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1. Introduction
The classical hypergeometric function is defined by the series
& A (Bl
Flo,By;2)= ) 2" (L.1)
TS0 k!
using the Pochhammer notation
Ia+k)
(@p=a(a+1)...(a+k—1)= (1.2)

o)

During the last century this function has been the subject of an extensive study,
especially in the work of Euler, Gauss, Riemann, Schwarz and Klein. For histori-
cal background we refer to Klein’s lectures on the hypergeometric function
{KI].

The higher hypergeometric function ,F,_, was introduced by Thomae as
the series

= (al)k-"(an)k Zk
. = L S ML S 1.3
nFn"l(al,'--a(xnaﬁla'-'aﬂn—llz) kgo(ﬁl)k"'(ﬂn_l)kk! ( )
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The case n=2 corresponds to the expression (1.1) [T]. It is the solution of
a linear differential equation on PY(C) of order n with regular singularities
at the points z=0, {, co (see (2.5) or [E, Chap. 4]). As observed by Riemann
the monodromy group plays a crucial role in the study of these differential
equations and their solutions [R]. For example the differential Galois group
which carries all information about algebraic relations between the solutions
and their derivatives is just the Zariski closure of the monodromy group. (see
[Kap]).
In this paper we discuss the following problem.

Problem 1.1. What is the differential Galois group of the function (1.3) for the
various parameters oy, ..., 0%y, By ooy Bu-i?

The answer to this problem has a surprisingly simple form

Solution 1.2. Under a suitable primitivity assumption and up to scalars the differen-
tial Galois group of the function (1.3) is either one of the classical groups SL(n, C)
SO(n, @), Sp(n, C) or a finite primitive reflection group as listed in the table
of Shephard and Todd [ST). Moreover, Theorems 6.5 and 7.1 give an explicit
algorithm to decide which groups occur for which parameters.

In particular, Theorem 7.1 classifies the generalised hypergeometric functions
which are algebraic over €(z). For the case n=2 this was alrcady done by
H.A. Schwarz [Sc] in 1873, but for the case n>2 not much was known. The
solution of this problem was the primary goal of this paper. However, it turned
out that without too much effort one could also describe the differential Galois
group of the hypergeometric differential equation in general. This is carried
out in Sect. 6, Theorem 6.5.

An important element in the proof of the above results is a theorem of
Levelt, which gives a simple algebraic characterisation of the monodromy group
of a hypergeometric differential equation [Le, Thm. 1.1]. The original transcen-
dental problem 1.1 is now reduced to an algebraic problem which we set out
to solve in this paper.

There remain some unanswered questions as well, the most important one
being the determination of hypergeometric equations whose monodromy group
is discrete or arithmetic. In this respect we like to draw attention to the very
interesting work of Mostow and Deligne [Mo] which describes the monodromy
of certain generalised hypergeometric functions in several variables.

Finally we like to thank Geert Verhagen for verifying our computations,
settling some undecided cases and removing a number of errors in previous
versions of our tables.

2. The hypergeometric equation

Fix an integer n=2. For p,, ..., p,€C(2) consider the differential operator

P=9n+p1 0n_1+"'+pn—16+pna O:Zd—d‘ (21)
z

on IP*(€). Using the criterion of Fuchs [I, Chap. 15.3] the following proposition
is immediate.
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Propesition 2.1. The differential equation Pu=0 has regular singularities in the

points z=0, 1, co and is regular elsewhere if and only if for allj=1, ..., n
J
pi(2)= ) pulz—1)7* (2.2)
k=0
for suitable p;, e C.

Definition 2.2. The differential equation Pu=0 with regular singularities in the
points z=0, 1, oo is called a hypergeometric equation if and only if

p=0 forall k=2 andall j (2:3)

Le. the functions p;(z) have simple poles at z=1.

If Pu=0 is a hypergeometric equation then D=(1—z) P has the form

D=0"+(po—p1) 0" '+ ... +(Pao—Pa)—2(0"+ P10 0" '+ ... + Do) (24)

We write
D:D(a;ﬁ):D(alv (R an;ﬂla ERR) Bn)
=@+, —1D...0+B,—1)—z@0+0a,)...(0+a,)
for oy, ..., a,, By, ..., fo€C. From now on we shall denote the hypergeometric

equation by
D@y ooy 0,3 By, .oy B)u=0 or D(a;p)u=0. (2.5)

Its local exponents read,

1—B, ..., 1B, atz=0 (2.6)

Oqy veey Oy atz=oc0 2.7)

0,1,2,...,n—=2, y=Yp;—Yo_, atz=1 (2.8)
1 1

around the points z=0,00 and 1 respectively. If the numbers 8,, ..., B, are
distinct mod Z, n independent solutions of D(x; f) u=0 are given by

Zl_ﬂlnEl—l(1+a1—Bi’ Tees 1+(1"—,Bi; 1+ﬂ1_ﬁia va 1+Bn_ﬁl|2)
(=1, ...,n) 2.9)

where v denotes omission of 1+ B;— B;. The following proposition is trivial.

Proposition 2.3. For e C we have
B+5—1D)D(ay, ..., %, B1y coos B)=D(ty, ..., 0,05 B4, ..., sy 0)  (2.10)
and

D@y, oy 02 Brs vy B O+ ) =Dy, ..., 0y 8; Brs vy By 6+1). (2.11)
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Corollary 2.4. We have

Doy, ...,y By, .o, B (O +0;—1)

:(0+aj‘1)D(als ey j_ » "',an;ﬂl’ veey ﬁn)
and

D(al’ et an;ﬁly cers ﬁn)(8+ﬂj)
O+B;—1D Doy, ..., 03 Ba, s Bi+1, .00, B
Fix a base point zoe P (©)\ {0, 1, w0}, e.g. zo=1%. Denote by G the fundamen-

tal group =, (P'(C)\{0, 1, o}, z,). Clearly G is generated by go, g, g, With
a single relation g g, go=1.

g
\

Let V(x;B) denote the local solution space of the hypergeometric equation
D(x; B)u=0 around z,. Denote by

M (a; B): G—GL(V(a; B)) (2.14)

the monodromy representation of D(a; f)u=0. The following proposition fol-
lows immediately from Corollary 2.4

Propeosition 2.5. The operators

O+o;—1): Viay, ...,a;—1, . a5 8y, 00 B)
= Vi{oy, ooy @3 Bys vy B) (2.15)
and
O+B): Vg, oo, o5 By oo, B+ 1,0, BY)
SV (0, oo %3 By ey B) (2.16)

are intertwining operators for the monodromy representations. The operator (2.15)
has a nontrivial kernel if and only if o;=p, for some k=1, ..., n. Similarly (2.16!
has a nontrivial kernel if and only if o,=p; for some k=1, ..., n. Moreover.
in case the kernel of (2.15) or (2.16) is nontrivial it has dimension one.
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Corollary 2.6. If a;—B,¢Z for all j, k=1, ..., n then the representations M (o,
thy, ootk By, o, B+ 1) and M(ay, ..., a,; By, ..., B,) are equivalent
forany ky, ..., k,, 1,, ..., 1,€Z.

Proposition 2.7. If o;— B, eZ for some j, k=1, ..., n then the monodromy represen-
tation (2.14) is reducible.

Proof. Say o,—f,=meZ. If m=-—1, then D(xy,...,a,; By -...,B)
=D(ay, ..., - 1: Bis ooy Bro1) (B+0a,) and

Z__a"EV((Xl, "':an;ﬁle cers Bn)

generates a one dimensional invariant subspace.
If m=0 then consider the sequence

V(als '“’an—bﬁn-l;ﬂh [ARE] Bn)
0+8,~1 0+p,
— V(o t B By B
- V(al) [EE) an—l’ﬁn+m_1;ﬁla cers ﬁn)

- V(‘xla "'9an;B1! [EEEY Bn)

Clearly 6+ p,—1 has a nontrivial kernel. Choose je{—1, 0, ..., m— 1} maximal
such that 6+ f,+j has a nontrivial kernel. Then the image of the map (6 + 8,
+m—1)...(6+ B,+]j) is a codimension one invariant subspace in V(ay, ..., o, ;

Bla (AR ﬂn)

If m< —2 then consider the sequence

Vo, oo @y, o, =Bu+m; B, ooy B)————— V(ay, oey 0, gy

0+B,+m+1 0+8,-2

ﬂn+m+1;ﬂl? R 4 ,Bn)

Vet «ovs 0 15

0+6,—-1

Bn_l;Bls sees Bn)—’ V(ala '--aan——lsﬁn;ﬂla (RS ﬂn)

Clearly 8+ B,—1 has a nontrivial kernel. Choose je{m, m+1, ..., —1} minimal
such that 6+ 8,4+ has a nontrivial kernel. Then the kernel of the map (6+ 8,
+J)...(0+B,+m) is a one dimensional invariant subspace in V(ay, ..., a,;
81, ..., B,). For the following proposition see also [Po].

Proposition 2.8 (Pochhammer). If y¢N in the notation of (2.8) then the hypergeo-
metric equation D(a, f) u=0 has n—1 analytic solutions near z=1 of the form

u2)=(z—1y"'+0(z—1y""), z-1 2.17)

forj=1, ..., n—1 corresponding to the exponents 0, 1, ..., n—2.
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Proof. If y—n+2¢NN then the equation D(a; f)u=0 has an analytic solution
near z=1 of the form

wo; @) =C—1)""2+0((z—1)""Y, z-1.

Hence the desired solution u,_,(z) can be obtained. The solution u;(z) can be
obtained by a downward induction on j, the case j=n—1 being known. Suppose
the solutions u;, ,(z), ..., u,_(z) have been obtained. Using Corollary 2.4 it fol-
lows that u;(z) can be obtained as a linear combination of u;,,(2), ..., u,_(2)
and the solution

(0+ﬁn)(0+ﬁn+n_2_.])u(ala ey an;ﬁla ceny ﬁn——l’ ﬁ"‘i‘n—l—])(Z)

Observe that this solution is well defined since
YBi+n—1—j)=Ya—~1—n+2=y—j+1¢N for j=1,...,n—1.
1 1

Definition 2.9. Let V be a finite dimensional complex vector space. A linear map
geGL(V) is called a reflection if g—1d has rank one. The determinant of a reflec-
tion is called the special eigenvalue of g.

Remark. The reflections defined here are often called complex reflections or
quasi-reflections to distinguish them from the standard ones of order 2.

Proposition 2.10. If o;— B, ¢Z for all k, j=1, ..., n, then the monodromy matrix
M (a; B) (g,) around z=1 is a reflection with special eigenvalue ¢ =exp(2riy).

Proof. By Corollary 2.6 we can shift the parameters oy, ..., «,, B, ..., B, by
integers such that the condition y¢ N is satisfied. By Proposition 2.8 we conclude
that the rank of the matrix M(a; f) (g,)—1d is at most one. If M («; f) (g,)=1d
then M (a; ) (g.,) = M («; B) (g5 ') and the condition o;— f, ¢ Z for all j, k=1, ..., n
becomes violated.

3. The hypergeometric group

Definition 3.1. Suppose a,, ..., a,, by, ..., b,eC* with a;+b, for all j, k=1, ..., n.
A hypergeometric group with numerator parameters d, ..., a, and denominator
parameters by, ..., b, is a subgroup of GL(n, C) generated by elements

ho, hy, h,eGL(n, €) (3.1
such that
hy h hy=1d (32
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and
det(t—h, )= ﬁ (t—ay) (3.3)
det(t—hgH)= f[ (t—>b) (3.4)
ji=1

and hy is a reflection in the sense of Definition 2.9.

Proposition 3.2. Suppose a,, ..., a,, by, ..., b,eC* with a;%b, for all j k=1, ..., n.
Let ay, ..., a,, B1,--., B,€C be such that a;=exp 2nia; and b;=exp 2nif; for

j=1, ..., n. Then the monodromy group of the hypergeometric equation
D(ala"‘!an;ﬁla""ﬁn)uzo (35)
is a hypergeometric group with parameters a,, ..., a,, by, ..., b,.

Proof. Denote by
H(a;b)=H(ay, ..., a,;by, ..., b )=M(ay, ..., 0,; 1, ..., By (G) (3.6)

the monodromy group of (3.5). Observe that by Corollary 2.6 this group depends

only on the numbers ay, ..., a,, b;, ..., b, and not on the choice of their loga-
rithms a,, ..., «,, B, ..., B.. Also write
ho=M(a; B)(go),  hi=M(o; B} (g1),  ho=M(2; B)(8) (3.7)

for the corresponding monodromy matrices around z=0, 1, co. Using formu-
las (2.6) and (2.7) and Proposition 2.10 it follows that H(a; b) is a hypergeometric
group with numerator parameters a,...,a, and denominator parameters
by, ..., b,.

Proposition 3.3. Any hypergeometric group H generated by hy, h,, h., as in Defini-
tion 3.1 is an irreducible subgroup of GL(n, C).

Proof. If V;<@" is an H-invariant linear subspace and V,:=C"/V,, then we
get induced groups H, = GL(V;) and H, <= GL(V,). Since h, is a reflection, either
hy restricted to V; or h; restricted to V, is the identity. Hence if both ¥, 30
and ¥, 0 we get a contradiction with the assumption a;+ b, forall j, k=1, ..., n.

The following theorem was obtained by Levelt in his thesis [Le, Thm 1.1].
Theorem 3.5 (Levelt). Suppose a,, ..., a,, by, ..., b,eC* with a;*b, for all j,
k=1,....n Let A,, ..., A,, By, ..., B,eC be defined by

[Tt—a)=t"+A, " '+ ... +A4,, JJt=b)=t"+B, " '+ ...+B,(38)
j=1

j=1
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and let A, BeGL(n, ©) be given by

00..0 —4, 00..0 —B,
10..0 —4,, 10..0 —B,_,

A=l 01 ..0 —-4,,). B=|01..0-B,_,]. (3.9)
00..1 —4, 00..1—B,

Then the matrices h,= A, hy=B~ ', h,= A~ ' B generate a hypergeometric group
with parameters a, ..., a,, by, ..., b,. Moreover, any hypergeometric group with
the same parameters is conjugated inside GL(n, C) to this one.

Proof. An easy calculation shows that

det(t—A)=t"+A, " *+ . +4, dett—B)=t"+B;1"" '+...+B,

and hence conditions (3.3) and (3.4) are satisfied. Also h; —~Id=A4""'B—Id
= A" '(B— A) has rank one, and the first statement of the theorem follows.
Conversely, suppose we have a hypergeometric group H <= GL(n, C) with
parameters dy, ..., d,; by, ..., b, and generators hgy, h, h, as in Definition 3.1.
Put A=h,, B=hy' and let W be the kernel of B-- A. Since dim W=n—1 there
n—2
exists a nonzero vector ve { | A™/W. We claim that the vectors A/v(j=0, ...,
=0
n—1) form a basis of €". If this is not the case, then span(4/v; jeZ) is a nonzero
linear subspace of W invariant under A and B, contradicting Proposition 3.3.
Moreover, since AveW (j=0, ..., n—2) and (B—A) x=0 for all xe W we see
that B'v=A%v(j=0, ..., n—1). Thus the matrices of 4 and B with respect to
the basis 47v(j=0, ..., n—1) have the form (3.9) which shows the uniqueness
of H.

Corollary 3.6. Suppose ay, ..., a,; by, ..., b,eC* with a;%b, for all j, k=1, ..., n
Let Ay, ..., A,, By, ..., B,eC be defined by (3.8). Relative to a suitable basis
the hypergeometric group H(a; b)c GL(n, €©) with parameters ay, ..., a,; by, ..., b,
is defined over the ring Z[A,, ..., A,, By, ..., B,, A", B, '].

Remark 3.7. 1t follows from Proposition 3.2 that the hypergeometric equation
D(a; ) u=0 can be viewed as an explicit solution of the Riemann monodromy
problem [P), Sect. 15] for the special case of the hypergeometric group H(a; b).

4, The invariant hermitian form

It is a well-known fact that the second order hypergeometric equation with
real parameters has a monodromy group which is either contained in U(2)
or U(l,1)~GL(2,R) (see [KI, p 211]). Surprisingly, it turns out that a similar
statement holds for generalised hypergeometric equations as well. The construc-
tion of hermitian forms invariant under the monodromy will be the subject
of this section.
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Lemma 4.1. Let P, Qe M, (C) be two n by n matrices having the same characteristic
equation. Suppose there exists a vector v such that v, Pv, ..., P"" v are linearly
independent (i.e. P is regular). Consider W={XeM (€); XP=0QX}. Then W is
a C-linear vectorspace of dimension at least n.

Proof. Choose xe@" arbitrarily. Let X be the matrix such that XP'v=Q'x
for i=0, 1,...,n—1. Then, clearly, (XP—QX)Plv=XP/*1v—-QXPiv=0Q/"1x
—Qi*tx=0for j<n—1. Since P"+r, P" '+ ... 4r,=0and Q"+r, Q" '+ ...
+r,=0 we also have (XP—QX)P" 'v=XP'v—QXP" 'v=XP"v—Q"x=
— X P o+ 40+ Q" ' x+ ... +r,x=0. Hence XP—QX=0. The
map ¢: C"— W which associates X to x is clearly linear and injective, hence
dim W=n.

Remark. Let ge M, (C) be an n by n matrix with entries in €. In this section
¢' will denote the transpose of g and g the matrix obtained by complex conjuga-
tion of all entries of g.

Lemma 4.2. Suppose ge M, (C) has the form

00..0¢g,
10..0g,,
01 ..0g,_, |withg,eC foralliand g,+0.

00..1g
Then any solution X e M ,,(C) of g' X g =X has the form X =(X,;) where the entries
X;; depend only on i—j.
Proof. Direct computation.

Theorem 4.3. Let H(a; by= GL(n, €) denote the hypergeometric group with parame-
ters {ay, ..., a,}, {by, ..., b,} as constructed in Theorem 3.5. Suppose the sets {a;};
and {b;}; are invariant under the substitution z—Z~'. Then there exists a nondegen-
erate hermitian form F(x,y)=Y F; x; j; on C" such that

F(hx,hy)=F(x,y) forall heH(a;b) andall x,yeC". 4.1

Proof. Tt suffices to construct a nondegenerate hermitian form F such that (4.1)
is satisfied by h=h,,, h; *. Such a form with matrix F =(F,)) is solution of

WFh=F for h=h_, hy" 4.2)
and
F=F. 4.3)
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According to Theorem 3.5 the matrices of hg !, h., can be given the form required
by Lemma 4.2. Hence the entries of F=(F;;) depend only on i—j, which implies
that the solutions of (4.2) are contained in a vector space of dimension 2n—1.
Rewrite (4.2) as Fh=(h")"'F, h=h,,, hy !. Since the parameter sets are invariant
under z—Z~! the matrices h and (h')”! have the same characteristic equation.
Application of Lemma 4.1 now shows that the solutions of (4.2) have dimension
at least n for each choice of h=hg !, h,. Since these spaces are contained in
a 2n—1 dimensional space, they have non trivial intersection. So (4.2) has a
nontrivial simultaneous solution, say F,, for h=h;!, h,. Notice that if F is
a solution of (4.2) then so is F*. In particular, both

Fy+F, and i(F,—FY) (4.4)

are solutions of (4.2) which, in addition, satisfy the constraint (4.3). Since F,
is nontrivial, at least one of (4.4) is nontrivial, and this will be the matrix of
the required hermitian form. Non-degeneracy of the form F follows from the
fact that it is non-trivial and invariant for the group H (a; b), which acts irreduci-
bly on C".

In the following Proposition and Theorem we determine the signature of
the hermitian form.

Proposition 4.4. Let H(a;b) be a hypergeometric group as in Theorem 4.3. Let
c=by...b, a;'...a;, ! and let { be a solution of c{*= —1. Consider the rank
one linear map D={(h,—1d). Then there exists a non-zero vector ueC" such
that

Duwy=+F(x,u)u forall xeC" 4.5)

Proof. Using the orthogonality of &, with respect to F we see that the adjoint
of D with respect to F equals D*={"'(h;'—Id). Note that c¢ is the special
eigenvalue of h,, hence (h, —1d) (h; —c)=0, from which one can see in a straight-
forward manner, that D =D*,

Since D is a rank one map there exists nonzero v, weC" such that

D(x)=F(x,v)w forall xeC"
Clearly, the adjoint D* of D is given by
D*¥*(x)=F(x,w)v forall xeC"

Because D* =D we deduce w= Av for some AelR*. Now take u=|A|*v.

Theorem 4.5. Suppose ay, ..., a,; by, ..., b,eC* with a;=%b, for all j, k=1, ...,n
and such that |ajl=|b;|=1 for all j=1, ..., n. Choose «;, p;€[0,1) such that a;
=exp 2nin; and b;=exp 2nip;. By renumbering the indices we may assume that
0fe, ... S, <land0=p = ... £8,<l. Let mj= % {k; B, <a;} forj=1, ..., n
Then the signature (p, q) of the hermitian form for the hypergeometric group H(a; b)
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is given by
— 1yt

lp—ql= (4.6)

Proof. We use the notation A=h,, B=hy ' in this proof. First suppose that
a;#*ay for all j£k. Write the vector u, defined by (4.5), as u=u, + ... + u, with
Auv;=aju;for j=1, ..., n. Notice that

(a; @ — 1) Fu;, w)= F(Au;, Aug)— F(u;, ) =0.

When j+k we have by assumption a;d,+ 1 and hence F(u;,u,)=0 for all j+k,
ie. the basis uy, ..., u, is orthogonal. Letting D be as in Lemma 4.4 one easily
verifies that

f[ (be—1) (@, — 1)~ ' =det (B—t1d) (4 —t1d) ™!
o
=det(Id+{ " 'DAd—1A4"1) ). 4.7)

If a rank one n by n matrix M acts on €" as Mx=w(x)u for some linear
form w, one has det{Id+ M)= 1+ w(u). Using this fact in (4.7) and Lemma 4.4
we find that

f[ Be—t) (@ —0) " =1+ ' F(Id—tA™ Y u,u)

=1iC_1F(Z aja;—t)" 'uy, Y u]-)
YE i=1

n

=1£{77 )

j=1 7%

F(u;, uy).

Taking residues at t =a; yields

F(uj,u)=2{(b;—a)aj ' [[(by—a)(a—a)™".

k*j
Writing ¥{=ia}...at b;%...b; * we find

Flu, u)=—i(b} af—b; *a}) [] (b} ¢ * b, * af)(a} 0t —ag taf) !

sin (B, —a;)

=2sinn(f;—a) []

ke SIn n( —~a;)

Our assertion follows simply by determination of the sign of the latter products
for each j. A continuity argument shows that the signature of the hermitian
form does not change if we let o; and f, vary continuously with the restriction
%+ B, for all j, k=1, ..., n. Hence the statement also follows if a;=a, for some
k,j.
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Definition 4.6. Let a;=exp2nio; and b;=exp2nif;(j=1, ..., n) be two sets of
numbers on the unit circle in C. Suppose 0<a; <o,< ... Za,<1, 0B, <8,
< ...SB,<1. We say that the sets ay, ..., a, and b,, ..., b, interlace on the unit
circle if and only if either

G <Pi<o,<fy<...<a,<f, or PBi<a,<f,<oy<...<f,<a,.

Corollary 4.7. Let the hypergeometric group H(a;b) have all of its parameters
on the unit circle. Then H(a; b) is contained in U (n, €) if and only if the parameter

sets {ay, ..., a,} {by, ..., b,} interlace on the unit circle.
Theorem 4.8. Suppose the parameters ai, ..., a,; by, ..., b, are roots of unity,
and say

Q(ay, ..., a,,bq, ..., b)=Qexp 2ri/h)

Jor some heIN. Then the hypergeometric group H(a; b) is finite if and only if
for each keN with (k,h)=1 the sets {d%, ..., a} and {b%, ..., bt} interlace on
the unit circle.

Proof. The Galois automorphisms of Q(exp 27i/h) over @ are given by
0. exp2mni/h—exp 2nik/h

for (k,h)=1. It follows from Corollary 3.6 that the hypergeometric group can
be represented by matrices whose entries are in the ring of algebraic integers
Z{exp2mi/h]. The Galois automorphism o, induces an isomorphism between
the matrix group H(a;b) and the hypergeometric group H, with parameters
a, ..., ak; b%, ..., bk, According to Theorem 4.3 each H, has an invariant form
E for (k, h)=1.

If H(a;b) is finite, then the group H, is finite for every k with (k, h)=1.
Hence the hermitian forms F, are all definite and Corollary 4.7 implies that
the sets {a*, ..., @t} and {¥%, ..., b%} interlace on the unit circle.

Conversely, suppose that for each k with (k, h)=1 the sets {af, ..., a*} and
{b%, ..., b} interlace. According to Corollary 4.7 each group is unitary with
definite form F,. The image of H(a; b) under the diagonal embedding

[l ow: H@b)-» [] H,

ke(Z/hZy* ke(Z/hE)*

is contained (relative to a suitable basis) in GL(mn,Z) and leaves invariant
a definite hermitian form on €™"(m = ¢(h) is the order of (Z/hZ)*). Hence H (a; b)
is finite.

Remark 4.9. Let a4, ..., o,; B1, ..., B.€Q with aj=exp2nia;, bj=exp2nif; for
j=1, ..., n. Using elementary number theoretic techniques one can show that

D(al’ "'aan;ﬂb (K] ﬁn)u_zo(mOdp)
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has n solutions in IF,[z] linearly independent over IF,[z”] for almost all primes
p if and only if the sets {a% ..., a%} and {b%, ..., b%} interlace on the unit circle
for every keN relatively prime to the common denominator of «;, f,(j, k
=1, ..., n) (see Katz [Kat] or Landau [La]).

Together with Theorem 4.8 this gives us another verification of Grothen-
dieck’s zero p-curvature conjecture for the special case of the hypergeometric
equation (see [Ho], [Kat]).

5. The imprimitive case

Definition 5.1. Let V be a complex vector space of dimension n and let G = GL(V)
be a subgroup acting irreducibly on V. The group G is called imprimitive if there
exists a direct sum decomposition V=V, ®V,® ... ®V; with dim V;21 and d =2,
such that G permutes the spaces V,. If such a decomposition does not exist, G
is called primitive.

Definition 5.2. Let H(a; by=GL(n, €) be a hypergeometric group with parameters
Ay, ..., 4y by, ..., b, and generators hy, hy, h,, as in Definition 3.1. The subgroup
H,(a;b) of H(a;b) generated by the reflections W, h, h X for keZ is called
the reflection subgroup of H(a; b).

Theorem 5.3. Let H(a; b)< GL(n, €) be a hypergeometric group with parameters
ay, ...y Ay by, ..., b,. The reflection subgroup H,(a;b) acts reducibly on C" if
and only if there exists a root of unity {, {1 such that

{Cay, ..., Ca, ) ={ay, ..., a,}
{{by, ..., {byy=1{by, ... b,} (5.1

Moreover, H(a; b) is imprimitive in this case.

Proof. Suppose H,=H,(a; b) acts reducibly on V=C". Let W <V be an irreduc-

ible invariant subspace for H,. Let h denote either h, or hy'. Since H, is

normal in H=H(a;b) each of the spaces i*W, keZ is an irreducible invariant

subspace for H,. Hence, either /* W=h'W or * Wnh' W={0} for any k, 1€Z.

Let d be the smallest positive integer such that h* W= W. Since H acts irreducibly
d—1

on V and H/H, is cyclic with generator hH,, we have V=W W with d22
j=0

and n=dm, m=dim W, Choose geGL(n, €) such that it multiplies the vectors

of WW with {J, {(=exp(2ri/d), (j=1, ...,d—1). Then, clearly, (h=ghg~' and

{h has the same eigenvalues as h. Equalities (5.1) follow immediately.

Notice that H permutes the spaces h/W, and thus H is imprimitive, as
asserted.

Suppose conversely, that the parameters ay, ..., a,; by, ..., b, have the form
(5.1). According to the uniqueness theorem 3.5 the group generated by (h,,
{hg! must be conjugated in GL(n, C) to H. Hence there exists ge GL(n, C) such
that (h,=gh, g %, {hy ' =ghg ' g '. This implies r=grg~ ' for all re H,. Hence
the eigenspaces of g are invariant under H, and H, is thus reducible.
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Remark 5.4. Consider the hypergeometric equation
D(“l""?“n;ﬁls'-'9Bn)u=0 (52)

with a;— B, ¢Z for all j, k=1, ..., n. Then the reflection subgroup of the mono-
dromy group of (5.2) acts reducibly if and only if there exist d,melN, d=2
with n=dmand Ay, ..., A; iy --., iy sSch that mod Z we have the inequalities

1 d—1 1 d—1

{ag, .-y oc,,}z{/ll,/lﬁ-g, ey ,11+~d—, e i,,,,/l,,,-f-g, . /1m+7—}(modl),
1 d—1 1 d—1

{Bli L] ﬁn}E{#l’ul+E’ sees #1+-d_a cees “m’.um+g’ reey ﬂm+7}(m0dZ)

Furthermore, solutions of (5.2) are obtained from the hypergeometric equation

DAy, ...,d2;dpy, ..., du,)v=0 (5.3)

be the relation v(z) =u(z%). Following N.M. Katz we say that the hypergeometric
group H(a; b) is Kummer induced if its reflection subgroup H,(a; b) acts reduci-
bly on C".

Definition 5.5. A scalar shift of the hypergeometric group H(a; b) is a hypergeomet-
ric group H(da;db)=H(da,, ...,da,;db, ..., db,) for some deC*.

Remark 5.6. If d has the form d=exp(2nid) for some deC then a scalar shift
from H{a;b) to H(da;db) is the effect on the monodromy group obtained by
multiplying all solutions of the hypergeometric equation by z~° Observe that
the associated reflection groups H,(a; b) and H,(da; db) are naturally isomorphic.

Proposition 5.7. Let H be a hypergeometric group in GL(n, C) and n=3. If the
reflection subgroup H, of H is irreducible and primitive, then H, is a scalar shift
of H.

Proof. The element h,eH normalises H,. According to a theorem of A.M.
Cohen [Co] the primitivity of H, implies that &, is a scalar times an element
of H,, which establishes our proposition.

Note that the original version of Cohen’s theorem contains two exceptions.
However, both of them are not really there. For the first exception this was
pointed out in [Co, erratum], and for the second it simply follows from W(M3)
~ {41} x W(L;).

The upshot of Proposition 5.7 is, that if H is primitive then H and H
are essentially the same. The remainder of this section is devoted to characteris-
ing those hypergeometric groups, whose reflection subgroup is imprimitive.

Theorem 5.8. Suppose the reflection subgroup of the hypergeometric group
H(a;b)<=GL(n, ©) is irreducible. Then H is imprimitive if and only if there exist
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p,geN, p+g=n, (p,q)=1 and a, b, ce C* with a"=b?? such that

{ay, ..., a,p={a,al,, ..., alt" '},
{byr s b} ={bobly o BB e el vy 3

with {,=exp 2ni/r, or the same equalities with the sets {a;}; and {b}; interchanged.

Proof. Letting h denote either h, or hy ', we observe that H,= H,(a; b) is generat-
ed by the reflections h*h, h™* for keZ. Let V=C"=V,®...®V, be a system
of imprimitivity for H,. Since H, acts irreducibly on V there exists for each
i an integer k such that h*h, h™*V,=V, for some j+i. Because h*h, h™* is a
reflection we deduce that dim V=1 for i=1,...,n. Hence d=n and V
=V @ ... ®V, is an imprimitive decomposition of V for H into one dimensional
subspaces.

Suppose reH, is a reflection. Then either r¥;=V, for i=1, ..., n or r: VeV,
for some i%j and rV =V, for k+i, j. In the latter case r is a reflection of
order two.

We have a natural homomorphism ¢: H—S, defined by gV,=V,,, for
geH and i=1, ..., n. The irreducibility of H implies that ¢ is surjective. Since
H is generated by h, and h we see that S, is generated by o(h,) and o(h).
The fact that o(h,) is a pair exchange forces o(h) to be either a full n-cycle
or a product of disjoint p- and g-cycles with n=p-+gq, (p,q)=1. Without loss
of generality we may assume o(h,) to be an n-cycle. Then (kg !) is a product
of a disjoint p- and g-cycle with p+¢=n, (p,q)=1. The corresponding eigen-
values of h, and hgy ! follow readily.

Conversely, the imprimitive group generated by

h

hy: e,—eli+p,n), e,—a PbPe,, e,—»a’b Pe,

: ei_')aei+1(1§i<n)a e,—>aey,

©

~1 . ; —p+1 +1p—
h() :hoohl' ei__)aei+l(l:*:p’n)s ep_}a d bpel, en—)ap b pep+1

is a hypergeometric group with the required parameters, and by the uniqueness
theorem 3.5 the group H must be conjugate to it.

Proposition 5.9. Suppose that the parameters of the hypergeometric group Hc
GL(n, €) have the form

{ah "':an}z{Cn+13Cr%+1a '-"C:+1}a

(b ooy by = {1, oy (28 L s 7Y

with {,=exp2ni/r and p, qeN, p+q=n+1, (p,q)=1. Then H~S, ., and its
reflection subgroup is primitive if n>3.

Proof. Consider the representation of S,,, on the space "
={(Xy, oo, X4 )ECT Y x;=0} given by o1 (X, ..., Xps 1) (Xom 11y oos
Y-+ ;) fOr every g€8, ;. Choose for h,, the (n+1)-cycle (1, 2, ..., n+1) and
for hg' the product (1...p) (p+1...n+1). Then h,=(p, n+1) is a reflection
of order 2. Note that h_, and hg ! have the required eigenvalues. By the unique-
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ness theorem 3.5 we obtain H~S,,,. Moreover, §,,, is generated by pair
exchanges i.e. elements of the form k* h, h ¥, hence H=H,.

Proposition 5.10. Let K be an algebraic number field and P(x)e K [x] be irreducible
in K[x]. Suppose P(x) is not a polynomial in x" for some r=2. Let 3, ..., 39,
be the roots of P and suppose 9,/%; is a root of unity for all i, j. Let the roots
of unity in K be generated by e*™'™. Write wy = {expQnik/M)|k=0, 1, ..., M}.
Then there exists NeN odd, square-free with (N, M)=1 and a character ¥:
(Z/NZ)Y* — .\, such that the set 3,, ..., 3, is given by either

i) oS, (k) 2", (k N)=1
or
i) (1 4i)aS, x(k) e2™ N, (k, N)=1

where S,= Yy '(k) ™", aeK and n=¢@(N) in case i), n=2¢(N) in case
.. ke, N =1
ii).

Proof. Let L be the field generated by all ratios 3;/9;. There exists NeIN such
that L=K(e?™"M), Put s,=97+ ...+ 3" for all meN. If s,+0, we have
97 ™scL and hence §7e L. Let r be the greatest common divisor of the elements
in {m|s,+0}. If r=1 then $,eL and hence K(e?""™M)=L=K(9,,...,3,). If
r=2 then P(x) is in fact a polynomial in x’, contradicting our assumption.

The Galois group of L/K is given by elements of the form

2wi/MN _, ,27ik/MN

a,. e e
where (h, MN)=1 and h=1(mod M).

First we show that we can restrict ourselves to the case when N is odd,
square-free and (N, M)=1. Suppose we have a prime p such that either p*|M
or p|(M, N). In both cases we can take h=1+ NM/p and study the action of
0,€Gal(L/K) on 9, say. Notice that (1+ MN/py=1+jMN/p(mod MN) VjeZ.
Suppose 6,:9, — 2™ MN g Since g, has order p, and

ab: 9, —>expRuik(l+h+ ... +h""1)/MN) 3,
we conclude that
k(1+h+ ... +h" " 1)=0(mod MN)

and hence

=1 M) (mod MN).
2 P

OEk(pil(l +jMN/p))Ek<p+

i=0

If p is odd, then kp=0(mod MN) ie. exp(2nik/MN) is a p-th root of unity.
Hence 9 is stable under 6, and P(x) is in fact a polynomial in x”, contradicting
our assumptions.

If p=2, then k(2+MN/2)=0(mod MN). If k is even, then observc
2k=0(mod MN) and we have a contradiction as above. If k is odd, then necessar-
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ily 4[| MN and we have 4k=0(mod MN), i.e. exp(2nik/MN)= +i. Now observe
that if g,: 3, > Fi3,, then o,: 9, /(1 £ ) -9, /(1 ).

Thus we conclude that neither p?|N nor p|(M, N) unless p=2, 4| MN and
2| N (note that always 2| M since —1eK). However, in the latter case we may
replace 3, by 9,/(1+i) for a suitable 4 sign, note that that the new &, has
degree n/2 and continue our argument. From now on we may assume that
N is odd, square-free and (N, M)= L.

To every o,eGal(L/K) we can associate a ¢@(g)eZ/NZ such that o,: 3}
—+exp(2mq)(g)/N) 94, Notice that ¢(hg)=ho(g)+ (k) (mod N) for any o,
a,€Gal(L/K). Choose h such that h=1(mod M) and h=2(mod N). Then ¢{hg)
EZ(p(g)+<p(h) (mod N), but also ¢{gh)=ge(h)+¢(g) (mod N). The equality
p(hg)= @(gh) then yields @(g)=(g—1) ¢(h) (mod N). Hence r=exp(—2ni¢p(h)

) 91" is stable under all 6,6Gal(L/K) and thus reK. We conclude that 3,

”M {, where { is an N-th root of unity which is primitive, since the ratios
9i/9j generate L/K. After conjugation we might as well take { =e?™"¥,

Since (M, N)=1 we have Gal(L/K)~(Z/NZ)*. The Galois element ¢ corre-
sponding to he(Z/NZy* acts as ¢: e*™/N - ¢>™WN_ Moreover, o: r'/™ — /My (p)
where y: (Z/NZ)*— ,, is a character. Now notice that ¢: S, — x(h) S,, where
S, is the charactersum defined in our Proposition. So, r'/™/S, is fixed under
Gal(L/K). Hence r'/™/S =wae K, which proves our Proposition.

Lemma 5.12. Let H<GL(4, T} be a finite hypergeometric group generated by
hy,, hgt such that
i} H is primitive,
i) Ah,,,Ahg ! have entries in Q for suitable Ac C*,
iii) deth, = —dethg'.

Then, up to a scalar shift, either {a, ..., a4 ; by, ..., by} or {by, ... bs; ay, ..., a4}
has one of the following forms

g, 62,83, '4'1 i, —1, —i, {w, Lot o, w10, —1, —i,

g 828 et 1, —1, 0,0 iw?, —iwim, —iom; 1, — 1, m, »?

w, —w, w2, —w 050 -1 w,wioiw?; -1, —i,(,(°
where e =exp(2mi/5), o =exp(2ni/3), { =exp(ri/4).

Proof. The characteristic polynomial of Ah,, Ahg' have degree 4, coefficients
in QQ and ratios of their roots are roots of unity. Moreover by Theorem 4.8
these roots are all distinct. Using Prop. 5.10 we can find all such polynomials,
whose roots we list here

P10, — 1, —i) /6w, — Lo o, (e,
r'2(@?, —w?, 0, —w) r(1, — 1, w, »?),

2 (=3 w2 —w?in, —iv) i, —i,n,0?),

r(e, g2, ¢, % r]/g(l, —1,iw, —iw?),

rl/5G, —¢%, —é, 4) r)/=3(1, — Lo, —w?),

r[/(l -1, C rl/i(Cw,C(uz,C”‘w,C“‘aﬂ)

l/ - (]a_ > 5__C) r%(zi)%(l’——LCAla_(il)
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where re®. Using det Ah, = —det 1hy ! we can find, up to a common factor,
all possible combinations for the eigenvalues of k., and hg'. To each of these
combinations we can apply Theorem 4.7 to see whether the group they generate
is finite. Of the remaining possibilities we delete the ones for which H is reducible
or imprimitive using Theorems 2.7, 5.3 and 5.8. We are then left with the cases
of our assertion.

Lemma 5.13. Let H< GL(3,C) be a finite hypergeometric group generated by
h,,, ho ! such that

i) H is primitive,
ii) Ah,,, Lhg ! have entries in Q(w) for suitable ie C*,
iii) deth,= —dethy!
Then, up to a scalar shift, either {a,, a,, ay; by, by, by}={i, —i, 1; —ti,
b, —o*} or {—o*i, Wti, —0*; i, —i, 1} for k=1 or 2.

Proof. We proceed in exactly the same way as in Lemma 5.12. The polynomials
we must consider have degree 3 and coefficients in Q(w). Their zeros read

r(l, —w%w i, —i,0k=01,2),

r(l, ~o? —1) r'3(, w, w?),

r(l, —w?, w?)
where reQ(w).
Theorem S.14. Let n=3 and let H<=GL(n, C) be a primitive hypergeometric group
with reflection subgroup H,. Then H, is imprimitive if and only if, up to a scalar

shift, either {a,, ..., a,; by, ..., b,} or {by, ..., b,;ay, ..., a,} has one of the follow-
ing forms,

{i, —i, ; o%i, —0*i, —0*}  (k=1,2),
{io?, —io%io, —io; 1, —1,0,w?},
{Cw’CwZ’C—lw’C—le;l’i, _1, _l}

{(U, —, wZ’ _wZ; Cy C3’ i’ _l}

I 0 2 = =
f
i O N N N

{0, 0% io,iv?*; -1, —~i,{, -}
where { =exp mi/4.

Proof. According to Theorem 5.3 H, is irreducible. Suppose H, is imprimitive.
Just as in the proof of Theorem 5.8 there exists a direct sum decomposition

V=V®...®V,,dim V,=1(i=1, ..., n) and a natural surjective homomorphism.
o: H,>S, given by rV,=V,, for reH, and i=1, ..., n. The surjectivity of
o implies that for each i=2, ..., n there exists a reflection r;e H, of order two

with r; ¥, = V,. The image o(r;) of r; under o is the pair exchange (1i)eS,. Con-
versely, the homomorphism z: §,— H, defined by 7(li)=r; is a section for o.
Choose e,eV,, e, +0 and e¢;=r;(e,) for i=2, ..., n. Clearly, e,, ..., e, is a basis
for V. The normal subgroup H,=kero of H, is abelian, since it consists of
all diagonal matrices in H, relative to the basis e, ..., e,. Rephrasing the above
we have a splitting short exact sequence

1-H,—»H,=S§,—1

a



Monodromy for the hypergeometric function ,F, ., 343

with H, abelian. The elements de H,; will be denoted by d=diag(d,, ..., d,) where
d;is given by d(e;)=d,; e;,(i=1, ..., n).

Suppose H, consists only of scalars. Then the one-dimensional space spanned
by e; +e,+ ... +e, is invariant under H,, contradicting the irreducibility of H,.

Hence there exist non-scalar elements de H,, ie. d=diag(d,, ..., d,) with d;
+d; for some i,j. Let h be either h, or h,,, to be fixed from now on. Suppose
there exists deH,, d non-scalar, such that hdh~'eH,. Let D be the group
generated by all rdr~! with reH,. Note that if o(r)=¢ then rdr !
=diag(dy), --., dpm)e H,. Hence D acts with distinct characters on Vy, ..., V,.
Moreover, D is normalised by h, and this implies that h permutes the one-
dimensional spaces V}, contradicting the primitivity of H.

So we may finally assume that hH,h™ '~ H, consists only of scalars. Note
that in this remaining case a(hH,h ') is a non-trivial abelian normal subgroup
of S,. This leaves us with two possibilities since n=>3, i.e. n=3 and o(hH h™ 1)
~7Z/3Z, n=4 and o(hH;h “W~Z/2Z <xZ/2Z. We also have the natural
isomorphism hH,h™'hH, h *nHy~o(hH,;h™ '), and since hH,h~* ~n H, con-
sists only of scalars we are left with the following possibilities,

I) n=3 and H,(mod scalars)~7Z/3Z,
II) n=4 and H,(mod scalars)~Z/2Z x Z/2Z.

Bearing in mind, that H, is generated by reflections of order two and that
H, is normalised by H, it is straightforward to verify that H, has one of the
following forms,

I) n=3 and H,={diag(ov", o', o™|k+1+m=0(mod 3)},
II) n=4 and H,={diag((— D5 (— DL (— 1" (—1)’|k+ 1+ m+p=0(mod 2)}.

We deal with these cases as follows. Note that H, is finite. Hence there
exists keIN such that h*rh *=r for all reH,. So, by Schur’s Lemma, h* is
a scalar, and up to a scalar shift H is finite. Denote by aut the automorphism
aut: r—>hrh~! of H,. Then the entries of h satisfy the set of linear equations
hr=aut(r)h, VreH,. According to Schur’s lemma there is, up to a common
factor, a unique solution, which may be chosen in the field of definition of
the elements of H,. Hence there exists Ae€* such that Ah has entries in Q(w)
or @ in cases T or II respectively.

In case I we invoke Lemma 5.13 to conclude that up to a scalar shift the
parameters of H read i, —i, 1; —w*i, o*i, —o* (k=1, 2), as asserted. Conversely,
one easily checks that the group generated by

| 1 1 1 010

hW:“k'————k 1 Cl)k u)_k h1= 1 0 0
W —w

1 o % o 0 0 1

satisfies all requirements and has the required parameters.
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In case II) we invoke Lemma 5.12 to conclude that up to a scalar shift H
has the following parameters,

a) 565, 6% e 1,0, —1, —i,

b) 2,63, e* 1, —1, w, w2,

P

I 2 y—1 -1,.2. : :
C) (:Coscwsg W, ¢ w ’171,_17_la
d) iw?, —iw%io, —io; 1, —1, 0, w?,
2 . . 2. .
e) @, W, 1w, 1w 7—1’ —‘lSCa ‘Cs

D @, —w, wZ, _(DZ;C, C3’ i7 —i.

According to Proposition 5.9 cases a) and b) give rise to H ~ S and H, primitive.
Cases ¢), d), ¢), f) occur in the assertion of our theorem. To show that these
cases really correspond to a hypergeometric group with the required properties,
we must show that H, is imprimitive.

Suppose H, is primitive. In cases c), d), €), f) H, can be defined over Q).
In case d) this is obvious, in case c¢), ¢), ) we apply a scalar shift by the factor

]ﬁ, 1—i, i]/2 respectively and notice that the shifted hypergeometric group
is defined over Q. The only finite primitive reflection group in dimension 4,
defined over @ is F, according to Shephard-Todd (see Table 8.1 in Sect. 8).
According to Proposition 5.7 F,~H, is a scalar shift of H. So we may as well
assume H=F,. However, it is known that the subgroup of F, generated by
all conjugates of a reflection of F, is strictly smaller than F,, contradicting
H,=F,.

Remark 5.15. Note that the cases I and II discussed in the proof of Theorem 5.14
are precisely the two imprimitive reflection groups G(3, 3, 3), G(2, 2, 4) in dimen-
sion n=3 which have more than one system of imprimitivity [Co]. The hyper-
geometric groups containing such imprimitive groups as reflection subgroups
permute the various systems of imprimitivity.

6. Differential Galois theory

In this section we determine the differential Galois group of the hypergeometric
differential equation (3.5) in case the monodromy modulo scalars is infinite.
For a very nice introduction into differential Galois theory we refer to [Kap].

Let V be a complex vector space of dimension n and let G GL(V) be a
subgroup. We denote by G the closure of G and by G° the connected component
of the identity of G, both with respect to the Zariski topology. Observe that
G° is dense in G° and hence the operations ~ and ° commute. Note that the
natural map G/G°- G/G° is an isomorphism of finite groups. The dual group
G* in GL(V*) is defined by {g*; geG} and the map g—(g~!)* is a natural
isomorphism of G into G*.

Proposition 6.1. The dual map g — (g~ ')* vields a natural isomorphism

H(ay, ...,a,: by, ..., b)——— H(a; ', ..., a7 1:b78, ., b ). 6.1
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In particular the group H(a;b) is self dual if and only if {ay,...,a,}
={a;’, ...,a; "} and {by, ..., b,}=1{b; ", ..., b '}. The latter condition implies
that the special eigenvalue ¢ of the reflection h, is given by ¢= 4+ 1. The case
c¢=+1 occurs only for n even and implies H(a;b)=Sp(n, C). The case ¢= —1
implies that H(a; b)=O(n, C).

Proof. Clearly, the map g—(g~")* maps H(a;b) to a hypergeometric group
with parameters a; ', ..., a, '; by ', ..., b, !. This implies the first statement.

Self duality of H(a;b) implies the existence of a non-degenerate bilinear
form F on V=" which is invariant under H(a; b). This form is either symmetric
or anti-symmetric. If c= —1 then F must be symmetric, hence H(a; b)= O(n, €).
If e=+1, then F must be anti-symmetric, hence H(a;b)<=Sp(n, €) in which
case we automatically have n even.

Remark 6.2. The above Proposition is the differential Galois formulation of
the quadratic relations of Darling-Bailey for hypergeometric functions [Ba].
Proposition 6.3. If H,=H,(a;b) is a primitive reflection group then either H°
consists of the identity element only or H® acts irreducibly on C".
Proof. Assume that H? acts reducibly on €". Let W< " be an irreducible
invariant subspace for H?. Since H, acts irreducibly on C" there exists a reflection
re H, with r W 4 W. Since H? is normal in H, the intersection r W W is invariant
under H? we conclude that rWn W=0. But r is a reflection, hence dim W=1.
Now cither H? consists of scalars only, or the decomposition of €" into isotypical
components for H? gives a system of imprimitivity for H,. The latter possibility
is excluded by the assumption that H, is primitive. Hence H? is contained
in the scalars @. This fact and the fact that H,/H? is finite implies that the
special eigenvalue c of h, is a primitive d-th root of unity for some delN, d=2.
Hence the image of the map det: H,—C* consists of all d-th roots of unity.
In particular this shows that the scalars in H, consist of (nd)-th roots of unity.
Thus we conclude that HY is finite and, by connectedness of H;, we see HY = {1}.
The group H? consists of the identity element if and only if H, is a finite
reflection group. We discuss this case in the next section. The following proposi-
tion enables one to understand the differential Galois theory in the case that
H? acts irreducibly on C".
Proposition 6.4. Suppose G = SL(V) is a connected algebraic group acting irreduci-
bly on V. Let re GL(V) be a reflection with special eigenvalue ce ©* which norma-
lizes G. Then we have the following three possibilities,

) Ifc=+1 then SL(V)=G,
Iy If c=+1 then SL(V)=G or Sp(V)=gG,
) If c=—1 then SL(V)=G or SOWV)=G

Proof. Clearly the Lie algebra g of G is semisimple and acts irreducibly on
V. Denote by Ad(r) the automorphism of g induced from conjugation by r.
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I. Suppose ¢+ +1. If g, denotes the eigenspace of Ad(r) with eigenvalue A then
we have a direct sum decomposition

g=0; ®gc@gc’1

with relations

[gl’ gc]Cgca [gla gc-‘a]Cgc-ia [gc’ gc“‘]Cgia
[8:,81=0, [8c-1,8.-:11=0.

Also write V=V, @V, where V, is the eigenspace of r with eigenvalue 1. Using
the formula

rXv)=Ad{r)(X)(rv) Xeg,veV
we get the relations

ai(V) <h, ai(V)cV,
a.("1) <=V, a(1)=0,
gc*‘(Vl)=Os gc*‘(VC)CVl-

Using these formulas it is easy to see that W=V, ®gq,- (V) is an invariant linear
subspace for g. The conclusion is that dimg,-.=n—1. The same argument
applied to the dual representation shows that dim g.=n—1. We claim that in
fact g=sl(V). Indeed, let ¢, be an eigenvector of r with eigenvalue c,ande,, ..., ¢,
a basis of the eigenspace of r with eigenvalue 1. With respect to this basis
we identify gl(V)~gl(n, C). Denote by E; ;egl(n, C) the matrix with | on the
place (i, j) and O elsewhere. As shown above we have E; ;, E; ;egforj=2, ..., n
Hence also [E, j, E; ;1=E, —E; ;eg for j=2, ..., n. In other words g contains
the full subalgebra of diagonal matrices of trace 0. A semisimple Lie subalgebra
of sl(n, C) of rank (n— 1) is equal to sl(n, C), and the above claim follows.

I1. Now suppose c= + 1. Since r is a unipotent element we have in fact
reG, and log(r)=(r—Id)eg. By the Jacobson-Morozov theorem the nilpotent
element (r —1d) is contained in a subalgebra s « g with s ~sl(2, C). Since dim(Ker-
(r—1Id))=n—1 we deduce by sl(2)-representation theory that C"~C?*@C""? as
an s-module. Here C? is the standard representation of s, and C"~ 2 are (n—2)
copies of the trivial representation of s. Suppose V is the irreducible g-module
with highest weight 4 (relative to the usual data, cf. [Hu]). Then there exists
a dominant root « for g, such that (4,av)=1, (Wo4, a¥)=—1 and (1, a*)=0
for all weights g with wo A<u < 2. (Here w, is the longest element in the Weyl
group, and < is the usual ordering on the weight lattice.) In particular, 1 is
a minuscule weight (see [Bou, Chap. VI, §4, Ex. 15]), and a case by case check
gives g=sl(V) or sp(V).

I11. Finally suppose that c= —1. As for the case ¢+ +1 we get

g=g,Dg-,
and
V=V, ®V_,
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for the eigenspace decomposition of Ad(r) and r respectively. We claim that
V=V_{®g-,(V-,) is an invariant linear subspace for g. The invariance for
g, is immediate from g,(V.{)<V_, and [g,, g-;]<qg_;. The invariance for
q_ follows from the relation g (g_; (V_,) = V_,. Since g=sl(V) acts irreduci-
bly on V we conclude that dim(g_,)=n-1. Analogous to the previous cases
we get g=sl(V) if dim(g.;)=n and g=so(V) if dim(g_,)=n—1.

We conclude this section with the following theorem.

Theorem 6.5. Let H=H(a; b) be an infinite primitive hypergeometric group with
parameters a, ..., a,; by, ..., b,, which is not a scalar shift of a finite group.
Let H(a; b) be its Zariski closure. Then we have two possibilities,

I) There exists de@C* such that {day,...,da,}={(day)"",...,(da,)" "} and
{dby, ..., db,} =1(db)", ...,(db)"'}. If c=+1 then H(da;db)=Sp(n, C). If
c¢=—1then H(da,db)=0n, ).

II) The remaining cases. Then SL(n, C)< H(a; b).

Remark. For a classification of hypergeometric groups which are scalar shifts
of finite groups we refer to Theorem 7.1

Proof. From Theorem 5.14 it follows that H, (a; b) is infinite and primitive. By
Proposition 6.3 and the infinity of H, it follows that H® and hence H> nSL(n, C)
is irreducible on €. Application of Proposition 6.4 with G=H? ~n SL(n, C) and
r=h, shows that either SL(n, €)c H? or H®nSL(n, C)=Sp(n,C), c=+1 or
H?ASL(n,€)=50(n, C), c= —1.

Suppose we are in case I). By Proposition 6.1 we have cither H(da;db)c
Sp(n, ©) (if c=+1) or H(da;db)c O(n, €) (if c= —1). Together with the above
conclusion of Proposition 6.4 this implies that either H(da;db)=Sp(n, ©) (if
c=+1)orH(da;db)=0(n C) (ifc=—1).

Suppose we are not in case I, hence in case II. Suppose H?ASL(n, C)
=80(n,C), c= —1. The group H, is generated by the conjugates of h, whose
special eigenvalue is — 1. Therefore we have H,=O0(n, €). The normaliser of
O, @) in GL(n, @) is €*-0(n, €). After a suitable scalar shift we can see to
it that H(da;db)=0(n, C), i.e. H(da;db) is self dual and by Proposition 6.1
the parameters satisfy {da;};={(da)™'};, {db;};={(db)™'};. This contradicts the
assumption that we are not in case 1. The same contradiction occurs if we assume
H? A SL(n, €)=Sp(n, €). Thus we conclude SL(n, )< H(a; b) in case I1.

7. Algebraic hypergeometric functions

If the hypergeometric group H(a;b) is not Kummer induced then it follows
from Schur’s lemma that H(a;b) modulo its center is a finite group if and
only if H,(a;b) is a finite irreducible reflection group. The latter groups have
been classified by Shephard and Todd [ST] based on the older classification
by Mitchell [Mi] of the primitive collineation groups generated by homologies.
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We denote a finite irreducible reflection group by the symbol STk, where
1<k <37 indicates the line of the table of Shephard and Todd. The group
ST1 is the symmetric group S, ; and this is the only finite primitive reflection
group in dimension n=9. The group ST2 is the finite imprimitive group
G(m, p, n). The group ST3 is the cyclic group of order m being a one-dimensional
reflection group. There are 19 two dimensional finite primitive reflection group
STk with 4<k<22 derived from the tetrahedral (4<k<7), the octahedral
(8 £k =15) and the icosahedral group (16 £k <22). In dimension n with 3<n <8
there remain 15 exceptional finite primitive reflection groups with 23 <k <37.
In the next section we have reproduced from the table of Shephard and Todd
the list of finite primitive reflection groups in dimension n=3 together with
some additional information on these groups.

In the following theorem we focus our attention to finite primitive hypergeo-
metric groups in dimension n=3. The algebraic solutions of order n=2 were
already described by H.A. Scharz [Sc]. The case of an imprimitive hypergeomet-
ric group is discussed in Sect. 5.

Theorem 7.1. Let n>3 and let H(a;b)= GL(n, C) be a primitive hypergeometric
group whose parameters are roots of unity and generate the cyclotomic field ®(exp
2mifh). Then H{a;b) is finite if and only if, up to a scalar shift, the parameters
have the form d, ..., d%; b%, ..., bk where (k,h)=1 and the exponents of either
Ay, ...,a,. by, ....b,0orby, ..., b,;ay, ..., a,are listed in Table 8.3.

Proof. Let H=GL(n, €) be a finite primitive hypergeometric group. If its reflec-
tion group is imprimitive, the parameters are given by Theorem 5.14, and listed
in Table 8.3.

Suppose H, is primitive. Then, by Proposition 5.7, we may as well assume
that H=H,. Since H is now a primitive reflection group, it is contained in
the list of Shephard and Todd, reproduced in Table 8.1. To determine the eigen-
values of h,, and hy' we proceed as follows. Suppose H equals, say, ST32.
In Table 8.1 we see that this group can be defined over Q(w). So the characteristic
polynomials of k., hy ! are in Q(w) [X] and have degree 4. Moreover, its zeros
are roots of unity. There exist finitely many such polynomials and they can
be obtained by multiplication of @ (w)-irreducible cyclotomic polynomials. In
Table 8.2 we have listed the exponents of the roots of the irreducible polynomials
for the various fields.

So we have a finite number of possibilities for the eigenvalues of h, and
hy ! and by using Theorem 4.8 we can decide which combinations yield a finite
group. Using Theorems 5.3 and 5.8 we can weed out the cases when H is imprimi-
tive and the remaining cases are listed in Table 8.3. This table is made such
that if the exponents of a, ..., a,; by, ..., b, occur, then the exponents of
cdk, . Lak; ok, L, Cbk and OB, ..., (BE; (dY, ..., (dk for (eC¥, (hk)=1 do
not occur in the list.

Note also, that an infinite number of cases is given by ST1. In this casc
however, H~S, , , and the representation is the one described in Proposition 5.9.
The eigenvalues, listed in Table 8.3, follow readily.



Monodromy for the hypergeometric function ,f,_ 349
8. Tables

Table 8.1. The finite primitive complex reflection groups in dimension n= 3

The following list has been taken from A.M. Cohen’s Utrecht University thesis,
1976.

Shephard- Dimension Symbol Order Order of Field of

Todd number n center definition
i nz4 A, (n+ 1)1 i @

23 3 H, 120 2 Q(/5

24 3 Klein 336 2 Q(\/%D

25 3 Hesse 648 3 Q(w)

26 3 Hesse 1296 6 Q(w)

27 3 Valentiner 2160 6 Q([ﬁ, )

28 4 F, 27.32 2 Q

29 4 29.3.5 4 Q)

30 4 H, 20.32.52 2 Q5

31 4 210.32.5 4 Q)

£y 4 27.35.5 6 Q(w)

33 5 Burkhardt 27.3%.5 2 Q(w)

34 6 Mitchell 22.37.5.7 6 Qw)

35 6 Eq 27.34.5 1 Q

36 7 E, 210.34.5.7 2 Q

37 8 Eq 214.35.52.7 2 Q

Table 8.2. [rreducible cyclotomic polynomials

The construction of all P(x)e@Q[x], irreducible over Q[x] of given degree such
that all roots of P are roots of unity is simple. One determines delN such
that ¢(d)=deg P, where ¢ is Euler’s totient function, and put P(x)= [] (x

(h,d)=1
—exp 2nih/d).

Now, let K be an algebraic number field, G its Galois group over Q. Let
P(x)e K [x] be irreducible over K[x] and suppose its roots are roots of unity.
Denote by P® the polynomial obtained by applying aeG to all coefficients of
P. Then the product of all distinct P? is again an irreducible cyclotomic polyno-
mial over @, and we are back in the former case.

In the following table the notation (1/4, 3/4)+k/6 stands for (1/4+ k/6, 3/4
+k/6).

Degree P K Exponents of the roots of P(x)
‘ Q Q/5), kj2 k=0, 1)
Q1 -7 " , )
Qw), k/6 =0,1,2,3,45
Q. |/3)
Q) k/a (k=0,1,2,3)
2 Q QG -7 1/4,3/4
(1/3, 2/3)+k/2 k=0, 1)
Q(/5) 174, 3/4

(1/3,2/3)+k/2 (k=0,
(1/5, 4/5)+ k/2 (k=0,1)
(2/5,3/5)+k/2 (k=
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() (1/4, 3/4)+k/3 (k=0,1,2)
Q) (173, 2/3) + k/4 (k=0,1,2,3)
(1/8, 5/8)+ /2 k=0, 1)
Q(w, |/3) (1/4, 3/4) +k/3 (k=0,1,2)
(1/5, 4/5) + k/6 (k=0,1,2,3,4,5)
(2/5, 3/5)+ k/6 (k=0,1,2,3,4,5)
3 Q.Qu5), -
Qi)
QY -7 (17, 2/7, 4Ty +k/2 (k=0, 1)
(3/7,5/7, 6/T)+k/2 (k=0, 1)
Qw), (1/9, 4/9, 7/9)+k/18 (k=0,2,3,5)
Qfw, )/'5)
4 Q 1/8, 3/8, 5/8, 7/8
(1/5,2/5, 3/5, 4/5) + k)2 k=0, 1)
1/12, 5/12, 7/12, 11/12
Q) (1/8, 3/8, 5/8, 7/8)+ k/16 (k=1,3)
(1/5,2/5, 3/5, 4/5)+ k/4 (k=0,1,2,3)
(112, 5/12, 7/12, 11/12)+ /8 (k=1,3)
Q) (1/5,2/5, 3/5, 4/5)+ k/6 (k=0,1,2,3,4,9)
(1/8, 3/8, 5/8, 7/8)+ k/3 k=0,1,2)
Q5 (2/15, 7/15, 8/15, 13/15)+k/2 k=0, 1)
(1/15, 4/15, 11/15, 14/15) + k/2 (k=0,1)
1/20, 9/20, 11/20, 19/20
3/20, 7/20, 13/20, 17/20
5 Q. Q(w) -
6 Q (1/9, 2/9, 4/9, 5/9, 7/9, 8/9) + k/2 k=0, 1)
(1/7,2/7,3/7,4/7, 5/7, 6/7) + k/2 k=0, 1)
Q) (117,277, 3/7, 4/7, 5/7, 6/7)+ k/6 k=0,1,2,3,4,5)
1/36, 7/36, 13/36, 19/36, 25/36, 31/36
5/36, 11/36, 17/36, 23/36, 29/36, 35/36
7 Q -
8 Q 1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16

(1/15, 2/15, 4/15, 7/15, 8/15, 11/15, 13/15,

14/15)+k/2 (k=0,1)
1/20, 3/20, 7/20, 9/20, 11/20, 13,20, 17/20, 19/20

1/24, 5/24, 7/24, 11/24, 13/24, 17/24, 19/24, 23/24

Table 8.3, Finite primitive hypergeometric groups

This table essentially contains all parameter sets of finite primitive hypergeomet-
ric groups H (see Theorem 7.1). Those groups for which the reflection subgroup
is imprimitive are given by Theorem 5.14 and are listed as nrs. 11, 41, 42 in
Table 8.3. Of the remaining parameters scts we know that the reflection subgroup
is primitive and by Proposition 5.7 the group H is scalar shift of the primitive
reflection group H,. With the possible exception of nrs. 48, 49 the parameters
listed are such that H=-H,. This can be seen as follows. Let K be the field
generated by the coefficients of the characteristic polynomials of &, hy '. The
parameters listed are such that a scalar shift of H by a root of unity does
not change the field of definition of H into a proper subfield of K. Hence
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Table 8.3. (continued)

the field of definition of H, is also K. Given n and K, we can look up the
possibilities for H, in Table 8.1. With the exception of the choices ST 25/26
and ST 29/31 the choice of H, is unique. Excepting ST 33 and ST 35 we see
that the center of the remaining reflection groups is maximal in the sense that
they contain all possible scalars contained in GL(n, K). So the transition H,— H
does not yield any new scalars and hence H=H,. The exceptions will be treated
one by one.

ST 25/26

These groups correspond to the numbers 9, 10, 11 of Table 8.3. Note that the
determinants of ., hy! are cube roots of unity in all these cases. Hence the
center of H has order 1 or 3. Since ST 26 has a center of order 6, we conclude
H=H,=ST 25.

ST 29/31

These groups correspond to the numbers 20 to 23 of Table 8.3. We remark
that the center of both groups are maximal with respect to K =@Q(). Hence
H=H, in both cases. It is known that ST 29 contains 40 reflections of order
2 and ST 31 contains 60 such reflections. G. Verhagen actually exhibited 60
reflections for the numbers 22, 23 which implies H=ST 31 for these numbers.
For numbers 20, 21 G. Verhagen found that the group can be generated by
4 reflections. This implies that we have ST 29, since ST 31 needs at least S
generating reflections.

ST 33

This group corresponds to the numbers 41 to 44 of Table 8.3. The determinants
of h,, hg' are +1 and since the center of H is defined over Q(w), it has
order 1 or 2. The group ST 33 has center of order 2, and hence H=H,=ST 33

ST 35

This group corresponds to the numbers 45 to 49 of Table 8.3. We either have
H=ST 35 or H={+1} x ST 35. In case the exponents of h,, read 1/9, 2/9, 4/9,
5/9, 7/9, 8/9 we see that h> =1d. Notice, (—h,)’= —1d¢H,, hence —h_ ¢H,.
So we conclude h,eH, and hence H=H,. With respect to the numbers 45,
46 we can follow a similar argument starting from G. Verhagen’s observations
(hy hg*)3?=1d for number 46 and h3 h2 h3 hg' h2 hy' h, hy' W2 hytl=1d
for number 45

No.  Dimension Parameter set Field of Group
definition

b 2 n=lm . Q ST1
n+ln+l n+1ln+l

12 j-1 1 2 nj

P77 nrl—jn+l—j atl—j

with (j, n+1)=1

0
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Table 8.3. (continued)
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