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I .  I n t r o d u c t i o n  

The c lass ica l  h y p e r g e o m e t r i c  f u n c t i o n  is def ined  by  the  series 

F(~, fl, ~; z)= ~ (~)k (fl)~ z ~ 
k = o (7)k k ! 

using the  P o c h h a m m e r  n o t a t i o n  

(1.1) 

1) ri~+k) (~ )k=~(~+ l ) . . . r  = r ~  " 0.2) 

D u r i n g  the  last  c e n t u r y  this  f u n c t i o n  has  been  the  subjec t  o f  an  ex tens ive  s tudy ,  
especial ly  in t he  w o r k  o f  Euler ,  Gauss ,  R i e m a n n ,  S c h w a r z  a n d  Kle in .  F o r  h i s to r i -  

cal b a c k g r o u n d  we refer  to  K le in ' s  lec tures  on the  h y p e r g e o m e t r i c  f u n c t i o n  
r.K1]. 

T h e  h ighe r  h y p e r g e o m e t r i c  f unc t i on  .F ._  1 was  i n t r o d u c e d  by T h o m a e  as 
the series 

z)=f 'L ~ (~l)~-..(~.)k ? ,V,_, (~1 . . . . .  ~.;fl , ,  . . . , /L- ,I  = (/L)~...(fl.-,)~ k !  (1.3) 
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The case n = 2  corresponds to the expression (1.1) IT]. It is the solution of 
a linear differential equation on ]PI (112) of order n with regular singularities 
at the points z =0 ,  1, oo (see (2.5) or [E, Chap. 4]). As observed by Riemann 
the monodromy group plays a crucial role in the study of these differential 
equations and their solutions [R]. For  example the differential Galois group 
which carries all information about algebraic relations between the solutions 
and their derivatives is just the Zariski closure of the monodromy group�9 (see 
[Kap]).  

In this paper we discuss the following problem. 

Problem 1.1. What is the differential Galois group of the function (1.3) for the 
various parameters ~1 . . . . .  ~,, ~1 . . . . .  f t ,-  t ? 

The answer to this problem has a surprisingly simple form 

Solution 1.2. Under a suitable primitivity assumption and up to scalars the differen- 
tial Galois group of the function (1.3) is either one of  the classical groups SL(n, ffJ) 
SO(n, lI2), Sp(n, II;) or a finite primitive reflection group as listed in the table 
of Shephard and Todd [-ST]. Moreover, Theorems 6.5 and 7.1 give an explicit 
algorithm to decide which groups occur for which parameters. 

In particular, Theorem 7.1 classifies the generalised hypergeometric functions 
which are algebraic over 112(z). For  the case n = 2  this was already done by 
H.A. Schwarz [Sc] in 1873, but for the case n > 2  not much was known. The 
solution of this problem was the primary goal of this paper. However, it turned 
out that without too much effort one could also describe the differential Galois 
group of the hypergeometric differential equation in general. This is carried 
out in Sect. 6, Theorem 6.5. 

An important element in the proof of the above results is a theorem of 
Levelt, which gives a simple algebraic characterisation of the monodromy group 
of a hypergeometric differential equation [Le, Thm. 1.1]. The original transcen- 
dental problem 1.1 is now reduced to an algebraic problem which we set out 
to solve in this paper�9 

There remain some unanswered questions as well, the most important  one 
being the determination of hypergeometric equations whose monodromy group 
is discrete or arithmetic. In this respect we like to draw attention to the very 
interesting work of Mostow and Deligne [-Mo] which describes the monodromy 
of certain generalised hypergeometric functions in several variables. 

Finally we like to thank Geert Verhagen for verifying our computations, 
settling some undecided cases and removing a number of errors in previous 
versions of our tables. 

2. The hypergeometric equation 

Fix an integer n > 2. For  P l . . . . .  p, ~ 112(z) consider the differential operator 

d 
P : O " + p x O " - l + . .  + p , _ l O + p , ,  O = z - -  (2.1) 

�9 dz 

on p1 (112). Using the criterion of Fuchs [-I, Chap. 15.3] the following proposition 
is immediate. 
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Proposition 2.1. The differential equation Pu=O has regular singularities in the 
points z = 0 ,  1, oo and is regular elsewhere if and only if for all j =  1 . . . . .  n 

J 

pj(z) = ~ p~R(Z-- 1) -k  (2.2) 
k = O  

for suitable Pjkell~. 

Defin i t ion  2.2. The differential equation P u=O with regular singularities in the 
points z = O, 1, oo is called a hypergeometric equation if and only if 

pjk=O foral l  k>=2 andall j (2.3) 

i.e. the functions pi(z) have simple poles at z = 1. 

If  P u = 0 is a h y p e r g e o m e t r i c  e q u a t i o n  then  D = (1 - - z )  P has  the  fo rm 

D=O"+(Plo-p11)  O " - l  + . . .  + ( p . o - p . O - z ( O " + p l o O "  x + . . .  +p,o). (2.4) 

W e  wr i te  

D = D(c~;/3) = D(~ 1 . . . . .  c~, ;//1 . . . . .  //.) 

= ( O - l - ~ ~  1 - -  1 ) . . . ( O - l - ~ ~  n - -  1 ) - -  z ( O " ~ " O ~ l ) . . . ( O - ] - O ~ n )  

for ~1 . . . . .  c~,, //1 . . . . .  f l ,~(E. F r o m  n o w  on  we shal l  d e n o t e  the  h y p e r g e o m e t r i c  
e q u a t i o n  b y  

D(c~ 1 . . . . .  c~,;//1 . . . . .  / / , ) u = 0  or  D(ot;//)u=O. (2.5) 

Its loca l  e x p o n e n t s  read ,  

1 - -  / / 1 ,  . . . , 1 - -  / /n  

O~ 1, . . .  , O~ n 

0 , 1 , 2  . . . . .  n - 2 ,  

a t  z = 0 (2.6) 

a t  z = oo (2.7) 
n n 

~ = Z / / j - - E O ~ i _ I  a t z = l  (2.8) 
1 1 

a r o u n d  the p o i n t s  z = 0 ,  oo a n d  1 respec t ive ly .  If  the  n u m b e r s  //1 . . . .  , / / ,  a re  
d is t inct  m o d  Z ,  n i n d e p e n d e n t  s o l u t i o n s  of  D(c~; fl) u = 0  a re  g iven  by  

z 1 - a ' , F , _  1 (1 + a l - f l i ,  . . . ,  1 + a , - f l i  ; 1 + f i x - f l i ,  .~.., 1 +fl ,-- f l i lz)  

( i =  1, . . . ,  n) (2.9) 

where v d e n o t e s  o m i s s i o n  of  I + f l i - f l i .  T h e  fo l lowing  p r o p o s i t i o n  is t r iv ia l .  

Proposition 2.3. For 6 ~ I1~ we have 

( O + 6 - 1 ) D ( c q  . . . . .  c~.;fl ,  . . . . .  f l ,)=D(C~l . . . . .  c~,, c5; fll . . . .  , f t , ,6 )  (2.10) 

~md 

O ( ~  . . . .  , ~ , ; f l l  . . . . .  f l .)(O+6)=O(et a,. . . ,c~.,6;flx . . . . .  f l . , 6 + l ) .  (2.11) 
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Corollary 2.4. We have 

and 

D(~t, ..-, a ,  ; fll . . . . .  ft,) (0 + a t -  1) 

= ( 0 +  as.-  1) D(a 1 . . . .  , ~r-- 1 . . . . .  an ; fll . . . . .  ft,) 

D ( ~  . . . .  , ~ .  ; f l ,  . . . . .  f l . )  (O + flj)  

(0+ fir- 1) D ( ~ ,  . . . . .  ~ .  ; fl~ . . . . .  fir + 1 . . . . .  f t .) .  

Fix a base point  Zo~H? 1 (~) \{0 ,  1, oo}, e.g. z o =�89 Denote  by G the fundamen- 
tal group ~Zl(IW(C)\{0, 1, ~ } ,  Zo). Clearly G is generated by go, g~,g~ with 
a single relation go  g~ go = 1. 

Let  V(~;fl) denote  the local solution space of the hypergeometr ic  equat ion 
D (~; fl) u = 0 a round  z o. Denote  by 

M(~; fl): G ~ G L ( V ( ~ ;  fl)) (2.14) 

the m o n o d r o m y  representat ion of  D(a; f l ) u = 0 .  The  following proposi t ion  fol- 
lows immediately from Corol lary  2.4 

Proposit ion 2.5. The operators 

(0+~.  F 1 ) :  v ( ~  . . . . .  ~ r - 1  . . . .  , ~ . ; / / ~  . . . . .  //,) 

-~ v ( ~ ,  . . . . .  ~. ;/~, . . . . .  /L) (2.15) 
and 

(0+/~j): V(~, . . . . .  ~ . ; / ~ ,  . . . , /~ j+  1 . . . . .  fin) 

--* V(al . . . .  , 7 .  ; fl, . . . . .  ft,) (2.16) 

are intertwining operators for  the monodromy representations. The operator (2.15) 
has a nontrivial kernel if and only if at=ilk for  some k =  1 . . . .  , n. Similarly (2.16~ 
has a nontrivial kernel if and only if ak= fir for  some k = 1 . . . . .  n. Moreover. 
in case the kernel o f  (2.15) or (2.16) is nontrivial it has dimension one. 
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Corollary 2.6. I f  ~ i - - f l k q ~  f o r  all j ,  k =  1 . . . . .  n then the representat ions  M ( c q  
+kx, ..., ~ , + k , ;  fll + 11,---, f t ,+  1,) and M(~t 1 . . . .  , c t , ; f l l ,  . . . ,  ft,) are equivalent  

for  any  k l . . . . .  k , ,  11, . . . ,  1 , e Z .  

Proposition 2.7. I f  ~j-- f lkE7Z f o r  some j ,  k = 1 . . . .  , n then the monodromy  represen-  
tation (2.14) is reducible.  

Proof. Say ~ , - f l , = m ~ 7 Z .  If m = - l ,  then D(~l . . . . .  at,; fll . . . . .  fl,) 
=D(~I ,  ..., ct,- 1 ; fll . . . .  , f l ,-1) (0+~t,) and 

~ - ' ~  . . . . .  ~ . ; ~ ,  . . . . .  /~.) 

generates a one dimensional  invariant  subspace. 
If m > 0 then consider the sequence 

v ( ~  . . . . .  ~ . - , , / L -  1;/~1 . . . . .  /~,) 

0+~q - 1  0+/7 .  
, v (a~  . . . . .  ~ . - . f l . ; / h  . . . .  , /~,) , . . .  

O + / ~ n + m - 2  
' W ( ~  1 . . . . .  o~,_l, f l , + m - - 1 ; f l l ,  . . . ,  ft,) 

O + f l . + m -  1 
) V(O~l . . . . .  a n  ; i l l  . . . .  , fin)- 

Clearly 0 + f t , - 1  has a nontrivial  kernel. Choose j e  { -  1, 0 . . . .  , m - 1 }  maximal  
such that  0 + f l , + j  has a nontrivial  kernel. Then the image of the map  (0+  ft, 
+ m - 1 ) . . .  ( 0+  ft. + j )  is a codimension one invariant  subspace in V ( ~ ,  .. . ,  ~, ; 
/~ . . . .  ,/~.). 

If m < - 2  then consider the sequence 

O+p~+m 
V(~ l  . . . . .  ~ , - ,  ~ . = / L +  m ; / h ,  . . . , / L )  , V(~l  . . . . .  ~ . - 1 ,  

O+fln+m+ 1 O+fln- 2 
fl . + m + l ; fl l , . . . , f t , )  , . . .  , V ( a l . . . . .  cr 

0 + f i n - 1  
fin-- 1;fll . . . .  ,fin) ) V(~  . . . .  , O ~ n - l , ~ n ' ~ l  . . . . .  ~n)" 

Clearly 0 + ft ,--  1 has a nontrivial  kernel. Choose  j~  {m, m + 1 . . . . .  - 1 } minimal 
such that  O + f l . + j  has a nontrivial  kernel. Then the kernel of  the map  ( 0 + f t ,  
+ j ) . . . ( O + f l . + m )  is a one dimensional  invariant subspace in V(~I . . . .  , ~ , ;  
till . . . .  , ft,). Fo r  the following proposi t ion see also [Po] .  

Proposition 2.8 (Pochhammer) .  I f  7 q ~ l  in the notat ion o f  (2.8) then the hypergeo-  
metric equat ion  D(ct, fl) u = 0 has n -  1 analy t ic  solut ions near z = 1 o f  the f o r m  

u ~ ( z ) = ( z - 1 ) J - l + O ( ( z - 1 ) " - l ) ,  z ~ l  (2.17) 

:br j =- 1 . . . . .  n -  1 corresponding to the exponen t s  0, 1 . . . . .  n -  2. 
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Proof  If  ~ , - -n+  2 r  then the equa t ion  D(ct; fl)u = 0  has an analytic solution 
near  z = 1 of  the fo rm 

u(~;fi)(z)=(z-1)"-2+O((z-1)"-'), z ~ i  

Hence the desired solut ion U._l(Z) can be obtained.  The solut ion uj(z) can be 
ob ta ined  by  a downward  induct ion on j, the ca se j  = n -  1 being known.  Suppose 
the solut ions u j+ t(z) . . . .  , u ,_ ~(z) have  been obtained.  Using Corol la ry  2.4 it fol- 
lows that  u~(z) can be ob ta ined  as a linear combina t ion  of  uj+ 1 (z) . . . . .  u,_ t (z) 
and the solut ion 

(0  + f i , ) . . . ( 0  + f i , +  n - -  2 - - j )  u(~a . . . . .  ~. ; i l l  . . . .  , f in-1,  fin + n -  i - - j )  (Z). 

Observe  tha t  this solut ion is well defined since 

n n 

~ f i ~ + ( n - l - j ) - ~ o ~ j - l - n + 2 = 7 - j + l C N  for j = l  . . . . .  n - 1 .  
1 1 

Definition 2.9. Let  V be a f ini te  dimensional complex vector space. A linear map 
g e GL(V)  is called a re f lec t ion / f  g - - I d  has rank one. The determinant of  a reflec- 
tion is called the special eigenvalue o f  g. 

Remark.  The reflections defined here are often called complex  reflections or 
quasi-reflections to dist inguish them from the s tandard  ones of order  2. 

Proposition 2.10. I f  ( ~ j - - f i k ~ .  for  all k, j =  1 . . . . .  n, then the monodromy matrix 
M(~t; fl) (gO around z =  1 is a reflection with special eigenvalue c =exp(2~ i7 ) .  

Proof. By Coro l la ry  2.6 we can shift the pa ramete r s  ct 1 . . . .  , ct,, ill, . . . ,  fi, by 
integers such that  the condi t ion 761N is satisfied. By Propos i t ion  2.8 we conclude 
that  the r ank  of the matr ix  M(ct; fl) ( g 0 - I d  is at mos t  one. If M ( e ;  fi) ( g 0 = I d  
then M(ct; fl) (g~) -- M(c~; fi) (go 1) and  the condi t ion  ~j--flk~7Z for all j, k = 1 . . . . .  n 
becomes  violated. 

3. The hypergeometric group 

Definition 3.1. Suppose a 1 . . . .  , a,, bl . . . . .  b,~t12* with aj.l=bk for  all j ,  k =  1 . . . . .  n. 
A hypergeometric group with numerator parameters at,  . . . ,  a, and denominator 
parameters bl . . . . .  b, is a subgroup o f  GL(n, rE) generated by elements 

ho, hi,  h ~ e G L ( n ,  IF.) (3.1) 

such that 

hoo hi h o = I d  (3.2) 
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and 

det ( t -  h~) = f i  ( t -  at) (3.3) 
j = l  

det ( t -  h o 1) = f i  ( t -  b j) (3.4) 
j = l  

and hi is a reflection in the sense of  Definition 2.9. 

Proposition 3.2. Suppose al . . . . .  a , ,  b l . . . .  , b , ~ E *  with aj +-bk for  aU j, k = 1 . . . . .  n. 
Let ~1 . . . .  , an, //1, . . . , / / . ~  be such that a j = e x p  2n i~ j  and b j = e x p  2ni / / j  for  
j =  1 . . . .  , n. Then the monodromy group of  the hypergeometric equation 

D(~I . . . . .  ~ ,  ; / /1,  . - . , / / . )  u = 0  

is a hypergeometric group with parameters al, . . . ,  a,,  bl, . . . ,  b,. 

(3.5) 

Proof Denote  by 

H ( a ; b ) = H ( a l  . . . . .  a , ; b l  . . . . .  b , ) =  M(e l  . . . . .  an;//1 . . . . .  //,)(G) (3.6) 

the m o n o d r o m y  group  of (3.5). Observe  tha t  by Corol la ry  2.6 this g roup  depends  
only on the numbers  al  . . . . .  an, bl . . . . .  b. and not  on the choice of their loga- 
rithms ~l, -.-, ~n,/11 . . . . .  //n. Also write 

ho = M (~; fl) (g 0), h 1 = M (~; fl) (g 1), h 0o = M (~; fl) (g ~ ) (3.7) 

for the cor responding  m o n o d r o m y  matr ices  a round  z = 0 ,  1, oo. Using formu-  
las (2.6) and (2.7) and Propos i t ion  2.10 it follows that  H(a; b) is a hypergeomet r ic  
group with n u m e r a t o r  pa ramete r s  al ,  . . . , a ,  and  d e n o m i n a t o r  pa ramete r s  
bl . . . .  , b,.  

Proposition 3.3. Any  hypergeometric group H generated by ho, hi, hoo as in Defini- 
tion 3.1 is an irreducible subgroup o f  GL(n, ~).  

Proof If  V 1 c C n is an H- invar i an t  l inear subspace and Vz :=~" /V  1, then we 
get induced groups  H1 c GL(Va) and H2 c GL(V2). Since hi is a reflection, either 
hi restricted to V 1 or hi restricted to V 2 is the identity. Hence  if both  1/1 + 0  
and V 2 + 0 we get a contradic t ion  with the a s sumpt ion  a t 4: bk for all j, k = 1, . . . ,  n. 

The  following theorem was obta ined  by Levelt  in his thesis [Le, T h m  1.1]. 

Theorem 3.5 (Levelt). Suppose al, . . . ,  a., bl . . . . .  b , ~ C *  with ajOebk for  all j, 
Ir = 1 . . . .  , n. Let  A~ . . . . .  A . ,  B1 . . . . .  B n e ~  be defined by 

fi(t--aj)=t"+Altn-l+...+A,, f i ( t - b j ) = t n + B l t n - ~ + . . . + B n ( 3 . 8 )  
j = l  j = l  
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and let A, BEGL(n ,  rE) be given by 

(! (o o 
0 0 0 - - A ,  0 0 ... 0 

0 ... 0 - - A  n_ 0 ... 0 - B n _  1 

A =  1 ... 0 - -An_2 ,,  B =  1 ... 0 - - B , _  . 

�9 -" ~ /  ... 

0 ... 1 - A t  0 ... 1 - - B l  / 

(3.9) 

Then the matrices ho~ =A,  h o = B -  i, hi  = A -  I B generate a hypergeometric group 
with parameters al,  . . . ,  a, ,  b~ . . . .  , bn. Moreover,  any hypergeometric group with 
the same parameters is conjugated inside GL(n, (E) to this one. 

Proo f  An easy calculation shows that 

d e t ( t - A ) = t " + A ~  t " - ~ +  . . .  + A ,  d e t ( t - - B ) = t n + B ~  t ' - ~ +  ... + B ,  

and hence conditions (3.3) and (3.4) are satisfied. Also h l - I d = A - l B - I d  
= A -  a ( B -  A) has rank one, and the first statement of the theorem follows. 

Conversely, suppose we have a hypergeometric group H c G L ( n , ~ )  with 
parameters  al . . . .  , a , ;  b~ . . . . .  bn and generators ho, ht, h~ as in Definition 3.1. 
Put A = hoo, B = h o ~ and let W be the kernel of B--  A. Since dim W =  n -  1 there 

n--2  

exists a nonzero vector v~ (-] A-~W. We claim that the vectors A ~v ( j=O  . . . .  , 
j = 0  

n - - I )  form a basis of ~n. If this is not the case, then span(Aiv; j~7Z)  is a nonzero 
linear subspace of W invariant under A and B, contradicting Proposition 3.3. 
Moreover,  since A J v ~ W  ( j = 0  . . . . .  n - 2 )  and ( B - - A ) x = 0  for all x ~ W  we see 
that B ~ v = A J v ( j = O ,  . . . ,  n - l ) .  Thus the matrices of A and B with respect to 
the basis AJv( j=O,  . . . ,  n - l )  have the form (3.9) which shows the uniqueness 
of H. 

Corollary 3.6. Suppose a 1 . . . . .  an ; bl  . . . . .  b,Eff~* with aj 4: bk f o r  all j ,  k =  1, . . . ,  n. 
Le t  A1 . . . . .  An, B1 . . . .  , B n e ~  be defined by (3.8). Relative to a suitable basis 
the hypergeometric group H (a; b) c GL(n, (F) with parameters al,  ..., an ; ba, ..., b, 
is defined over the ring ~[A1,  ... ,  An, BI, .. . ,  Bn, A~- x, B~- 1]. 

Remark  3.7. It follows from Proposition 3.2 that the hypergeometric equation 
D(Gt; fl) u = 0  can be viewed as an explicit solution of the Riemann monodromy 
problem [P], Sect. 15] for the special case of the hypergeometric group H(a;  b). 

4. The invariant hermitian form 

It is a well-known fact that the second order hypergeometric equation with 
real parameters  has a m o n o d r o m y  group which is either contained in U(2) 
or U(1, 1)-~ GL(2, ~ )  (see [K1, p 211]). Surprisingly, it turns out that a similar 
statement holds for generalised hypergeometric equations as well. The construc- 
tion of hermitian forms invariant under the m o n o d r o m y  will be the subject 
of this section. 
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Lemma 4.1. Let P, Q~ M,((E) be two n by n matrices having the same characteristic 
equation. Suppose there exists a vector v such that v, Pv, ..., P " - t v  are linearly 
independent (i.e. P is regular). Consider W =  {XeM,((E); X P = Q X } .  Then W is 
a (E-linear vectorspace of dimension at least n. 

Proof Choose xe(E" arbitrarily. Let X be the matrix such that X p i v = Q i x  
for i = 0, 1 . . . .  , n -- 1. Then, clearly, ( X P -  QX) PJ v = X P  j + 1 v -  QXP j v = QJ + i x 
-QJ+l  x=O f o r j < n - 1 .  Since P"+r  1 P " - I +  ... + r , = 0  and Q"+r 1 Q"-I + ... 
+ r , = 0  we also have ( X P - Q X ) P " - l v = X P " v - Q X P " - l v = X P " v - Q " x =  
- X ( r ~  P" ~v+. . .  +r,v)+r~ Q " - ~ x + . . .  +r ,x=O.  Hence X P - Q X = O .  The 
map ~b: (E"-* W which associates X to x is clearly linear and injective, hence 
dim W >  n. 

Remark. Let geM,((E) be an n by n matrix with entries in (E. In this section 
g* will denote the transpose of g and ~ the matrix obtained by complex conjuga- 
tion of all entries of g. 

Lemma 4.2. Suppose g~ M.((E) has the form 

l !  0 ... 0 g, 2 ]  0 0 g , _ ~  

1 0 g,_ withgielUforalliandg,+-O. 

0 l g l /  

Then any solution X ~ M,((E) of g' X ~, = X has the form X = (X i j) where the entries 
Xij depend only on i - j .  

Proof Direct computation.  

Theorem 4.3. Let H (a; b)~ GL(n, (E) denote the hypergeometric group with parame- 
ters {al . . . . .  a,}, {bl . . . . .  b,} as constructed in Theorem 3.5. Suppose the sets {a,}i 
and {bi}i are invariant under the substitution z--* ~- t. Then there exists a nondegen- 
crate hermitian form F (x, y)= ~, Fij xi yj on (E" such that 

F(hx,  hy )=F(x , y )  forall  heH(a;b)  andall x, yOl2". (4.1) 

Proof It suffices to construct a nondegenerate hermitian form F such that (4.1) 
is satisfied by h=ho~, ho 5. Such a form with matrix F =(F~j) is solution of 

and 

h~ Ff[=F for h = h ~ ,  hot  (4.2) 

F = F  t. (4.3) 
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According to Theorem 3.5 the matrices of ho 1, h~ can be given the form required 
by Lemma 4.2. Hence the entries of F = (F~j) depend only on i - j ,  which implies 
that the solutions of (4.2) are contained in a vector space of dimension 2 n - 1 .  
Rewrite (4.2) as Fff=(ht)-aF, h = h~, h o 1. Since the parameter  sets are invariant 
under z ~ f - a  the matrices h-and (h t)- a have the same characteristic equation. 
Application of Lemma 4.1 now shows that the solutions of (4.2) have dimension 
at least n for each choice of h=ho  a, h~. Since these spaces are contained in 
a 2 n - 1  dimensional space, they have non trivial intersection. So (4.2) has a 
nontrivial simultaneous solution, say Fo, for h = h o  1, h~o. Notice that if F is 
a solution of (4.2) then so is F t. In particular, both 

F o + F  ~ and i(Fo-F~) (4.4) 

are solutions of (4.2) which, in addition, satisfy the constraint (4.3). Since F0 
is nontrivial, at least one of (4.4) is nontrivial, and this will be the matrix of 
the required hermitian form. Non-degeneracy of the form F follows from the 
fact that  it is non-trivial and invariant for the group H(a; b), which acts irreduci- 
bly on ~". 

In the following Proposition and Theorem we determine the signature of 
the hermitian form. 

Proposition 4.4. Let H(a; b) be a hypergeometric group as in Theorem 4.3. Let 
c=ba . . . b ,  a ;1 . . . a~  1 and let ~ be a solution of C~2=--1. Consider the rank 
one linear map D = ( ( h l - I d  ). Then there exists a non-zero vector ue(E" such 
that 

D(u)= +_F(x, u) u for all xell2". (4.5) 

Proof Using the orthogonali ty of hi with respect to F we see that the adjoint 
of D with respect to F equals D * = ( - l ( h ~ - l - I d ) .  Note that c is the special 
eigenvalue of h 1, hence (ha - I d )  (ha- -c )=  0, from which one can see in a straight- 
forward manner, that D = D*. 

Since D is a rank one map  there exists nonzero v, w~C" such that 

D ( x ) = F ( x , v ) w  for all x e ~ " .  

Clearly, the adjoint D* of D is given by 

D*(x )=F(x ,w)v  for all x e ~ " .  

Because D* = D  we deduce w = 2 v  for some 2elR*. Now take u =  [2t�89 

Theorem 4.5. Suppose aa . . . .  , a,; bl . . . .  , b,ell;* with aj+ bk for all j, k= 1, ..., n 
and such that lajl=lbjl= l for all j =  l . . . . .  n. Choose c~j, flje[O, 1) such that a t 
= e x p  2niaj  and b j = e x p  2zcifli. By renumbering the indices we may assume that 
0 < a  1 < ... < a , <  1 and O< fll < ... <=ft,< 1. Let mj= # {k; flk < aj} for j =  I, ..., n. 
Then the signature (p, q) of the hermitian form for the hypergeometric group H (a; b) 
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is given by 

IP -q l=  k ( -  1) ~+m' - (4.6) 
j = l  

Proof We use the n o t a t i o n  A = h~ ,  B =  ho ~ in this proof.  F i rs t  suppose  tha t  
a j +  ak for all j +  k. Wri te  the vector  u, defined by (4.5), as u = u~ + . . .  + u, with 
Auj  = aj  uj for j = 1 . . . . .  n. Not ice  that  

(aj c~ a - 1) F(u~, ua) = F ( A u j ,  A u 0 - -  F(uj, Ua) = 0. 

W h e n j 4 k  we have by a s sumpt ion  ajak~= 1 and  hence F(uj, uk)=O for a l l j 4 k ,  
i.e. the basis ul,  . . . ,  u, is o r thogona l .  Let t ing  D be as in L e m m a  4.4 one easily 
verifies that  

f i ( b  k - -  t) ( a  k - -  t )  - - - -  det  ( ( B -  t Id) (A - t Id) 1 1 

k = l  

=det ( Id+(-~  D ( I d - t A  -~) ~). (4.7) 

If a rank  one n by  n ma t r ix  M acts on 117" as M x = w ( x ) u  for some l inear  
form w, one has d e t ( I d + M ) =  1 +w(u). Using  this fact in (4.7) and  L e m m a  4.4 
we find that  

[ l  (b, - t) (ak --  t ) -  1 = 1 + ( -  t F ( ( Id  --  tA - 1)- t u, u) 
k = l  

= I _ + ~ - 1 F  aj(aj-  t) -1 
J 

=1+_(-~ ~ aj F(uj, uj). 
j=~ ai--t 

Taking  residues at t = a j  yields 

F (u~, u j) = + ((b j -  aft a]- ~ [[ (bk-- a j) (ak -- aft-1 
k * j  

" �89 12 b~-�89 b~ -~ we find Wri t ing T- (=la l . . . a ,  

F(u~ ,u j )=- l (b ja j  bj a])[I(b~a ~ 2 - b  k 2aj)'ta k ~aj-~-ak -�89 
k +j  

sin ~(flk -- %) 
= 2 sin 7t (flj-- ~j) [ l  sin rt (cq --  ~j)" 

k * j  

Our asser t ion  fol lows s imply  by de t e rmina t ion  of  the sign of the la t ter  p r o d u c t s  
for each j .  A con t inu i ty  a r g u m e n t  shows that  the s igna ture  of  the hermif ian  
form does  not  change  if we let ~j and  flk vary con t inuous ly  with the res t r ic t ion 
'~jW-flk for all j ,  k =  1 . . . . .  n. Hence  the s ta tement  also follows if aj=a k for some 
k,j. 
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Definition 4.6. Let  a~=exp  27zic~ i and b j = e x p  2rti f l f l j= 1 . . . . .  n) be two sets of 
numbers on the unit circle in ffL Suppose 0 < ~ 1 < ~ 2 <  ... < a , < l ,  O<fll <fl2 
< ... < f t , <  1. We say that the sets al . . . . .  an and bl . . . . .  b, interlace on the unit 
circle if and only if either 

(Zl <fll  <O~2 <fl2 < ... <O~n<fln or flx <cq <fl2 <az  < ... < f l , < ~  .. 

Corol lary 4.7. Let the hypergeometric group H(a; b) have all of  its parameters 
on the unit circle. Then H(a; b) is contained in U(n, I1~) if and only if the parameter 
sets {a, . . . . .  an} {b, . . . . .  b,} interlace on the unit circle. 

Theorem 4.8. Suppose the parameters al, . . . ,  an; bl, ..., b, are roots of  unity, 
and say 

l~(al ,  . . . ,  an, bl . . . .  , b , ) =  (l~(exp 2ni/h) 

for some h e N .  Then the hypergeometric group H(a;  b) is f inite if  and only if 
for each k e n  with (k ,h)= 1 the sets {a~ . . . .  , a~} and {bkl . . . . .  b~} interlace on 
the unit circle. 

Proof. The  Galois  a u t o m o r p h i s m s  of  ll~(exp 2 n i/h) over  Q are given by 

O" k : exp 2 n i/h --* exp 2 rc i k/h 

for (k, h )=  1. It  follows f rom Coro l la ry  3.6 tha t  the hypergeomet r ic  group  can 
be represented by matr ices  whose entries are in the ring of algebraic integers 
7Z[exp2rci/h]. The Galois  a u t o m o r p h i s m  a, induces an i somorph i sm between 
the mat r ix  g roup  H(a; b) and the hypergeomet r ic  g roup  H,  with paramete rs  

k. b ], b k. Accord ing  to T h e o r e m  4.3 each Hk has an invar iant  form a k, . . . , an ,  . . . ,  
F k for (k, h )=  1. 

If  H(a; b) is finite, then the g roup  H k is finite for every k with (k, h )=  1. 
Hence  the hermi t ian  forms F k are all definite and  Corol la ry  4.7 implies that  
the sets {a k . . . . .  a k} and {b k . . . . .  b k} interlace on the unit  circle. 

Conversely,  suppose  tha t  for each k with (k, h )=  1 the sets {a k . . . . .  a k} and 
{b k . . . . .  b k} interlace. Accord ing  to Corol la ry  4.7 each g roup  is uni tary  with 
definite fo rm Fk. The image of H(a; b) under  the d iagonal  embedd ing  

H ak: H(a;b)--* H Hk 
k~(Z/hT)* k~(Z/hZ)* 

is conta ined  (relative to a suitable basis) in GL(mn, Jg) and leaves invariant  
a definite hermi t ian  form on ~m"(m = (p(h) is the order  of (7Z/hTZ)*). Hence  H(a; b) 
is finite. 

Remark 4.9. Let a~ . . . . .  a , ;  fix . . . . .  f l . e ~  with a j = e x p  2h i  aj, b i=exp2rc i f l  j for 
j = 1, . . . ,  n. Us ing  e lementary  n u m b e r  theoret ic  techniques one can show tha t  

D(~I, . . . ,  a .  ; fll . . . . .  ft,) u=-O(mod p) 
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has n solutions in lzp [z] linearly independent over ~=p [z p] for almost all primes 
p if and only if the sets {a ] .... a k} and {bkl . . . . .  b k} interlace on the unit circle 
for every k e n  relatively prime to the common denominator  of ej, ilk(J, k 
= 1 . . . . .  n) (see Katz [Kat]  or Landau [La]). 

Together with Theorem 4.8 this gives us another verification of Grothen- 
dieck's zero p-curvature conjecture for the special case of the hypergeometric 
equation (see [Ho],  [Kat]) .  

5. The imprimitive case 

Definition 5.1. Let V be a complex vector space of dimension n and let G ~ GL(V) 
be a subgroup acting irreducibly on V. The group G is called imprimitive if there 
exists a direct sum decomposition V= VI | V2 0 . . .  @ Va with dim V~ > 1 and d > 2, 
such that G permutes the spaces Vj. I f  such a decomposition does not exist, G 
is called primitive. 

Definition 5.2. Let H(a; b)~ GL(n, tE) be a hypergeometric group with parameters 
a~, ..., a, ; bl . . . . .  b, and generators ho, h~, h~ as in Definition 3.1. The subgroup 
Hr(a;b) of H(a;b) generated by the reflections h k ha h~ k for k e Z  is called 
the reflection subgroup of H(a; b). 

Theorem 5.3. Let H(a; b )c  GL(n, 112) be a hypergeometric group with parameters 
ax . . . .  , a,; bt . . . .  , b,. The reflection subgroup H~(a; b) acts reducibly on (E ~ if 
and only if there exists a root of unity C, C =4= 1 such that 

{(a,  . . . . .  Ca,} ={a l  . . . . .  a,} 

{(b, . . . . .  Cb,} = {bx . . . . .  b,} (5.1) 

Moreover, H (a; b) is imprimitive in this case. 

Proof. Suppose Hr=Hr(a; b) acts reducibly on V=(12". Let W c  V be an irreduc- 
ible invariant subspace for H r. Let h denote either ho~ o r  h o  1. Since Hr is 
normal in H = H ( a ; b )  each of the spaces hkW,, k e Z  is an irreducible invariant 
subspace for Hr. Hence, either h k W = h  1 W o r  hkWc~h 1 W={0} for any k, le2g. 
Let d be the smallest positive integer such that h d W =  W. Since H acts irreducibly 

d - I  

on V and H/H r is cyclic with generator hHr, we have V= @ h J W  with d > 2  
j=O 

and n=dm,  r e = d i m  W. Choose geGL(n, (U) such that it multiplies the vectors 
of hJW with (J, (=exp(2ni /d) ,  ( j = l  . . . . . .  d - 1 ) .  Then, clearly, ( h = g h g  -1 and 
(h has the same eigenvalues as h. Equalities (5.1) follow immediately. 

Notice that H permutes the spaces hJW, and thus H is imprimitive, as 
asserted. 

Suppose conversely, that the parameters  a I . . . . .  a, ; bl . . . .  , b, have the form 
(5.1). According to the uniqueness theorem 3.5 the group generated by Choo, 
(ho 1 must be conjugated in GL(n, 112) to H. Hence there exists geGL(n, 112) such 
that Ch~ = gh~ g -  1, (h  ~ 1 = gho 1 g -  1. This implies r = g r g -  1 for all re  Hr. Hence 
the eigenspaces of g are invariant under Hr and H r is thus reducible. 
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Remark 5.4. Consider the hypergeometric equation 

D(~I . . . . .  % ;/31 . . . . .  /3,) u = 0  (5.2) 

with Cg--flkr for all j, k =  1 . . . . .  n. Then the reflection subgroup of the mono- 
dromy group of (5.2) acts reducibly if and only if there exist d ,m~N,  d > 2  
with n = d m  and 21 . . . .  ,2,n ; /A, "",/~m such that mod Z we have the inequalities 

{ s l , . . . , % } - { 2 t , 2 x + l  d , . . . , 2 1 q d - l d  , . . . , 2 , , , 2 m + l d , . . . , 2 , , + d d l - t ( m o d Z ) ,  

{ d - I  1 ~ /  
{ill  . . . . .  f ln}~  ~/1,~1-~- d . . . . .  ]../1-~- T . . . . .  ~lm, llm-~- 3 . . . .  ,Lira-I- - ( m o d 7 / ) .  

Furthermore, solutions of (5.2) are obtained from the hypergeometric equation 

D(d)q . . . .  , d2m ; d#l  . . . . .  d#m) v = 0  (5.3) 

be the relation v(z)= u(za). Following N.M. Katz we say that the hypergeometric 
group H(a; b) is Kummer induced if its reflection subgroup Hr(a; b) acts reduci- 
bly on ~n. 

Definition 5.5. A scalar shift of the hypergeometric group H (a; b) is a hypergeomet- 
ric group H (da; db)= H (dal, ..., dan ; db~, ..., dbn) for some d ~ * .  

Remark 5.6. If d has the form d=exp(2n i3 )  for some 6~C then a scalar shift 
from H(a; b) to H(da; db) is the effect on the monodromy group obtained by 
multiplying all solutions of the hypergeometric equation by z -~. Observe that 
the associated reflection groups Hr(a; b) and Hr(da; db) are naturally isomorphic. 

Proposition 5.7. Let H be a hypergeometric group in GL(n, ~)  and n > 3. I f  the 
reflection subgroup Hr of H is irreducible and primitive, then Hr is a scalar shift 
o f  H. 

Proof The element h ~ H  normalises Hr. According to a theorem of A.M. 
Cohen [Co] the primitivity of H r implies that h~ is a scalar times an element 
of Hr, which establishes our proposition. 

Note that the original version of Cohen's theorem contains two exceptions. 
However, both of them are not really there. For the first exception this was 
pointed out in [Co, erratum], and for the second it simply follows from W(M3) 
~- { + l} • W(L3).  

The upshot of Proposition 5.7 is, that if H is primitive then H ~nd H 
are essentially the same. The remainder of this section is devoted to characteris- 
ing those hypergeometric groups, whose reflection subgroup is imprimitive. 

Theorem 5.8. Suppose the reflection subgroup of the hypergeometric group 
H(a; b)~GL(n,  (E) is irreducible. Then H is imprimitive if and only if there exist 
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p, qeN,  p+q=n,  (p, q)= 1 and a, b, cEtl2* with an=bPc q such that 

{a,, ..., a,} = {a, a( . . . . . .  a~",-'}, 

{b, . . . . .  b ,}={b,b(p . . . . .  b(~- ' ,c ,C(q . . . . .  c(q 1} 

with ~ = e x p  2zti/r, or the same equalities with the sets {a~}~ and {b~}~ interchanged. 

Proof Letting h denote either h~ or ho ~, we observe that H,  = H~(a; b) is generat- 
ed by the reflections hkh~ h -k for keN.  Let V = ~ " = V ~ O . . . O V a  be a system 
of imprimitivity for H,.  Since H, acts irreducibly on V there exists for each 
i an integer k such that hkhlh-kVi=Vj for some j+-i. Because hkhl h -k is a 
reflection we deduce that dim V/=I for i = 1  . . . . .  n. Hence d=n and V 
= VI(~...  �9 V. is an imprimitive decomposition of V for H into one dimensional 
subspaces. 

Suppose reH,  is a reflection. Then either rV/= V/for i=  1, ..., n or r: V/+--~ Vj 
for some i=t=j and r Vk= Vk for k=l=i, j. In the latter case r is a reflection of 
order two. 

We have a natural homomorphism or: H--+S, defined by gV~=V~tg~t~) for 
geH and i=  1 . . . .  , n. The irreducibility of H implies that tr is surjective. Since 
H is generated by h~ and h we see that S, is generated by or(h0 and c~(h). 
The fact that ~r(h~) is a pair exchange forces tr(h) to be either a full n-cycle 
or a product of disjoint p- and q-cycles with n = p +  q, (p, q)=  1. Without loss 
of generality we may assume cr(h~) to be an n-cycle. Then tr(ho 1) is a product 
of a disjoint p- and q-cycle with p + q = n, (p, q)= 1. The corresponding eigen- 
values of h~ and h o ~ follow readily. 

Conversely, the imprimitive group generated by 

h~" ei-+aei+~(l <i<n), e , ~ a e l ,  

h 1 �9 ei~ei(i+-p,n), ep--.a-PbPe,, e ,~aPb-Pep,  

h o l = h ~ h l  �9 ei--*aei+a(i+p,n), ep~a-P+lbPel ,  e,~aP+Xb-Pep+l 

is a hypergeometric group with the required parameters,  and by the uniqueness 
theorem 3.5 the group H must be conjugate to it. 

Proposition 5.9. Suppose that the parameters of the hypergeometric group H c  
GL(n, I~) have the form 

{ a , ,  . . . ,  a , }  = {~ ,+1 ,  ~,+12 . . . . .  ~ , + , ~ ,  

{b,, ..., b,} = {1,(p, p - t  ~} �9 . . ,  (p , (~  . . . . .  ( ~ -  

with ( r=exp27r i / r  and p, qeN ,  p + q = n + l ,  ( p ,q )= l .  Then H~-S,+I and its 
reJlection subgroup is primitive if n > 3. 

Proof Consider the representation of S.+1 on the space 112" 
~{(xl . . . .  ,X,+l)Ol2"+ll~xi=O} given by or: (xl . . . . .  x ,+l)~(x~-,~l)  . . . . .  
%-'~,+ t~) for every ~reS,+ 1. Choose for h~o the (n+ 1)-cycle (t, 2 . . . . .  n +  1) and 
for ho ~ the product (1.. .p) ( p + l . . . n + l ) .  Then hl=(p, n + l )  is a reflection 
of order 2. Note that h~ and h o ~ have the required eigenvalues. By the unique- 
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ness theorem 3.5 we obtain H~-S,+~. Moreover,  S,+t is generated by pair 
exchanges i.e. elements of the form h~ h~ h~ k, hence H = H,. 

Proposition 5.10. Let K be an algebraic number field and P(x)c K Ix]  be irreducible 
in K[x] .  Suppose P(x) is not a polynomial in x ~ for some r > 2 .  Let ,gt . . . .  , 0 ,  
be the roots of P and suppose gi/,gj is a root of unity for all i, j. Let the roots 
of unity in K be generated by e 2~/M. Write I~M= {exp(2Mk/M)l k = 0 ,  1 . . . . .  M}. 
Then there exists N e N  odd, square-[ree with (N, M ) = I  and a character Z: 
(Z/N2g)* ~ IgM such that the set 01 . . . . .  O, is given by either 

or 

i) c~S x z(k) e 2nik/N, (k, N) = 1 

ii) (1 +_ i) ctS z z(k) e 2~tia/N, (k, N) = 1 

where Sz= ~ Z-l (k)  e 2~ik/N, a ~ K  and n=q0(N) in case i), n=2qg(N) in case 
ii). (k, N) : 1 

Proof. Let L be the field generated by all ratios 0i/0 i. There exists N~]N such 
that L=K(eZ"NM).  Put SIn=Or+ ... +0'~ for all m~N.  If s,,~:0, we have 
O("s , , eL  and hence O"~L. Let r be the greatest common divisor of the elements 
in {raisin+0}. If r = l  then 01~L and hence K(e2'~i/M:~)=L=K(O~ . . . . .  0,). If 
r >  2 then P(x) is in fact a polynomial  in x r, contradicting our assumption. 

The Galois group of L/K  is given by elements of the form 

O'h; e2ni/MN __~e2rcih/MN 

where (h, MN )  = 1 and h-= 1 (mod M). 
First we show that we can restrict ourselves to the case when N is odd, 

square-free and (N, M ) =  1. Suppose we have a prime p such that either pZ[M 
or pl(M, N). In both cases we can take h = 1 + N M / p  and study the action of 
ah~Gal(L/K ) on 01 say. Notice that ( I + M N / p ) J - = I + j M N / p ( m o d M N )  Vj~2g. 
Suppose ah :01--* e2'~ik/MNOV Since cr h has order p, and 

we conclude that 

and hence 

ate: 01~exp(2~zik( l  + h +  ... +hP-1)/MN)01 

k(1 + h+ ... + h p- 1 ) - 0 ( m o d  MN) 

If p is odd, then k p - 0 ( m o d  MN)  i.e. exp(2n ik /MN)  is a p-th root of unity 
Hence O~ is stable under o" h and P(x) is in fact a polynomial  in x p, contradicting 
our assumptions. 

If  p = 2 ,  then k(2+MN/2)=--O(modMN). If k is even, then observe 
2 k = 0 (mod MN) and we have a contradiction as above. If k is odd, then necessar 
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ily 4 II M N  and we have 4 k = 0 ( m o d  MN),  i.e. e x p ( 2 = i k / M N ) =  •  N o w  observe 
that if ah: 01 --+ -T-i01, then (Th: 01 / (1  + i)~O~/(1 • 

Thus  we conclude that  neither p2 [ N nor  p](M, N) unless p = 2, 4 II M N  and 
2 II N (note that  always 21M since - 1  oK).  However ,  in the lat ter  case we may  
replace 0~ by 0~/(1 •  for a suitable • sign, note  that  that  the new 6~ has 
degree n/2 and cont inue our  argument .  F rom now on we m a y  assume that  
N is odd, square-free and (N, M ) =  1. 

To  every % ~ G a l ( L / K )  we can associate a t p ( g ) e Z / N Z  such that  %: 0~  
--+exp(2=iq~(g)/N) 0~. Notice  that  tp(hg)=_hq~(g)+q)(h) (mod N) for any %,  
ageGal(L/K).  Choose  h such that  h-~ l ( m o d  M) and h = 2 ( m o d  N). Then  ~o(hg) 
= 2 q~ (g) + q) (h) (rood N), but  also q0 (g h) -~ g q~ (h) + tp (g) (rood N). The equali ty 
q~(hg)= ~0(gh) then yields q o ( g ) = ( g - 1 )  q0(h)(mod N). Hence  r=exp( -2~z i tp (h ) /  
N) 0~ is stable under  all % e G a l ( L / K )  and thus r eK .  We conclude that  31 
= r l / m ( ,  where ~ is an N- th  roo t  of unity which is primitive, since the rat ios 
Oi/O~ generate  L/K.  After conjugat ion  we might  as well take  ( =  e 2=i/N. 

Since (M, N ) =  1 we have Gal (L /K)~- (Z /NZ)* .  The Galois  element tr corre- 
sponding to h~(TZ/N7Z) ~ acts as ~r: e27ri/N-~e 2~ih/N. Moreover ,  a:  r lm~r l /m)~(h)  
where ;(" (2E/NZ)~-~I~a is a character .  N o w  notice that  o-: S x ~ z ( h  ) Sx, where 
S z is the charac te r sum defined in our  Proposi t ion.  So, r lm/Sx  is fixed under  
Gal (L/K). Hence  r 1/M/S z = ~ ~ K, which proves  our  Proposi t ion.  

Lemma 5.12. Let H c GL(4, ~ )  be a ,finite hypergeometric group generated by 
ho~, ho I such that 

i) H is primitive, 
ii) 2 h,~ , 2 h o ~ have entries in ~ for suitable 2 ~I12", 

iii) det h ~ = - det ho ~. 

Then, up to a scalar shift, either {al . . . .  , a4 ; bl . . . . .  b4} or {bl . . . . .  b4 ; a l ,  . . . ,  a4} 
has one of  the following forms 

g, ~:2, 83, 84 ;1, i , - - 1 , - - i ,  ~0), ~O2, ~- 1 09, ~ 1092;1, i , - - 1 , - - i ,  

e, 8 2, e 3, 8'~ ; 1, -- 1, 09, 092 ifo 2, --i09 2, i09, --i09; 1, -- 1, 09, 092 
69, - ~ , ~ o  2, --092;(,(3,  i, - i  09,092, i09, i092; - 1 ,  - i , ( , (  s 

where 8 = exp (2 rt i/5), 09 = exp (2 ~ i/3), ( = exp (~z i/4). 

Proof The characterist ic  po lynomia l  of 2h~ ,  2ho  ~ have degree 4, coefficients 
in tl) and ratios of  their roots  are roots  of unity. Moreove r  by Theo rem 4.8 
these roots  are all distinct. Using Prop.  5.10 we can find all such polynomials ,  
whose roots  we list here 

rl/4(1, i, - 1, - i) 

r,/2(092, _092,09, _09) 
r 1/2 ( _  3)1/4(092, _ 092, i09, - i09) 

r(e, g 2, g 3, ~4) 

r V ~  (~, - 8 2, - 8 2, 8 4) 

r ] ~ ( 1 ,  -- 1,(,  ( - 1 )  

r l / - -  2 ( 1 ,  - 1, ~ - ' ,  --:) 

rb/g(r -r ~ '~0, - U  1092), 

r(1, -- 1,09, 092), 

r(i, -- i, 09, 092), 

r ]~5( l ,  -- 1, io), - -  i(o2),  

r l f -  3(1, --1,09, _092), 

r 1/~(r 09 ' r ~- ,  09, ~- ,  092 t 

r+(2i)+(1, _ 1, ~-  1, _ ( 1 )  
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n = 4  

n = 4  

n = 4  

n = 4  

where ( = exp n//4. 

where rOl~. Using d e t 2 h ~ = - d e t  2ho  1 we can find, up to a c o m m o n  factor, 
all possible combinat ions  for the eigenvalues of h~ and ho 1. To  each of these 
combinat ions  we can apply Theorem 4.7 to see whether  the group they generate 
is finite. Of the remaining possibilities we delete the ones for which H is reducible 
or imprimitive using Theorems 2.7, 5.3 and 5.8. We are then left with the cases 
of our  assertion. 

Lemma  5.13. Let H c  GL(3, 112) be a finite hypergeometric group generated by 
h~,  ho 1 such that 

i) H is primitive, 
if) 2h~ ,  2h o 1 have entries in 11~(0))for suitable 2~I17", 

iii) det h~ = - det ho 

Then, up to a scalar shift, either {al, a2, a3; b~, b2, b3}={i,  - i ,  1; --0)ki, 
coki, __(ok} or {--0)ki, 0)ki, --(ok; i, --i, 1} for k =  1 or 2. 

Proof  We proceed in exactly the same way as in Lemma  5.12. The polynomials 
we must  consider have degree 3 and coefficients in tI~(0)). Their  zeros read 

r(1, -002,0)) r(i, --i, 0)k)(k=O, 1,2), 

r(1,  --0)2,  --  1) rl/3 (1, ~ ,  0)2), 

r(1, - -  0.) 2 , O) 2 ) 

where r OI~(0)). 

Theorem 5.14. Let n > 3 and let H c GL(n, 117.) be a primitive hypergeometric group 
with reflection subgroup Hr. Then H,  is imprimitive if and only if, up to a scalar 
shift, either {al . . . .  , a, ; bl, ... , b,} or {b 1 . . . . .  b n ; a I . . . . .  an} has one of  the follow- 
ing forms, 

n = 3  { i , - - i ,  1;0)ki,--0)ki,  _0)k} (k=  1, 2), 

{i0) 2, - - i 0 )  2, i0), --i0); 1, -- 1, 0 ) ,  ( 0 2 } ,  

{((0, ((02, ( -10) ,  ( - '  (02; 1, i, --1, - i }  

{co, _co, 0)2, _0)2;  (, r i, --i} 

{0), 0)2, i0), i0)2; --1, - - i , ( ,  --(} 

Proof. According to Theorem 5.3 Hr is irreducible. Suppose Hr is imprimitive. 
Just as in the p roof  of Theorem 5.8 there exists a direct sum decomposit ion 
V= V1 O . . .  | V,, dim V/= 1 (i = 1 . . . .  , n) and a natural  surjective homomorph i sm 
a: Hr--+S . given by rVi= V~r),) for r sHr  and i = 1  . . . .  , n. The surjectivity of' 
a implies that  for each i = 2  . . . . .  n there exists a reflection rieHr of order  two 
with ri Vj = Vii. The  image a(ri) of r i under  a is the pair  exchange (1 i )eS , .  Con- 
versely, the h o m o m o r p h i s m  z: S,--+H, defined by z ( l i ) = r i  is a section for a. 
Choose  e , eV l ,  e14=0 and ei=ri(eO for i = 2  . . . . .  n. Clearly, el . . . . .  e, is a basis 
for V. The normal  subgroup H a = ker a of H,  is abelian, since it consists of 
all diagonal  matrices in H~ relative to the basis el, . . . ,  e,. Rephrasing the above 
we have a splitting short  exact  sequence 

1 --+Ha--+H~ ~ S.--+ 1 
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with Ha abelian. The elements dEHd will be denoted by d = diag(dl . . . .  , d,) where 
dl is given by d(ei)=di el(i= 1 . . . . .  n). 

Suppose H d consists only of scalars. Then the one-dimensional space spanned 
by el + ez + ... + e, is invariant under H,, contradicting the irreducibility of Hr. 

Hence there exist non-scalar elements deHd, i.e. d=diag(d l ,  ..., d,) with d~ 
+ d  i for some i,j. Let h be either ho or h~, to be fixed from now on. Suppose 
there exists d e l l  e, d non-scalar, such that h d h - ~ H e .  Let D be the group 
generated by all rdr -1 with r~Hr. Note that if a(r)=~b then rdr -1 
=diag(doll ) . . . . .  do(,))~Hd. Hence D acts with distinct characters on V 1 . . . . .  V,. 
Moreover, D is normalised by h, and this implies that h permutes the one- 
dimensional spaces Vii, contradicting the primitivity of H. 

So we may finally assume that hHe h-~c~ Hn consists only of scalars. Note 
that in this remaining case a(hHe h-1) is a non-trivial abelian normal subgroup 
of S,. This leaves us with two possibilities since n >  3, i.e. n =  3 and a(hH e h-1) 
-~Z/3Z, n = 4  and a(hHah-1)~-2g/2;gx~,/2Z. We also have the natural 
isomorphism hHd h- 1/hHd h- 1 c~ He ~- a(hHd h- 1), and since hHd h-  1 ~ He con- 
sists only of scalars we are left with the following possibilities, 

I) n = 3  and He(modscalars)-~2U32~, 

II) n = 4  and He(mod scalars)-~Z/2Z x~/22~. 

Bearing in mind, that Hr is generated by reflections of order two and that 
H a is normalised by Hr it is straightforward to verify that Ha has one of the 
following forms, 

I) n = 3  and Ha={diag(~ok,(ol,~om)lk+l+m=-O(mod3)}, 

II) n = 4  and Hd={d iag ( ( -1 ) k , ( -1 ) l , ( - -1 )m , ( -1 )P lk+ l+m+p-O(mod2) } .  

We deal with these cases as follows. Note that Hr is finite. Hence there 
exists k e n  such that hkrh-k=r for all r~Hr. So, by Schur's Lemma, h k is 
a scalar, and up to a scalar shift H is finite. Denote by aut the au tomorphism 
aut: r - . h r h  -1 of Hr. Then the entries of h satisfy the set of linear equations 
hr=aut(r)h, VreHr. According to Schur's lemma there is, up to a common 
factor, a unique solution, which may be chosen in the field of definition of 
the elements of Hr. Hence there exists 2~G* such that 2h has entries in Q(~o) 
or Q in cases I or II  respectively. 

In case I we invoke Lemma 5.13 to conclude that up to a scalar shift the 
parameters of H read i, - i, 1 ; - co k i, ~o k i, - 09 k (k = 1, 2), as asserted. Conversely, 
one easily checks that the group generated by 

_1 1 co k h 1 - -  ( D  - k  ~ 0 h~ e;k t _  k 
1 021 - k  (1) k 0 

satisfies all requirements and has the required parameters. 
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In case II) we invoke Lemma 5.12 to conclude that up to a scalar shift /4 
has the following parameters, 

a) e., e.2,~.3, e4; 1,i, - 1 ,  - i ,  

b) /3,/32, ~:3, E4; 1, - -  1, O,~O 2, 

C) ~co, ~Co2, ~- 1 ~, ~- I C02; 1, i, -- 1, -- i, 

d) ico 2, --ico2, ico, - i e ) ;  1, --1, co, co z, 

e) co, o92, i(~o, i c o z ; - 1 , - i , ~ , - - ~ ,  

f) C0, --0),0)2, --(D2; ~,~3, i, --i. 

According to Proposition 5.9 cases a) and b) give rise to H ~- $5 and Hr primitive. 
Cases c), d), e), f) occur in the assertion of our theorem. To show that these 
cases really correspond to a hypergeometric group with the required properties, 
we must show that Hr is imprimitive. 

Suppose Hr is primitive. In cases c), d), e), f) Hr can be defined over Q. 
In case d) this is obvious, in case c), e), f) we apply a scalar shift by the factor 

1~,  l - i ,  i ] /2  respectively and notice that the shifted hypergeometric group 
is defined over @. The only finite primitive reflection group in dimension 4, 
defined over @ is F 4 according to Shephard-Todd (see Table 8.1 in Sect. 8). 
According to Proposition 5.7 F4~-Hr is a scalar shift of H. So we may as well 
assume H = F 4 .  However, it is known that the subgroup of F 4 generated by 
all conjugates of a reflection of F 4 is strictly smaller than F4, contradicting 
Hr= F4 . 

Remark 5.15. Note that the cases I and II discussed in the proof of Theorem 5.14 
are precisely the two imprimitive reflection groups G(3, 3, 3), G(2, 2, 4) in dimen- 
sion n>  3 which have more than one system of imprimitivity [Co]. The hyper- 
geometric groups containing such imprimitive groups as reflection subgroups 
permute the various systems of imprimitivity. 

6. Differential Galois theory 

In this section we determine the differential Galois group of the hypergeometric 
differential equation (3.5) in case the monodromy modulo scalars is infinite. 
For  a very nice introduction into differential Galois theory we refer to [Kap].  

Let V be a complex vector space of dimension n and let G c G L ( V )  be a 
subgroup. We denote by G the closure of G and by G o the connected component 
of the identity of G, both with respect to the Zariski topology. Observe that 
G o is dense in G ~ and hence the operations - and 0 commute. Note that thc 
natural map G / G ~  GIG ~ is an isomorphism of finite groups. The dual group 
G* in GL(V*) is defined by {g*; geG} and the map g__.(g-1), is a natural 
isomorphism of G into G*. 

Proposition 6.1. The dual map g ~ ( g -  1), yields a natural isomorphism 

H(a  1 . . . . .  a , ; b l , . . . , b , )  ~ , H ( a [  1 . . . . .  a f f l ; b l  1 . . . . .  b~l). (6.1) 
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In particular the group H(a;b) is self dual if and only !f {al . . . . .  a,} 
= {a? 1,. . . ,  a2 1} and {bl . . . . .  b,} = {b; 1,...,  b2 1}. The latter condition implies 
that the special eigenvalue c of the reflection h l is given by c= +_ 1. The case 
c =  + 1  occurs only for n even and implies H(a;b)cSp(n,C) .  The case c= --1 
implies that H(a; b) ~ O(n, it.). 

Proof Clearly, the m a p  g--*(g 1). maps  H(a;b) to a hypergeomet r ic  g roup  
with pa ramete r s  a l l  . . . .  , as 1 ; b~ 1 . . . .  , b;- i. This implies the first s tatement.  

Self dual i ty of H(a;b) implies the existence of a non-degenera te  bil inear 
form F on V= if;" which is invar iant  under  H(a; b). This form is either symmetr ic  
or ant i -symmetr ic .  If c = - 1  then F must  be symmetric ,  hence H (a; b)~ O(n, ~). 
If c =  + 1 ,  then F must  be ant i -symmetr ic ,  hence H(a;b)=Sp(n ,~)  in which 
case we au tomat ica l ly  have n even. 

Remark 6.2. The above  Propos i t ion  is the differential Galois  formula t ion  of 
the quadra t ic  relat ions of Darl ing-Bai ley for hypergeometr ic  functions [Ba].  

Proposition 6.3. I f  Hr=Hr(a;b ) is a primitive reflection group then either H ~ 
consists of the identity element only or H ~ acts irreducibly on ~". 

Proof Assume that  H ~ acts reducibly on 112". Let  W ~ "  be an irreducible 
invariant  subspace for H ~ Since Hr acts irreducibly on ~ "  there exists a reflection 
re Hr with r W 4= W. Since H ~ is no rma l  in Hr the intersection r W ~  W is invar iant  
under H ~ we conclude that  rWc~ W = 0 .  But r is a reflection, hence dim W =  1. 
Now either H ~ consists of scalars only, or  the decompos i t ion  of I12 n into isotypical  
components  for H ~ gives a system of imprimit ivi ty  for Hr.  The lat ter  possibili ty 
is excluded by the assumpt ion  that  H~ is primitive. Hence  H ~ is conta ined  
in the scalars 112. This fact and  the fact that  HffH ~ is finite implies tha t  the 
special eigenvalue c of  hi is a primitive d-th root  of  unity for some d e N ,  d > 2 .  
Hence the image of the m a p  det: H ~ C *  consists of  all d-th roots  of  unity. 
In par t icular  this shows that  the scalars in H~ consist  of  (nd)-th roots  of  unity. 

0-(1 Thus we conclude that  H ~ is finite and, by connectedness  of  H ~ we see Hr - }. 

The g roup  H ~ consists of  the identity element if and only if Hr is a finite 
reflection group. We discuss this case in the next section. The  following propos i -  
tion enables one to unders tand  the differential Galois  theory in the case that  
/4 o acts i rreducibly on 112". 

Proposition 6.4. Suppose G ~ SL(V) is a connected algebraic group acting irreduci- 
bly on V. Let reGL(V) be a reflection with special eigenvalue cel~* which norma- 
lizes G. Then we have the following three possibilities, 

I) I f  c+ +_l then SL(V)=G, 
II) / f c = + l  then SL(V)=G or S p ( V ) = G ,  

III)  I f  c = - I  then SL(V)=G or SO(V)=G 

Proof Clearly the Lie a lgebra  g of  G is semisimple and acts irreducibly on 
V. Denote  by Ad(r)  the a u t o m o r p h i s m  of g induced from conjugat ion  by r. 
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I. Suppose c + + 1. If ga denotes the eigenspace of Ad(r) with eigenvalue 2 then 
we have a direct sum decomposition 

with relations 

g = g l | 1 7 4  , 

[m,m]=m, [g,,m-,,]=gr [g~,m-,]=g,, 
Ira, m] = o, I ra - , ,  m - , ]  = o. 

Also write V= V 1 0  E where Va is the eigenspace of r with eigenvalue )~. Using 
the formula 

r(Xv) = Ad(r) (X) (rv) Xeg,  ve V 

we get the relations 

re(v,) =v, ,  g,(v~)=E, 
gr c E, m(E)=o, 
m ,(v,)=o, g~ ,(E)=v, .  

Using these formulas it is easy to see that W =  V~Ogc-,(Vc) is an invariant linear 
subspace for g. The conclusion is that dim g ~ _ , = n - 1 .  The same argument 
applied to the dual representation shows that dim gc= n - 1 .  We claim that in 
fact g = sl (V). Indeed, let el be an eigenvector of r with eigenvalue c, and e 2 . . . . .  e, 
a basis of the eigenspace of r with eigenvalue 1. With respect to this basis 
we identify gl(V)~_gl(n,C). Denote by Ei j~gl (n ,C)  the matrix with 1 on the 
place (i,j) and 0 elsewhere. As shown above we have ELi,  Ej, i eg  fo r j  = 2  . . . .  , n. 
Hence also [EI,~, E~, 1] = El, 1 -- E~,j~g fo r j  = 2 . . . .  , n. In other words g contains 
the full subalgebra of diagonal matrices of trace 0. A semisimple Lie subalgebra 
of sl(n, C) of rank ( n - 1 )  is equal to sl(n, C), and the above claim follows. 

II. Now suppose c =  + 1. Since r is a unipotent element we have in fact 
r6G, and l o g ( r ) = ( r - I d ) e g .  By the Jacobson-Morozov theorem the nilpotent 
element ( r -  Id) is contained in a subalgebra s c g with ~ -~ sl(2, C). Since dim (Ker- 
( r -  Id)) = n -  1 we deduce by sl (2)-representation theory that  C" ~- C2 • C"-  2 as 
an s-module. Here C 2 is the standard representation of % and C "-2 are ( n - 2 )  
copies of the trivial representation of ~. Suppose V is the irreducible g-module 
with highest weight 2 (relative to the usual data, cf. [Hu]).  Then there exists 
a dominant  root ~ for g, such that (2, ~ v ) =  1, (w 0 2, ~ v ) = _  1 and (/~, ~ v ) = 0  
for all weights # with Wo 2 < p < 2 .  (Here wo is the longest element in the Weyl 
group, and < is the usual ordering on the weight lattice.) In particular, 2 is 
a minuscule weight (see [Bou, Chap. VI, w Ex. 15]), and a case by case check 
gives g = sl(V) or sp(V). 

III. Finally suppose that c = - 1. As for the case c 4 = _+ 1 we get 

and 

g = g l @ g - 1  

V = E @ V - 1  
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for the eigenspace decomposi t ion  of  Ad(r) and r respectively. We claim that 
V= V_ ~q)g_ I(V-1) is an invariant  linear subspace for g. The invariance for 
gl is immediate  from g l ( V _ 0 c V _  1 and [gl ,  g - 1 ] c g - 1  �9 The invariance for 
g - t  follows f rom the relation g_ l ( g - l ( V - 1 ) ) ~  V_ ~. Since g c s l (V)  acts irreduci- 
bly on V we conclude that d im(g_ 0 > n - 1 .  Analogous  to the previous cases 
we get g = sl(V) if dim (g _ 1) > n and g = s 0 (V) if dim (g _ 1) = n - 1. 

We conclude this section with the following theorem. 

Theorem 6.5. Let H =  H(a; b) be an infinite primitive hypergeometric group with 
parameters al . . . . .  a , ;  b 1 . . . . .  bn, which is not a scalar shift of a finite group. 
Let/4(a; b) be its Zariski closure. Then we have two possibilities, 

I) There exists de(E* such that {dam . . . . .  da,} = { ( d a 0 - '  . . . . .  ( d a , ) - ' }  and 
{db l , . . . , db , }={ (dbO -1 . . . . .  (db, ) - l} .  / f  c = + l  then I4(da;db)=Sp(n,(E).  I f  
c= - 1 then I4 (da, db)=O(n,  (E). 

II) The remaining cases. Then SL(n, (E)c/-I(a;  b). 

Remark. For  a classification of  hypergeometr ic  groups  which are scalar shifts 
of finite groups we refer to Theorem 7.1 

Proof F r o m  Theorem 5.14 it follows that  H,(a; b) is infinite and primitive. By 
Proposi t ion 6.3 and the infinity of H,  it follows that n o and hence/~o c~ SL(n, 112) 
is irreducible on (E". Appl ica t ion of Proposi t ion  6.4 with G = n o c~ SL(n, (E) and 
r=h 1 shows that  either SL(n, (E)c tq ~ or lq~ ~SL(n,  (E)=Sp(n, (E), c= + 1  or 
~o ~ SL(n, (E)= SO(n, (E), c = -- 1. 

Suppose we are in case I). By Proposi t ion  6.1 we have either H ( d a ; d b ) c  
Sp(n, 1I;) (if c =  + 1) or  H(da; db)cO(n ,  (E) (if c =  - 1). Together  with the above 
conclusion of  Proposi t ion 6.4 this implies that  either H(da;db)=Sp(n, (E)  (if 
c = + 1) or  H(da; db)= O(n, (E) (if c = - 1). 

Suppose we are no t  in case I, hence in case II. Suppose FI~ 
= SO(n, (E), c =  - 1 .  The  g roup  H, is generated by the conjugates of h I whose 
special eigenvalue is - 1 .  Therefore we have zq,= O(n, (E). The normaliser  of 
O(n,(E) in GL(n,(E) is (E*.O(n,(E). After a suitable scalar shift we can see to 
it that  tq(da; db)=O(n,  (E), i.e. H(da; db) is self dual  and by Propos i t ion  6.1 
the parameters  satisfy {dai} i = {(dal)- 1 }i, {dbi}~ = {(db~)- 1}i. This contradicts  the 
assumption that  we are not in case I. The  same contradict ion occurs if we assume 
~o c~ SL(n, 112)= Sp (n, II;). Thus we conclude SL(n, (E)~ tq (a;b) in case I I. 

7. Algebraic hypergeometric functions 

If the hypergeometr ic  group H(a;b) is not  K u m m e r  induced then it follows 
from Schur 's  lemma that  H(a;b) modulo  its center is a finite group if and 
only if Hr(a; b) is a finite irreducible reflection group. The latter groups  have 
been classified by Shephard  and T o d d  [ST] based on the older classification 
by Mitchell [Mi]  of the primitive collineation groups  generated by homologies.  



348 F. Beukers and G. Heckman 

We denote a finite irreducible reflection group by the symbol STk, where 
1 < k < 3 7  indicates the line of the table of Shephard and Todd. The group 
ST1 is the symmetric group S,+ 1 and this is the only finite primitive reflection 
group in dimension n>9 .  The group ST2 is the finite imprimitive group 
G(m, p, n). The group ST3 is the cyclic group of order m being a one-dimensional 
reflection group. There are 19 two dimensional finite primitive reflection group 
STk with 4 < k < 2 2  derived from the tetrahedral ( 4 < k < 7 ) ,  the octahedral 
( 8 < k <  15) and the icosahedral group (16_< k<22).  In dimension n with 3<n_<8 
there remain 15 exceptional finite primitive reflection groups with 23 < k < 3 7 .  
In the next section we have reproduced from the table of Shephard and Todd 
the list of finite primitive reflection groups in dimension n > 3  together with 
some additional information on these groups. 

In the following theorem we focus our attention to finite primitive hypergeo- 
metric groups in dimension n > 3. The algebraic solutions of order n = 2 were 
already described by H.A. Scharz [-Sc]. The case of an imprimitive hypergeomet- 
tic group is discussed in Sect. 5. 

Theorem 7.1. Let n>  3 and let H(a; b )~  G L(n, I12) be a primitive hypergeometric 
group whose parameters are roots of  unity and generate the cyclotomic field Q(exp 
2rci/h). Then H(a; b) is f inite if  and only if, up to a scalar shift, the parameters 
have the form a], . . . ,  a,k', b] . . . . .  bk, where (k, h)= 1 and the exponents of  either 
ax . . . . .  a, ; bl . . . . .  b, or bl . . . .  , b, ; a~ . . . . .  a, are listed in Table 8.3. 

Proof  Let H c GL(n, (E) be a finite primitive hypergeometric group. If its reflec- 
tion group is imprimitive, the parameters  are given by Theorem 5.14, and listed 
in Table 8.3. 

Suppose H,  is primitive. Then, by Proposit ion 5.7, we may as well assume 
that H = H r .  Since H is now a primitive reflection group, it is contained in 
the list of Shephard and Todd, reproduced in Table 8.1. To determine the eigen- 
values of h~ and ho~ we proceed as follows. Suppose H equals, say, ST32. 
In Table 8.1 we see that this group can be defined over Ilk(co). So the characteristic 
polynomials of h~o, ho 1 are in (I)(e)) IX]  and have degree 4. Moreover, its zeros 
are roots of unity. There exist finitely many  such polynomials and they can 
be obtained by multiplication of (l~(co)-irreducible cyclotomic polynomials. In 
Table 8.2 we have listed the exponents of the roots of the irreducible polynomials 
for the various fields. 

So we have a finite number  of possibilities for the eigenvalues of h~ and 
h o ~ and by using Theorem 4.8 we can decide which combinations yield a finite 
group. Using Theorems 5.3 and 5.8 we can weed out the cases when H is imprimi- 
tive and the remaining cases are listed in Table 8.3. This table is made such 
that if the exponents of al, . . . , a , ;  b~ . . . .  , b ,  occur, then the exponents of 
~a~ . . . . .  ~ak.; ~b~ . . . . .  (bk. and ~b~ . . . . .  ~bk.; ~a~ . . . . .  (ak. for ~I12", ( h , k ) = l  do 

not occur in the list. 
Note also, that an infinite number  of cases is given by ST1. In this case 

however, H---S. + 1 and the representation is the one described in Proposit ion 5.9 
The eigenvalues, listed in Table 8.3, follow readily. 
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8. Tables 

Table 8.1. The finite primitive complex reflection groups in dimension n > 3 

The following list has been taken from A.M. Cohen's Utrecht University thesis, 
1976. 

Shephard- Dimension Symbol Order Order of Field of 
Todd number n center definition 

[ n > 4  A. ( n +  I)! 1 0) 
23 3 H3 120 2 ~ (~5)_ 
24 3 Klein 336 2 ~ ( ] / -  7) 
25 3 Hesse 648 3 ~(o~) 
26 3 Hesse 1296 6 ~(oJ) 
27 3 Valentiner 2160 6 ~ (~5 ,  co) 
28 4 /~. 27. 32 2 
29 4 29. 3- 5 4 ~(i) 
30 4 H4 26. 32. 52 2 ~(~/5) 
31 4 21~ 5 4 Q(i) 
32 4 27. 35. 5 6 ~(~o) 
33 5 Burkhardt 27. 34. 5 2 ~(e)) 
34 6 Mitchell 29. 37. 5.7 6 ~(e)) 
35 6 E 6 2~-34.5 1 
36 7 Ev 21~ 2 (~ 
37 8 E8 214-3s,5z-7 2 

Table 8.2. Irreducible cyclotomic polynomials 

The construction of all P(x)6QEx], irreducible over Q [ x ]  of given degree such 
that all roots of P are roots of unity is simple. One determines d ~ N  such 
that 4 ' (d )=degP ,  where 4' is Euler's totient function, and put P (x )=  1-~ (x 

(h, a) = l 

-exp 2~ih/d). 
Now, let K be an algebraic number field, G its Galois group over Q. Let 

P(x)eK Ix] be irreducible over K[x] and suppose its roots are roots of unity. 
Denote by P~ the polynomial obtained by applying t r i g  to all coefficients of 
P. Then the product of all distinct P~ is again an irreducible cyclotomic polyno- 
mial over Q, and we are back in the former case. 

In the following table the notation (1/4, 3/4)+k/6 stands for (1/4+k/6, 3/4 
+ k/6). 

Degree P K Exponents of the roots of P(x) 

I •, ~)(~), k/2 (k = O, l )  

Q(V - 7) 
~(o)), k/6 (k=0, 1, 2, 3, 4, 5) 
Q(~, ~/5) 
~(i) k/4 (k=0, 1, 2, 3) 

2 Q, ~ ( ] f ~ )  1/4, 3/4 
(l/3, 2/3)+k/2 (k=0, I) 

~( ] f5 )  1/4, 3/4 
(1/3, 2/3) + k/2 (k = O, 1) 
(1/5, 4/5)+k/2 (k=0, 1) 
(2/5, 3/5)+k/2 (k=O, 1) 
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Table 8.2. 

7 

8 Q 

(continued) 

Q(/) 

Q(o, ~ )  

QIi) 

Q(o~), 
Q(o~, IfS) 

@(0 

Q(o~) 

Q, Q(o~) 

F. Beukers and G. Heckman 

(1/4, 3/4)+k/3 
(1/3,2/3)+k/4 
(1/8, 5/8)+k/2 
(1/4, 3/4)+k/3 
(1/5, 4/5)+k/6 
(2/5, 3/5)+k/6 

(1/7, 2/7, 4/7)+k/2 
(3/7, 5/7, 6/7)+k/2 
(1/9, 4/9, 7/9)+k/18 

1/8, 3/8, 5/8, 7/8 
(1/5, 2/5, 3/5,4/5)+k/2 
1/12, 5/12, 7/12, 11/12 

(1/8, 3/8, 5/8, 7/8)+k/16 
(1/5, 2/5, 3/5, 4/5)+k/4 
(1/12, 5/12, 7/12, 11/12)+k/8 
(1/5, 2/5, 3/5,4/5)+k/6 
(1/8, 3/8, 5/8, 7/8)+k/3 
(2/15, 7/15, 8/15, 13/15)+k/2 
(1/15,4/15, 11/15, 14/15)+k/2 
1/20,9/20, tl/20, 19/20 
3/20, 7/20, 13/20, 17/20 

(k =0, t, 2) 
(k =0, 1, 2, 3) 
(k=o, i) 
(k-o,  1, 2) 
(k=O, 1,2,3,4,5) 
(k=0, 1, 2, 3, 4, 5) 

(k=O, l) 
(k=O, 1) 
(k =0, 2, 3, 5) 

(k=0, 1) 

(k = 1, 3) 
(k = O, 1, 2, 3) 
(k = 1, 3) 
(k=0, 1, 2, 3, 4, 5) 
(k=O, ~, 2) 
(k-O, 1) 
(k=O, I) 

(I/9, 2/9, 4/9, 5/9, 7/9, 8/9)+k/2 
(1/7, 2/7, 3/7, 4/7, 5/7, 6/7)+k/2 
(1/7, 2/7, 3/7, 4/7, 5/7, 6/7)+k/6 
1/36, 7/36, 13/36, 19/36, 25/36, 31/36 
5/36,11/36,17/36,23/36,29/36,35/36 

1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16 
(1/15, 2/15, 4/15, 7/15, 8/15, 11/15, 13/15, 
14/15) + k/2 
1/20, 3/20, 7/20, 9/20, 11/20, 13/20, 17/20, 19/20 
1/24, 5/24, 7/24, 11/24, 13/24, 17/24, 19/24, 23/24 

(k=0, 1) 
(k=O, 1) 
(k=0, 1, 2, 3, 4, 5) 

tk=o, 1) 

Table 8.3. Finite primitive hypergeometric groups 

This table essentially contains all parameter sets of finite primitive hypergeomet- 
ric groups H (see Theorem 7.1). Those groups for which the reflection subgroup 
is imprimitive are given by Theorem 5.14 and are listed as nrs. 1I, 41, 42 in 
Table 8.3. Of the remaining parameters sets we know that the reflection subgroup 
is primitive and by Proposition 5.7 the group H is scalar shift of the primitive 
reflection group Hr. With the possible exception of nrs. 48, 49 the parameters 
listed are such that H = H  r.  This can be seen as follows. Let K be the field 
generated by the coefficients of the characteristic polynomials of h a, h o ~. The 
parameters listed are such that a scalar shift of H by a root of unity does 
not change the field of definition of H into a proper subfield of K. Hence 
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Table 8.3. (continued) 

the field of definition of H, is also K. Given n and K, we can look up the 
possibilities for H, in Table 8.1. With the exception of the choices ST 25/26 
and ST 29/31 the choice of H, is unique. Excepting ST 33 and ST 35 we see 
that the center of the remaining reflection groups is maximal in the sense that 
they contain all possible scalars contained in GL(n, K). So the transition H,--* H 
does not yield any new scalars and hence/4  = H,. The exceptions will be treated 
one by one. 

ST 25/26 

These groups correspond to the numbers 9, 10, 11 of Table 8.3. Note that the 
determinants of h~, ho I are cube roots of unity in all these cases. Hence the 
center o f /4  has order 1 or 3. Since ST 26 has a center of order 6, we conclude 
H = H , = S T  25. 

ST 29/31 

These groups correspond to the numbers 20 to 23 of Table 8.3. We remark 
that the center of both groups are maximal with respect to K =tl~(i). Hence 
H = H ,  in both cases. It is known that ST 29 contains 40 reflections of order 
2 and ST 31 contains 60 such reflections. G. Verhagen actually exhibited 60 
reflections for the numbers 22, 23 which implies H = ST 31 for these numbers. 
For numbers 20, 21 G. Verhagen found that the group can be generated by 
4 reflections. This implies that we have ST 29, since ST 31 needs at least 5 
generating reflections. 

ST 33 

This group corresponds to the numbers 41 to 44 of Table 8.3. The determinants 
of h~, ho I are +_1 and since the center of H is defined over Q(o~), it has 
order 1 or 2. The group ST 33 has center of order 2, and hence H = H, = ST 33 

ST 35 

This group corresponds to the numbers 45 to 49 of Table 8.3. We either have 
H =  ST 35 or H = { _ 1} x ST 35. In case the exponents of boo read 1/9, 2/9, 4/9, 
5/9, 7/9, 8/9 we see that h ~ = I d .  Notice, ( - h ~ ) 9 = - I d C H , ,  hence -h~r 
So we conclude h~H,  and hence H=H,. With respect to the numbers 45, 
46 we can follow a similar argument starting from G. Verhagen's observations 
(h~ ho4 )a= Id  for number  46 and h 3 h 2 h~ ho 1 h 2, ho 1 h~, ho 1 h 2 h o l = I d  
for number 45 

No. Dimension Parameter set Field of Group 
definition 

1 2 n - I  n 
1 n > _ 4  . . .  I1~ S T  1 

- n + l  n + l  n + l  n + l ;  

0 1 2 .  j - 1  1 2 n - j  
"" n+ l - j  j j j n+l - - j  n+l - - j  

with (j, n +  1)= 1 
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Table 8.3. (continued) 

No. Dimension Parameter set Field of Group 
definition 

3 3 5 13, 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

1 4 .  0 5 5 ,  

1 1 1 2 9 .  
g ".V6 Y 6 ,  

1 2 5 .  

1 4 7 .  

1 7 5 

1 5 7 1 1 .  
T 2  1 ~  T'2 T 2 ,  

1 11 19 29  . 
375 ~O 3 ~  3 7 I ,  

1 9 11 1 9 .  
2 ~  2 ~  T0  2 g ,  

3 7 11 1 9 .  
~70 275 2~  2 ~ ,  

1 7 2 1 1  

1 7 13 rg r~ "pg ~; 
1 1 7 5 .  

~ T ~ ,  

1 5 7 1 1 ,  
T 2  T~2 U~ T ~ ,  

1 7 1 3 1 9 .  

1 1 1 7 2 3  2 9 .  
"3~ 3 ~  T0375" ,  

1 5 7{~�89 
Y"2 ~ t"2 

7 2 1 1 .  

1 5 1 3 1 7 .  

1 2  0 3 3  
1 3  0 g g  

1 2 4  

1 1 5  

1 4  0 5 5  
1 3  0 z g  

13 0 ~  
0 i l  

0 1 3  

0 1 3  

0 1 1  

0 1 1 3  

0 1 1 2  
3 3 3  

0 1 1 4  
5 ~ 5  

0 1 1 9  

0 1 1 5  

o~�89 
0 1 3  

ok�89 
7 1 1 1 9  

1 2 3 4  
5 5 5 5  

o ~  
o ~  
o ~  
o k ~  
o ~  
1 2 3 4  
5 5 5 5  

5 3 1 1  

1 3 5 7  
g ~ g g  

o�89 
OA~ 11 
1 1 3 5  

5 1 1 1 1 7  

~ 5 2 8  

o~�89 

~�89 

o~�88 

~ ( l f l - 5 )  ST 24 

~ ( ] ~ )  ST 23 

~(~o, ~ )  ST 27 

Q(~o) ST 25 

~(o9) imprim. Hr 

~(]f5)  ST 30 

~( i )  ST 29 

~(i) ST 31 

(l~(i) 

Q(o)) ST 32 

imprim- 
itive 
H, 
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T a b l e  8 . 3 .  ( c o n t i n u e d )  

No. Dimension Parameter set Field of Group 
definition 

5 

/ II~((n) ST 33 

~ ST 35 

4t 1 1 7 3 5 .  ~ ,  0 ~  27 ~ g  

42 0�89 34 5 g  

43 ~rgTv~rg5 11117; 0�89 

44 0 ~  

45 1 I 5 7 2~,. 0 ~ 7  F7 3 / 2  r~ ~ ~ ,  g 8  

46 0 ~ � 8 9  34 ~ 5  

47 ~,~57,~,8. 0~-�88189188 

48 0 ~ � 8 9  57 

49 0 � 8 9 1 8 9  3 5  

50  1 1 3 5 3 7 .  1 1 1 1 7  2 3 2 9  
g , f g g , f  g ,  g 3~i W0 2 ~C0 y0 

51 1 1 1 4 ~ 7  

52 5 11 17 23 29 41 . 1 1 5  11117 �9 2 w7 ,~24~2 ,~2 :f2, "fg '~ 1N 18 

53 0 2 1 1 5 5  
g "3 "2 9 9 

54 0 1 1 1 ~ 3  

56 ~ 1 1 5 7 1 I  
T~ g _g T'2 E'2 T2 

57 013157 

58 7 Tgr8~l  5 7 �89 0 ~ r ~ 1 5 ~ 1 4 i  

59 0�89 324  5 3 5  

60 0123456 
3" "7 "7 7 7 ~ 

61 1~ 3154 �89 0 1157211  ~ i~. T 4 ,  1~ 3r T~ ~ j. 

62 0 ~ 3 2 4  

63 8 3q,i 3~o ~ v o l  7 1 1 ~ 1 7 1 9  23 2 9 ,  )q~ ~70 ~ 3q~, 0 1~g Tg i~5 7 � 8 9  
T g P g  Ug 

64 0 1 1 5 1 7 2 { , }  
T2 "J T2 g Y2 ~ 

65 0 } ~  3 1 5 z 7  
g ~ g 3 - g  

66 0 � 8 9 1 8 8  
3 ~ 5 ~ 2 g  

1 3 2 4  67 0 � 8 9  
68 0 + 2 3 1 ~ 5 6 ~  

69 0 ' ~  t:~7~7517 ~ _  

70 0~�88 3 7 
7 g ~ g  

71 210230 ~2~0 ~29~ 11 13 17 ~ ; ,uo ~0 ~2q~ 0 ] ~ +  = 2 "  l~r J 5  1 7 2 ~_ 

72 0 ~ 3 � 8 9  g J g  

73 0+~3�89  

74 O ~ k ~ - ~  
75  1 5 7 11 13 17 19 23 2 r~ r~ r~ ~ r~ ~ r~ ~ ;  o k � 8 8  

76 0 �89 .~ 3 �89 ,~ .~ .~ 

77 0 ~ } ~  8 

II~(e)) ST 34 

I1) ST 36 

Q ST 37 
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