Dear Curt, I could not find a statement in my paper which proves the equality but I hope that I was able to reconstruct the proof.

Let U be a symmetric domain, $\Gamma \subset Aut(U)$ a discrete cocompact torsion-free group, $\Gamma_n \subset \Gamma$ be a decreasing sequence of normal subgroups of finite-index such that $\cap \Gamma_n = \{e\}, X_n := U/\Gamma_n$. We denote by ρ_n the Bergman metric on X_n considered as a metric on $X := U/\Gamma$ and by ρ the Bergman metric on U considered as a metric on X.

Claim $\rho = \lim_{n \to \infty} \rho_n$

Proof. We start with the following result.

Lemma Let $\tilde{\rho} = \limsup \rho_n$. Then $\tilde{\rho} \leq \rho$.

Proof of the Lemma. Fix $u \in U$ and denote by $U_r \subset U$ the ball of radius r around u. Let ρ_r the Bergman metric on U_r . It is well known that $\rho = \lim_r \rho_r$. Since $\cap \Gamma_n = \{e\}$ the restriction of the natural projection $p_n : U \to X_n$ is an imbedding for n >> 0. So for any r > 0we have $\rho_{r|U_r} > \rho_{n|U_r}$ for n > n(r). This proves the Lemma.

Proof of the Claim. After passing to a subsequence we can assume the existence of a limit $\tilde{\rho} = \lim \rho_n$. Since $\tilde{\rho} \leq \rho$ it is sufficient to show that $\int_X v_\rho = \int_X v_{\tilde{\rho}}$. But $\int_X v_{\tilde{\rho}} = dim H^0(X_n, \Omega)/[\Gamma/\Gamma_n]$. Now the equality follows from the PROOF of the Proposition 1 in my paper.

David