affine \mathbb{Z} -scheme of finite type. Then X has a natural structure of an \mathcal{L}_{DP} -definable set where $X_F = X(F)$ for every $F \in \text{Loc.}$
- $\bullet\,$ This can be generalized to non-affine finite type $\mathbb{Z}\text{-schemes}$ and to $\mathbb{Q}\text{-varieties}.$

Example

The following are \mathcal{L}_{DP} -definable sets.

- Let $X \subset \mathbb{A}^n$ be an affine \mathbb{Z} -scheme of finite type. Then X has a natural structure of an \mathcal{L}_{DP} -definable set where $X_F = X(F)$ for every $F \in \text{Loc.}$
- $\bullet\,$ This can be generalized to non-affine finite type $\mathbb{Z}\text{-schemes}$ and to $\mathbb{Q}\text{-varieties}.$

Example

The following are \mathcal{L}_{DP} -definable functions.

・ロト ・ 一下・ ・ ヨト

Example

The following are \mathcal{L}_{DP} -definable sets.

- Let $X \subset \mathbb{A}^n$ be an affine \mathbb{Z} -scheme of finite type. Then X has a natural structure of an \mathcal{L}_{DP} -definable set where $X_F = X(F)$ for every $F \in \text{Loc.}$
- $\bullet\,$ This can be generalized to non-affine finite type $\mathbb{Z}\text{-schemes}$ and to $\mathbb{Q}\text{-varieties}.$

Example

The following are \mathcal{L}_{DP} -definable functions.

{*P*(*x*)}_{*F*∈Loc_M} where *P* : *Fⁿ* → *F* is a polynomial with coefficients in Z and *s* an integer.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Example

The following are \mathcal{L}_{DP} -definable sets.

- Let $X \subset \mathbb{A}^n$ be an affine \mathbb{Z} -scheme of finite type. Then X has a natural structure of an \mathcal{L}_{DP} -definable set where $X_F = X(F)$ for every $F \in \text{Loc.}$
- $\bullet\,$ This can be generalized to non-affine finite type $\mathbb{Z}\text{-schemes}$ and to $\mathbb{Q}\text{-varieties}.$

Example

The following are \mathcal{L}_{DP} -definable functions.

- {*P*(*x*)}_{*F*∈Loc_M} where *P* : *Fⁿ* → *F* is a polynomial with coefficients in Z and *s* an integer.
- $\{\operatorname{val}_F(P(x))\}_{F \in \operatorname{Loc}_M}$ where $P : F^n \to F$ is a polynomial with coefficients in \mathbb{Z} .

イロト イボト イヨト イヨト

Example

The following are \mathcal{L}_{DP} -definable sets.

- Let $X \subset \mathbb{A}^n$ be an affine \mathbb{Z} -scheme of finite type. Then X has a natural structure of an \mathcal{L}_{DP} -definable set where $X_F = X(F)$ for every $F \in \text{Loc.}$
- $\bullet\,$ This can be generalized to non-affine finite type $\mathbb{Z}\text{-schemes}$ and to $\mathbb{Q}\text{-varieties}.$

Example

The following are \mathcal{L}_{DP} -definable functions.

- {*P*(*x*)}_{*F*∈Loc_M} where *P* : *Fⁿ* → *F* is a polynomial with coefficients in Z and *s* an integer.
- $\{\operatorname{val}_F(P(x))\}_{F \in \operatorname{Loc}_M}$ where $P : F^n \to F$ is a polynomial with coefficients in \mathbb{Z} .
- $\{1_{X(O_F)}\}_{F \in Loc_M}$ where X is a Q-variety.

イロト イポト イヨト イヨト

Motivic functions

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 24/30

イロト イポト イヨト イヨト

Motivic functions

Definition

Let X be an \mathcal{L}_{DP} -definable set.

イロト 不得 トイヨト イヨト 二日

Let X be an \mathcal{L}_{DP} -definable set. A motivic function is a collection $h = (h_F : X_F \to \mathbb{R})_{F \in Loc_M}$ such that for every $x \in X_F$ it can be written as

$$h_{F}(x) = \sum_{i=1}^{N} |Y_{i,F,x}| q_{F}^{\alpha_{i,F}(x)} \left(\prod_{j=1}^{N'} \beta_{ij,F}(x)\right) \left(\prod_{l=1}^{N''} \frac{1}{1 - q_{F}^{a_{ij}}}\right)$$

イロト 不得 トイヨト イヨト 三日

Let X be an \mathcal{L}_{DP} -definable set. A motivic function is a collection $h = (h_F : X_F \to \mathbb{R})_{F \in Loc_M}$ such that for every $x \in X_F$ it can be written as

$$h_{F}(x) = \sum_{i=1}^{N} |Y_{i,F,x}| q_{F}^{\alpha_{i,F}(x)} \left(\prod_{j=1}^{N'} \beta_{ij,F}(x)\right) \left(\prod_{l=1}^{N''} \frac{1}{1 - q_{F}^{a_{ij}}}\right)$$

• where $\{\alpha_i\}$ and $\{\beta_{ij}\}$ are \mathbb{Z} -valued \mathcal{L}_{DP} -definable functions,

イロト 不得 トイヨト イヨト 二日

Let X be an \mathcal{L}_{DP} -definable set. A motivic function is a collection $h = (h_F : X_F \to \mathbb{R})_{F \in Loc_M}$ such that for every $x \in X_F$ it can be written as

$$h_{F}(x) = \sum_{i=1}^{N} |Y_{i,F,x}| q_{F}^{\alpha_{i,F}(x)} \left(\prod_{j=1}^{N'} \beta_{ij,F}(x)\right) \left(\prod_{l=1}^{N''} \frac{1}{1 - q_{F}^{a_{ij}}}\right)$$

- where $\{\alpha_i\}$ and $\{\beta_{ij}\}$ are \mathbb{Z} -valued \mathcal{L}_{DP} -definable functions,
- $q_F = |O_F/m_F|$ is the size of the residue field of O_F and

くロト (得) () マラト (ヨト)
Definition

Let X be an \mathcal{L}_{DP} -definable set. A motivic function is a collection $h = (h_F : X_F \to \mathbb{R})_{F \in Loc_M}$ such that for every $x \in X_F$ it can be written as

$$h_{F}(x) = \sum_{i=1}^{N} |Y_{i,F,x}| q_{F}^{\alpha_{i,F}(x)} \left(\prod_{j=1}^{N'} \beta_{ij,F}(x)\right) \left(\prod_{l=1}^{N''} \frac{1}{1 - q_{F}^{a_{ij}}}\right)$$

- where $\{\alpha_i\}$ and $\{\beta_{ij}\}$ are \mathbb{Z} -valued \mathcal{L}_{DP} -definable functions,
- $q_F = |O_F/m_F|$ is the size of the residue field of O_F and
- Y_{i,F,x} = {y ∈ k^{r_i}_F : (x, y) ∈ Y_i_F} is the fiber over x where Y_i ⊆ X × RF^{r_i} are L_{DP}-definable sets.

Definition

Let X be an \mathcal{L}_{DP} -definable set. A motivic function is a collection $h = (h_F : X_F \to \mathbb{R})_{F \in Loc_M}$ such that for every $x \in X_F$ it can be written as

$$h_{F}(x) = \sum_{i=1}^{N} |Y_{i,F,x}| q_{F}^{\alpha_{i,F}(x)} \left(\prod_{j=1}^{N'} \beta_{ij,F}(x)\right) \left(\prod_{l=1}^{N''} \frac{1}{1 - q_{F}^{a_{ij}}}\right)$$

- where $\{\alpha_i\}$ and $\{\beta_{ij}\}$ are \mathbb{Z} -valued \mathcal{L}_{DP} -definable functions,
- $q_F = |O_F/m_F|$ is the size of the residue field of O_F and
- Y_{i,F,x} = {y ∈ k^{r_i}_F : (x, y) ∈ Y_i_F} is the fiber over x where Y_i ⊆ X × RF^{r_i} are L_{DP}-definable sets.

We denote the ring of motivic functions on X by C(X).

Definition

Let X be an \mathcal{L}_{DP} -definable set. A motivic function is a collection $h = (h_F : X_F \to \mathbb{R})_{F \in Loc_M}$ such that for every $x \in X_F$ it can be written as

$$h_{F}(x) = \sum_{i=1}^{N} |Y_{i,F,x}| q_{F}^{\alpha_{i,F}(x)} \left(\prod_{j=1}^{N'} \beta_{ij,F}(x)\right) \left(\prod_{l=1}^{N''} \frac{1}{1 - q_{F}^{a_{ij}}}\right)$$

- where $\{\alpha_i\}$ and $\{\beta_{ij}\}$ are \mathbb{Z} -valued \mathcal{L}_{DP} -definable functions,
- $q_F = |O_F/m_F|$ is the size of the residue field of O_F and
- Y_{i,F,x} = {y ∈ k^{r_i}_F : (x, y) ∈ Y_i_F} is the fiber over x where Y_i ⊆ X × RF^{r_i} are L_{DP}-definable sets.

We denote the ring of motivic functions on X by C(X).

• Every definable function $f : X \rightarrow VG$ is motivic.

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 25/30

くロト (得) () マラト (ヨト)

э

Example

$$\int_{\mathbb{Z}_p} |x|_p^k dx = \sum_{n=0}^{\infty} \frac{p-1}{p} p^{-n} p^{-nk} = \frac{p-1}{p} \frac{1}{1-p^{-(1+k)}}.$$

э

Example

$$\int_{\mathbb{Z}_p} |x|_p^k dx = \sum_{n=0}^{\infty} \frac{p-1}{p} p^{-n} p^{-nk} = \frac{p-1}{p} \frac{1}{1-p^{-(1+k)}}.$$

The ring of motivic functions is preserved under integration.

Theorem (Cluckers-Loeser, Cluckers-Gordon-Halupczok)

Let X and Y be \mathcal{L}_{DP} -definable sets and let $f \in C(X \times Y)$ be a motivic function.

Example

$$\int_{\mathbb{Z}_p} |x|_p^k dx = \sum_{n=0}^{\infty} \frac{p-1}{p} p^{-n} p^{-nk} = \frac{p-1}{p} \frac{1}{1-p^{-(1+k)}}.$$

The ring of motivic functions is preserved under integration.

Theorem (Cluckers-Loeser, Cluckers-Gordon-Halupczok)

Let X and Y be \mathcal{L}_{DP} -definable sets and let $f \in C(X \times Y)$ be a motivic function. Then there exists a function $g \in C(Y)$ and $M \in \mathbb{N}$ such that for every $F \in Loc_M$ we have

$$g_F(y) = \int_{X_F} f_F(x,y) dx$$

for every $y \in Y_F$ such that $f_F(x, y) \in L^1(X_F)$.

< ロト < 同ト < 回ト < ヨト

Yotam Hendel Singularity properties of convolutions of algebraic morphisms 26/30

Denote by *T*_{H,ac,0} the *L*_{DP}-theory of Henselian valued fields *F* of residue characteristic zero with an angular component map ac : *F* → *k*_F.

くロト (得) () マラト (ヨト)

Denote by *T*_{H,ac,0} the *L*_{DP}-theory of Henselian valued fields *F* of residue characteristic zero with an angular component map ac : *F* → *k*_F.

Lemma

Let ϕ be a sentence in \mathcal{L}_{DP} . Assume that ϕ holds in all models of $\mathcal{T}_{H,ac,0}$. Then there exists an integer $M(\phi)$ such that ϕ holds in all non-Archimedean local fields with residue characteristic larger than $M(\phi)$.

Denote by *T*_{H,ac,0} the *L*_{DP}-theory of Henselian valued fields *F* of residue characteristic zero with an angular component map ac : *F* → *k*_F.

Lemma

Let ϕ be a sentence in \mathcal{L}_{DP} . Assume that ϕ holds in all models of $\mathcal{T}_{H,ac,0}$. Then there exists an integer $M(\phi)$ such that ϕ holds in all non-Archimedean local fields with residue characteristic larger than $M(\phi)$.

Theorem (Denef-Pas)

Let η be an \mathcal{L}_{DP} -formula. Then there exists an \mathcal{L}_{DP} -formula η' without quantifiers of the valued field sort and an integer M such that η and η' are equivalent for every non-Archimedean local field of residue characteristic larger than M.

Back to our question:

Question

Can we find a collection of smooth measures $\{\mu_F\}_{F \in Loc_M}$ such that $\operatorname{supp}(\mu_F) = X(O_F)$ for every $F \in Loc_M$ and $\mathcal{F}(\varphi_*(\mu_F)^{*N}) = \mathcal{F}(\varphi_*(\mu_F))^N$ is absolutely integrable for some N (which does not depend on F)?

Back to our question:

Question

Can we find a collection of smooth measures $\{\mu_F\}_{F \in Loc_M}$ such that $\operatorname{supp}(\mu_F) = X(O_F)$ for every $F \in Loc_M$ and $\mathcal{F}(\varphi_*(\mu_F)^{*N}) = \mathcal{F}(\varphi_*(\mu_F))^N$ is absolutely integrable for some N (which does not depend on F)?

• Set $\mu_F := \mathbf{1}_{X(O_F)}$ and consider the collection $\mu = {\{\mu_F\}_{F \in \text{Loc}_M}}$.

Back to our question:

Question

Can we find a collection of smooth measures $\{\mu_F\}_{F \in Loc_M}$ such that $\operatorname{supp}(\mu_F) = X(O_F)$ for every $F \in Loc_M$ and $\mathcal{F}(\varphi_*(\mu_F)^{*N}) = \mathcal{F}(\varphi_*(\mu_F))^N$ is absolutely integrable for some N (which does not depend on F)?

- Set μ_F := 1_{X(O_F)} and consider the collection μ = {μ_F}_{F∈Loc_M}.
- The collection μ forms a motivic function.

Back to our question:

Question

Can we find a collection of smooth measures $\{\mu_F\}_{F \in Loc_M}$ such that $\operatorname{supp}(\mu_F) = X(O_F)$ for every $F \in Loc_M$ and $\mathcal{F}(\varphi_*(\mu_F)^{*N}) = \mathcal{F}(\varphi_*(\mu_F))^N$ is absolutely integrable for some N (which does not depend on F)?

- Set μ_F := 1_{X(O_F)} and consider the collection μ = {μ_F}_{F∈Loc_M}.
- The collection μ forms a motivic function.
- Since the ring of motivic functions is preserved under integration, the collection σ = {φ_∗(μ_F)}_{F∈Loc_M} is motivic as well.

Back to our question:

Question

Can we find a collection of smooth measures $\{\mu_F\}_{F \in Loc_M}$ such that $\operatorname{supp}(\mu_F) = X(O_F)$ for every $F \in Loc_M$ and $\mathcal{F}(\varphi_*(\mu_F)^{*N}) = \mathcal{F}(\varphi_*(\mu_F))^N$ is absolutely integrable for some N (which does not depend on F)?

- Set μ_F := 1_{X(O_F)} and consider the collection μ = {μ_F}_{F∈Loc_M}.
- The collection μ forms a motivic function.
- Since the ring of motivic functions is preserved under integration, the collection σ = {φ_∗(μ_F)}_{F∈Loc_M} is motivic as well.

Claim

Let $h \in C(G)$ be an absolutely integrable, compactly supported motivic function. Then there exists $N \in \mathbb{N}$ such that h_F^{*N} has continuous density for every $F \in \text{Loc}_M$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Glazer-H. 2018)

Let h be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^k .

Theorem (Glazer-H. 2018)

Let *h* be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^k . Then there exists a real constant $\alpha < 0$ and $M \in \mathbb{N}$ such that

 $|\mathcal{F}(h_F)(y)| < d(F)\min\{|y|^{\alpha}, 1\}$

for every $F \in Loc_M$, where d(F) depends only on F.

Theorem (Glazer-H. 2018)

Let *h* be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^k . Then there exists a real constant $\alpha < 0$ and $M \in \mathbb{N}$ such that

 $|\mathcal{F}(h_F)(y)| < d(F)\min\{|y|^{\alpha}, 1\}$

for every $F \in Loc_M$, where d(F) depends only on F.

Theorem ($L^1 \Rightarrow L^{1+\epsilon}$, Glazer-H. 2018)

Let X be a smooth algebraic variety, let μ be a motivic measure on X, and let h be a compactly supported motivic function on X such that $h_F \in L^1(X(F), \mu_F)$ for every $F \in \text{Loc}_M$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem (Glazer-H. 2018)

Let *h* be a compactly supported, absolutely integrable, motivic function on \mathbb{A}^k . Then there exists a real constant $\alpha < 0$ and $M \in \mathbb{N}$ such that

 $|\mathcal{F}(h_F)(y)| < d(F)\min\{|y|^{\alpha}, 1\}$

for every $F \in Loc_M$, where d(F) depends only on F.

Theorem ($L^1 \Rightarrow L^{1+\epsilon}$, Glazer-H. 2018)

Let X be a smooth algebraic variety, let μ be a motivic measure on X, and let h be a compactly supported motivic function on X such that $h_F \in L^1(X(F), \mu_F)$ for every $F \in \text{Loc}_M$. Then there exists $\epsilon > 0$ such that $h_F \in L^{1+\epsilon}(X(F), \mu_F)$ for every $F \in \text{Loc}_{M'}$ for some $M' \in \mathbb{N}$.

Assume *h* is a definable function and $X = \mathbb{A}^n$.

Assume *h* is a definable function and $X = \mathbb{A}^n$.

Let h ∈ L¹(X, μ) be a definable function on X where μ is a motivic measure on X, and set l_h(s, F) = ∫_{X(F)} |h_F|^sdμ_F.

Assume *h* is a definable function and $X = \mathbb{A}^n$.

Let h ∈ L¹(X, μ) be a definable function on X where μ is a motivic measure on X, and set l_h(s, F) = ∫_{X(F)} |h_F|^sdμ_F.

• Write
$$I_h(s, F) = \sum_{k \in \mathbb{Z}} a_k q_F^{-ks}$$
 where
 $a_k := \mu_F(\{x \in X(F) : \operatorname{val}(h_F(x)) = k\}).$

Assume *h* is a definable function and $X = \mathbb{A}^n$.

Let h ∈ L¹(X, μ) be a definable function on X where μ is a motivic measure on X, and set l_h(s, F) = ∫_{X(F)} |h_F|^sdμ_F.

• Write
$$I_h(s, F) = \sum_{k \in \mathbb{Z}} a_k q_F^{-ks}$$
 where
 $a_k := \mu_F(\{x \in X(F) : \operatorname{val}(h_F(x)) = k\}).$

• Each a_k can be simplified, and $I_h(s, F)$ can be written as

$$q_{F}^{-n} \sum_{\eta \in k_{F}^{\prime}} \sum_{\substack{l_{1}, \ldots, l_{n}, k \in \mathbb{Z} \\ \sigma(\eta, l_{1}, \ldots, l_{n}, k)}} q_{F}^{-ks-l_{1}-\ldots-l_{n}}$$

where σ is an \mathcal{L}_{DP} -formula.

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

Assume *h* is a definable function and $X = \mathbb{A}^n$.

Let h ∈ L¹(X, μ) be a definable function on X where μ is a motivic measure on X, and set l_h(s, F) = ∫_{X(F)} |h_F|^sdμ_F.

• Write
$$I_h(s, F) = \sum_{k \in \mathbb{Z}} a_k q_F^{-ks}$$
 where
 $a_k := \mu_F(\{x \in X(F) : \operatorname{val}(h_F(x)) = k\}).$

• Each a_k can be simplified, and $I_h(s, F)$ can be written as

$$q_{F}^{-n} \sum_{\eta \in k_{F}^{\prime}} \sum_{\substack{l_{1}, \ldots, l_{n}, k \in \mathbb{Z} \\ \sigma(\eta, l_{1}, \ldots, l_{n}, k)}} q_{F}^{-ks-l_{1}-\ldots-l_{n}}$$

where σ is an \mathcal{L}_{DP} -formula.

 Using elimination of quantifiers and certain uniformization theorems, we can write the above expression as finitely many sums of the form

$$\sum_{(e_1,\ldots,e_l)\in\mathbb{N}^l}p^{b_1(s)e_1+\ldots+b_l(s)e_l}$$

where $b_i(s)$ are simple functions.

Questions?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト