
Around the Berthelot theorem

(a) “Scheme” means affine scheme. The category Aff of schemes is closed under
limits and colimits.

“pd scheme” means a scheme equipped with a pd ideal, (S, IS , γ) abbreviated
to S; we set then S̄ = SpecOS/IS and call S a pd-thickening of S̄. The category
of pd schemes Affpd is closed under limits and colimits.

Below we fix a base pd scheme S over Z/pn and an S-scheme X such that the
pd structure on ISOX ⊂ OX is well defined. (Say, X is a S̄-scheme.) Denote by
Xcrys = (X/S)crys the category whose objects are pd thickenings T of X over S (so
T is an S-scheme such that the pd structure on IT + ISOT is well defined). Xcrys

is closed under nonempty limits (i.e., it has nonempty products and equalizers).

(b) Alexander-Cech complexes. We consider presheaves of abelian groups F on
Xcrys, and call them sheaves. They form an abelian category; for any T ∈ Xcrys

the functor F 7→ F(T ) is exact. We have a left exact functor F 7→ Γ(F) =
Γ(Xcrys,F) := limXcrysF and its derived functor RΓ.

For P ∈ Xcrys we denote by FP the sheaf T 7→ F(P × T ); the functor F 7→ FP
is exact. There is an evident map F(P ) → Γ(FP ). Consider the simplicial object
P [·] of Xcrys. We have the cosimplicial sheaf FP [·] and the evident coaugmentation
map F → FP [·] . If we view FP [·] as a complex of sheaves then this is the map
F → H0FP [·] .

Proposition. Suppose P is such that Hom(T, P ) 6= ∅ for every T ∈ Xcrys. Then
(i) FP [·] is a cosimplicial resolution of F .

(ii) The evident map Γ(F)→ H0F(P [·]) is an isomorphism, and the exact func-
tor F 7→ F(P [·]) is RΓ.

(iii) For any T ∈ Xcrys one has F(T )
∼→ RΓ(FT ). Thus F(P [·]) = ΓFP [·] .

Proof. (i) means that F(P [·] × T ) is a resolution of F(T ) for every T ∈ Xcrys.

This comes since the augmented simplicial object P [·] × T/T is contractible; one
constructs a contraction choosing a point in Hom(T, P ). The first claim of (ii) is
straightforward. To check the second one we check that our functor is effaceable. It
is enough to find an injective map F → G such that H>0G(P [·]) = 0. The canonical
map with G = FP satisfies this by (i). Now (iii) follows from (i) and (ii). �

(c) A cosimplicial digression. Recall that one has the Dold-Puppe equivalence
between the category of cosimplicial abelian groups and coconnective complexes of
abelian groups. It assigns to a cosimplicial abelian group A the normalized complex
N(A) whose components N(A)m = ∩Ker(σi : Am → Am−1). If A is a cosimplicial
ring then N(A) is a dg ring with respect to the Alexander-Whitney ∪ product: for
a ∈ N(A)m, b ∈ N(A)n one has a ∪ b := δ(a)τ(b) where τ where δ : [m] ↪→ [m+ n],
τ : [n] ↪→ [m+ n] are the monotone embeddings with images [0,m] and [m,m+ n].
If A is an associative ring then so is N(A); a similar fact about commutativity is
not necessary true.

Definition. A cosimplicial ring A is said to be of shuffle type if the next property
holds: for every monotone embeddings δ : [m] ↪→ [`], τ : [n] ↪→ [`] with m + n > `
one has δ(N(A)m)τ(N(A)n) = 0.

Below E(m, `) is the set of increasing embeddings δ : [m] ↪→ [`] with δ(0) = 0.
Lemma. (i) It is enough to check the condition of the definition for δ ∈ E(m, `),

τ ∈ E(n, `).
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(ii) Suppose A is of shuffle type. If δ : [m] ↪→ [m + n], τ : [n] ↪→ [m + n] are
monotonous embeddings such that δ([m]) ∪ τ([n]) = [m + n] then for a ∈ N(A)m,
b ∈ N(A)n one has δ(a)τ(b) = ±a ∪ b ∈ N(A)m+n ⊂ Am+n with the sign ±
depending on δ and τ . �

Proposition. The restriction of N to the subcategory Shuff of shuffle-type cosim-
plicial rings is an equivalence of categories Shuff

∼→ (dg rings). It identifies the
category of commutative shuffle-type rings with commutative dg rings.

Sketch of a proof. We construct the inverse functor. Let A be a cosimplicial
abelian group and ∪ be a product on N(A); we need to construct a shuffle product
on A such that the corresponding Alexander-Whitney product equals ∪. Recall the
Dold-Puppe decomposition A` = ⊕m,δ∈E(m,`)

δN(A)m where δN(A)m is a copy on

N(A)m embedded into N(A)` via δ. The shuffle product δ(a)τ(b) for a ∈ N(A)m,
b ∈ N(A)n vanishes if δ([m]) ∩ τ([n]) 6= {0}; otherwise it equals ±γ(a ∪ b) where
γ ∈ E(m + n, `) is the embedding with image δ([m]) ∪ τ([n]) and ± is the sign of
the permutation s of [1,m+n] such that γs equals δ on [1,m] and is x 7→ τ(x−m)
on [m+ 1,m+ n]. �

We call the equivalence of the proposition the Dold-Puppe correspondence.

(d) Let R be a commutative ring. Let A be a cosimplicial shuffle-type R-algebra
and N be a commutative dg R-algebra that are identified by the Dold-Puppe corre-
spondence. Then N is generated by N0 = A0 as a dg algebra iff A is generated by
A0 as a cosimplicial algebra. Notice that we have a canonical map of cosimplicial
algebras A0⊗[·] → A, and the latter property means that it is surjective, i.e., SpecA
is a closed subscheme of (SpecA0)[·]. In particular for an S-scheme T we have a
closed simplicial subscheme TΩ

· of T [·] that corresponds to the dg algebra ΩT/S .

Lemma. One has TΩ
0 = T , TΩ

1 is the subscheme of T [1] = T ×S T whose ideal is
the suare of the ideal J of the diagonal. If 2 ∈ OT is invertible then TΩ

· is the largest
simplicial subscheme of T [·] with these properties; if not, one adds extra equations
∂0(ν)∂2(ν) = 0 where ν ∈ J/J2 ⊂ O(TΩ

1 ), ∂i : [1]→ [2] are the face maps. �

(e) We return to the setting of (a). For T ∈ Xcrys its pd de Rham algebra
Ωpd(T/S) is the quotient of Ω(T/S) modulo the relations d(γif) = γi−1(f)df , f ∈
IT . Let T

Ωpd
· be a closed simplicial pd subscheme of T [·] defined by a cosimplicial

ideal J (T [·]) ⊂ O(T [·]) generated by J{2} where J ⊂ O(T × T ) is the (pd) ideal
of the diagonal T ↪→ T × T and J{2} its second divided power (which is the ideal
generated by γ>1(J)). This is a simplicial object of Xcrys.

Lemma. Ωpd(T/S) corresponds to O(T
Ωpd
· ) by Dold-Puppe. �

If F is an O-crystal on Xcrys then the dg Ωpd(T/S) -module N(F(T
Ωpd
· )) equals

Ωpd(T/S) ⊗O(T ) F(T ) as a plain graded Ωpd(T/S) -module; we call it the pd de
Rham complex of T with coefficients in F and denote by Ωpd(T/S,F).

(f) An object P ∈ Xcrys is said to be pd smooth if every closed embedding
P ↪→ T in Xcrys admits left inverse, i.e., P is a retraction of T . For example
every coordinate thickening, i.e., the pd-hull of a closed embedding X ↪→ AI , is pd
smooth. Since every T admits a closed embedding into a coordinate thickening,
pd smooth thickenings are the same as retracts of coordinate thickenings. A pd
smooth P satisfies the condition of the proposition in (b).
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As in (b), for P ∈ Xcrys and a sheaf F we have the cosimplicial sheaf F
P

Ωpd
·

and

the coaugmentation map F → F
P

Ωpd
·

.

Theorem. Suppose P is pd smooth and F is an O-crystal. Then
(i) F

P
Ωpd
·

is a cosimplicial resolution of F .

(ii) One has Ωpd(P/S,F)
∼→ N(ΓF

P
Ωpd
·

)
∼→ RΓ(F

P
Ωpd
·

)
∼→ RΓ(F).

(iii) The resuling quasi-isomorphism RΓ(F)→ ΩF(P ) can be realized, using the

proposition in (b), as the restriction map F(P [·])→ F(P
Ωpd
· ).

Proof. Assume (i). The first isomorphism is F(P
Ωpd
· )

∼→ Γ(F
P

Ωpd
·

) which follows

from the first assertion (iii) of the proposition in (b), the second quasi-isomorphism

Γ(F
P

Ωpd
·

)
∼→ RΓ(F

P
Ωpd
·

) follows from loc. cit, the last isomorphism follows from

(i). Claim (iii) follows, say, from the last assertion in loc. cit.
It remains to prove (i). We want to check that for T ∈ Xcrys the complex

F(P
Ωpd
· × T ) is a resolution of F(T ). Since there is a section of P × T/T , the

map F(T ) → H0F(P
Ωpd
· × T ) is injective. Let P ↪→ P ′ be an embedding of P

into coordinate P ′. Since P is a retract of P ′, the complex F(P
Ωpd
· × T ) is a

direct summand of F(P
′Ωpd
· × T ), and so our claim for P follows from that about

P ′. Replacing P by P ′ we can assume that P is a coordinate thickening. Thus
P is the relative pd-hull of AI × T/T at a section X → AI × T over X ⊂ T .
Extending it to a section s over T and applying the substraction of s automorphism
of AI ×T/T , we can assume that our section is zero. Then P ×T is the product of

pd schemes G]Ia and T where G]a is the pd-hull of Ga at 0. Thus F(P
Ωpd
· × T ) =

O((G]Ia )
Ωpd
· ) ⊗ F(T ) = Ωpd(G]a)⊗I ⊗ F(T )

∼← F(T ), the first equality comes since

F is an O-crystal, the last one since Ωpd(G]a)
∼← Z. �


