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PRISMATIZATION

In §1 I explain the motivation. In §2 I sketch a “refined" version of the stacky approach
to prismatic cohomology. In §3 I explain the details about WS-modules.

1. Introduction

1.1. Goals. I hope that the approach to prismatic cohomology sketched in §2 achieves the
following goals.

(i) The Nygaard filtration on prismatic cohomology becomes automatic.
(ii) The definitions of gauge and F -gauge are easy, see §2.3.2. (As explained to me by

Peter Scholze, F -gauges should be the coefficients in the prismatic theory.)
(iii) The “Hodge to de Rham" and “Hodge to Hodge-Tate" spectral sequences are hopefully

automatic, see §2.6.

1.2. Some notation and terminology. Fix a prime p. All schemes are classical for now.
A scheme S is said to be p-nilpotent if p ∈ H0(S,OS) is nilpotent.

Let W be the ring scheme of p-typical Witt vectors over Z. Let WS := W × S; this is a
ring scheme over S. By a WS-module we mean a commutative affine group scheme over S
equipped with an action of the ring scheme WS.

A g-stack (or simply stack) is an fpqc-stack of groupoids on the category of p-nilpotent
schemes. A c-stack is an fpqc-stack of categories on the category of p-nilpotent schemes.

The fully faithful functor from the 2-category of g-stacks to that of c-stacks has a right
adjoint (removing non-invertible morphisms). One can consider a c-stack as a g-stack with
additional structure; we call it c-structure.

1.3. Recollections on usual prismatization. Let S be a p-nilpotent scheme. The stack
Σ is defined as follows: an object of Σ(S) is a pair (P, ξ), where P is a WS-module locally
isomorphic to WS and ξ : P → WS is a primitive1 WS-morphism. A priori, Σ is a c-stack,
but it is easy to see that it is a g-stack.

In this situation (P, ξ) is automatically a quasi-ideal2 inWS. So given (P, ξ) ∈ Σ(S) we get
a ring stack Cone(ξ) over S. This construction yields a ring stack over Σ, denoted by (A1)�.
Using this ring stack, one defines X� for any p-adic scheme X so that for X = A1 := A1

Zp

one gets the above ring stack and (Spf Zp)� = Σ.

1.4. A drawback of Σ. The stack Σ is supposed to parametrize cohomology theories (in
some sense). E.g., the points p ∈ Σ(Zp) and V (1) ∈ Σ(Zp) give rise to de Rham and Hodge-
Tate cohomology, respectively. But there is also Hodge cohomology, which is related to de
Rham and Hodge-Tate cohomology via spectral sequences. The problem is that Hodge-Tate

1Throughout this text, “primitive" really means “primitive of degree 1". If S is the spectrum of a field k this
means that ξ maps every (or some) generator of the W (k)-module P (k) to an element of W (k) of the form
V u, u ∈W (k)×. For any S, primitivity means that ξ is primitive over every field-valued point of S.
2The definition of quasi-ideal is recalled in the proof of Lemma 3.10.10.
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cohomology does not correspond to a locus in Σ. To fix this, we define in §2.1.1-2.1.2 a
bigger c-stack Σ′.

1.5. The functors X 7→ X�′ and X 7→ X�′′. These functors are defined in §2.1-2.2 using
the strategy of §1.3. However, instead of Σ one uses certain c-stacks Σ′ and Σ′′. The c-
structure ensures that prismatic cohomology is an effective F -gauge. (Roughly, the key idea
is that a Z-grading on a module is non-negative if and only if the corresponding Gm-action
extends to an action of the multiplicative monoid A1.)

1.6. Confession. Before I came up with the definition of Σ′, I wanted to work with the
c-stack Σ′+ from §2.8 (and to think of Σ′+ in terms of §2.8.3(ii)). Accordingly, instead of
X�′ I wanted to work with the c-stack X� ×Σ Σ′+ (which is equipped with a canonical map
to X�′ , see formula (2.16)). This approach was directly inspired by the notion of F -gauge
from [FJ]. The problem with it is that (SpecFp)� ×Σ Σ′+ is not what you want. On the
other hand, (SpecFp)�

′
is what you want (see §2.7.1).
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2. Outline of refined prismatization

2.1. Refined prismatization.

2.1.1. Admissible WS-modules. Let M be a WS-module. Precomposing the action of WS on
M with F n : WS → WS, we get a new WS-module structure on the group scheme underlying
M ; the new WS-module will be denoted by M (n).

We have a faithfully flatWS-module homomorphism F : WS � W
(1)
S . Its kernel is denoted

by W (F )
S . By Lemma 3.1.6, W (F )

S canonically identifies with the PD hull of zero in (Ga)S.
A WS-module M is said to be admissible if for some line bundle L on S there exists an

exact sequence of WS-modules

(2.1) 0→ L ] →M →M ′ → 0,

whereM ′ is locally isomorphic toW (1)
S and L ] := L ⊗W (F )

S (equivalently, L ] is the PD-hull
of the group scheme L along its zero section). By Lemma 3.10.7, such an exact sequence is
unique if it exists; moreover, it is functorial in M .

A WS-module is said to be invertible if it is locally isomorphic to WS. Such modules are
admissible; e.g., if M = WS then M ′ = WS/W

(F )
S = W

(1)
S .

2.1.2. Definition of Σ′. Functoriality implies that ifM is an admissibleWS-module then any
homomorphism ξ : M → WS induces a homomorphism ξ′ : M ′ → W ′

S = W
(1)
S , where M ′ is

as in (2.1). We say that ξ is primitive if ξ′ is primitive3. Note that if M is invertible this is
equivalent to primitivity of ξ in the usual sense.

Now define a c-stack Σ′ as follows: for any p-nilpotent scheme S, let Σ′(S) be the category
of pairs (M, ξ), where M is an admissible WS-module and ξ : M → WS is a primitive
WS-morphism.

One checks4 that Σ′ is algebraic over5 the formal stack Â1/Gm. The morphism Σ′ →
Â1/Gm takes (M, ξ) to ξ̄′, where

ξ̄′ : M ′ ⊗
W

(1)
S

(W
(1)
S /V (W

(2)
S ))→ W

(1)
S /V (W

(2)
S )

is induced by ξ′ : M ′ → W
(1)
S .

Sometimes we will write (M, ξM) instead of (M, ξ) to avoid conflict of notation with other
objects denoted by ξ.

2.1.3. The left fibration Σ′ → (A1/Gm)−. Note that ξ : M → WS induces a morphism
v− : L → OS. Thus we get a morphism of c-stacks

(2.2) v− : Σ′ → (A1/Gm)−,

where (A1/Gm)− is the c-stack whose S-points are invertible OS-modules equipped with a
morphism to OS. The morphism (2.2) is clearly a left fibration in Joyal’s sense (see [Lu1,
§2.1]). In particular, for any scheme S over (A1/Gm)−, the fiber product of Σ′ and S over
(A1/Gm)− is a g-stack.

3Throughout this text, “primitive" means “primitive of degree 1".
4One can use diagram (2.12) or Proposition 3.9.1.
5Given a morphism of c-stacks X → Y , we say that X is algebraic over Y if the c-stack X ×Y S is
algebraic for any morphism S → Y with S being a scheme.
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2.1.4. The functor X 7→ X�′. By Lemma 3.10.10, if (M, ξ) ∈ Σ′(S) then (M, ξ) is a quasi-
ideal in WS, so we get a ring stack Cone(ξ) over S. This construction yields a c-stack over
Σ′ denoted by (A1)�

′
. The morphism (A1)�

′
→ Σ′ is clearly a left fibration equipped with

a ring structure.
Using this ring stack, one defines a functor X 7→ X�′ from the category of p-adic schemes

to the category of left fibrations over Σ′ so that (Spf Zp)�
′
= Σ′.

2.1.5. The open substacks Σ± ⊂ Σ′ and X�
± ⊂ X�′. Let Σ−(S) be the category of pairs

(M, ξ) ∈ Σ′(S) such that the corresponding map v− : L → OS is an isomorphism. In other
words, Σ− is the preimage of the open point Gm/Gm ⊂ (A1/Gm)− with respect to the left
fibration (2.2). The substack Σ− ⊂ Σ′ is clearly open and affine over Σ′. The restriction of
the left fibration (2.2) to Σ− is still a left fibration.

Let Σ+(S) be the category of pairs (M, ξ) ∈ Σ′(S) such that M is invertible. One can
show that the substack Σ+ ⊂ Σ′ is open and affine6 over Σ′. The restriction of the left
fibration (2.2) to Σ+ is not a left fibration.7

It is easy to see that Σ+ ∩ Σ− = ∅.
For any p-adic scheme X, let X�

± ⊂ X�′ be the preimages of the open substacks Σ± ⊂ Σ′.
One has a tautological isomorphism X�

+
∼−→ X� (in particular, Σ+

∼−→ Σ). One also
has a canonical isomorphism X�

−
∼−→ X�; in the case X = Spf Zp this is the isomorphism

Σ−
∼−→ Σ given by (M, ξ) 7→ (M ′, ξ′), where M ′ and ξ′ are as in §2.1.2.

2.1.6. The canonical morphism F ′ : X�′ → X�. Recall that X�
− is the preimage of the open

point Gm/Gm ⊂ (A1/Gm)− with respect to the canonical left fibration X�′ → (A1/Gm)−.
The open point Gm/Gm ⊂ (A1/Gm)− is the final object of (A1/Gm)−, so we get a canonical
morphism

(2.3) F ′ : X�′ → X�
− = X�,

whose restriction to X�
− equals the identity. It is easy to check that the restriction of (2.3)

to X�
+ equals F : X� → X�. Thus F ′ : X�′ → X� is a kind of “interpolation" between

F : X� → X� and id : X� → X�.
Note that in the particular case X = Spf Zp we get a canonical morphism

(2.4) F ′ : Σ′ → Σ− = Σ.

2.2. Very refined prismatization. Define Σ′′ by gluing Σ+ with Σ− (then we get many
new morphisms). For any p-adic scheme X, define X�′′ by gluing X�

+ with X�
− ; thus we get

a functor from the category of p-adic schemes to the category of left fibrations over Σ′′.

2.3. Gauges and F -gauges.

6See Lemma 3.12.2(ii).
7Combining §2.8.3(i) and §2.8.2(i), we get a property of Σ+, which is in some sense opposite to being a left
fibration.
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2.3.1. O-modules on c-stacks. By an O-module on a c-stack Y we mean a compatible col-
lection of contravariant functors Y (S)→ {OS-modules}. This is because the O-modules we
care about come from cohomology (which is a contravariant functor).

2.3.2. Definitions. For a p-scheme X, define an effective gauge (resp. an effective F -gauge)
on X to be an O-module (or a complex of O-modules) on X�′ (resp. on X�′′). Thus an
effective F -gauge is an effective gauge whose restrictions to X�

± are identified with each
other.

To define the general (without effectivity) notions of gauge and F -gauge, replace the c-
stacks X�′ and X�′′ by the corresponding g-stacks. Using [G, Prop. 3.4.9], one can show
that the functors

{effective gauges}→ {gauges}, {effective F -gauges}→ {F -gauges}

are fully faithful.

2.3.3. From gauges to crystals. Recall that a crystal on X is an O-module on X�.
Restricting a gauge on X to X�

± , we get crystals N± on X. By §2.1.6, in the case of an an
effective gauge we also get a canonical morphism ϕ : F ∗N− → N+. In the case of an effective
F -gauge we have N+ = N− = N , so ϕ is a morphism F ∗N → N , and the pair (N,ϕ) is an
F -crystal.

2.3.4. Comparing with Fontaine-Jannsen. If X is the spectrum of a perfect field k of char-
acteristic p, the definitions from §2.3.2 are equivalent to those from [FJ] (the case k = Fp is
explained in §2.7.2, and arbitrary perfect fields are treated similarly).

2.3.5. Smooth Fp-schemes. Did somebody8 define the notion of F -gauge on an arbitrary
smooth Fp-scheme? If yes then one should compare his (or her) definition with the one
from 2.3.2. At least, in the case X = A1

Fp
this should be doable, see §2.7.4.

2.3.6. Nygaard filtration. Given an effective gauge on a p-adic scheme X, one can construct
(see §2.8.7 below) the following refinement of the triple (N+, N−, ϕ) from §2.3.3:

(i) a factorization of ϕ : F ∗N− → N+ as

(2.5) F ∗N− = N0 → N1 → N2 → . . .→ N+,

where Ni’s are O-modules on X� and N+ is the (p-completed) direct limit of the Ni’s;
(ii) morphisms Ni+1 → Ni(∆0) such that the composite maps

Ni → Ni+1 → Ni(∆0), Ni+1 → Ni(∆0)→ Ni+1(∆0)

come from the natural morphism OΣ → OΣ(∆0).
One can think of data (i)-(ii) either as an increasing filtration on N+ or as a decreasing

“Nygaard filtration"

(2.6) F ∗N− = N0 ← N1(−∆0)← N2(−2∆0)← . . .

on F ∗N−.

2.4. The divisor ∆′0 ⊂ Σ′ and the Breuil-Kisin twists.

8Ekedahl? Ogus? Kato?
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2.4.1. The divisor ∆′0 ⊂ Σ′. The morphism v− : Σ′ → (A1/Gm)− can be shown9 to be
flat. Let ∆′0 ⊂ Σ′ be the preimage of {0}/Gm ⊂ (A1/Gm)−; this is an effective Cartier
divisor on Σ′. It is easy to see that the isomorphism Σ+

∼−→ Σ induces an isomorphism
∆′0 ∩ Σ+

∼−→ ∆0, where ∆0 is in [D1, p.4]. This justifies the notation ∆′0. By definition,
Σ− = Σ′ \∆′0, so ∆′0 ∩ Σ− = ∅.

The equality Σ+ ∩Σ− = ∅ means that Σ+ is contained in the formal neighborhood of ∆′0.
Note that Σ+ 6⊂ ∆′0 because Σ+ ∩∆′0 = ∆0 6= Σ+ (or because ∆′0 is a divisor in Σ′, while Σ+

is open in Σ′).

2.4.2. Breuil-Kisin twists. On the g-stack associated to Σ′ we have the line bundle OΣ′(∆
′
0).

We claim that OΣ′(∆
′
0) is an O-module on the c-stack Σ′ itself. Indeed, OΣ′(∆

′
0) is the

pullback of the following O-module on (A1/Gm)−. Recall that an S-point of (A1/Gm)− is
a line bundle L on S equipped with a morphism L → OS. The O-module on (A1/Gm)−
assigns the inverse of L to such an S-point.

Let OΣ{−1} be as in [D2]. The pullback of the line bundle OΣ{−1} via the morphism
Σ′ → Σ− = Σ from §2.1.6 is also an OΣ′-module. Tensoring it by OΣ′(∆

′
0), we get an

OΣ′-module (or equivalently an effective gauge on Spf Zp), which we denote by OΣ′{−1}.
Restricting OΣ′{−1} to Σ+ (resp. Σ−) one gets (F ∗OΣ{−1})(∆0) (resp. OΣ{−1}). So the

two restrictions are canonically isomorphic. Therefore OΣ′{−1} canonically descends to an
OΣ′′-module (or equivalently, an effective F -gauge on Spf Zp), which we denote by OΣ′′{−1}.

For any non-negative n ∈ Z we set OΣ′{−n} := (OΣ′{−1})⊗n, OΣ′′{−n} := (OΣ′′{−1})⊗n.

2.5. More about ∆′0.

2.5.1. Why ∆′0 is important. It seems that ∆′0 is related to the “Hodge to Hodge-Tate"
spectral sequence, see §2.6.3-2.6.4 below.

2.5.2. The structure on ∆′0. It is a c-stack; moreover, one has a left fibration

∆′0 → ({0}/Gm)− ⊂ (A1/Gm)−.

Since ({0}/Gm)− is just the classifying c-stack of the mutiplictaive monoid A1, we can
rephrase this structure as follows: ∆′0 is a g-stack over (Spf Zp)/Gm equipped with an action
of A1/Gm (the latter is a monoidal stack over (Spf Zp)/Gm).

2.5.3. An explicit description of ∆′0. As explained in §2.5.4 below, ∆′0 equipped with the
above structure canonically identifies with the quotient (A1)dR/Gm, where

(A1)dR := Cone(G]
a → Ga) = Cone(W (F ) → W/VW ) = Cone(W

p−→ W ).

Moreover, the isomorphism

(2.7) ∆′0
∼−→ (A1)dR/Gm,

identifies ∆0 with (Gm)dR/Gm = (Spf Zp)/G]
m in the usual way; as far as I understand,

the isomorphism (2.7) is uniquely determined by this property combined with the structure
from §2.5.2.

The restriction of F ′ : Σ′ → Σ to ∆′0 is equal to the composite map ∆′0 → Spf Zp
p−→ Σ.

9See §2.8.2(iii).
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2.5.4. Why ∆′0 = (A1)dR/Gm. If (M, ξ) ∈ ∆′0(S) then ξ : M → WS factors through M ′. By
(3.8), any morphism M ′ → WS factors through V (W

(1)
S ) ⊂ WS. But in the definition of

admissibility (see §2.1.2) we required ξ′ to be primitive. So the morphism M ′ → V (W
(1)
S ) is

an isomorphism. This isomorphism identifies M ′ with W (1)
S . Thus an object (M, ξ) ∈ ∆′0(S)

is the same as a pair consisting of a line bundle L on S and a WS-module extension of W (1)
S

by L ] = L ⊗W (F )
S . The stack of such pairs identifies with (A1)dR/Gm by Proposition 3.9.1.

2.6. The “Hodge to de Rham" and “Hodge to Hodge-Tate" spectral sequences.

2.6.1. The stacks Σ′
dR

and XdR. Recall that Σ′(S) is the category of pairs (M, ξ), where M
is an admissible WS-module and ξ : M → WS is a primitive WS-morphism. Now define a
c-stack Σ′

dR
as follows: Σ′

dR
is the category of pairs (M, ξ) ∈ Σ′(S) equipped with a splitting

M ′ →M , where M ′ is as in (2.1). By definition, we have a canonical morphism

(2.8) Σ′
dR
→ Σ′

It is easy to check that the morphism Σ′
dR
→ (A1/Gm)− is an isomorphism. So the

preimage of Σ− in Σ′
dR

equals Spf Zp, and therefore we get a canonical morphism

(2.9) Spf Zp → Σ− = Σ.

It is easy to check that this is the point p ∈ Σ(Zp). By the way, the map (2.9) is not a
monomorphism, so (2.8) is not a monomorphism.

Recall that for any p-adic scheme X, the base change of X� to Spf Zp corresponding to
p ∈ Σ(Zp) is denoted by XdR; it is related to the de Rham cohomology of X.

Let XdR be the base change of X�′ to Σ′
dR

= (A1/Gm)−. Presumably, it is related to the
degeneration of the Rham cohomology to Hodge cohomology, also known as the “Hodge to
de Rham" spectral sequence. An alternative name for XdR would be XHdR.

Here is a description of the ring stack (A1)dR over Σ′
dR

= (A1/Gm)−. Suppose we are given
a morphism f : S → (A1/Gm)−, i.e., a line bundle L on S and a map L → OS. Then the
f -pullback of (A1)dR is the ring stack Cone(L ] → (Ga)S) over S. Here (Ga)S := Ga×S and
L ] is the PD-hull of the zero section in L .

2.6.2. Remark. Recall that Σ+ is the locus where theWS-moduleM is invertible. Comparing
this with the definition of Σ′

dR
, we see that the preimage of Σ+ in Σ′

dR
is empty.

Recall that Σ− = Σ′ \∆′0. Informally, Σ′
dR

is a “kind of complement" to Σ+ (except that
Σ′

dR
is not a substack of Σ′).

2.6.3. The stacks Σ′Hdg and XHdg. Let Σ′Hdg be the preimage of ∆′0 in Σ′
dR
. In other words,

Σ′Hdg is the preimage of ({0}/Gm)− with respect to the isomorphism Σ′
dR

∼−→ (A1/Gm)−. So
we have a canonical isomorphism

(2.10) Σ′Hdg
∼−→ ({0}/Gm)−.

Let XHdg be the base change of X�′ to Σ′Hdg. Presumably, it is related to Hodge coho-
mology. This agrees with the fact that an O-module on Σ′Hdg is the same as a Z+-graded
O-module on Spf Zp (because ({0}/Gm)− is just the classifying c-stack of the mutiplictaive
monoid A1).
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By definition, we have a canonical map Σ′Hdg → ∆′0. On the other hand, we have canonical
isomorphsims Σ′Hdg

∼−→ ({0}/Gm)− and ∆′0
∼−→ (A1)dR/Gm, see (2.10) and (2.7). In fact,

the map
({0}/Gm)− = Σ′Hdg → ∆′0 = (A1)dR/Gm

comes from 0 ∈ (A1)dR(Zp).

2.6.4. The “Hodge to Hodge-Tate" spectral sequence. Let XHHT be the base change of X�′ to
∆′0 ' (A1)dR/Gm (presumably, it is related to the “Hodge to Hodge-Tate" spectral sequence).
An alternative name for XHHT could be XHT.

2.7. The stacks (SpecFp)�
′
and (A1

Fp
)�
′
.

2.7.1. Description of (SpecFp)�
′
and (SpecFp)�

′′
. A simple argument (see §2.7.3 below)

gives the following description of the c-stack (SpecFp)�
′
: an S-point of (SpecFp)�

′
is a line

bundle L on S equipped with morphisms OS
v+−→ L

v−−→ OS such that v−v+ = p. So the
g-stack corresponding to (SpecFp)�

′
is just (Spf A)/Gm, where A is the p-adic completion

of Zp[v+, v−]/(v+v− − p) and Gm acts so that deg v± = ±1.
The open substack (SpecFp)�± ⊂ (SpecFp)�

′
is the locus v± 6= 0; each of these substacks

is isomorphic to Spf Zp. Gluing together the two copies of Spf Zp, one gets the c-stack
(SpecFp)�

′′
. The closed substack (SpecFp)HT ⊂ (SpecFp)�

′
is the locus v− = 0 (which is

contained in the locus p = 0).

2.7.2. O-modules on (SpecFp)�
′
and (SpecFp)�

′′
. It is clear that a gauge on SpecFp in the

sense of §2.3.2 is a graded10 A-module N , i.e., a gauge (or p-gauge) in the sense of [FJ, §1.1].
One can check that effectivity in the sense of §2.3.2 is equivalent to effectivity in the sense of
[FJ, §1.1] (i.e., the map v− : Nr → Nr−1 being an isomorphism for all r ≤ 0). This justifies
the definition of effective gauge from §2.3.2.

In our case X = SpecFp the module N± from §2.3.3 is the (p-completed) direct limit of
Nn with respect to the maps v± : Nn → Nn±1 (so in the effective case N− = N0). Thus in
the case X = SpecFp an F -gauge in the sense of §2.3.2 is the same as a ϕ-gauge in the sense
of [FJ, §1.4].

2.7.3. Some details. Let us justify the description of (SpecFp)�
′
from §2.7.1.

(SpecFp)�
′
is the equalizer of the two morphisms Σ′ = (Spf Zp)�

′
→ (A1)�

′
corresponding

to 0, p ∈ A1(Zp). So an S-point of (SpecFp)�
′
is an object (M, ξ) ∈ Σ′(S) equipped with

a section σ : S → M such that ξ ◦ σ : S → WS equals p ∈ W (S). Interpret σ as a
WS-morphism f : WS → M . Then f maps W (F )

S = (G]
a)S to Ker(M � M ′) = L ],

so we get a morphism (G]
a)S → L ] or equivalently, a morphism v+ : OS → L . Since

ξ ◦ σ = p, we get v−v+ = p. The map W (1)
S = W ′

S → M ′ induced by f is an isomorphism,
so the extension 0 → L ] → M → M ′ → 0 is the pushforward of the canonical extension
0 → W

(F )
S → WS → W

(1)
S → 0 via the morphism W

(F )
S = (G]

a)S
v+−→ L ]. In other words,

10The word “graded" is understood in the p-complete sense.
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M = Coker(W
(F )
S

(v+,−1)−→ L ]⊕WS), and ξ : M → WS comes from the map L ]⊕WS
(v−,p)−→ WS.

Recall that if L = OS then L ] = W
(F )
S .

The above argument can be rephrased in terms of §2.8 as follows: (SpecFp)�
′
canonically

identifies with the fiber product of Σ′+ and (SpecFp)� = Spf Zp over Σ+ = Σ = (Spf Zp)�.

2.7.4. O-modules on (A1
Fp

)�
′
. We claim that:

(i) in the situation of §2.7.3 one can rewrite Cone(M
ξ−→ WS) as Cone(H

α−→ (Ga)S),
where (H,α) is a flat scheme of quasi-ideals in (Ga)S;

(ii) H and its Cartier dual H∗ can be described explicitly, and the description of H∗ is
very simple (see below);

(iii) the explicit description of H∗ allows one to describe effective gauges on the scheme A1
Fp

(i.e., O-modules on (A1
Fp

)�
′
) as graded C-modules N satisfying certain conditions11, where

C is a concrete noncommutative topological graded algebra over the ring A from §2.7.1; the
graded A-algebra C is described below.

Here is an explanation of (i). The morphism f : WS →M from §2.7.3 gives a faithfully flat
homomorphism from Cone(WS

p−→ WS) to Cone(M
ξ−→ WS). On the other hand, by Propo-

sition 3.4.1, Cone(WS
p−→ WS) = Cone((G]

a)S → (Ga)S), so we get a faithfully flat homomor-
phism from (Ga)S to Cone(WS

p−→ WS). The composite map (Ga)S � Cone(M
ξ−→ WS)

realizes Cone(M
ξ−→ WS) as Cone(H → (Ga)S) for some explicit S-flat quasi-ideal H

in (Ga)S (see §2.7.5 below for more details).
The graded A-algebra C mentioned in (iii) is as follows. First, consider the A-algebra

generated by elements x,D of degree 0 and L of degree −1 with defining relations

[D, x] = 1, v+ · L = Dp, [D,L] = 0, [L, x] = v− ·Dp−1.

(here x is the coordinate on A1). Then complete this algebra with respect to the (2-sided)
ideal generated by p and L.

Here is a description of the formal group H∗ mentioned in (ii), assuming that S = Spf A
and A is as in in §2.7.1: the coordinate ring of H∗ is A[[D,L]]/(Dp−v+L), and the coproduct
∆ in this coordinate ring is given by

∆(D) = D ⊗ 1 + 1⊗D, ∆(L) = L⊗ 1 + 1⊗ L+ v− ·
p−1∑
i=1

(p− 1)!

i!(p− i)!
Li ⊗ Lp−i.

2.7.5. Computing H and H∗. We assume that S = Spf A, so L = OS, L ] = W
(F )
S . In

§2.7.4 we defined a quasi-ideal H in (Ga)S. One shows straightforwardly that H is the
middle cohomology12 of the complex

(2.11) 0→ W
(F )
S

(v+,−V )−→ W
(F )
S ⊕W (F 2)

S

(v−,F )−→ W
(F )
S → 0, W

(F 2)
S := Ker(F 2 : WS → WS),

11The first condition is that N is p-complete and N ⊗ (Z/prZ) is a discrete C-module for every r ∈ N. The
second condition is that the map v− : Nr → Nr−1 is an isomorphism for all r ≤ 0.
12The other cohomology groups are zero.

10



and the canonical homomorphism H → (Ga)S comes from the maps

W
(F )
S ⊕W (F 2)

S � W
(F 2)
S ↪→ WS � WS/V (W

(1)
S ) = (Ga)S .

So H∗ is the middle cohomology of the Cartier dual of (2.11). The latter is very explicit
because the Cartier dual of W (Fn)

S is just the formal completion of WS/V
n(W

(n)
S ) = (Wn)S.

2.8. The stack Σ′+.

2.8.1. What will be constructed. In §2.8.3 we will construct a c-stack Σ′+, and in §2.8.4 we
will construct a diagram

(2.12) Σ+ × (A1/Gm)− ←− Σ′+ −→ Σ̃′ −→ Σ′.

This is a diagram of left fibrations over the c-stack (A1/Gm)−, which has the following
properties:

(a) the composite maps Σ′+ → Σ′
F ′−→ Σ− and Σ′+ → Σ+× (A1/Gm)− → Σ+ ↪→ Σ′

F ′−→ Σ−
are the same (here F ′ is the morphism (2.4)); so one can consider (2.12) as a diagram of
stacks over Σ−;

(b) the morphism Σ̃′ −→ Σ′ is a gerbe banded by G]
m = (W×)(F );

(c) the morphism Σ′+ −→ Σ̃′ is a torsor with respect to a flat group scheme over Σ̃′; the
group scheme is fpqc-locally isomorphic to G]

a × Σ̃′;
(d) the morphism Σ′+ → Σ′ is an isomorphism over the open substack Σ+ ⊂ Σ′;
(e) the morphism Σ′+ → Σ+ is faithfully flat;
(f) the morphism Σ′+ → (A1/Gm)− is faithfully flat;
(g) the morphism Σ′+ → Σ+ × (A1/Gm)− is not flat but very easy to understand.

2.8.2. Corollaries. (i) By §2.8.1(b-c), the morphisms Σ′+ → Σ̃′ → Σ′ are faithfully flat.
(ii) Each of the stacks from (2.12) is faithfully flat over Σ−: this follows from (i) and

§2.8.1(a,e).
(iii) Each of the stacks from (2.12) is faithfully flat over (A1/Gm)−: this follows from (i)

and §2.8.1(f).

2.8.3. Definition of Σ′+. Here are three equivalent definitions.
(i) Σ′+(S) is the category of triples consisting of an object (M, ξM) ∈ Σ′(S), an object

(P, ξP ) ∈ Σ+(S), and a morphism (P, ξP )→ (M, ξM).
(ii) An object of Σ′+(S) is an object (P, ξP ) ∈ Σ+(S) with an additional piece of data.

To define it, note that ξP gives rise to a line bundle LP := P/V (P ′) and a morphism
ξ̄P : LP → OS. The additional piece of data is a factorization of ξ̄P as

(2.13) LP
v+−→ L

v−−→ OS

for some line bundle L .
(iii) An object of Σ′+(S) consists of an object (M, ξM) ∈ Σ′(S), an invertibleWS-module P ,

and a morphism P →M inducing an isomorphism P ′
∼−→M ′.
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2.8.4. Construction of diagram (2.12). All the arrows are forgetful maps. Here are more
details.

Think of Σ′+ in terms of §2.8.3(ii). Then the morphism Σ′+ → Σ+× (A1/Gm)− forgets the
map LP → L (but remembers L and the map L → OS).

Define Σ̃′(S) as follows: an object of Σ̃′(S) consists of an object (M, ξM) ∈ Σ′(S), an
invertible WS-module P , and an isomorphism P ′

∼−→ M ′. The map Σ̃′ −→ Σ′ is clear. The
map Σ′+ −→ Σ̃′ is also clear if one thinks of Σ′+ in terms of §2.8.3(iii).

2.8.5. The open substacks Σ++,Σ+− ⊂ Σ′+. Let Σ++,Σ+− ⊂ Σ′+ be the preimages of the
open substacks Σ+,Σ− ⊂ Σ′. Then Σ++ and Σ+− are disjoint open substacks of Σ′+.

In terms of (2.13), the substack Σ++ (resp. Σ+−) is the locus where v+ (resp. v−) is
invertible. So the morphism Σ′+ → Σ+ (see the left arrow in (2.12)) induces isomorphisms

Σ++
∼−→ Σ+ = Σ, Σ+−

∼−→ Σ+ = Σ.

By §2.8.1(a) and §2.1.6, the composite maps

(2.14) Σ = Σ++
π+−→ Σ+

F ′−→ Σ− = Σ

(2.15) Σ = Σ+−
π−−→ Σ−

F ′−→ Σ− = Σ

equal F : Σ→ Σ. As already mentioned in §2.8.1(d), π+ is an isomorphism, so it is not quite
necessary to distinguish Σ++ from Σ+. On the other hand, F ′ : Σ− → Σ− is the identity, so
the map π− from (2.15) is not an isomorphism; in fact, after identifying Σ+− and Σ− with
Σ, it becomes the morphism F : Σ→ Σ.

2.8.6. O-modules on Σ′+ and Σ′. Using §2.8.3(ii), one can describe O-modules on Σ′+ as
graded O-modules on Σ with an additional structure (this is parallel to §2.7.2). On the
other hand, one could try to use §2.8.1(b-c) to describe O-modules on Σ′ as O-modules on
Σ′+ with an additional structure.

2.8.7. More details on the Nygaard filtration. Let us sketch the construction of data (i)-(ii)
from §2.3.6.

For any p-adic scheme X, we have a canonical morphism

(2.16) X�
+ ×Σ+ Σ′+ → X�′

of left fibrations over Σ′+; this morphism is tautological if you think of Σ′+ in terms of §2.8.3(i).
Now suppose we are given an effective gauge on X, i.e., an O-module on X�′ . Let

N ′+ be its pullback via (2.16). Using the explicit description of the morphism Σ′+ → Σ+

that comes from §2.8.3(ii), one interprets N ′+ as data (i)-(ii) from §2.3.6. More precisely,
Ni = q∗N

′
+(i ·D+) and Ni(−i ·∆0) = q∗N

′
+(−i ·D−), where Ni is as in §2.3.6, q is the map

X�
+ ×Σ+ Σ′+ → X�

+ = X�, and D± ⊂ Σ′+ is the effective divisor v± = 0; here v± is as
in (2.13).

12



3. WS-modules

In most of this section we work with arbitrary schemes (rather than schemes over Z(p)

or Zp).

3.1. The group scheme G]
a.

3.1.1. Definition of G]
a. Let G]

a := SpecA, where A ⊂ Q[x] is the subring generated by the
elements

un := xp
n

/p
pn−1
p−1 , n ≥ 0.

It is easy to see that the ideal of relations between the un’s is generated by the relations
upn = pun+1.

Since p
pn−1
p−1 ∈ (pn)! · Z×p , there is a unique homomorphism ∆ : A → A ⊗ A such that

∆(x) = x ⊗ 1 + 1 ⊗ x. The pair (A,∆) is a Hopf algebra over Z. So G]
a is a group scheme

over Z.

3.1.2. Remarks. (i) G]
a ⊗ Z(p) is just the PD-hull of zero in Ga ⊗ Z(p).

(ii) The embedding Z[x] ↪→ A induces a morphism of group schemes

(3.1) G]
a → Ga.

(iii) The morphism (3.1) induces an isomorphism G]
a ⊗Q→ Ga ⊗Q.

Lemma 3.1.3. Let un ∈ A be as in §3.1.1. If n > 0 then ∆(un) − un ⊗ 1 − 1 ⊗ un is not
divisible by any prime.

Proof. As a Z-module, A has a basis formed by elements of the form
∏
i

uaii , where 0 ≤ ai < p

and almost all numbers ai are zero. The coefficient of u0 ⊗
n−1∏
i=0

up−1
i in ∆(un) equals 1. �

3.1.4. G]
a as a quasi-ideal in Ga. There is a unique action of the ring scheme Ga on G]

a

inducing the usual action of Ga ⊗ Q on G]
a ⊗ Q = Ga ⊗ Q. Thus G]

a is a Ga-module.
Moreover, the morphism (3.1) makes G]

a into a quasi-ideal in Ga.

3.1.5. W (F ) as a quasi-ideal in Ga. Let W be the ring scheme over Z formed by p-typical
Witt vectors. Let W (F ) := Ker(F : W → W ). The action of W on W (F ) factors through
W/VW = Ga. The composite map

W (F ) ↪→ W � W/VW = Ga

is a morphism of Ga-modules, which makes G]
a into a quasi-ideal in Ga.

Lemma 3.1.6. G]
a and W (F ) are isomorphic as quasi-ideals in Ga. Such an isomorphism

is unique.

Proof. Uniqueness is clear. To construct the isomorphism, G]
a
∼−→ W (F ), we will use the

approach to W developed by Joyal [J85] (an exposition of this approach can be found in
[B16] and [BG, §1]).

Let B be the coordinate ring of W . Let F ∗ : B → B be the homomorphism corresponding
to F : W → W . The map W ⊗ Fp → W ⊗ Fp induced by F is the usual Frobenius, so there
is a map δ : B → B such that F ∗(b) = bp + pδ(b) for all b ∈ B (of course, the map δ is
neither additive nor multiplicative).
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The pair (B, δ) is a δ-ring in the sense of [J85]. The main theorem of [J85] says that
B is the free δ-ring on y0, where y0 ∈ B corresponds to the canonical homomorphism
W → W/VW = Ga. This means that as a ring, B is freely generated by the elements
yn := δn(y0), n ≥ 0. We have F ∗(yn) = ypn + pyn+1. The closed subscheme

{0} ⊂ W = SpecB

identifies with SpecB/(y0, y1, . . .). This implies that the closed subscheme W (F ) ⊂ W iden-
tifies with Spec(B/I), where the ideal I ⊂ B is generated by ypn + pyn+1, n ≥ 0. On the
other hand, B/I identifies with the ring A from §3.1.1 via the epimorphism B � A that
takes yn to (−1)nun. �

3.2. The group schemes W× and (W×)(F ).

Lemma 3.2.1. Let R be a ring in which p is nilpotent. Then
(i) a Witt vector α ∈ W (R) is invertible if and only if its 0th component is;
(ii) α ∈ W (R) is invertible if and only if F (α) is.

Proof. The ideal Ker(W (R) → W (R/pR)) is nilpotent. So we can assume that R is an
Fp-algebra.

To prove (i), it suffices to show that for any x ∈ W (R) one has 1 +V x ∈ W (R)×. Indeed,
since V F = FV = p we have (V x)n = pn−1V (xn) = V n(F n−1x), so V x is topologically
nilpotent.

Statement (ii) follows from (i) because F : W ⊗ Fp → W ⊗ Fp is the usual Frobenius. �

Remark 3.2.2. For any ring R one can show by induction that an element of Wn(R) is
invertible if and only if all of its ghost components are.

3.2.3. The group scheme (W×)(F ). Let

(W×)(F ) := Ker(F : W× → W×),

where W× is the multiplicative group of the ring scheme W . Then (W×)(F ) identifies with
the multiplicative group of the non-unital ring scheme13 W (F ).

On the other hand, let G]
m be the multiplicative group of the non-unital ring scheme G]

a

(the ring structure on G]
a comes from the quasi-ideal structure described in §3.1.4). Note

that G]
m ⊗ Z(p) is the PD-hull of 1 in Gm ⊗ Z(p).

Lemma 3.1.6 provides an isomorphism G]
a
∼−→ W (F ). It is an isomorphism between quasi-

ideals in Ga and therefore a ring homomorphism. So it induces an isomorphism of group
schemes

(3.2) (W×)(F ) ∼−→ G]
m.

3.3. Faithful flatness of F : W → W and F : W× → W×. Joyal’s description of W (see
the proof of Lemma 3.1.6) shows that the morphism F : W → W is faithfully flat.

Here is another proof. It suffices to check faithful flatness of F : Wn+1 → Wn for each n.
This reduces to proving faithful flatness of the two maps

F : Wn+1 ⊗ Z[1/p]→ Wn ⊗ Z[1/p], F : Wn+1 ⊗ Fp → Wn ⊗ Fp.

13By definition, the multiplicative group of a non-unital ring A is Ker(Ã× → Z×), where Ã := Z⊕A is the
ring obtained by formally adding the unit to A.
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The first map can be treated using ghost components. The second map is just the composite
of the projection Wn+1 ⊗ Fp → Wn ⊗ Fp and the usual Frobenius.

The same argument proves faithful flatness of F : W× → W×.

3.4. The Picard stack Cone(G]
a → Ga) in terms of W .

Proposition 3.4.1. One has a canonical isomorphism of Picard stacks over Z

Cone(G]
a → Ga)

∼−→ Cone(W
p−→ W )

Proof. By Lemma 3.1.6, Cone(G]
a → Ga) = Cone(W (F ) → W/VW ). We have

Cone(W (F ) → W/VW ) = Cone(VW → W/W (F )) = Cone(VW
F−→ W ),

where the second equality follows from §3.3. But Cone(VW
F−→ W ) = Cone(W

FV−→ W )
and FV = p. �

3.5. Generalities on WS-modules. Let WS := W × S; this is a ring scheme over S. By a
WS-module we mean a commutative affine group scheme over S equipped with an action of
the ring scheme WS.

3.5.1. HomW and HomW . IfM and N areWS-modules we write HomW (M,N) for the group
of all WS-morphisms M → N .

Let A be the category of fpqc-sheaves of abelian groups on the category of S-schemes.
Sometimes it is convenient to embed the category of WS-modules into the bigger category of
objects of A equipped with aWS-action. GivenWS-modulesM and N , one defines an object
HomW (M,N) in the bigger category; namely, HomW (M,N) is the contravariant functor

S ′ 7→ HomW (M ×S S ′, N ×S S ′).
In some important cases this functor turns out to be representable; then HomW (M,N) is a
WS-module.

3.5.2. The functor M 7→ M (n). Let n ∈ Z, n ≥ 0. Let M be a WS-module. Precomposing
the action of WS on M with F n : WS → WS, we get a new WS-module structure on the
group scheme underlying M ; the new WS-module will be denoted by M (n).

3.6. Examples of WS-modules. Define WS-modules (Ga)S and (G]
a)S as follows:

(Ga)S := Ga × S, (G]
a)S := G]

a × S,
where the ring schemeW acts on Ga via the canonical ring epimorphismW � W/VW = Ga.
Applying §3.5.2 to the WS-modules WS and (Ga)S, we get WS-modules W (n)

S and (Ga)
(n)
S for

each integer n ≥ 0.
We have a WS-module homomorphism F : WS → W

(1)
S , which is a faithfully flat map

by §3.3. Its kernel is denoted by W (F )
S . By Lemma 3.1.6, we have a canonical isomorphism

W
(F )
S

∼−→ (G]
a)S.

In addition to the exact sequence

(3.3) 0→ W
(F )
S → WS

F−→ W
(1)
S → 0.

we have the exact sequence

(3.4) 0→ W
(1)
S

V−→ WS → (Ga)S → 0.
15



3.7. Duality between exact sequences (3.3) and (3.4). The goal of this subsection is to
prove Proposition 3.7.3.

Lemma 3.7.1. (i) If n > 0 then HomW (W
(F )
S , (Ga)

(n)
S ) = 0.

(ii) The WS-module morphisms W (F )
S ↪→ WS � (Ga)S induce an isomorphism

H0(S,OS) = HomW ((Ga)S, (Ga)S)
∼−→ HomW (W

(F )
S , (Ga)S).

Proof. By Lemma 3.1.6, we can replace W (F )
S by (G]

a)S. We can assume that S is affine,
S = SpecR. Let A and un be as in §3.1.1. Recall that (G]

a)S = Spec(A⊗R).
Let f ∈ HomW (W

(F )
S , (Ga)

(n)
S ). Since f commutes with the action of Teichmüller elements

of the Witt ring, we see that the function f ∈ A⊗R is homogeneous of degree pn. So f = cun
for some c ∈ R. If n > 0 then c = 0 by Lemma 3.1.3. �

Lemma 3.7.2. (i) The multiplication pairing

(3.5) WS ×WS → WS

kills W (F )
S × V (W

(1)
S ) ⊂ WS ×WS.

(ii) The kernel of the morphismWS → HomW (V (W
(1)
S ),WS) induced by (3.5) equalsW (F )

S .
(iii) The kernel of the morphismWS → HomW (W

(F )
S ,WS) induced by (3.5) equals V (W

(1)
S ).

Proof. Statement (i) is clear. To prove (ii), use the section V (1) of the S-scheme V (W
(1)
S ).

Statement (iii) follows from (i) and the equality

Ker((Ga)S → HomW (W
(F )
S ,W

(F )
S ) = 0;

this equality is clear because W (F )
S = (G]

a)S. �

By Lemma 3.7.2(i), the pairing (3.5) and the exact sequences (3.3)-(3.4) yield WS-bilinear
pairings

(3.6) W
(1)
S ×W

(1)
S → WS,

(3.7) (Ga)S ×W (F )
S → WS.

The pairing (3.6) is symmetric; in fact, this is just the multiplication W (1)
S ×W

(1)
S → W

(1)
S

followed by V : W
(1)
S ↪→ WS. The pairing (3.7) is the composite

(Ga)S ×W (F )
S → W

(F )
S ↪→ WS,

where the first map is the action of (Ga)S on W (F )
S .

Proposition 3.7.3. The pairings (3.6) and (3.7) induce isomorphisms

(3.8) W
(1)
S

∼−→ HomW (W
(1)
S ,WS),

(3.9) W
(F )
S

∼−→ HomW ((Ga)S,WS),

(3.10) (Ga)S
∼−→ HomW (W

(F )
S ,WS).
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Proof. The statements about HomW (W
(1)
S ,WS) and HomW ((Ga)S,WS) are easy because

W
(1)
S and (Ga)S appear as quotients of WS. More precisely, they are equivalent to Lem-

mas 3.7.2(iii) and 3.7.2(ii), respectively.
To prove the statement about HomW (W

(F )
S ,WS), use Lemma 3.7.1 and the filtration

(3.11) WS ⊃ V (W
(1)
S ) ⊃ V 2(W

(2)
S ) ⊃ . . . ,

whose successive quotients are the WS-modules (Ga)
(n)
S , n ≥ 0. �

3.8. More computations of HomW .

Proposition 3.8.1. (i) The action of (Ga)S on W (F )
S induces an isomorphism

(Ga)S
∼−→ HomW (W

(F )
S ,W

(F )
S ).

(ii) HomW (W
(F )
S ,W

(1)
S ) = 0.

(iii) The morphism F : WS → W
(1)
S induces isomorphisms

(3.12) HomW (W
(1)
S ,W

(1)
S )

∼−→ HomW (WS,W
(1)
S ) = W

(1)
S ,

(3.13) HomW (W
(1)
S ,W

(F )
S )

∼−→ Ker(W
(F )
S → (Ga)S) = Ker((G]

a)S → (Ga)S).

Proof. Statement (i) follows from (3.10). Statement (ii) is deduced from Lemma 3.7.1(i) using
the filtration (3.11). The isomorphism (3.12) follows from the fact that the WS-module W (1)

S

is killed by W (F )
S ⊂ WS. The isomorphism (3.13) follows from (3.10). �

3.8.2. Remarks. (i) Although the map G]
a ⊗ Z[1/p] → Ga ⊗ Z[1/p] is an isomorphism, it is

easy to see from §3.1.1 that Ker(G]
a → Ga) 6= 0.

(ii) By Proposition 3.4.1, the r.h.s. of (3.13) can be rewritten as Ker(WS
p−→ WS).

3.9. Extensions of W (1)
S by W

(F )
S . Given WS-modules M and N , let ExW (M,N) denote

the Picard stack over S whose S ′-points are extensions of N×S S ′ byM×S S ′. The following
statement strengthens formula (3.13).

Proposition 3.9.1. One has a canonical isomorphism

(3.14) ExW (W
(1)
S ,W

(F )
S )

∼−→ Cone(W
(F )
S → (Ga)S) = Cone((G]

a)S → (Ga)S).

In particular, the stack ExW (W
(1)
S ,W

(F )
S ) is algebraic.

Proof. Let S ′ be an S-scheme. Pushing forward the canonical extension

(3.15) 0→ W
(F )
S′ → WS′

F−→ W
(1)
S′ → 0

via a morphism W
(F )
S′ → W

(F )
S′ , one gets a new extension of W (1)

S′ by W (F )
S′ . Thus one gets

an isomorphism ExW (W
(1)
S ,W

(F )
S )

∼−→ Cone(W
(F )
S → HomW (W

(F )
S ,W

(F )
S )). By Proposi-

tion 3.8.1(i), the canonical map (Ga)S → HomW (W
(F )
S ,W

(F )
S ) is an isomorphism. �

Combining Propositions 3.9.1 and 3.4.1, we get a canonical isomorphism

(3.16) ExW (W
(1)
S ,W

(F )
S )

∼−→ Cone(WS
p−→ WS).

We will also give its direct construction (see §3.9.4 below). It is based on the following
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Lemma 3.9.2. For every scheme S, every exact sequence 0→ W
(F )
S

i−→ M
π−→ W

(1)
S → 0

Zariski-locally on S admits a rigidification of the following type: a WS-morphism

r : M → WS

such that r|
W

(F )
S

= id. All such rigidifications form a torsor over HomW (W
(1)
S ,WS) ' W

(1)
S .

Proof. The lemma is a consequence of the following fact, which can be easily deduced from
Proposition 3.8.1(i): every extension of W (1)

S by WS splits Zariski-locally on S.
Here is a slightly more direct proof. We already know that HomW (W

(1)
S ,WS) ' W

(1)
S ,

see (3.8). Since every W (1)
S -torsor is Zariski-locally trivial, it suffices to prove that r exists

fpqc-locally. So we can assume that there exists a WS-morphism σ : WS → M such that
π ◦σ = F . A choice of σ realizes our exact sequence as a pushforward of the canonical exact
sequence

(3.17) 0→ W
(F )
S → WS

F−→ W
(1)
S → 0

via some h : W
(F )
S → W

(F )
S . Constructing r is equivalent to extending h to a morphism

WS → WS. This is possible by Proposition 3.8.1(i). �

Corollary 3.9.3. Every extension of W (1)
S by W (F )

S can be Zariski-locally on S obtained as
a pullback of (3.17) via some ζ ∈ EndW (W

(F )
S ). �

3.9.4. Direct construction of (3.16). By Lemma 3.9.2 and Corollary 3.9.3,

ExW (W
(1)
S ,W

(F )
S ) = Cone(HomW (W

(1)
S ,WS)

g−→ HomW (W
(1)
S ,W

(1)
S )),

where the map g comes from F : WS → W
(1)
S . Using (3.8), (3.12), and the formula FV = p,

one identifies g with the map W (1)
S

p−→ W
(1)
S .

3.10. Admissible WS-modules.

Definition 3.10.1. A WS-module is said to be invertible if it is locally isomorphic to WS.

Remark 3.10.2. In the above definition the word “locally" can be understood in either Zariski
or fpqc sense (the W ∗-torsors are the same).

3.10.3. Notation. Let L be a line bundle on S. Then L is a module over the ring scheme
(Ga)S, and we set

L ] := L ⊗(Ga)S W
(F )
S = L ⊗(Ga)S (G]

a)S.

If S is a Z(p)-scheme then L ] is the PD-hull of the group scheme L along its zero section.

Lemma 3.10.4. (i) The functor M 7→ M (1) from §3.5.2 induces an equivalence between
the category of invertible WS-modules and the category of WS-modules locally isomorphic
to W (1)

S .
(ii) The functor L 7→ L ] induces an equivalence between the category of line bundles L

on S and the category of WS-modules locally isomorphic to W
(F )
S . The inverse functor is

M 7→ HomW (W
(F )
S ,M).

Proof. Statement (i) follows from (3.12). Statement (ii) follows from Proposition 3.8.1(i). �
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3.10.5. Remark. Similarly to Remark 3.10.2, in the above lemma the word “locally" can be
understood in either Zariski or fpqc sense.

Definition 3.10.6. AWS-moduleM is said to be admissible if there exists an exact sequence
of WS-modules

(3.18) 0→M0 →M →M ′ → 0,

where M0 is locally isomorphic to W (F )
S and M ′ is locally isomorphic to W (1)

S .

Lemma 3.10.7. The exact sequence (3.18) is essentially unique if it exists. Moreover, it is
functorial in M .

Proof. Follows from Proposition 3.8.1(ii) �

3.10.8. Remarks. (i) By the previous lemma, admissibility of a WS-module is a local prop-
erty.

(ii) By Lemma 3.10.4(ii), the exact sequence (3.18) can be rewritten as

(3.19) 0→ L ] →M →M ′ → 0,

where L is a line bundle on S. Here L = LM := HomW (W
(F )
S ,M0) = HomW (W

(F )
S ,M).

(iii) The exact sequence (3.3) shows that any invertible WS-module M is admissible. In
this case

(3.20) M ′ = M ⊗W (1)
S

and L = M ⊗ (Ga)S. Formula (3.20) can be rewritten in the spirit of Lemma 3.10.4(i) as
M ′ = N (1), where N = M ⊗WS ,F WS.

(iv) If S is a Z[p−1]-scheme then all admissible WS-modules are invertible because for
every open S ′ ⊂ S one has ExW (W

(1)
S′ ,W

(F )
S′ ) = 0 by (3.14) or (3.16).

(v) Let S = Spec k, where k is a field of characteristic p. Then the admissible WS-module
W

(F )
S ⊕W (1)

S is not invertible because W (F )
S is not reduced as a scheme.

Lemma 3.10.9. LetM be an admissible WS-module. Then (3.18) induces an exact sequence

0→ HomW (M ′,WS)→ HomW (M,WS)→ HomW (M0,WS)→ 0.

Proof. This is a reformulation of Lemma 3.9.2. �

Lemma 3.10.10. Let M be an admissible WS-module and ξ : M → WS a WS-morphism.
Then (M, ξ) is a quasi-ideal in WS.

Proof. We have to show that for every S-scheme S ′ one has

(3.21) ξ(α)β − ξ(β)α = 0 for all α, β ∈M(S ′).

We can assume that M is an extension of W (1)
S by W (F )

S .
By (3.10), the identity (3.21) holds if α and β are sections of W (F )

S . So considering the
l.h.s. of (3.21) when α is a section of W (F )

S and β is arbitrary, we get a WS-bilinear pairing
W

(F )
S ×W (1)

S → WS. But all such pairings are zero by (3.12) and Proposition 3.8.1(ii).
Thus the l.h.s. of (3.21) defines aWS-bilinear pairing B : W

(1)
S ×W

(1)
S → WS. It is strongly

skew-symmetric (i.e.,the restriction of B to the diagonal is zero). So using the epimorphism
F : WS � W

(1)
S , we see that B = 0. �
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3.11. The c-stack Adm and the g-stacks AdmL .

3.11.1. Definition of Adm. For a scheme S, let Adm(S) be the category whose objects are
admissible WS-modules and whose morphisms are those WS-linear maps M1 → M2 that
induce an isomorphism M ′

1
∼−→M ′

2. We have a functor
Adm(S)→ {line bundles on S}, M 7→ LM ,

where LM is as in Remark 3.10.8(ii). This functor is a left fibration in Joyal’s sense (see
[Lu1, §2.1]); equivalently, it makes Adm(S) into a category cofibered in groupoids over the
category of lines bundles on S.

By Lemma 3.10.7 or Remark 3.10.8(i), the assignment S 7→ Adm(S) is a c-stack for the
fpqc topology (not merely a c-prestack).

3.11.2. Definition of AdmL . Now fix a scheme S and a line bundle L on S. Define a g-
stack AdmL over S as follows: for an S-scheme S ′, let AdmL (S ′) be the groupoid of objects
M ∈ Adm(S ′) equipped with an isomorphism LM

∼−→ L ×S S ′.
The g-stack AdmL depends functorially on L , and the assignment L 7→ AdmL com-

mutes with base change S̃ → S. We can think of the c-stack Adm as such collection of
g-stacks AdmL .

Proposition 3.11.3. (i) The c-stack Adm is algebraic.
(ii) The g-stacks AdmL are algebraic.

Proof. Statements (i) and (ii) are equivalent. Statement (ii) follows from algebraicity of the
stack ExW (W

(1)
S ,W

(F )
S ), see Proposition 3.9.1 or formula (3.16). �

3.12. The diagram Adm+ → Ãdm→ Adm.

3.12.1. The stack Inv. Let Inv(S) be the groupoid of invertible WS-modules. The g-stack
Inv is algebraic: this is just the classifying stack of W×.

Lemma 3.12.2. (i) If S is p-nilpotent then the functor Inv(S)→ Adm(S) is fully faithful.
(ii) For every n ∈ N, the morphism Inv⊗Z/pnZ → Adm⊗Z/pnZ is an affine open

immersion.

Proof. If R is a ring in which p is nilpotent and w ∈ W (R) is such that F (w) ∈ W (R)× then
w ∈ W (R)× by Lemma 3.2.1(ii). Statement (i) follows.

To deduce (ii) from (i), we have to show that for any p-nilpotent scheme S and any
M ∈ Adm(S), the corresponding fiber product S×Adm Inv is an open subscheme of S which
is affine over S. By Corollary 3.9.3, we can assume that M is the extension of W (1)

S by W (F )
S

obtained as a pullback of the canonical exact sequence

(3.22) 0→ W
(F )
S → WS

F−→ W
(1)
S → 0

via some ζ ∈ EndW (W
(1)
S ) = W (1)(S). We will show that in this situation

(3.23) S ×Adm Inv = V (ζ0),

where ζ0 is the 0th component of the Witt vector ζ ∈ W (1)(S) and V (ζ0) ⊂ S is the open
subscheme ζ0 6= 0. It suffices to prove (3.23) if ζ0 is either invertible or zero.

Suppose that ζ0 is invertible. Then ζ is invertible by Lemma 3.2.1(i). So the ζ-pullback
of (3.22) is isomorphic to (3.22). Therefore M is invertible.

20



It remains to show that if ζ0 = 0 and S is the spectrum of a perfect field of characteristic p
thenM is not invertible. Indeed, perfectness implies that ζ is divisible by p, so the ζ-pullback
of (3.22) splits by (3.16). But W (F )

S ⊕W (1)
S is not invertible, see Remark 3.10.8(v). �

3.12.3. The stacks Adm+ and Ãdm. Let Adm+(S) be the category whose objects are triples
(P,M, f), where P ∈ Inv(S), M ∈ Adm(S), and f is an Adm(S)-morphism P → M ;
by a morphism (P1,M1, f1) → (P2,M2, f2) we mean a pair (g, h), where g : P1 → P2 is an
isomorphism, h : M1 →M2 is an Adm(S)-morphism, and hf1 = f2g.

Let Ãdm(S) be the category whose objects are triples (P,M, φ), where P ∈ Inv(S), M ∈
Adm(S), and φ : P ′

∼−→ M ′ is an isomorphism; by a morphism (P1,M1, φ1) → (P2,M2, φ2)
we mean a pair (g, h), where g : P1 → P2 is an isomorphism, h : M1 → M2 is an Adm(S)-
morphism, and h′φ1 = φ2g

′.
The stacks Adm+ and Ãdm are algebraic because Adm and Inv are (see Proposition 3.11.3

and §3.12.1). We have the forgetful morphisms

(3.24) Adm+ → Ãdm→ Adm .

They are left fibrations.

3.12.4. The morphism Adm+ → Inv. Let (P,M, f) ∈ Adm+(S). Then we have line bundles
L = LM := HomW (W (F ),M) and LP := P/V (P ′) ' HomW (W (F ), P ). Moreover, f
induces a morphism ϕ : LP → L . Note that the exact sequence 0→ L ] → M → M ′ → 0
is just the pushforward of the exact sequence 0 → L ]

P → P → P ′ → 0 with respect to
ϕ] : L ]

P → L ]. So we can think of Adm+(S) as follows: an object of Adm+(S) is a
triple (P,L , ϕ : LP → L ), where P ∈ Inv(S) and L is a line bundle on S; a morphism
(P1,L1, ϕ1)→ (P2,L2, ϕ2) is a pair (g, h), where g : P1 → P2 is an isomorphism, h : L1 →
L2 is a morphism, and the corresponding diagram

LP1

ϕ1 //

��

L1

h
��

LP2

ϕ2 // L2

commutes.
Thus the morphism Adm+ → Inv is very simple. Indeed, one can think of ϕ : LP → L

as a section of the line bundle N = L ⊗−1
P ⊗L , so Adm+ identifies with the product of Inv

and the stack whose S-points are line bundles on S equipped with a section.

Proposition 3.12.5. (i) The morphisms (3.24) are faithfully flat.
(ii) The morphism Ãdm→ Adm is a G]

m-gerbe.
(iii) The morphism Adm+ → Ãdm is an H-torsor, where H is the following group scheme

over Ãdm: an S-point of H is a quadruple (P,M, φ, σ), where (P,M, φ) ∈ Ãdm(S) and σ is
a section of the group scheme (L ⊗−1

P ⊗LM)].

Proof. Statement (ii) follows from the isomorphism (3.2). Statement (iii) is clear. State-
ment (i) follows from (ii) and (iii). �
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