CONTENTS

1. Introduction	2
1.1. Goals	2
1.2. Some notation and terminology	2
1.3. Recollections on usual prismatization	2
1.4. A drawback of Σ	2
1.5. The functors $X \mapsto X^{\mathbb{A}'}$ and $X \mapsto X^{\mathbb{A}''}$	3
1.6. Confession	3
2. Outline of refined prismatization	4
2.1. Refined prismatization	4
2.2. Very refined prismatization	5
2.3. Gauges and <i>F</i> -gauges	5
2.4. The divisor $\Delta'_0 \subset \Sigma'$ and the Breuil-Kisin twists	6
2.5. More about Δ'_0	7
2.6. The "Hodge to de Rham" and "Hodge to Hodge-Tate" spectral sequences	8
2.7. The stacks $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ and $(\mathbb{A}^1_{\mathbb{F}_p})^{\underline{\mathbb{A}}'}$	9
2.8. The stack Σ'_+	11
3. W_S -modules	13
3.1. The group scheme \mathbb{G}_a^{\sharp}	13
3.2. The group schemes W^{\times} and $(W^{\times})^{(F)}$	14
3.3. Faithful flatness of $F: W \to W$ and $F: W^{\times} \to W^{\times}$	14
3.4. The Picard stack $\operatorname{Cone}(\mathbb{G}_a^{\sharp} \to \mathbb{G}_a)$ in terms of W	15
3.5. Generalities on W_S -modules	15
3.6. Examples of W_S -modules	15
3.7. Duality between exact sequences (3.3) and (3.4)	16
3.8. More computations of Hom_W	17
3.9. Extensions of $W_S^{(1)}$ by $W_S^{(F)}$	17
3.10. Admissible W_s -modules	18
3.11. The c-stack Adm and the g-stacks $\operatorname{Adm}_{\mathscr{L}}$	20
3.12. The diagram $\operatorname{Adm}_+ \to \widetilde{\operatorname{Adm}} \to \operatorname{Adm}$	20
References	22

PRISMATIZATION

In §1 I explain the motivation. In §2 I sketch a "refined" version of the stacky approach to prismatic cohomology. In §3 I explain the details about W_s -modules.

1. INTRODUCTION

1.1. **Goals.** I hope that the approach to prismatic cohomology sketched in §2 achieves the following goals.

(i) The Nygaard filtration on prismatic cohomology becomes automatic.

(ii) The definitions of gauge and F-gauge are easy, see §2.3.2. (As explained to me by Peter Scholze, F-gauges should be the coefficients in the prismatic theory.)

(iii) The "Hodge to de Rham" and "Hodge to Hodge-Tate" spectral sequences are hopefully automatic, see §2.6.

1.2. Some notation and terminology. Fix a prime p. All schemes are classical for now. A scheme S is said to be p-nilpotent if $p \in H^0(S, \mathcal{O}_S)$ is nilpotent.

Let W be the ring scheme of p-typical Witt vectors over Z. Let $W_S := W \times S$; this is a ring scheme over S. By a W_S -module we mean a commutative affine group scheme over S equipped with an action of the ring scheme W_S .

A g-stack (or simply stack) is an fpqc-stack of groupoids on the category of p-nilpotent schemes. A c-stack is an fpqc-stack of categories on the category of p-nilpotent schemes.

The fully faithful functor from the 2-category of g-stacks to that of c-stacks has a right adjoint (removing non-invertible morphisms). One can consider a c-stack as a g-stack with additional structure; we call it c-structure.

1.3. Recollections on usual prismatization. Let S be a p-nilpotent scheme. The stack Σ is defined as follows: an object of $\Sigma(S)$ is a pair (P,ξ) , where P is a W_S -module locally isomorphic to W_S and $\xi : P \to W_S$ is a primitive¹ W_S -morphism. A priori, Σ is a c-stack, but it is easy to see that it is a g-stack.

In this situation (P,ξ) is automatically a quasi-ideal² in W_S . So given $(P,\xi) \in \Sigma(S)$ we get a ring stack Cone (ξ) over S. This construction yields a ring stack over Σ , denoted by $(\mathbb{A}^1)^{\mathbb{A}}$. Using this ring stack, one defines $X^{\mathbb{A}}$ for any p-adic scheme X so that for $X = \mathbb{A}^1 := \mathbb{A}^1_{\mathbb{Z}_p}$ one gets the above ring stack and $(\operatorname{Spf} \mathbb{Z}_p)^{\mathbb{A}} = \Sigma$.

1.4. A drawback of Σ . The stack Σ is supposed to parametrize cohomology theories (in some sense). E.g., the points $p \in \Sigma(\mathbb{Z}_p)$ and $V(1) \in \Sigma(\mathbb{Z}_p)$ give rise to de Rham and Hodge-Tate cohomology, respectively. But there is also Hodge cohomology, which is related to de Rham and Hodge-Tate cohomology via spectral sequences. The problem is that Hodge-Tate

¹Throughout this text, "primitive" really means "primitive of degree 1". If S is the spectrum of a field k this means that ξ maps every (or some) generator of the W(k)-module P(k) to an element of W(k) of the form $Vu, u \in W(k)^{\times}$. For any S, primitivity means that ξ is primitive over every field-valued point of S. ²The definition of quasi-ideal is recalled in the proof of Lemma 3.10.10.

cohomology does not correspond to a locus in Σ . To fix this, we define in §2.1.1-2.1.2 a bigger c-stack Σ' .

1.5. The functors $X \mapsto X^{\triangle'}$ and $X \mapsto X^{\triangle''}$. These functors are defined in §2.1-2.2 using the strategy of §1.3. However, instead of Σ one uses certain c-stacks Σ' and Σ'' . The cstructure ensures that prismatic cohomology is an *effective F*-gauge. (Roughly, the key idea is that a \mathbb{Z} -grading on a module is non-negative if and only if the corresponding \mathbb{G}_m -action extends to an action of the multiplicative monoid \mathbb{A}^1 .)

1.6. Confession. Before I came up with the definition of Σ' , I wanted to work with the c-stack Σ'_+ from §2.8 (and to think of Σ'_+ in terms of §2.8.3(ii)). Accordingly, instead of $X^{\triangle'}$ I wanted to work with the c-stack $X^{\triangle} \times_{\Sigma} \Sigma'_+$ (which is equipped with a canonical map to $X^{\triangle'}$, see formula (2.16)). This approach was directly inspired by the notion of *F*-gauge from [FJ]. The problem with it is that $(\operatorname{Spec} \mathbb{F}_p)^{\triangle} \times_{\Sigma} \Sigma'_+$ is not what you want. On the other hand, $(\operatorname{Spec} \mathbb{F}_p)^{\triangle'}$ is what you want (see §2.7.1).

2. Outline of refined prismatization

2.1. Refined prismatization.

2.1.1. Admissible W_S -modules. Let M be a W_S -module. Precomposing the action of W_S on M with $F^n: W_S \to W_S$, we get a new W_S -module structure on the group scheme underlying M; the new W_S -module will be denoted by $M^{(n)}$.

We have a faithfully flat W_S -module homomorphism $F: W_S \to W_S^{(1)}$. Its kernel is denoted by $W_S^{(F)}$. By Lemma 3.1.6, $W_S^{(F)}$ canonically identifies with the PD hull of zero in $(\mathbb{G}_a)_S$. A W_S -module M is said to be *admissible* if for some line bundle \mathscr{L} on S there exists an

exact sequence of W_S -modules

(2.1)
$$0 \to \mathscr{L}^{\sharp} \to M \to M' \to 0,$$

where M' is locally isomorphic to $W_S^{(1)}$ and $\mathscr{L}^{\sharp} := \mathscr{L} \otimes W_S^{(F)}$ (equivalently, \mathscr{L}^{\sharp} is the PD-hull of the group scheme \mathscr{L} along its zero section). By Lemma 3.10.7, such an exact sequence is unique if it exists; moreover, it is functorial in M.

A W_S -module is said to be *invertible* if it is locally isomorphic to W_S . Such modules are admissible; e.g., if $M = W_S$ then $M' = W_S/W_S^{(F)} = W_S^{(1)}$.

2.1.2. Definition of Σ' . Functoriality implies that if M is an admissible W_S -module then any homomorphism $\xi: M \to W_S$ induces a homomorphism $\xi': M' \to W'_S = W^{(1)}_S$, where M' is as in (2.1). We say that ξ is primitive if ξ' is primitive³. Note that if M is invertible this is equivalent to primitivity of ξ in the usual sense.

Now define a c-stack Σ' as follows: for any p-nilpotent scheme S, let $\Sigma'(S)$ be the category of pairs (M,ξ) , where M is an admissible W_S -module and $\xi : M \to W_S$ is a primitive W_S -morphism.

One checks⁴ that Σ' is algebraic over⁵ the formal stack $\hat{\mathbb{A}}^1/\mathbb{G}_m$. The morphism $\Sigma' \to$ $\hat{\mathbb{A}}^1/\mathbb{G}_m$ takes (M,ξ) to $\bar{\xi}'$, where

$$\bar{\xi}': M' \otimes_{W_S^{(1)}} (W_S^{(1)}/V(W_S^{(2)})) \to W_S^{(1)}/V(W_S^{(2)})$$

is induced by $\xi' : M' \to W_S^{(1)}$.

Sometimes we will write (M, ξ_M) instead of (M, ξ) to avoid conflict of notation with other objects denoted by ξ .

2.1.3. The left fibration $\Sigma' \to (\mathbb{A}^1/\mathbb{G}_m)_-$. Note that $\xi : M \to W_S$ induces a morphism $v_{-}: \mathscr{L} \to \mathcal{O}_{S}$. Thus we get a morphism of c-stacks

(2.2)
$$v_{-}: \Sigma' \to (\mathbb{A}^{1}/\mathbb{G}_{m})_{-},$$

where $(\mathbb{A}^1/\mathbb{G}_m)_-$ is the c-stack whose S-points are invertible \mathcal{O}_S -modules equipped with a morphism to \mathcal{O}_S . The morphism (2.2) is clearly a left fibration in Joyal's sense (see [Lu1, §2.1]). In particular, for any scheme S over $(\mathbb{A}^1/\mathbb{G}_m)_-$, the fiber product of Σ' and S over $(\mathbb{A}^1/\mathbb{G}_m)_-$ is a g-stack.

³Throughout this text, "primitive" means "primitive of degree 1".

⁴One can use diagram (2.12) or Proposition 3.9.1.

⁵Given a morphism of c-stacks $\mathscr{X} \to \mathscr{Y}$, we say that \mathscr{X} is algebraic over \mathscr{Y} if the c-stack $\mathscr{X} \times_{\mathscr{Y}} S$ is algebraic for any morphism $S \to \mathscr{Y}$ with S being a scheme.

2.1.4. The functor $X \mapsto X^{\underline{\mathbb{A}}'}$. By Lemma 3.10.10, if $(M,\xi) \in \Sigma'(S)$ then (M,ξ) is a quasiideal in W_S , so we get a ring stack $\operatorname{Cone}(\xi)$ over S. This construction yields a c-stack over Σ' denoted by $(\mathbb{A}^1)^{\underline{\mathbb{A}}'}$. The morphism $(\mathbb{A}^1)^{\underline{\mathbb{A}}'} \to \Sigma'$ is clearly a left fibration equipped with a ring structure.

Using this ring stack, one defines a functor $X \mapsto X^{\triangle'}$ from the category of *p*-adic schemes to the category of left fibrations over Σ' so that $(\operatorname{Spf} \mathbb{Z}_p)^{\triangle'} = \Sigma'$.

2.1.5. The open substacks $\Sigma_{\pm} \subset \Sigma'$ and $X_{\pm}^{\mathbb{A}} \subset X^{\mathbb{A}'}$. Let $\Sigma_{-}(S)$ be the category of pairs $(M,\xi) \in \Sigma'(S)$ such that the corresponding map $v_{-} : \mathscr{L} \to \mathcal{O}_{S}$ is an isomorphism. In other words, Σ_{-} is the preimage of the open point $\mathbb{G}_{m}/\mathbb{G}_{m} \subset (\mathbb{A}^{1}/\mathbb{G}_{m})_{-}$ with respect to the left fibration (2.2). The substack $\Sigma_{-} \subset \Sigma'$ is clearly open and affine over Σ' . The restriction of the left fibration (2.2) to Σ_{-} is still a left fibration.

Let $\Sigma_+(S)$ be the category of pairs $(M,\xi) \in \Sigma'(S)$ such that M is invertible. One can show that the substack $\Sigma_+ \subset \Sigma'$ is open and affine⁶ over Σ' . The restriction of the left fibration (2.2) to Σ_+ is *not* a left fibration.⁷

It is easy to see that $\Sigma_+ \cap \Sigma_- = \emptyset$.

For any *p*-adic scheme X, let $X_{\pm}^{\mathbb{A}} \subset X^{\mathbb{A}'}$ be the preimages of the open substacks $\Sigma_{\pm} \subset \Sigma'$. One has a tautological isomorphism $X_{\pm}^{\mathbb{A}} \xrightarrow{\sim} X^{\mathbb{A}}$ (in particular, $\Sigma_{\pm} \xrightarrow{\sim} \Sigma$). One also has a canonical isomorphism $X_{-}^{\mathbb{A}} \xrightarrow{\sim} X^{\mathbb{A}}$; in the case $X = \operatorname{Spf} \mathbb{Z}_p$ this is the isomorphism $\Sigma_{-} \xrightarrow{\sim} \Sigma$ given by $(M, \xi) \mapsto (M', \xi')$, where M' and ξ' are as in §2.1.2.

2.1.6. The canonical morphism $F': X^{\triangle'} \to X^{\triangle}$. Recall that X_{-}^{\triangle} is the preimage of the open point $\mathbb{G}_m/\mathbb{G}_m \subset (\mathbb{A}^1/\mathbb{G}_m)_-$ with respect to the canonical left fibration $X^{\triangle'} \to (\mathbb{A}^1/\mathbb{G}_m)_-$. The open point $\mathbb{G}_m/\mathbb{G}_m \subset (\mathbb{A}^1/\mathbb{G}_m)_-$ is the final object of $(\mathbb{A}^1/\mathbb{G}_m)_-$, so we get a canonical morphism

(2.3)
$$F': X^{\underline{\mathbb{A}}'} \to X^{\underline{\mathbb{A}}}_{-} = X^{\underline{\mathbb{A}}},$$

whose restriction to $X_{-}^{\mathbb{A}}$ equals the identity. It is easy to check that the restriction of (2.3) to $X_{+}^{\mathbb{A}}$ equals $F : X^{\mathbb{A}} \to X^{\mathbb{A}}$. Thus $F' : X^{\mathbb{A}'} \to X^{\mathbb{A}}$ is a kind of "interpolation" between $F : X^{\mathbb{A}} \to X^{\mathbb{A}}$ and $\mathrm{id} : X^{\mathbb{A}} \to X^{\mathbb{A}}$.

Note that in the particular case $X = \operatorname{Spf} \mathbb{Z}_p$ we get a canonical morphism

(2.4)
$$F': \Sigma' \to \Sigma_{-} = \Sigma.$$

2.2. Very refined prismatization. Define Σ'' by gluing Σ_+ with Σ_- (then we get many new morphisms). For any *p*-adic scheme *X*, define $X^{\triangle''}$ by gluing X^{\triangle}_+ with X^{\triangle}_- ; thus we get a functor from the category of *p*-adic schemes to the category of left fibrations over Σ'' .

2.3. Gauges and *F*-gauges.

⁶See Lemma 3.12.2(ii).

⁷Combining §2.8.3(i) and §2.8.2(i), we get a property of Σ_+ , which is in some sense opposite to being a left fibration.

2.3.1. \mathcal{O} -modules on c-stacks. By an \mathcal{O} -module on a c-stack \mathscr{Y} we mean a compatible collection of contravariant functors $\mathscr{Y}(S) \to \{\mathcal{O}_S \text{-modules}\}$. This is because the \mathcal{O} -modules we care about come from cohomology (which is a contravariant functor).

2.3.2. Definitions. For a *p*-scheme X, define an effective gauge (resp. an effective *F*-gauge) on X to be an \mathcal{O} -module (or a complex of \mathcal{O} -modules) on $X^{\underline{\mathbb{A}}'}$ (resp. on $X^{\underline{\mathbb{A}}''}$). Thus an effective *F*-gauge is an effective gauge whose restrictions to $X_{\pm}^{\underline{\mathbb{A}}}$ are identified with each other.

To define the general (without effectivity) notions of gauge and F-gauge, replace the cstacks $X^{\underline{\mathbb{A}}'}$ and $X^{\underline{\mathbb{A}}''}$ by the corresponding g-stacks. Using [G, Prop. 3.4.9], one can show that the functors

 $\{\text{effective gauges}\} \rightarrow \{\text{gauges}\}, \quad \{\text{effective } F\text{-gauges}\} \rightarrow \{F\text{-gauges}\}$

are fully faithful.

2.3.3. From gauges to crystals. Recall that a crystal on X is an \mathcal{O} -module on X^{\triangle} .

Restricting a gauge on X to X_{\pm}^{\triangle} , we get crystals N_{\pm} on X. By §2.1.6, in the case of an an effective gauge we also get a canonical morphism $\varphi : F^*N_- \to N_+$. In the case of an effective F-gauge we have $N_+ = N_- = N$, so φ is a morphism $F^*N \to N$, and the pair (N, φ) is an F-crystal.

2.3.4. Comparing with Fontaine-Jannsen. If X is the spectrum of a perfect field k of characteristic p, the definitions from §2.3.2 are equivalent to those from [FJ] (the case $k = \mathbb{F}_p$ is explained in §2.7.2, and arbitrary perfect fields are treated similarly).

2.3.5. Smooth \mathbb{F}_p -schemes. Did somebody⁸ define the notion of *F*-gauge on an arbitrary smooth \mathbb{F}_p -scheme? If yes then one should compare his (or her) definition with the one from 2.3.2. At least, in the case $X = \mathbb{A}^1_{\mathbb{F}_p}$ this should be doable, see §2.7.4.

2.3.6. Nygaard filtration. Given an effective gauge on a p-adic scheme X, one can construct (see §2.8.7 below) the following refinement of the triple (N_+, N_-, φ) from §2.3.3:

(i) a factorization of $\varphi: F^*N_- \to N_+$ as

(2.5)
$$F^*N_- = N_0 \to N_1 \to N_2 \to \dots \to N_+,$$

where N_i 's are \mathcal{O} -modules on $X^{\mathbb{A}}$ and N_+ is the (*p*-completed) direct limit of the N_i 's;

(ii) morphisms $N_{i+1} \to N_i(\Delta_0)$ such that the composite maps

$$N_i \to N_{i+1} \to N_i(\Delta_0), \quad N_{i+1} \to N_i(\Delta_0) \to N_{i+1}(\Delta_0)$$

come from the natural morphism $\mathcal{O}_{\Sigma} \to \mathcal{O}_{\Sigma}(\Delta_0)$.

One can think of data (i)-(ii) either as an increasing filtration on N_+ or as a decreasing "Nygaard filtration"

(2.6)
$$F^*N_- = N_0 \leftarrow N_1(-\Delta_0) \leftarrow N_2(-2\Delta_0) \leftarrow \dots$$

on F^*N_- .

2.4. The divisor $\Delta'_0 \subset \Sigma'$ and the Breuil-Kisin twists.

⁸Ekedahl? Ogus? Kato?

2.4.1. The divisor $\Delta'_0 \subset \Sigma'$. The morphism $v_-: \Sigma' \to (\mathbb{A}^1/\mathbb{G}_m)_-$ can be shown⁹ to be flat. Let $\Delta'_0 \subset \Sigma'$ be the preimage of $\{0\}/\mathbb{G}_m \subset (\mathbb{A}^1/\mathbb{G}_m)_-$; this is an effective Cartier divisor on Σ' . It is easy to see that the isomorphism $\Sigma_+ \xrightarrow{\sim} \Sigma$ induces an isomorphism $\Delta'_0 \cap \Sigma_+ \xrightarrow{\sim} \Delta_0$, where Δ_0 is in [D1, p.4]. This justifies the notation Δ'_0 . By definition, $\Sigma_- = \Sigma' \setminus \Delta'_0$, so $\Delta'_0 \cap \Sigma_- = \emptyset$.

The equality $\Sigma_+ \cap \Sigma_- = \emptyset$ means that Σ_+ is contained in the formal neighborhood of Δ'_0 . Note that $\Sigma_+ \not\subset \Delta'_0$ because $\Sigma_+ \cap \Delta'_0 = \Delta_0 \neq \Sigma_+$ (or because Δ'_0 is a divisor in Σ' , while Σ_+ is open in Σ').

2.4.2. Breuil-Kisin twists. On the g-stack associated to Σ' we have the line bundle $\mathcal{O}_{\Sigma'}(\Delta'_0)$. We claim that $\mathcal{O}_{\Sigma'}(\Delta'_0)$ is an \mathcal{O} -module on the c-stack Σ' itself. Indeed, $\mathcal{O}_{\Sigma'}(\Delta'_0)$ is the pullback of the following \mathcal{O} -module on $(\mathbb{A}^1/\mathbb{G}_m)_-$. Recall that an S-point of $(\mathbb{A}^1/\mathbb{G}_m)_-$ is a line bundle \mathscr{L} on S equipped with a morphism $\mathscr{L} \to \mathcal{O}_S$. The \mathcal{O} -module on $(\mathbb{A}^1/\mathbb{G}_m)_-$ assigns the *inverse* of \mathscr{L} to such an S-point.

Let $\mathcal{O}_{\Sigma}\{-1\}$ be as in [D2]. The pullback of the line bundle $\mathcal{O}_{\Sigma}\{-1\}$ via the morphism $\Sigma' \to \Sigma_{-} = \Sigma$ from §2.1.6 is also an $\mathcal{O}_{\Sigma'}$ -module. Tensoring it by $\mathcal{O}_{\Sigma'}(\Delta'_0)$, we get an $\mathcal{O}_{\Sigma'}$ -module (or equivalently an effective gauge on $\operatorname{Spf} \mathbb{Z}_p$), which we denote by $\mathcal{O}_{\Sigma'}\{-1\}$.

Restricting $\mathcal{O}_{\Sigma'}\{-1\}$ to Σ_+ (resp. Σ_-) one gets $(F^*\mathcal{O}_{\Sigma}\{-1\})(\Delta_0)$ (resp. $\mathcal{O}_{\Sigma}\{-1\})$). So the two restrictions are canonically isomorphic. Therefore $\mathcal{O}_{\Sigma'}\{-1\}$ canonically descends to an $\mathcal{O}_{\Sigma''}$ -module (or equivalently, an effective *F*-gauge on Spf \mathbb{Z}_p), which we denote by $\mathcal{O}_{\Sigma''}\{-1\}$.

For any non-negative $n \in \mathbb{Z}$ we set $\mathcal{O}_{\Sigma'}\{-n\} := (\mathcal{O}_{\Sigma'}\{-1\})^{\otimes n}, \mathcal{O}_{\Sigma''}\{-n\} := (\mathcal{O}_{\Sigma''}\{-1\})^{\otimes n}$.

2.5. More about Δ'_0 .

2.5.1. Why Δ'_0 is important. It seems that Δ'_0 is related to the "Hodge to Hodge-Tate" spectral sequence, see §2.6.3-2.6.4 below.

2.5.2. The structure on Δ'_0 . It is a c-stack; moreover, one has a left fibration

$$\Delta'_0 \to (\{0\}/\mathbb{G}_m)_- \subset (\mathbb{A}^1/\mathbb{G}_m)_-.$$

Since $(\{0\}/\mathbb{G}_m)_-$ is just the classifying c-stack of the mutiplicative monoid \mathbb{A}^1 , we can rephrase this structure as follows: Δ'_0 is a g-stack over $(\operatorname{Spf} \mathbb{Z}_p)/\mathbb{G}_m$ equipped with an action of $\mathbb{A}^1/\mathbb{G}_m$ (the latter is a monoidal stack over $(\operatorname{Spf} \mathbb{Z}_p)/\mathbb{G}_m$).

2.5.3. An explicit description of Δ'_0 . As explained in §2.5.4 below, Δ'_0 equipped with the above structure canonically identifies with the quotient $(\mathbb{A}^1)^{dR}/\mathbb{G}_m$, where

$$(\mathbb{A}^1)^{\mathrm{dR}} := \mathrm{Cone}(\mathbb{G}_a^{\sharp} \to \mathbb{G}_a) = \mathrm{Cone}(W^{(F)} \to W/VW) = \mathrm{Cone}(W \xrightarrow{p} W).$$

Moreover, the isomorphism

(2.7)
$$\Delta'_0 \xrightarrow{\sim} (\mathbb{A}^1)^{\mathrm{dR}} / \mathbb{G}_m,$$

identifies Δ_0 with $(\mathbb{G}^m)^{\mathrm{dR}}/\mathbb{G}_m = (\mathrm{Spf} \mathbb{Z}_p)/\mathbb{G}_m^{\sharp}$ in the usual way; as far as I understand, the isomorphism (2.7) is uniquely determined by this property combined with the structure from §2.5.2.

The restriction of $F': \Sigma' \to \Sigma$ to Δ'_0 is equal to the composite map $\Delta'_0 \to \operatorname{Spf} \mathbb{Z}_p \xrightarrow{p} \Sigma$.

 $^{^{9}}$ See §2.8.2(iii).

2.5.4. Why $\Delta'_0 = (\mathbb{A}^1)^{\mathrm{dR}}/\mathbb{G}_m$. If $(M,\xi) \in \Delta'_0(S)$ then $\xi : M \to W_S$ factors through M'. By (3.8), any morphism $M' \to W_S$ factors through $V(W_S^{(1)}) \subset W_S$. But in the definition of admissibility (see §2.1.2) we required ξ' to be primitive. So the morphism $M' \to V(W_S^{(1)})$ is an isomorphism. This isomorphism identifies M' with $W_S^{(1)}$. Thus an object $(M,\xi) \in \Delta'_0(S)$ is the same as a pair consisting of a line bundle \mathscr{L} on S and a W_S -module extension of $W_S^{(1)}$ by $\mathscr{L}^{\sharp} = \mathscr{L} \otimes W_S^{(F)}$. The stack of such pairs identifies with $(\mathbb{A}^1)^{\mathrm{dR}}/\mathbb{G}_m$ by Proposition 3.9.1.

2.6. The "Hodge to de Rham" and "Hodge to Hodge-Tate" spectral sequences.

2.6.1. The stacks $\Sigma'_{\overline{dR}}$ and $X^{\overline{dR}}$. Recall that $\Sigma'(S)$ is the category of pairs (M,ξ) , where M is an admissible W_S -module and $\xi : M \to W_S$ is a primitive W_S -morphism. Now define a c-stack $\Sigma'_{\overline{dR}}$ as follows: $\Sigma'_{\overline{dR}}$ is the category of pairs $(M,\xi) \in \Sigma'(S)$ equipped with a splitting $M' \to M$, where M' is as in (2.1). By definition, we have a canonical morphism

(2.8)
$$\Sigma'_{\overline{\mathrm{dR}}} \to \Sigma'$$

It is easy to check that the morphism $\Sigma'_{\overline{dR}} \to (\mathbb{A}^1/\mathbb{G}_m)_-$ is an isomorphism. So the preimage of Σ_- in $\Sigma'_{\overline{dR}}$ equals $\operatorname{Spf} \mathbb{Z}_p$, and therefore we get a canonical morphism

(2.9)
$$\operatorname{Spf} \mathbb{Z}_p \to \Sigma_- = \Sigma$$

It is easy to check that this is the point $p \in \Sigma(\mathbb{Z}_p)$. By the way, the map (2.9) is not a monomorphism, so (2.8) is not a monomorphism.

Recall that for any *p*-adic scheme X, the base change of X^{\triangle} to $\operatorname{Spf} \mathbb{Z}_p$ corresponding to $p \in \Sigma(\mathbb{Z}_p)$ is denoted by X^{dR} ; it is related to the de Rham cohomology of X.

Let $X^{\overline{dR}}$ be the base change of $X^{\underline{A}'}$ to $\Sigma'_{\overline{dR}} = (\mathbb{A}^1/\mathbb{G}_m)_-$. Presumably, it is related to the degeneration of the Rham cohomology to Hodge cohomology, also known as the "Hodge to de Rham" spectral sequence. An alternative name for $X^{\overline{dR}}$ would be X^{HdR} .

Here is a description of the ring stack $(\mathbb{A}^1)^{\overline{dR}}$ over $\Sigma'_{\overline{dR}} = (\mathbb{A}^1/\mathbb{G}_m)_-$. Suppose we are given a morphism $f: S \to (\mathbb{A}^1/\mathbb{G}_m)_-$, i.e., a line bundle \mathscr{L} on S and a map $\mathscr{L} \to \mathcal{O}_S$. Then the f-pullback of $(\mathbb{A}^1)^{\overline{dR}}$ is the ring stack $\operatorname{Cone}(\mathscr{L}^{\sharp} \to (\mathbb{G}_a)_S)$ over S. Here $(\mathbb{G}_a)_S := \mathbb{G}_a \times S$ and \mathscr{L}^{\sharp} is the PD-hull of the zero section in \mathscr{L} .

2.6.2. *Remark.* Recall that Σ_+ is the locus where the W_S -module M is invertible. Comparing this with the definition of $\Sigma'_{\overline{dR}}$, we see that the preimage of Σ_+ in $\Sigma'_{\overline{dR}}$ is empty.

Recall that $\Sigma_{-} = \Sigma' \setminus \Delta'_{0}$. Informally, $\Sigma'_{\overline{dR}}$ is a "kind of complement" to Σ_{+} (except that $\Sigma'_{\overline{dR}}$ is not a *substack* of Σ').

2.6.3. The stacks Σ'_{Hdg} and X^{Hdg} . Let Σ'_{Hdg} be the preimage of Δ'_0 in $\Sigma'_{\overline{\text{dR}}}$. In other words, Σ'_{Hdg} is the preimage of $(\{0\}/\mathbb{G}_m)_-$ with respect to the isomorphism $\Sigma'_{\overline{\text{dR}}} \xrightarrow{\sim} (\mathbb{A}^1/\mathbb{G}_m)_-$. So we have a canonical isomorphism

(2.10)
$$\Sigma'_{\text{Hdg}} \xrightarrow{\sim} (\{0\}/\mathbb{G}_m)_-$$

Let X^{Hdg} be the base change of $X^{\mathbb{A}'}$ to Σ'_{Hdg} . Presumably, it is related to Hodge cohomology. This agrees with the fact that an \mathcal{O} -module on Σ'_{Hdg} is the same as a \mathbb{Z}_+ -graded \mathcal{O} -module on $\text{Spf } \mathbb{Z}_p$ (because $(\{0\}/\mathbb{G}_m)_-$ is just the classifying c-stack of the mutiplicative monoid \mathbb{A}^1).

By definition, we have a canonical map $\Sigma'_{\text{Hdg}} \to \Delta'_0$. On the other hand, we have canonical isomorphisms $\Sigma'_{\text{Hdg}} \xrightarrow{\sim} (\{0\}/\mathbb{G}_m)_-$ and $\Delta'_0 \xrightarrow{\sim} (\mathbb{A}^1)^{dR}/\mathbb{G}_m$, see (2.10) and (2.7). In fact, the map

$$(\{0\}/\mathbb{G}_m)_- = \Sigma'_{\mathrm{Hdg}} \to \Delta'_0 = (\mathbb{A}^1)^{\mathrm{dR}}/\mathbb{G}_m$$

comes from $0 \in (\mathbb{A}^1)^{\mathrm{dR}}(\mathbb{Z}_p)$.

2.6.4. The "Hodge to Hodge-Tate" spectral sequence. Let X^{HHT} be the base change of $X^{\underline{\mathbb{A}}'}$ to $\Delta'_0 \simeq (\mathbb{A}^1)^{\text{dR}}/\mathbb{G}_m$ (presumably, it is related to the "Hodge to Hodge-Tate" spectral sequence). An alternative name for X^{HHT} could be $X^{\overline{\text{HT}}}$.

2.7. The stacks $(\operatorname{Spec} \mathbb{F}_p)^{\mathbb{A}'}$ and $(\mathbb{A}^1_{\mathbb{F}_p})^{\mathbb{A}'}$.

2.7.1. Description of $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ and $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}''}$. A simple argument (see §2.7.3 below) gives the following description of the c-stack $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$: an *S*-point of $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ is a line bundle \mathscr{L} on *S* equipped with morphisms $\mathcal{O}_S \xrightarrow{v_+} \mathscr{L} \xrightarrow{v_-} \mathcal{O}_S$ such that $v_-v_+ = p$. So the g-stack corresponding to $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ is just $(\operatorname{Spf} A)/\mathbb{G}_m$, where *A* is the *p*-adic completion of $\mathbb{Z}_p[v_+, v_-]/(v_+v_- - p)$ and \mathbb{G}_m acts so that deg $v_{\pm} = \pm 1$.

The open substack $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}} \subset (\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ is the locus $v_{\pm} \neq 0$; each of these substacks is isomorphic to $\operatorname{Spf} \mathbb{Z}_p$. Gluing together the two copies of $\operatorname{Spf} \mathbb{Z}_p$, one gets the c-stack $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}''}$. The closed substack $(\operatorname{Spec} \mathbb{F}_p)^{\overline{\operatorname{HT}}} \subset (\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ is the locus $v_- = 0$ (which is contained in the locus p = 0).

2.7.2. \mathcal{O} -modules on $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}'}$ and $(\operatorname{Spec} \mathbb{F}_p)^{\underline{\mathbb{A}}''}$. It is clear that a gauge on $\operatorname{Spec} \mathbb{F}_p$ in the sense of §2.3.2 is a graded¹⁰ A-module N, i.e., a gauge (or *p*-gauge) in the sense of [FJ, §1.1]. One can check that effectivity in the sense of §2.3.2 is equivalent to effectivity in the sense of [FJ, §1.1] (i.e., the map $v_- : N_r \to N_{r-1}$ being an isomorphism for all $r \leq 0$). This justifies the definition of effective gauge from §2.3.2.

In our case $X = \operatorname{Spec} \mathbb{F}_p$ the module N_{\pm} from §2.3.3 is the (*p*-completed) direct limit of N_n with respect to the maps $v_{\pm} : N_n \to N_{n\pm 1}$ (so in the effective case $N_- = N_0$). Thus in the case $X = \operatorname{Spec} \mathbb{F}_p$ an *F*-gauge in the sense of §2.3.2 is the same as a φ -gauge in the sense of [FJ, §1.4].

2.7.3. Some details. Let us justify the description of $(\operatorname{Spec} \mathbb{F}_p)^{\mathbb{A}'}$ from §2.7.1.

 $(\operatorname{Spec} \mathbb{F}_p)^{\mathbb{A}'}$ is the equalizer of the two morphisms $\Sigma' = (\operatorname{Spf} \mathbb{Z}_p)^{\mathbb{A}'} \to (\mathbb{A}^1)^{\mathbb{A}'}$ corresponding to $0, p \in \mathbb{A}^1(\mathbb{Z}_p)$. So an S-point of $(\operatorname{Spec} \mathbb{F}_p)^{\mathbb{A}'}$ is an object $(M, \xi) \in \Sigma'(S)$ equipped with a section $\sigma : S \to M$ such that $\xi \circ \sigma : S \to W_S$ equals $p \in W(S)$. Interpret σ as a W_S -morphism $f : W_S \to M$. Then f maps $W_S^{(F)} = (\mathbb{G}_a^{\sharp})_S$ to $\operatorname{Ker}(M \twoheadrightarrow M') = \mathscr{L}^{\sharp}$, so we get a morphism $(\mathbb{G}_a^{\sharp})_S \to \mathscr{L}^{\sharp}$ or equivalently, a morphism $v_+ : \mathcal{O}_S \to \mathscr{L}$. Since $\xi \circ \sigma = p$, we get $v_-v_+ = p$. The map $W_S^{(1)} = W'_S \to M'$ induced by f is an isomorphism, so the extension $0 \to \mathscr{L}^{\sharp} \to M \to M' \to 0$ is the pushforward of the canonical extension $0 \to W_S^{(F)} \to W_S \to W_S^{(1)} \to 0$ via the morphism $W_S^{(F)} = (\mathbb{G}_a^{\sharp})_S \xrightarrow{v_+} \mathscr{L}^{\sharp}$. In other words,

 $^{^{10}}$ The word "graded" is understood in the *p*-complete sense.

 $M = \operatorname{Coker}(W_S^{(F)} \xrightarrow{(v_+, -1)} \mathscr{L}^{\sharp} \oplus W_S), \text{ and } \xi : M \to W_S \text{ comes from the map } \mathscr{L}^{\sharp} \oplus W_S \xrightarrow{(v_-, p)} W_S.$ Recall that if $\mathscr{L} = \mathcal{O}_S$ then $\mathscr{L}^{\sharp} = W_S^{(F)}.$

The above argument can be rephrased in terms of §2.8 as follows: $(\operatorname{Spec} \mathbb{F}_p)^{\mathbb{A}'}$ canonically identifies with the fiber product of Σ'_+ and $(\operatorname{Spec} \mathbb{F}_p)^{\mathbb{A}} = \operatorname{Spf} \mathbb{Z}_p$ over $\Sigma_+ = \Sigma = (\operatorname{Spf} \mathbb{Z}_p)^{\mathbb{A}}$.

2.7.4. \mathcal{O} -modules on $(\mathbb{A}^1_{\mathbb{F}_p})^{\mathbb{A}'}$. We claim that:

(i) in the situation of §2.7.3 one can rewrite $\operatorname{Cone}(M \xrightarrow{\xi} W_S)$ as $\operatorname{Cone}(H \xrightarrow{\alpha} (\mathbb{G}_a)_S)$, where (H, α) is a flat scheme of quasi-ideals in $(\mathbb{G}_a)_S$;

(ii) H and its Cartier dual H^* can be described explicitly, and the description of H^* is very simple (see below);

(iii) the explicit description of H^* allows one to describe effective gauges on the scheme $\mathbb{A}^1_{\mathbb{F}_p}$ (i.e., \mathcal{O} -modules on $(\mathbb{A}^1_{\mathbb{F}_p})^{\underline{\mathbb{A}}'}$) as graded C-modules N satisfying certain conditions¹¹, where C is a concrete noncommutative topological graded algebra over the ring A from §2.7.1; the graded A-algebra C is described below.

Here is an explanation of (i). The morphism $f: W_S \to M$ from §2.7.3 gives a faithfully flat homomorphism from $\operatorname{Cone}(W_S \xrightarrow{p} W_S)$ to $\operatorname{Cone}(M \xrightarrow{\xi} W_S)$. On the other hand, by Proposition 3.4.1, $\operatorname{Cone}(W_S \xrightarrow{p} W_S) = \operatorname{Cone}((\mathbb{G}_a^{\sharp})_S \to (\mathbb{G}_a)_S)$, so we get a faithfully flat homomorphism from $(\mathbb{G}_a)_S$ to $\operatorname{Cone}(W_S \xrightarrow{p} W_S)$. The composite map $(\mathbb{G}_a)_S \to \operatorname{Cone}(M \xrightarrow{\xi} W_S)$ realizes $\operatorname{Cone}(M \xrightarrow{\xi} W_S)$ as $\operatorname{Cone}(H \to (\mathbb{G}_a)_S)$ for some explicit S-flat quasi-ideal Hin $(\mathbb{G}_a)_S$ (see §2.7.5 below for more details).

The graded A-algebra C mentioned in (iii) is as follows. First, consider the A-algebra generated by elements x, D of degree 0 and L of degree -1 with defining relations

$$[D, x] = 1, v_+ \cdot L = D^p, [D, L] = 0, [L, x] = v_- \cdot D^{p-1}.$$

(here x is the coordinate on \mathbb{A}^1). Then complete this algebra with respect to the (2-sided) ideal generated by p and L.

Here is a description of the formal group H^* mentioned in (ii), assuming that $S = \operatorname{Spf} A$ and A is as in in §2.7.1: the coordinate ring of H^* is $A[[D, L]]/(D^p - v_+L)$, and the coproduct Δ in this coordinate ring is given by

$$\Delta(D) = D \otimes 1 + 1 \otimes D, \quad \Delta(L) = L \otimes 1 + 1 \otimes L + v_{-} \cdot \sum_{i=1}^{p-1} \frac{(p-1)!}{i!(p-i)!} L^{i} \otimes L^{p-i}.$$

2.7.5. Computing H and H^* . We assume that S = Spf A, so $\mathscr{L} = \mathcal{O}_S$, $\mathscr{L}^{\sharp} = W_S^{(F)}$. In §2.7.4 we defined a quasi-ideal H in $(\mathbb{G}_a)_S$. One shows straightforwardly that H is the middle cohomology¹² of the complex

$$(2.11) \quad 0 \to W_S^{(F)} \xrightarrow{(v_+,-V)} W_S^{(F)} \oplus W_S^{(F^2)} \xrightarrow{(v_-,F)} W_S^{(F)} \to 0, \quad W_S^{(F^2)} := \operatorname{Ker}(F^2 : W_S \to W_S),$$

¹¹The first condition is that N is p-complete and $N \otimes (\mathbb{Z}/p^r \mathbb{Z})$ is a discrete C-module for every $r \in \mathbb{N}$. The second condition is that the map $v_- : N_r \to N_{r-1}$ is an isomorphism for all $r \leq 0$.

 $^{^{12}}$ The other cohomology groups are zero.

and the canonical homomorphism $H \to (\mathbb{G}_a)_S$ comes from the maps

$$W_S^{(F)} \oplus W_S^{(F^2)} \twoheadrightarrow W_S^{(F^2)} \hookrightarrow W_S \twoheadrightarrow W_S / V(W_S^{(1)}) = (\mathbb{G}_a)_S.$$

So H^* is the middle cohomology of the Cartier dual of (2.11). The latter is very explicit because the Cartier dual of $W_S^{(F^n)}$ is just the formal completion of $W_S/V^n(W_S^{(n)}) = (W_n)_S$.

2.8. The stack Σ'_+ .

2.8.1. What will be constructed. In §2.8.3 we will construct a c-stack Σ'_{+} , and in §2.8.4 we will construct a diagram

(2.12)
$$\Sigma_+ \times (\mathbb{A}^1/\mathbb{G}_m)_- \longleftrightarrow \Sigma'_+ \longrightarrow \tilde{\Sigma}' \longrightarrow \Sigma'.$$

This is a diagram of left fibrations over the c-stack $(\mathbb{A}^1/\mathbb{G}_m)_{-}$, which has the following properties:

(a) the composite maps $\Sigma'_{+} \to \Sigma' \xrightarrow{F'} \Sigma_{-}$ and $\Sigma'_{+} \to \Sigma_{+} \times (\mathbb{A}^{1}/\mathbb{G}_{m})_{-} \to \Sigma_{+} \hookrightarrow \Sigma' \xrightarrow{F'} \Sigma_{-}$ are the same (here F' is the morphism (2.4)); so one can consider (2.12) as a diagram of stacks over Σ_{-} ;

(b) the morphism $\tilde{\Sigma}' \longrightarrow \Sigma'$ is a gerbe banded by $\mathbb{G}_m^{\sharp} = (W^{\times})^{(F)}$; (c) the morphism $\Sigma'_+ \longrightarrow \tilde{\Sigma}'$ is a torsor with respect to a flat group scheme over $\tilde{\Sigma}'$; the group scheme is fpqc-locally isomorphic to $\mathbb{G}_a^{\sharp} \times \tilde{\Sigma}'$;

(d) the morphism $\Sigma'_+ \to \Sigma'$ is an isomorphism over the open substack $\Sigma_+ \subset \Sigma'$;

(e) the morphism $\Sigma'_+ \to \Sigma_+$ is faithfully flat;

(f) the morphism $\Sigma'_+ \to (\mathbb{A}^1/\mathbb{G}_m)_-$ is faithfully flat; (g) the morphism $\Sigma'_+ \to \Sigma_+ \times (\mathbb{A}^1/\mathbb{G}_m)_-$ is not flat but very easy to understand.

2.8.2. Corollaries. (i) By §2.8.1(b-c), the morphisms $\Sigma'_+ \to \tilde{\Sigma}' \to \Sigma'$ are faithfully flat.

(ii) Each of the stacks from (2.12) is faithfully flat over Σ_{-} : this follows from (i) and $\S2.8.1(a,e).$

(iii) Each of the stacks from (2.12) is faithfully flat over $(\mathbb{A}^1/\mathbb{G}_m)_{-}$: this follows from (i) and $\S2.8.1(f)$.

2.8.3. Definition of Σ'_{+} . Here are three equivalent definitions.

(i) $\Sigma'_{+}(S)$ is the category of triples consisting of an object $(M, \xi_M) \in \Sigma'(S)$, an object $(P,\xi_P) \in \Sigma_+(S)$, and a morphism $(P,\xi_P) \to (M,\xi_M)$.

(ii) An object of $\Sigma'_+(S)$ is an object $(P,\xi_P) \in \Sigma_+(S)$ with an additional piece of data. To define it, note that ξ_P gives rise to a line bundle $\mathscr{L}_P := P/V(P')$ and a morphism $\xi_P: \mathscr{L}_P \to \mathcal{O}_S$. The additional piece of data is a factorization of ξ_P as

(2.13)
$$\mathscr{L}_P \xrightarrow{v_+} \mathscr{L} \xrightarrow{v_-} \mathcal{O}_S$$

for some line bundle \mathscr{L} .

(iii) An object of $\Sigma'_{+}(S)$ consists of an object $(M, \xi_M) \in \Sigma'(S)$, an invertible W_S -module P, and a morphism $P \to M$ inducing an isomorphism $P' \xrightarrow{\sim} M'$.

2.8.4. Construction of diagram (2.12). All the arrows are forgetful maps. Here are more details.

Think of Σ'_+ in terms of §2.8.3(ii). Then the morphism $\Sigma'_+ \to \Sigma_+ \times (\mathbb{A}^1/\mathbb{G}_m)_-$ forgets the map $\mathscr{L}_P \to \mathscr{L}$ (but remembers \mathscr{L} and the map $\mathscr{L} \to \mathcal{O}_S$).

Define $\tilde{\Sigma}'(S)$ as follows: an object of $\tilde{\Sigma}'(S)$ consists of an object $(M, \xi_M) \in \Sigma'(S)$, an invertible W_S -module P, and an isomorphism $P' \xrightarrow{\sim} M'$. The map $\tilde{\Sigma}' \longrightarrow \Sigma'$ is clear. The map $\Sigma'_+ \longrightarrow \tilde{\Sigma}'$ is also clear if one thinks of Σ'_+ in terms of §2.8.3(iii).

2.8.5. The open substacks $\Sigma_{++}, \Sigma_{+-} \subset \Sigma'_{+}$. Let $\Sigma_{++}, \Sigma_{+-} \subset \Sigma'_{+}$ be the preimages of the open substacks $\Sigma_{+}, \Sigma_{-} \subset \Sigma'$. Then Σ_{++} and Σ_{+-} are disjoint open substacks of Σ'_{+} .

In terms of (2.13), the substack Σ_{++} (resp. Σ_{+-}) is the locus where v_+ (resp. v_-) is invertible. So the morphism $\Sigma'_+ \to \Sigma_+$ (see the left arrow in (2.12)) induces isomorphisms

$$\Sigma_{++} \xrightarrow{\sim} \Sigma_{+} = \Sigma, \quad \Sigma_{+-} \xrightarrow{\sim} \Sigma_{+} = \Sigma.$$

By $\S2.8.1(a)$ and $\S2.1.6$, the composite maps

(2.14)
$$\Sigma = \Sigma_{++} \xrightarrow{\pi_{+}} \Sigma_{+} \xrightarrow{F'} \Sigma_{-} = \Sigma$$

(2.15)
$$\Sigma = \Sigma_{+-} \xrightarrow{\pi_{-}} \Sigma_{-} \xrightarrow{F'} \Sigma_{-} = \Sigma$$

equal $F: \Sigma \to \Sigma$. As already mentioned in §2.8.1(d), π_+ is an isomorphism, so it is not quite necessary to distinguish Σ_{++} from Σ_+ . On the other hand, $F': \Sigma_- \to \Sigma_-$ is the identity, so the map π_- from (2.15) is *not* an isomorphism; in fact, after identifying Σ_{+-} and Σ_- with Σ , it becomes the morphism $F: \Sigma \to \Sigma$.

2.8.6. \mathcal{O} -modules on Σ'_+ and Σ' . Using §2.8.3(ii), one can describe \mathcal{O} -modules on Σ'_+ as graded \mathcal{O} -modules on Σ with an additional structure (this is parallel to §2.7.2). On the other hand, one could try to use §2.8.1(b-c) to describe \mathcal{O} -modules on Σ' as \mathcal{O} -modules on Σ'_+ with an additional structure.

2.8.7. More details on the Nygaard filtration. Let us sketch the construction of data (i)-(ii) from §2.3.6.

For any p-adic scheme X, we have a canonical morphism

(2.16)
$$X^{\mathbb{A}}_+ \times_{\Sigma_+} \Sigma'_+ \to X^{\mathbb{A}}$$

of left fibrations over Σ'_+ ; this morphism is tautological if you think of Σ'_+ in terms of §2.8.3(i).

Now suppose we are given an effective gauge on X, i.e., an \mathcal{O} -module on $X^{\triangle'}$. Let N'_+ be its pullback via (2.16). Using the explicit description of the morphism $\Sigma'_+ \to \Sigma_+$ that comes from §2.8.3(ii), one interprets N'_+ as data (i)-(ii) from §2.3.6. More precisely, $N_i = q_*N'_+(i \cdot \mathfrak{D}_+)$ and $N_i(-i \cdot \Delta_0) = q_*N'_+(-i \cdot \mathfrak{D}_-)$, where N_i is as in §2.3.6, q is the map $X^{\triangle}_+ \times_{\Sigma_+} \Sigma'_+ \to X^{\triangle}_+ = X^{\triangle}$, and $\mathfrak{D}_{\pm} \subset \Sigma'_+$ is the effective divisor $v_{\pm} = 0$; here v_{\pm} is as in (2.13).

3. W_S -modules

In most of this section we work with arbitrary schemes (rather than schemes over $\mathbb{Z}_{(p)}$ or \mathbb{Z}_p).

3.1. The group scheme \mathbb{G}_a^{\sharp} .

3.1.1. Definition of \mathbb{G}_a^{\sharp} . Let $\mathbb{G}_a^{\sharp} := \operatorname{Spec} A$, where $A \subset \mathbb{Q}[x]$ is the subring generated by the elements

$$u_n := x^{p^n} / p^{\frac{p^n - 1}{p - 1}}, \quad n \ge 0.$$

It is easy to see that the ideal of relations between the u_n 's is generated by the relations $u_n^p = pu_{n+1}$.

Since $p^{\frac{p^n-1}{p-1}} \in (p^n)! \cdot \mathbb{Z}_p^{\times}$, there is a unique homomorphism $\Delta : A \to A \otimes A$ such that $\Delta(x) = x \otimes 1 + 1 \otimes x$. The pair (A, Δ) is a Hopf algebra over \mathbb{Z} . So \mathbb{G}_a^{\sharp} is a group scheme over \mathbb{Z} .

3.1.2. *Remarks.* (i) $\mathbb{G}_a^{\sharp} \otimes \mathbb{Z}_{(p)}$ is just the PD-hull of zero in $\mathbb{G}_a \otimes \mathbb{Z}_{(p)}$.

(ii) The embedding $\mathbb{Z}[x] \hookrightarrow A$ induces a morphism of group schemes

(iii) The morphism (3.1) induces an isomorphism $\mathbb{G}_a^{\sharp} \otimes \mathbb{Q} \to \mathbb{G}_a \otimes \mathbb{Q}$.

Lemma 3.1.3. Let $u_n \in A$ be as in §3.1.1. If n > 0 then $\Delta(u_n) - u_n \otimes 1 - 1 \otimes u_n$ is not divisible by any prime.

Proof. As a \mathbb{Z} -module, A has a basis formed by elements of the form $\prod_{i} u_i^{a_i}$, where $0 \le a_i < p$

and almost all numbers a_i are zero. The coefficient of $u_0 \otimes \prod_{i=0}^{n-1} u_i^{p-1}$ in $\Delta(u_n)$ equals 1. \Box

3.1.4. \mathbb{G}_{a}^{\sharp} as a quasi-ideal in \mathbb{G}_{a} . There is a unique action of the ring scheme \mathbb{G}_{a} on \mathbb{G}_{a}^{\sharp} inducing the usual action of $\mathbb{G}_{a} \otimes \mathbb{Q}$ on $\mathbb{G}_{a}^{\sharp} \otimes \mathbb{Q} = \mathbb{G}_{a} \otimes \mathbb{Q}$. Thus \mathbb{G}_{a}^{\sharp} is a \mathbb{G}_{a} -module. Moreover, the morphism (3.1) makes \mathbb{G}_{a}^{\sharp} into a quasi-ideal in \mathbb{G}_{a} .

3.1.5. $W^{(F)}$ as a quasi-ideal in \mathbb{G}_a . Let W be the ring scheme over \mathbb{Z} formed by p-typical Witt vectors. Let $W^{(F)} := \operatorname{Ker}(F : W \to W)$. The action of W on $W^{(F)}$ factors through $W/VW = \mathbb{G}_a$. The composite map

$$W^{(F)} \hookrightarrow W \twoheadrightarrow W/VW = \mathbb{G}_a$$

is a morphism of \mathbb{G}_a -modules, which makes \mathbb{G}_a^{\sharp} into a quasi-ideal in \mathbb{G}_a .

Lemma 3.1.6. \mathbb{G}_a^{\sharp} and $W^{(F)}$ are isomorphic as quasi-ideals in \mathbb{G}_a . Such an isomorphism is unique.

Proof. Uniqueness is clear. To construct the isomorphism, $\mathbb{G}_a^{\sharp} \xrightarrow{\sim} W^{(F)}$, we will use the approach to W developed by Joyal [J85] (an exposition of this approach can be found in [B16] and [BG, §1]).

Let B be the coordinate ring of W. Let $F^* : B \to B$ be the homomorphism corresponding to $F : W \to W$. The map $W \otimes \mathbb{F}_p \to W \otimes \mathbb{F}_p$ induced by F is the usual Frobenius, so there is a map $\delta : B \to B$ such that $F^*(b) = b^p + p\delta(b)$ for all $b \in B$ (of course, the map δ is neither additive nor multiplicative). The pair (B, δ) is a δ -ring in the sense of [J85]. The main theorem of [J85] says that *B* is the *free* δ -ring on y_0 , where $y_0 \in B$ corresponds to the canonical homomorphism $W \to W/VW = \mathbb{G}_a$. This means that as a ring, *B* is freely generated by the elements $y_n := \delta^n(y_0), n \geq 0$. We have $F^*(y_n) = y_n^p + py_{n+1}$. The closed subscheme

$$\{0\} \subset W = \operatorname{Spec} B$$

identifies with Spec $B/(y_0, y_1, \ldots)$. This implies that the closed subscheme $W^{(F)} \subset W$ identifies with Spec(B/I), where the ideal $I \subset B$ is generated by $y_n^p + py_{n+1}$, $n \geq 0$. On the other hand, B/I identifies with the ring A from §3.1.1 via the epimorphism $B \twoheadrightarrow A$ that takes y_n to $(-1)^n u_n$.

3.2. The group schemes W^{\times} and $(W^{\times})^{(F)}$.

Lemma 3.2.1. Let R be a ring in which p is nilpotent. Then

(i) a Witt vector $\alpha \in W(R)$ is invertible if and only if its 0th component is;

(ii) $\alpha \in W(R)$ is invertible if and only if $F(\alpha)$ is.

Proof. The ideal $\operatorname{Ker}(W(R) \to W(R/pR))$ is nilpotent. So we can assume that R is an \mathbb{F}_p -algebra.

To prove (i), it suffices to show that for any $x \in W(R)$ one has $1 + Vx \in W(R)^{\times}$. Indeed, since VF = FV = p we have $(Vx)^n = p^{n-1}V(x^n) = V^n(F^{n-1}x)$, so Vx is topologically nilpotent.

Statement (ii) follows from (i) because $F: W \otimes \mathbb{F}_p \to W \otimes \mathbb{F}_p$ is the usual Frobenius. \Box

Remark 3.2.2. For any ring R one can show by induction that an element of $W_n(R)$ is invertible if and only if all of its ghost components are.

3.2.3. The group scheme $(W^{\times})^{(F)}$. Let

$$(W^{\times})^{(F)} := \operatorname{Ker}(F : W^{\times} \to W^{\times}),$$

where W^{\times} is the multiplicative group of the ring scheme W. Then $(W^{\times})^{(F)}$ identifies with the multiplicative group of the non-unital ring scheme¹³ $W^{(F)}$.

On the other hand, let \mathbb{G}_m^{\sharp} be the multiplicative group of the non-unital ring scheme \mathbb{G}_a^{\sharp} (the ring structure on \mathbb{G}_a^{\sharp} comes from the quasi-ideal structure described in §3.1.4). Note that $\mathbb{G}_m^{\sharp} \otimes \mathbb{Z}_{(p)}$ is the PD-hull of 1 in $\mathbb{G}_m \otimes \mathbb{Z}_{(p)}$.

Lemma 3.1.6 provides an isomorphism $\mathbb{G}_a^{\sharp} \xrightarrow{\sim} W^{(F)}$. It is an isomorphism between quasiideals in \mathbb{G}_a and therefore a ring homomorphism. So it induces an isomorphism of group schemes

$$(3.2) (W^{\times})^{(F)} \xrightarrow{\sim} \mathbb{G}_m^{\sharp}.$$

3.3. Faithful flatness of $F: W \to W$ and $F: W^{\times} \to W^{\times}$. Joyal's description of W (see the proof of Lemma 3.1.6) shows that the morphism $F: W \to W$ is faithfully flat.

Here is another proof. It suffices to check faithful flatness of $F: W_{n+1} \to W_n$ for each n. This reduces to proving faithful flatness of the two maps

$$F: W_{n+1} \otimes \mathbb{Z}[1/p] \to W_n \otimes \mathbb{Z}[1/p], \quad F: W_{n+1} \otimes \mathbb{F}_p \to W_n \otimes \mathbb{F}_p$$

¹³By definition, the multiplicative group of a non-unital ring A is $\text{Ker}(\tilde{A}^{\times} \to \mathbb{Z}^{\times})$, where $\tilde{A} := \mathbb{Z} \oplus A$ is the ring obtained by formally adding the unit to A.

The first map can be treated using ghost components. The second map is just the composite of the projection $W_{n+1} \otimes \mathbb{F}_p \to W_n \otimes \mathbb{F}_p$ and the usual Frobenius.

The same argument proves faithful flatness of $F: W^{\times} \to W^{\times}$.

3.4. The Picard stack $\operatorname{Cone}(\mathbb{G}_a^{\sharp} \to \mathbb{G}_a)$ in terms of W.

Proposition 3.4.1. One has a canonical isomorphism of Picard stacks over \mathbb{Z}

$$\operatorname{Cone}(\mathbb{G}_a^{\sharp} \to \mathbb{G}_a) \xrightarrow{\sim} \operatorname{Cone}(W \xrightarrow{p} W)$$

Proof. By Lemma 3.1.6, $\operatorname{Cone}(\mathbb{G}_a^{\sharp} \to \mathbb{G}_a) = \operatorname{Cone}(W^{(F)} \to W/VW)$. We have

$$\operatorname{Cone}(W^{(F)} \to W/VW) = \operatorname{Cone}(VW \to W/W^{(F)}) = \operatorname{Cone}(VW \xrightarrow{F} W),$$

where the second equality follows from §3.3. But $\operatorname{Cone}(VW \xrightarrow{F} W) = \operatorname{Cone}(W \xrightarrow{FV} W)$ and FV = p.

3.5. Generalities on W_S -modules. Let $W_S := W \times S$; this is a ring scheme over S. By a W_S -module we mean a commutative affine group scheme over S equipped with an action of the ring scheme W_S .

3.5.1. Hom_W and <u>Hom_W</u>. If M and N are W_S -modules we write Hom_W(M, N) for the group of all W_S -morphisms $M \to N$.

Let \mathcal{A} be the category of fpqc-sheaves of abelian groups on the category of S-schemes. Sometimes it is convenient to embed the category of W_S -modules into the bigger category of objects of \mathcal{A} equipped with a W_S -action. Given W_S -modules M and N, one defines an object $\operatorname{Hom}_W(M, N)$ in the bigger category; namely, $\operatorname{Hom}_W(M, N)$ is the contravariant functor

$$S' \mapsto \operatorname{Hom}_W(M \times_S S', N \times_S S').$$

In some important cases this functor turns out to be representable; then $\underline{\text{Hom}}_W(M, N)$ is a W_S -module.

3.5.2. The functor $M \mapsto M^{(n)}$. Let $n \in \mathbb{Z}$, $n \geq 0$. Let M be a W_S -module. Precomposing the action of W_S on M with $F^n : W_S \to W_S$, we get a new W_S -module structure on the group scheme underlying M; the new W_S -module will be denoted by $M^{(n)}$.

3.6. Examples of W_S -modules. Define W_S -modules $(\mathbb{G}_a)_S$ and $(\mathbb{G}_a^{\sharp})_S$ as follows:

$$(\mathbb{G}_a)_S := \mathbb{G}_a \times S, \quad (\mathbb{G}_a^\sharp)_S := \mathbb{G}_a^\sharp \times S,$$

where the ring scheme W acts on \mathbb{G}_a via the canonical ring epimorphism $W \to W/VW = \mathbb{G}_a$. Applying §3.5.2 to the W_S -modules W_S and $(\mathbb{G}_a)_S$, we get W_S -modules $W_S^{(n)}$ and $(\mathbb{G}_a)_S^{(n)}$ for each integer $n \ge 0$.

We have a W_S -module homomorphism $F : W_S \to W_S^{(1)}$, which is a faithfully flat map by §3.3. Its kernel is denoted by $W_S^{(F)}$. By Lemma 3.1.6, we have a canonical isomorphism $W_S^{(F)} \xrightarrow{\sim} (\mathbb{G}_a^{\sharp})_S$.

In addition to the exact sequence

$$(3.3) 0 \to W_S^{(F)} \to W_S \xrightarrow{F} W_S^{(1)} \to 0$$

we have the exact sequence

(3.4)
$$0 \to W_S^{(1)} \xrightarrow{V} W_S \to (\mathbb{G}_a)_S \to 0$$

3.7. Duality between exact sequences (3.3) and (3.4). The goal of this subsection is to prove Proposition 3.7.3.

Lemma 3.7.1. (i) If n > 0 then $\operatorname{Hom}_W(W_S^{(F)}, (\mathbb{G}_a)_S^{(n)}) = 0.$ (ii) The W_S -module morphisms $W_S^{(F)} \hookrightarrow W_S \twoheadrightarrow (\mathbb{G}_a)_S$ induce an isomorphism

$$H^0(S, \mathcal{O}_S) = \operatorname{Hom}_W((\mathbb{G}_a)_S, (\mathbb{G}_a)_S) \xrightarrow{\sim} \operatorname{Hom}_W(W_S^{(F)}, (\mathbb{G}_a)_S).$$

Proof. By Lemma 3.1.6, we can replace $W_S^{(F)}$ by $(\mathbb{G}_a^{\sharp})_S$. We can assume that S is affine, $S = \operatorname{Spec} R$. Let A and u_n be as in §3.1.1. Recall that $(\mathbb{G}_a^{\sharp})_S = \operatorname{Spec}(A \otimes R)$.

Let $f \in \text{Hom}_W(W_S^{(F)}, (\mathbb{G}_a)_S^{(n)})$. Since f commutes with the action of Teichmüller elements of the Witt ring, we see that the function $f \in A \otimes R$ is homogeneous of degree p^n . So $f = cu_n$ for some $c \in R$. If n > 0 then c = 0 by Lemma 3.1.3.

Lemma 3.7.2. (i) The multiplication pairing

$$(3.5) W_S \times W_S \to W_S$$

kills $W_S^{(F)} \times V(W_S^{(1)}) \subset W_S \times W_S.$

(ii) The kernel of the morphism $W_S \to \underline{\operatorname{Hom}}_W(V(W_S^{(1)}), W_S)$ induced by (3.5) equals $W_S^{(F)}$. (iii) The kernel of the morphism $W_S \to \underline{\operatorname{Hom}}_W(W_S^{(F)}, W_S)$ induced by (3.5) equals $V(W_S^{(1)})$.

Proof. Statement (i) is clear. To prove (ii), use the section V(1) of the S-scheme $V(W_S^{(1)})$. Statement (iii) follows from (i) and the equality

$$\operatorname{Ker}((\mathbb{G}_a)_S \to \underline{\operatorname{Hom}}_W(W_S^{(F)}, W_S^{(F)}) = 0$$

this equality is clear because $W_S^{(F)} = (\mathbb{G}_a^{\sharp})_S$.

By Lemma 3.7.2(i), the pairing (3.5) and the exact sequences (3.3)-(3.4) yield W_S -bilinear pairings

(3.6)
$$W_S^{(1)} \times W_S^{(1)} \to W_S,$$

$$(\mathfrak{G}_a)_S \times W_S^{(F)} \to W_S.$$

The pairing (3.6) is symmetric; in fact, this is just the multiplication $W_S^{(1)} \times W_S^{(1)} \to W_S^{(1)}$ followed by $V: W_S^{(1)} \hookrightarrow W_S$. The pairing (3.7) is the composite

$$(\mathbb{G}_a)_S \times W_S^{(F)} \to W_S^{(F)} \hookrightarrow W_S,$$

where the first map is the action of $(\mathbb{G}_a)_S$ on $W_S^{(F)}$.

Proposition 3.7.3. The pairings (3.6) and (3.7) induce isomorphisms

(3.8)
$$W_S^{(1)} \xrightarrow{\sim} \operatorname{Hom}_W(W_S^{(1)}, W_S),$$

(3.9)
$$W_S^{(F)} \xrightarrow{\sim} \underline{\operatorname{Hom}}_W((\mathbb{G}_a)_S, W_S),$$

(3.10)
$$(\mathbb{G}_a)_S \xrightarrow{\sim} \underline{\operatorname{Hom}}_W(W_S^{(F)}, W_S)$$

Proof. The statements about $\underline{\operatorname{Hom}}_W(W_S^{(1)}, W_S)$ and $\underline{\operatorname{Hom}}_W((\mathbb{G}_a)_S, W_S)$ are easy because $W_S^{(1)}$ and $(\mathbb{G}_a)_S$ appear as *quotients* of W_S . More precisely, they are equivalent to Lemmas 3.7.2(iii) and 3.7.2(iii), respectively.

To prove the statement about $\underline{\operatorname{Hom}}_{W}(W_{S}^{(F)}, W_{S})$, use Lemma 3.7.1 and the filtration

(3.11)
$$W_S \supset V(W_S^{(1)}) \supset V^2(W_S^{(2)}) \supset \dots$$

whose successive quotients are the W_S -modules $(\mathbb{G}_a)_S^{(n)}, n \ge 0$.

3.8. More computations of Hom_W .

Proposition 3.8.1. (i) The action of $(\mathbb{G}_a)_S$ on $W_S^{(F)}$ induces an isomorphism

$$(\mathbb{G}_a)_S \xrightarrow{\sim} \operatorname{\underline{Hom}}_W(W_S^{(F)}, W_S^{(F)}).$$

(ii) $\underline{\operatorname{Hom}}_{W}(W_{S}^{(F)}, W_{S}^{(1)}) = 0.$ (iii) The morphism $F: W_{S} \to W_{S}^{(1)}$ induces isomorphisms

(3.12)
$$\underline{\operatorname{Hom}}_{W}(W_{S}^{(1)}, W_{S}^{(1)}) \xrightarrow{\sim} \underline{\operatorname{Hom}}_{W}(W_{S}, W_{S}^{(1)}) = W_{S}^{(1)},$$

(3.13)
$$\underline{\operatorname{Hom}}_{W}(W_{S}^{(1)}, W_{S}^{(F)}) \xrightarrow{\sim} \operatorname{Ker}(W_{S}^{(F)} \to (\mathbb{G}_{a})_{S}) = \operatorname{Ker}((\mathbb{G}_{a}^{\sharp})_{S} \to (\mathbb{G}_{a})_{S}).$$

Proof. Statement (i) follows from (3.10). Statement (ii) is deduced from Lemma 3.7.1(i) using the filtration (3.11). The isomorphism (3.12) follows from the fact that the W_S -module $W_S^{(1)}$ is killed by $W_S^{(F)} \subset W_S$. The isomorphism (3.13) follows from (3.10).

3.8.2. *Remarks.* (i) Although the map $\mathbb{G}_a^{\sharp} \otimes \mathbb{Z}[1/p] \to \mathbb{G}_a \otimes \mathbb{Z}[1/p]$ is an isomorphism, it is easy to see from §3.1.1 that $\operatorname{Ker}(\mathbb{G}_a^{\sharp} \to \mathbb{G}_a) \neq 0$.

(ii) By Proposition 3.4.1, the r.h.s. of (3.13) can be rewritten as $\operatorname{Ker}(W_S \xrightarrow{p} W_S)$.

3.9. Extensions of $W_S^{(1)}$ by $W_S^{(F)}$. Given W_S -modules M and N, let $\underline{\operatorname{Ex}}_W(M, N)$ denote the Picard stack over S whose S'-points are extensions of $N \times_S S'$ by $M \times_S S'$. The following statement strengthens formula (3.13).

Proposition 3.9.1. One has a canonical isomorphism

(3.14)
$$\underline{\operatorname{Ex}}_{W}(W_{S}^{(1)}, W_{S}^{(F)}) \xrightarrow{\sim} \operatorname{Cone}(W_{S}^{(F)} \to (\mathbb{G}_{a})_{S}) = \operatorname{Cone}((\mathbb{G}_{a}^{\sharp})_{S} \to (\mathbb{G}_{a})_{S}).$$

In particular, the stack $\underline{\mathrm{Ex}}_W(W_S^{(1)}, W_S^{(F)})$ is algebraic.

Proof. Let S' be an S-scheme. Pushing forward the canonical extension

$$(3.15) 0 \to W_{S'}^{(F)} \to W_{S'} \xrightarrow{F} W_{S'}^{(1)} \to 0$$

via a morphism $W_{S'}^{(F)} \to W_{S'}^{(F)}$, one gets a new extension of $W_{S'}^{(1)}$ by $W_{S'}^{(F)}$. Thus one gets an isomorphism $\underline{\operatorname{Ex}}_W(W_S^{(1)}, W_S^{(F)}) \xrightarrow{\sim} \operatorname{Cone}(W_S^{(F)} \to \underline{\operatorname{Hom}}_W(W_S^{(F)}, W_S^{(F)}))$. By Proposition 3.8.1(i), the canonical map $(\mathbb{G}_a)_S \to \underline{\operatorname{Hom}}_W(W_S^{(F)}, W_S^{(F)})$ is an isomorphism. \Box

Combining Propositions 3.9.1 and 3.4.1, we get a canonical isomorphism

(3.16)
$$\underline{\operatorname{Ex}}_{W}(W_{S}^{(1)}, W_{S}^{(F)}) \xrightarrow{\sim} \operatorname{Cone}(W_{S} \xrightarrow{p} W_{S})$$

We will also give its direct construction (see §3.9.4 below). It is based on the following

н		
L		

Lemma 3.9.2. For every scheme S, every exact sequence $0 \to W_S^{(F)} \xrightarrow{i} M \xrightarrow{\pi} W_S^{(1)} \to 0$ Zariski-locally on S admits a rigidification of the following type: a W_S -morphism

 $r: M \to W_S$

such that $r|_{W_{c}^{(F)}} = \text{id.}$ All such rigidifications form a torsor over $\underline{\operatorname{Hom}}_{W}(W_{S}^{(1)}, W_{S}) \simeq W_{S}^{(1)}$.

Proof. The lemma is a consequence of the following fact, which can be easily deduced from Proposition 3.8.1(i): every extension of $W_S^{(1)}$ by W_S splits Zariski-locally on S.

Here is a slightly more direct proof. We already know that $\underline{\operatorname{Hom}}_W(W_S^{(1)}, W_S) \simeq W_S^{(1)}$, see (3.8). Since every $W_S^{(1)}$ -torsor is Zariski-locally trivial, it suffices to prove that r exists fpqc-locally. So we can assume that there exists a W_S -morphism $\sigma : W_S \to M$ such that $\pi \circ \sigma = F$. A choice of σ realizes our exact sequence as a pushforward of the canonical exact sequence

$$(3.17) 0 \to W_S^{(F)} \to W_S \xrightarrow{F} W_S^{(1)} \to 0$$

via some $h: W_S^{(F)} \to W_S^{(F)}$. Constructing r is equivalent to extending h to a morphism $W_S \to W_S$. This is possible by Proposition 3.8.1(i).

Corollary 3.9.3. Every extension of $W_S^{(1)}$ by $W_S^{(F)}$ can be Zariski-locally on S obtained as a pullback of (3.17) via some $\zeta \in \operatorname{End}_W(W_S^{(F)})$.

3.9.4. Direct construction of (3.16). By Lemma 3.9.2 and Corollary 3.9.3,

$$\underline{\operatorname{Ex}}_W(W_S^{(1)}, W_S^{(F)}) = \operatorname{Cone}(\underline{\operatorname{Hom}}_W(W_S^{(1)}, W_S) \xrightarrow{g} \underline{\operatorname{Hom}}_W(W_S^{(1)}, W_S^{(1)})),$$

where the map g comes from $F: W_S \to W_S^{(1)}$. Using (3.8), (3.12), and the formula FV = p, one identifies g with the map $W_S^{(1)} \xrightarrow{p} W_S^{(1)}$.

3.10. Admissible W_S -modules.

Definition 3.10.1. A W_S -module is said to be *invertible* if it is locally isomorphic to W_S .

Remark 3.10.2. In the above definition the word "locally" can be understood in either Zariski or fpqc sense (the W^* -torsors are the same).

3.10.3. Notation. Let \mathscr{L} be a line bundle on S. Then \mathscr{L} is a module over the ring scheme $(\mathbb{G}_a)_S$, and we set

$$\mathscr{L}^{\sharp} := \mathscr{L} \otimes_{(\mathbb{G}_a)_S} W_S^{(F)} = \mathscr{L} \otimes_{(\mathbb{G}_a)_S} (\mathbb{G}_a^{\sharp})_S.$$

If S is a $\mathbb{Z}_{(p)}$ -scheme then \mathscr{L}^{\sharp} is the PD-hull of the group scheme \mathscr{L} along its zero section.

Lemma 3.10.4. (i) The functor $M \mapsto M^{(1)}$ from §3.5.2 induces an equivalence between the category of invertible W_S -modules and the category of W_S -modules locally isomorphic to $W_S^{(1)}$.

(ii) The functor $\mathscr{L} \mapsto \mathscr{L}^{\sharp}$ induces an equivalence between the category of line bundles \mathscr{L} on S and the category of W_S -modules locally isomorphic to $W_S^{(F)}$. The inverse functor is $M \mapsto \operatorname{Hom}_W(W_S^{(F)}, M).$

Proof. Statement (i) follows from (3.12). Statement (ii) follows from Proposition 3.8.1(i). \Box

3.10.5. Remark. Similarly to Remark 3.10.2, in the above lemma the word "locally" can be understood in either Zariski or fpqc sense.

Definition 3.10.6. A W_S -module M is said to be *admissible* if there exists an exact sequence of W_S -modules

$$(3.18) 0 \to M_0 \to M \to M' \to 0,$$

where M_0 is locally isomorphic to $W_S^{(F)}$ and M' is locally isomorphic to $W_S^{(1)}$.

Lemma 3.10.7. The exact sequence (3.18) is essentially unique if it exists. Moreover, it is functorial in M.

Proof. Follows from Proposition 3.8.1(ii)

3.10.8. Remarks. (i) By the previous lemma, admissibility of a W_S -module is a local property.

(ii) By Lemma 3.10.4(ii), the exact sequence (3.18) can be rewritten as

$$(3.19) 0 \to \mathscr{L}^{\sharp} \to M \to M' \to 0,$$

where \mathscr{L} is a line bundle on S. Here $\mathscr{L} = \mathscr{L}_M := \underline{\operatorname{Hom}}_W(W_S^{(F)}, M_0) = \underline{\operatorname{Hom}}_W(W_S^{(F)}, M).$

(iii) The exact sequence (3.3) shows that any invertible W_s -module M is admissible. In this case

$$(3.20) M' = M \otimes W_S^{(1)}$$

and $\mathscr{L} = M \otimes (\mathbb{G}_a)_S$. Formula (3.20) can be rewritten in the spirit of Lemma 3.10.4(i) as $M' = N^{(1)}$, where $N = M \otimes_{W_S, F} W_S$.

(iv) If S is a $\mathbb{Z}[p^{-1}]$ -scheme then all admissible W_S -modules are invertible because for every open $S' \subset S$ one has $\underline{\operatorname{Ex}}_W(W_{S'}^{(1)}, W_{S'}^{(F)}) = 0$ by (3.14) or (3.16). (v) Let $S = \operatorname{Spec} k$, where k is a field of characteristic p. Then the admissible W_S -module

 $W_S^{(F)} \oplus W_S^{(1)}$ is not invertible because $W_S^{(F)}$ is not reduced as a scheme.

Lemma 3.10.9. Let M be an admissible W_S -module. Then (3.18) induces an exact sequence $0 \to \operatorname{Hom}_W(M', W_S) \to \operatorname{Hom}_W(M, W_S) \to \operatorname{Hom}_W(M_0, W_S) \to 0.$

Proof. This is a reformulation of Lemma 3.9.2.

Lemma 3.10.10. Let M be an admissible W_S -module and $\xi : M \to W_S$ a W_S -morphism. Then (M,ξ) is a quasi-ideal in W_S .

Proof. We have to show that for every S-scheme S' one has

(3.21)
$$\xi(\alpha)\beta - \xi(\beta)\alpha = 0 \quad \text{for all } \alpha, \beta \in M(S').$$

We can assume that M is an extension of $W_S^{(1)}$ by $W_S^{(F)}$.

By (3.10), the identity (3.21) holds if α and β are sections of $W_S^{(F)}$. So considering the l.h.s. of (3.21) when α is a section of $W_S^{(F)}$ and β is arbitrary, we get a W_S -bilinear pairing $W_S^{(F)} \times W_S^{(1)} \to W_S$. But all such pairings are zero by (3.12) and Proposition 3.8.1(ii).

Thus the l.h.s. of (3.21) defines a W_S -bilinear pairing $B: W_S^{(1)} \times W_S^{(1)} \to W_S$. It is strongly skew-symmetric (i.e.,the restriction of B to the diagonal is zero). So using the epimorphism $F: W_S \twoheadrightarrow W_S^{(1)}$, we see that B = 0.

3.11. The c-stack Adm and the g-stacks $Adm_{\mathscr{L}}$.

3.11.1. Definition of Adm. For a scheme S, let Adm(S) be the category whose objects are admissible W_S -modules and whose morphisms are those W_S -linear maps $M_1 \to M_2$ that induce an *iso*morphism $M'_1 \xrightarrow{\sim} M'_2$. We have a functor

 $\operatorname{Adm}(S) \to \{ \text{line bundles on } S \}, \quad M \mapsto \mathscr{L}_M,$

where \mathscr{L}_M is as in Remark 3.10.8(ii). This functor is a left fibration in Joyal's sense (see [Lu1, §2.1]); equivalently, it makes $\operatorname{Adm}(S)$ into a category cofibered in groupoids over the category of lines bundles on S.

By Lemma 3.10.7 or Remark 3.10.8(i), the assignment $S \mapsto Adm(S)$ is a c-stack for the fpqc topology (not merely a c-prestack).

3.11.2. Definition of $\operatorname{Adm}_{\mathscr{L}}$. Now fix a scheme S and a line bundle \mathscr{L} on S. Define a gstack $\operatorname{Adm}_{\mathscr{L}}$ over S as follows: for an S-scheme S', let $\operatorname{Adm}_{\mathscr{L}}(S')$ be the groupoid of objects $M \in \operatorname{Adm}(S')$ equipped with an isomorphism $\mathscr{L}_M \xrightarrow{\sim} \mathscr{L} \times_S S'$.

The g-stack $\operatorname{Adm}_{\mathscr{L}}$ depends functorially on \mathscr{L} , and the assignment $\mathscr{L} \mapsto \operatorname{Adm}_{\mathscr{L}}$ commutes with base change $\tilde{S} \to S$. We can think of the c-stack Adm as such collection of g-stacks $\operatorname{Adm}_{\mathscr{L}}$.

Proposition 3.11.3. (i) The c-stack Adm is algebraic.

(ii) The g-stacks $\operatorname{Adm}_{\mathscr{L}}$ are algebraic.

Proof. Statements (i) and (ii) are equivalent. Statement (ii) follows from algebraicity of the stack $\underline{\operatorname{Ex}}_W(W_S^{(1)}, W_S^{(F)})$, see Proposition 3.9.1 or formula (3.16).

3.12. The diagram $\operatorname{Adm}_+ \to \widetilde{\operatorname{Adm}} \to \operatorname{Adm}_-$

3.12.1. The stack Inv. Let Inv(S) be the groupoid of invertible W_S -modules. The g-stack Inv is algebraic: this is just the classifying stack of W^{\times} .

Lemma 3.12.2. (i) If S is p-nilpotent then the functor $\text{Inv}(S) \to \text{Adm}(S)$ is fully faithful. (ii) For every $n \in \mathbb{N}$, the morphism $\text{Inv} \otimes \mathbb{Z}/p^n\mathbb{Z} \to \text{Adm} \otimes \mathbb{Z}/p^n\mathbb{Z}$ is an affine open immersion.

Proof. If R is a ring in which p is nilpotent and $w \in W(R)$ is such that $F(w) \in W(R)^{\times}$ then $w \in W(R)^{\times}$ by Lemma 3.2.1(ii). Statement (i) follows.

To deduce (ii) from (i), we have to show that for any *p*-nilpotent scheme S and any $M \in \operatorname{Adm}(S)$, the corresponding fiber product $S \times_{\operatorname{Adm}}$ Inv is an open subscheme of S which is affine over S. By Corollary 3.9.3, we can assume that M is the extension of $W_S^{(1)}$ by $W_S^{(F)}$ obtained as a pullback of the canonical exact sequence

$$(3.22) 0 \to W_S^{(F)} \to W_S \xrightarrow{F} W_S^{(1)} \to 0$$

via some $\zeta \in \operatorname{End}_W(W_S^{(1)}) = W^{(1)}(S)$. We will show that in this situation

$$(3.23) S \times_{\text{Adm}} \text{Inv} = V(\zeta_0)$$

where ζ_0 is the 0th component of the Witt vector $\zeta \in W^{(1)}(S)$ and $V(\zeta_0) \subset S$ is the open subscheme $\zeta_0 \neq 0$. It suffices to prove (3.23) if ζ_0 is either invertible or zero.

Suppose that ζ_0 is invertible. Then ζ is invertible by Lemma 3.2.1(i). So the ζ -pullback of (3.22) is isomorphic to (3.22). Therefore M is invertible.

It remains to show that if $\zeta_0 = 0$ and S is the spectrum of a perfect field of characteristic p then M is not invertible. Indeed, perfectness implies that ζ is divisible by p, so the ζ -pullback of (3.22) splits by (3.16). But $W_S^{(F)} \oplus W_S^{(1)}$ is not invertible, see Remark 3.10.8(v).

3.12.3. The stacks Adm_+ and Adm_- . Let $\operatorname{Adm}_+(S)$ be the category whose objects are triples (P, M, f), where $P \in \operatorname{Inv}(S)$, $M \in \operatorname{Adm}(S)$, and f is an $\operatorname{Adm}(S)$ -morphism $P \to M$; by a morphism $(P_1, M_1, f_1) \to (P_2, M_2, f_2)$ we mean a pair (g, h), where $g : P_1 \to P_2$ is an isomorphism, $h : M_1 \to M_2$ is an $\operatorname{Adm}(S)$ -morphism, and $hf_1 = f_2g$.

Let $\operatorname{Adm}(S)$ be the category whose objects are triples (P, M, ϕ) , where $P \in \operatorname{Inv}(S), M \in \operatorname{Adm}(S)$, and $\phi: P' \xrightarrow{\sim} M'$ is an isomorphism; by a morphism $(P_1, M_1, \phi_1) \to (P_2, M_2, \phi_2)$ we mean a pair (g, h), where $g: P_1 \to P_2$ is an isomorphism, $h: M_1 \to M_2$ is an $\operatorname{Adm}(S)$ -morphism, and $h'\phi_1 = \phi_2 g'$.

The stacks Adm_+ and Adm are algebraic because Adm and Inv are (see Proposition 3.11.3 and §3.12.1). We have the forgetful morphisms

$$(3.24) \qquad \qquad \operatorname{Adm}_{+} \to \operatorname{Adm} \to \operatorname{Adm}$$

They are left fibrations.

3.12.4. The morphism $\operatorname{Adm}_+ \to \operatorname{Inv.}$ Let $(P, M, f) \in \operatorname{Adm}_+(S)$. Then we have line bundles $\mathscr{L} = \mathscr{L}_M := \operatorname{\underline{Hom}}_W(W^{(F)}, M)$ and $\mathscr{L}_P := P/V(P') \simeq \operatorname{\underline{Hom}}_W(W^{(F)}, P)$. Moreover, f induces a morphism $\varphi : \mathscr{L}_P \to \mathscr{L}$. Note that the exact sequence $0 \to \mathscr{L}^{\sharp} \to M \to M' \to 0$ is just the pushforward of the exact sequence $0 \to \mathscr{L}_P^{\sharp} \to P \to P' \to 0$ with respect to $\varphi^{\sharp} : \mathscr{L}_P^{\sharp} \to \mathscr{L}^{\sharp}$. So we can think of $\operatorname{Adm}_+(S)$ as follows: an object of $\operatorname{Adm}_+(S)$ is a triple $(P, \mathscr{L}, \varphi : \mathscr{L}_P \to \mathscr{L})$, where $P \in \operatorname{Inv}(S)$ and \mathscr{L} is a line bundle on S; a morphism $(P_1, \mathscr{L}_1, \varphi_1) \to (P_2, \mathscr{L}_2, \varphi_2)$ is a pair (g, h), where $g : P_1 \to P_2$ is an isomorphism, $h : \mathscr{L}_1 \to \mathscr{L}_2$ is a morphism, and the corresponding diagram

$$\begin{array}{c} \mathscr{L}_{P_1} \xrightarrow{\varphi_1} \mathscr{L}_1 \\ \downarrow & \qquad \downarrow^h \\ \mathscr{L}_{P_2} \xrightarrow{\varphi_2} \mathscr{L}_2 \end{array}$$

commutes.

Thus the morphism $\operatorname{Adm}_+ \to \operatorname{Inv}$ is very simple. Indeed, one can think of $\varphi : \mathscr{L}_P \to \mathscr{L}$ as a section of the line bundle $\mathscr{N} = \mathscr{L}_P^{\otimes -1} \otimes \mathscr{L}$, so Adm_+ identifies with the product of Inv and the stack whose S-points are line bundles on S equipped with a section.

Proposition 3.12.5. (i) The morphisms (3.24) are faithfully flat.

(ii) The morphism $\operatorname{Adm} \to \operatorname{Adm}$ is a \mathbb{G}_m^{\sharp} -gerbe.

(iii) The morphism $\operatorname{Adm}_+ \to \operatorname{Adm}$ is an *H*-torsor, where *H* is the following group scheme over Adm : an *S*-point of *H* is a quadruple (P, M, ϕ, σ) , where $(P, M, \phi) \in \operatorname{Adm}(S)$ and σ is a section of the group scheme $(\mathscr{L}_P^{\otimes -1} \otimes \mathscr{L}_M)^{\sharp}$.

Proof. Statement (ii) follows from the isomorphism (3.2). Statement (iii) is clear. Statement (i) follows from (ii) and (iii). \Box

References

- [B16] J. Borger, Witt vectors, lambda-rings, and arithmetic jet spaces, Course at the University of Copenhagen, https://maths-people.anu.edu.au/~borger/classes/copenhagen-2016/index.html.
- [BG] J. Borger and L. Gurney, Canonical lifts and δ -structures, arXiv:1905.10495.
- [D1] http://math.uchicago.edu/~drinfeld/Seminar-2019/Spring/The%20stack%20Sigma.pdf
- [D2] http://math.uchicago.edu/~drinfeld/Seminar-2019/Spring/Breuil-Kisin%20twists.pdf
- [D3] V. Drinfeld, On algebraic spaces with an action of \mathbb{G}_m , arXiv:1308.2604.
- [FJ] J.-M. Fontaine and U. Jannsen, Frobenius gauges and a new theory of p-torsion sheaves in characteristic p. I, arXiv:1304.3740.
- [G] D. Gaitsgory, The Atiyah-Bott formula for the cohomology of the moduli space of bundles on a curve, arXiv:1505.02331.
- [Lu1] J. Lurie, *Higher Topos Theory*, Annals of Mathematics Studies, 170, Princeton University Press, Princeton, NJ, 2009.
- [J85] A. Joyal, δ-anneaux et vecteurs de Witt, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), no. 3, 177–182.