
Introduction

V nasto�we$i rabote ne soder�ats�
svedeni�, kotorye mogli by sostavit~
predmet izobreteni� ili otkryti�.

Anon., “Akt �kspertizy”, ok. 1956.†

0.0. This book is an exposition of basic (local and global) aspects of chiral
algebra theory. Chiral algebras have their origin in mathematical physics; they
lie at the heart of conformal field theory1; see [BPZ]. Mathematicians, since the
pioneering work of Borcherds [B1], usually look at them through the formalism
of vertex algebras incorporated into representation theory of infinite-dimensional
algebras. We follow a different approach which tastes more of algebraic geometry
than of representation theory.

In the introduction we outline the principal structures involved and their inter-
relations. More specific information, together with bibliographical comments and
references, can be found in brief introductions to sections.

0.1. Chiral algebras are “quantum” objects. Let us describe first the cor-
responding “classical” objects; we call them coisson algebras (“coisson” may be
considered as an abbreviation for “chiral Poisson” or “compound Poisson”, the
word “compound” being related to the notion of compound tensor category which
we discuss in 0.4). In fact, “coisson algebra” is a new name for a well-known class
of objects. Informally, a coisson algebra is defined by a local Poisson bracket on
a space of classical fields. In the simplest case where “classical field” means “a
function u(x)” a mathematical physicist would define a local Poisson bracket by a
formula like

(0.1.1) {u(x), u(y)} =
n∑

i=1

ϕi(x, u(x), u′(x), . . . )δ(i)(x− y), ϕi ∈ A.

Here A denotes the algebra of functions of x, u, u′, . . . , u(k) (k is not fixed). Of course
in the left-hand side of (0.1.1) u(x) is understood as a functional u 7→ u(x) on the
space of classical fields. The bracket should be skew-symmetric and satisfy the
Jacobi identity, so the collection of functions ϕi should satisfy certain differential
equations. For f ∈ A and every x we have the functional `f,x on the space of

† “This article does not contain any information that could be the subject of an invention or

a discovery.”, Anon., “Expert Certification”, circa 1956. (The signing of this Patriot Act was a
precondition for publication of a mathematical paper in yonder Russia.)

1More precisely, of its purely holomorphic sector which is “holomorphic quantum mechanics”.
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classical fields defined by `f,x(u) = f(x, u(x), u′(x), . . . ). It follows from (0.1.1)
that

(0.1.2) {`f,x, `g,y}(u) =
∑

i

ϕf,g
i (x, u(x), u′(x), . . . )δ(i)(x− y)

for some ϕf,g
i ∈ A. Formula (0.1.2) has a more symmetric version:

(0.1.3) {`f,x, `g,y}(u) =
∑
i,j

∂i
x∂

i
y{ψ

f,g
ij (x, u(x), u′(x), . . . )δ(x− y)}, ψf,g

ij ∈ A.

Of course the ψf,g
ij are not uniquely determined by ϕf,g

i ; we must take into account
the relations

(0.1.4) (∂x + ∂y)(aδ) = (∂xa) · δ, a ∈ A,

where δ = δ(x− y).
Now from the algebraic point of view the primary object is the algebra A rather

than the “space of classical fields”. For instance, one can takeA = C[x, u, u′, u′′, . . . ].
More generally, A can be any commutative differential unital algebra over C[x],
and a “classical field” is a homomorphism of differential unital C[x]-algebras A →
B where B is, e.g., the algebra of C∞-functions of x ∈ R. A choice of a set
of generators and defining relations for the differential C[x]-algebra A identifies
classical fields with collections of functions satisfying certain systems of differential
equations.

Let us try to formulate in terms of A what is a “local Poisson bracket on the
space of classical fields”. A glance at (0.1.4) and the right-hand side of (0.1.3) shows
that such an object is defined by a mapping

(0.1.5) A⊗
C
A→ V

where V is the module over C[∂x, ∂y] generated by the symbols aδ, a ∈ A, with the
defining relations (0.1.4). We prefer another interpretation of V : V is the module
over C[x, y, ∂x, ∂y] generated by the symbols aδ, a ∈ A, with the defining relations
(0.1.4) and also the following ones:

(0.1.6) f(x, y) · (aδ) = (f(x, x)a) · δ, f ∈ C[x, y], a ∈ A.

The mapping (0.1.5) should satisfy certain properties. First of all, it should
be a morphism of C[x, y, ∂x, ∂y]-modules (notice that A ⊗ A is a module over

C
[
x, ∂

∂x

]
⊗ C[x, ∂y] = C[x, y, ∂x, ∂y]). Before discussing the other properties, let

us rewrite (0.1.5) in geometric terms. An algebra A over C[x] is the same as a
quasi-coherent OX -algebra A where X := Spec C[x] is the affine line. Differential
C[x]-algebras correspond to DX-algebras (see 0.2). The DX×X -module correspond-
ing to the C[x, y, ∂x, ∂y]-module V from (0.1.5) is canonically isomorphic to ∆∗A

where ∆:X → X × X is the diagonal embedding. So (0.1.5) is equivalent to a
DX×X -module morphism

(0.1.7) A � A → ∆∗A.

We denote by � the external tensor product, i.e., A � A := p∗1A ⊗ p∗2A where p1

and p2 are the projections X ×X → X.
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Notice that (0.1.7) makes sense for an arbitrary smooth variety X. In 0.6 we
will define a coisson algebra on X as a commutative (= commutative associative
unital) DX -algebra A with a D-module morphism (0.1.7) satisfying certain prop-
erties which actually mean that (0.1.3) is a Poisson bracket on the “space(s) of
classical fields”. To formulate these properties in a natural way, we need some
polylinear algebra in the category of DX -modules (see 0.2 – 0.5).

Remarks. (i) The notions of Poisson OX -algebra or Poisson DX -algebra are
inadequate for expressing the idea of “Poisson bracket on the space(s) of classical
fields”: a Poisson bracket on A is a morphism A ⊗OX

A → A while (0.1.7) is an
object of a different nature. The reason is that Spec A is the space of “jets of
classical fields”, not the space of classical fields.

(ii) The reader can compare our notion of coisson algebra with other ways of for-
malizing the notion of “Poisson bracket on the space of classical fields” (see [DG1],
[DG2], [Ku], [KuM], [Ma] and references therein). As far as we understand, our
approach is essentially equivalent to that of [KuM] and [Ma].

0.2. Let X be a smooth complex algebraic variety. Consider the category
M`(X) of left D-modules on X (see, e.g., [Ber], [Ba], or [Kas2]). The OX -tensor
product ⊗ makes it a tensor category with unit object OX . A commutative algebra
in M`(X) (commutative DX-algebra) is just a quasi-coherent commutative OX -
algebra A` equipped with a flat connection along X. We call an X-scheme equipped
with a flat connection along X a DX-scheme; so the spectra of commutative DX -
algebras are DX -schemes affine over X.

A standard example: for any X-scheme Y → X the space J(Y/X) of ∞-jets
of sections of Y/X is a DX -scheme. Horizontal sections of J(Y/X) are the same as
arbitrary sections of Y/X. One may view the (closed) DX -subschemes of J(Y/X)
as systems of differential equations on sections of Y/X (see [G]).

What makes the tensor category M`(X) substantially different from, say, the
tensor category of OX -modules is the absence of duals. Precisely, for F ∈ M`(X)
the dual object in the tensor category sense (see, e.g., [D1]) exists iff F is coherent as
an OX -module, i.e., is a vector bundle with an integrable connection. For example,
for a group DX -scheme G one has its Lie coalgebra CoLie(G) but we cannot dualize
it to get the Lie algebra (unless G is finite dimensional as a usual scheme). We will
see that the category M`(X) carries a richer structure (that of compound tensor
category) which remedies the above flaw.

0.3. Consider the category M(X) of right D-modules on X. Let I be a finite
non-empty set; denote by ∆(I):X ↪→ XI the diagonal embedding. For an I-family
of D-modules Li ∈ M(X) and M ∈ M(X) set

(0.3.1) P ∗I ({Li},M) := Hom(�Li,∆
(I)
∗ M).

Elements of P ∗I ({Li},M) are called ∗ I-operations; they are X-local (since ∆(I)
∗ M

sits on the diagonal). The ∗ operations compose in a natural way,2 just as polylinear
maps between vector spaces do (i.e., for a surjective map π: J → I, a J-family
{Kj} of D-modules, and ϕ ∈ P ∗I ({Li},M), ψi ∈ P ∗π−1(i)({Kj}, Li) we have ϕ(ψi) ∈
P ∗J ({Kj},M)). The composition is associative; if |I| = 1, then P ∗I = Hom. We call
such data of operations (or “polylinear maps”) between the objects of a category

2We switched to right D-modules to make the “sign rule” for the ∗ operations obvious.
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a pseudo-tensor structure. Thus M(X) carries a canonical pseudo-tensor structure;
M(X) equipped with this structure is denoted by M(X)∗.

One may view pseudo-tensor categories as a straightforward generalization of
operads: an operad is just a pseudo-tensor category with single object.

The notions of algebras, modules over them, etc., make perfect sense in any
pseudo-tensor category. For example, a Lie algebra in M(X)∗ (or simply a Lie∗ al-
gebra on X) is a D-module L together with a binary ∗ operation [ ] ∈ P ∗2 ({L,L}, L)
which is skew-symmetric and satisfies the Jacobi identity.

For M ∈ M(X) set h(M) := M ⊗
DX

OX (the sheaf of middle de Rham cohomol-

ogy). There is a canonical map P ∗I ({Li},M) → Hom(⊗h(Li), h(M)) compatible
with composition of operations. Therefore h sends Lie∗ algebras to the sheaves of
usual Lie algebras. In fact, many important Lie algebras (including the Virasoro
and affine Kac-Moody algebras) arise naturally from Lie∗ algebras.

0.4. Let us identify the categories of left and right D-modules by the usual
equivalence M(X) ∼−→ M`(X), M 7→ M ` = Mω−1

X = M ⊗
OX

ω⊗−1
X (here ωX =

Ωdim X
X ). Therefore M(X) has the tensor product M ⊗! L := (M ` ⊗ L`)ωX . Now

the ! tensor product of two ∗ operations is defined according to the following pattern.
Let I, J be finite sets, i0 ∈ I, j0 ∈ J ; denote by I ∨ J the disjoint union of I, J
with i0, j0 identified. Then there is a natural map

⊗I,J
i0,j0

:P ∗I ({Mi} , L)⊗ P ∗J ({Nj} ,K) → P ∗I∨J({Mi, Nj ,Mi0 ⊗! Nj0}i 6=i0
j 6=j0

, L⊗! K).

If I = {i0}, J = {j0} this is the usual tensor product of morphisms.
A compound tensor structure on a category is the data of a tensor and a pseudo-

tensor structure related as above by the ⊗I,J
i0,j0

maps which are associative and
commutative in the obvious sense. Thus M(X) (and M`(X)) is a compound tensor
category.

0.5. The compound tensor structure makes it possible to do basic differen-
tial geometry in M(X) implementing a complementarity principle: the “functions”
multiply according to ⊗! format, while “operators” (such as infinitesimal symme-
tries) act in the ∗ sense. In other words, the geometric objects we consider are
DX -schemes, the Lie algebras are actually Lie∗ algebras, and one defines easily
what the action of a Lie∗ algebra on a DX -scheme means. Note that an action of
a Lie∗ algebra L on a DX -scheme Y yields an action on Y of the usual Lie algebra
h(L).

For example, let G be a group DX -scheme such that CoLie(G) is a locally free
DX -module of finite rank. Set Lie(G) := CoLie(G)◦ = HomDX

(CoLie(G),DX) (the
usual duality of D-modules theory). Then Lie(G) is a Lie∗ algebra. A G-action on
a DX -scheme Y yields a CoLie(G)-coaction on OY (in the ⊗! sense). Dualizing, we
get a Lie(G)-action on Y.

In fact, for locally free DX -modules of finite rank the duality yields an identi-
fication P ∗I ({Mi}, L) ∼−→ Hom(L◦,⊗M◦

i ). So, on an appropriate derived category
level, the ∗ operations can be recovered from the usual tensor structure and the
duality functor ◦. This is a very awkward thing to do however, when dealing with
both ! and ∗ operations simultaneously (as happens in coisson algebras), and it
precludes chiral quantization (see 0.8 and 0.9).
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0.6. Now a coisson algebra is simply a Poisson algebra in the compound setting.
Namely, this is a commutative DX -algebra A` together with a Lie∗ bracket on A
(coisson bracket) such that the adjoint action is compatible with the multiplicative
structure on A`. From this we get an action of h(A) on A` in the usual sense.
Derivations of A` that come from h(A) are called hamiltonian vector fields. Coisson
brackets localize nicely so one knows what is a coisson structure on any DX -scheme.

0.7. Let Y = SpecA` be an affine DX -scheme. The space of horizontal sections
X → Y is an ind-affine ind-scheme 〈Y〉 = 〈Y〉(X) = Spf 〈A〉; if X is compact, this
is actually a scheme. This construction also makes sense locally. For example, for
x ∈ X the space of horizontal sections of Y over the formal punctured disc at x is an
ind-affine scheme SpfAas

x . Suppose thatX is compact; set Ux := Xr{x}. The eval-
uation map which assigns to a global section on Ux its restriction to the punctured
disc is a closed embedding of the ind-schemes of sections 〈Y〉(Ux) ↪→ SpfAas

x ; its
ideal is generated by the image of a certain canonical map rx: Γ(Ux, h(A)) → Aas

x .
We also have an embedding Yx ↪→ SpfAas

x whose image consists of horizontal sec-
tions that extend to x, so 〈Y〉(X) = 〈Y〉(Ux) ∩ Yx.

If A is a coisson algebra finitely generated as a DX -algebra, then Aasx is a
topological Poisson algebra, Γ(Ux, h(A)) is a Lie algebra, and rx commutes with
brackets. Therefore rx is a hamiltonian action of Γ(Ux, h(A)) on SpfAas

x , and
〈Y〉(Ux) is the zero fiber of the momentum map. When we pass to quantization
and chiral homology (see 0.9 and 0.10), the zero fiber changes into the Hamiltonian
reduction.

The algebra 〈A〉 is also denoted by Hch
0 (X,A). The derived version of this

construction yields a graded commutative superalgebra Hch
· (X,A).

0.8. Now let us pass to chiral algebras. There are two complementary (equiv-
alent) approaches to this notion: Lie algebra style and commutative algebra style.3

We begin with the “Lie algebra” approach; for the “commutative algebra” picture
see 0.12.

From now on we assume that dim X = 1. Let j(I):U (I) ↪→ XI be the comple-
ment to the diagonal divisor. Set

(0.8.1) P ch
I ({Li},M) := Hom(j(I)

∗ j(I)∗ � Li,∆
(I)
∗ M).

These are chiral I-operations. One defines their composition in the obvious manner.
We get the chiral pseudo-tensor structure on M(X); the corresponding pseudo-
tensor category is denoted by M(X)ch.

Now a chiral algebra on X is simply a Lie algebra in M(X)ch with an additional
property (existence of unit). We refer to the corresponding Liech bracket as the
chiral product.

0.9. Let us explain why the notion of chiral algebra is a quantization of that
of coisson algebra. For every DX -module A we have a canonical exact sequence

(0.9.1) 0 → Hom(A`⊗2, A`) → P ch
2 ({A,A}, A) → P ∗2 ({A,A}, A).

The right arrow assigns to every chiral product µ on A a Lie∗ bracket [ ]µ. If
the latter vanishes (we say then that our chiral algebra is commutative), then µ
can be considered as a binary operation on A` with respect to ⊗. This way one

3A poetically-minded reader may call them “dynamic” and “static” points of view.
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identifies commutative chiral algebra structures on A with commutative DX -algebra
structures on A`.

Now assume we have a family At of chiral algebras that depends on a parameter
t ∈ C such that A0 is commutative. Then { } :=

(
t−1[ ]µt

)
t=0

is a coisson bracket
on A`

0. Thus chiral algebras are quantizations of coisson algebras as promised.
In fact, the whole chiral pseudo-tensor structure can be considered as a quan-

tization of the compound tensor structure (see 3.2).

The problem of quantization of coisson algebras is fairly interesting. We do not
know how to solve it in general. In the main body of this work we treat the simplest
cases of linear brackets. In particular, we construct chiral enveloping algebras of
Lie∗ algebras and Lie∗ algebroids (chiral algebras of twisted differential operators).
We also discuss (in 3.9.10) quantizations modt2. The general theory of deformations
of chiral algebras was recently developed in [Tam1].

In a sense, in the “chiral world” chiral algebras are parallel to associative alge-
bras while Lie∗ algebras and commutative DX -algebras play, respectively, the roles
of Lie and commutative algebras.

0.10. The constructions from 0.7 generalize to arbitrary chiral algebras. For
a chiral algebra A one can define its chiral homology Hch

i (X,A) (see 0.12). Here
Hch

0 (X,A) is what mathematical physicists usually call “the space of conformal
blocks”. For any x ∈ X we have an associative algebra Aas

x ; the fiber Ax is natu-
rally a quotient of Aas

x modulo a left ideal. Hch
0 (X,A) identifies canonically with a

quotient of Ax modulo a right ideal generated by the image of a Lie algebra mor-
phism rx : Γ(Ux, h(A)) → Aas

x . In the classical limit we return to the objects from
0.7.

0.11. Let us sketch now the “commutative algebra” style description of chiral
algebras. This approach is essential for certain subjects, in particular, for the
definition of chiral homology.

Consider the space R(X) of finite non-empty subsets of X; for such a subset
S ⊂ X we denote the corresponding point of R(X) by [S]. So R(X) carries a
natural filtration R(X)n; the open stratum R(X)◦n is the space of configurations of
n (distinct) points on X. Remarkably enough, R(X) is contractible.

Informally, a factorization algebra on X is an O-module A`
R(X) on R(X) such

that for every two non-intersecting subsets S, T ⊂ X there is a canonical identifi-
cation of fibers A`

[S∪T ] = A`
[S] ⊗ A`

[T ] which is associative and commutative in the
obvious sense. We also demand the existence of a unit section (the definition is left
to the reader). Such A`

R(X) provides an O-module A` on X = R(X)1. In fact, A`

is automatically a left DX -module, and A`
R(X) amounts to a certain structure on

A` of local origin (referred to as factorization algebra structure).
Now a factorization algebra structure on A` amounts to a chiral algebra struc-

ture on A. Namely, the chiral product corresponding to a factorization algebra
structure is the composition j∗j

∗A � A = j∗j
∗AX×X → ∆∗∆!AX×X = ∆∗A.

Here AX×X is the pull-back of AR(X) by the obvious map X × X → R(X)2,
∆ : X ↪→ X ×X the diagonal, j : U ↪→ X ×X its complement, the equalities are
structure identifications, and the arrow is a canonical morphism.

The O-tensor product of factorization algebras is evidently a factorization al-
gebra, so chiral algebras form a tensor category.
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0.12. Therefore chiral algebras can be considered as geometric objects on
R(X). In this vein, the chiral homology of A is defined as the de Rham homology
of R(X) with coefficients in A`

R(X). The chiral homology functor has many remark-
able properties; e.g., it commutes with tensor products. In particular, higher chiral
homology of the unit chiral algebra vanishes (which also follows from contractibility
of R(X)).

Chiral homology is naturally defined for DG chiral algebras and it is preserved
by quasi-isomorphisms. In the exposition we do not pave a road across the morass of
homotopy theory of chiral algebras, but we resort to an unworthy (yet solid) path
of functorial resolutions. Namely, chiral homology can be realized as homology
of certain functorial chiral chain complexes Cch(X,A)PQ which depend on appro-
priate auxiliary resolutions P, Q of OX (see 4.2.12).4 These complexes resemble
Chevalley homology complexes of Lie algebras: for example, they carry a canonical
BV (Batalin-Vilkovisky) algebra structure. In the classical limit it becomes an odd
Poisson bracket.

The comeuppance is the lack of understanding of the structure of the homotopy
category of chiral algebras (see Remarks in 3.3.13). By the way, the latter lies
outside of Quillen’s model category framework due to the absence of cofibrant
objects (e.g., the chiral algebra freely generated by DX ∈ M(X) does not exist).

0.13. Physicists usually describe a chiral algebra structure in terms of operator
product expansions, ope for short (see, e.g., [BPZ]). The same approach is common
in the literature on vertex algebras; see 0.15.

To explain what ope is, one needs to consider some non-quasi-coherent D-
modules. Thus, for a left DX -module A`, let ∆̂∗A

` be a sheaf of left DX×X -modules
supported on the diagonal X ↪→ X ×X which is I-adically complete and satisfies
∆̂∗A

`/I∆̂∗A
` = A` (here I ⊂ OX×X is the ideal of the diagonal). Such ∆̂∗A

`

exists and is unique. Note that for any local section a ∈ A` there is a unique
section a(1) ∈ ∆̂∗A

` such that a(1) is horizontal along the second variable and
a(1) mod I∆̂∗A

` = a. Therefore, if t is a local coordinate on X, one may write any
section ϕ of ∆̂∗A

` as a formal power series
∑
i≥ 0

a
(1)
i (t2−t1)i, ai = 1

i!∂
i
t2ϕ mod I∆̂∗A

`.

Now let ∆̃∗A
` be the localization of ∆̂∗A

` with respect to the equation of the
diagonal. Its section is a Laurent power series

∑
i�−∞

a
(1)
i (t2− t1)i; i.e., we can write

∆̃∗A
` as A`((t2 − t1)). Notice that ∆̃∗A

`/∆̂∗A
` = ∆∗A

`.
Now an ope is a morphism of DX×X -modules ◦ : A` �A` → ∆̃∗A

`. Composing
it with the above projection to ∆∗A

`, we get a binary chiral operation µ = µ◦
on A. One can explain what it means for ◦ to be commutative and associative.
In fact, ◦ 7→ µ◦ is a bijective correspondence between the set of commutative and
associative ope and that of chiral algebra structures on A.

From the point of view of factorization algebras, our ope is the gluing isomor-
phism that reconstructs A`

X×X from its restriction to U (which is A` � A`|U ) and
to the formal neighbourhood of the diagonal (which is ∆̂∗A

`).
Notice also that the Lie∗ bracket of a chiral algebra is just the the polar part

of the ope.

4A poetically-minded reader may say that P resolves ultraviolet problems of A, while Q takes
care of its infrared behavior.
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0.14. To see an example of a non-commutative chiral algebra, let us describe
in geometric terms the chiral enveloping algebra of a Kac-Moody Lie algebra.

Let G be an algebraic group. For x ∈ X consider the set of pairs (F, α), where
F is a G-bundle on X and α is a trivialization of F on X r {x}. This is the set
of points of a formally smooth ind-scheme GRx; a choice of a parameter tx at x
identifies GRx with G(C((t)) )/G(C[[t]]). Our GRx are fibers of an ind-scheme GRX

over X called the affine Grassmannian. This is a DX -ind-scheme: when x varies
infinitesimally, X r {x}, hence GRx, do not change.

The trivialized G-bundle (F, α) on X defines the section e:X → GR (which is
the only horizontal section of GR). Denote by A`

x the vector space of distributions
on GRx supported at e(x); i.e., A`

x is the (topological) dual to the formal completion
of the local ring OGRx,e(x). When x varies, the A`

x form a left DX -module A`
X .

Let us show that A is naturally a chiral algebra. As in 0.11 we have to define
a factorization algebra A`

R(X). We have a D-ind-scheme GRR(X) over R(X) with
fibers GR[S] equal to the space of pairs (F, α) where F is a G-bundle on X and α is
a trivialization of F on X r S. There is a canonical horizontal section e of GRXn ,
and we set A`

[S] to be the vector space of distributions on GR[S] supported at e.
The factorization property for A`

R(X) follows from the similar property of GRR(X)

itself: there is a canonical identification GR[S∪T ] = GR[S] × GR[T ] if S ∩ T = ∅.
To get the chiral envelope of a Kac-Moody algebra of a non-zero level, one must

twist A` by an appropriate canonical line bundle on GR.

0.15. Chiral algebras are related to (various versions of) vertex algebras as
follows.

The category of vertex algebras in the sense of [B1] and [K] is equivalent to
the category of chiral algebras on X = A1 equivariant with respect to the group T
of translations.5 Namely, the vertex algebra VA corresponding to a T -equivariant
chiral algebra A is the vector space of T -invariant sections of A` with the vertex
algebra structure given by the operator product expansion (see 0.13); of course, VA

identifies naturally with the fiber A`
x at any point x ∈ A1. In the same manner the

category of VA-modules is identified with that of (weakly) T -equivariant A-modules
or, more conveniently, with that of A-modules supported at x.6

Replacing T on the chiral side by the group Aff of affine transformations, we
get on the vertex side essentially an object called the “vertex algebra” in [FBZ],
“Z-graded vertex algebra” in [GMS2], and “graded vertex algebra” in [K].7 Adding
to the structure a Virasoro vector, a.k.a. stress-energy tensor, which is a morphism
from the Virasoro Lie∗ algebra (of some central charge) to A compatible with the
T - or Aff -action, we get essentially a “conformal vertex algebra” from [K] and
[FBZ] or the “vertex operator algebra” of [FLM], [FHL], [DL], [Hu].

Similarly, a chiral algebra on the “coordinate disc” Spec C[[t]] equivariant with
respect to the action of the group ind-scheme Aut C[[t]] is the same as the “quasi-
conformal vertex algebra” from [FBZ]. The equivariance means that such an object
yields a chiral algebra on any non-coordinate formal disc, and, in fact, by patching,

5Here “equivariant” means that the group T of translations acts on A as on the OX -module,

and the action of each t ∈ T is compatible with the chiral algebra structure. In particular, A is a
weakly T -equivariant D-module.

6One identifies a weakly T -equivariant A-module M with the A-module (jx∗j∗xM)/M sup-
ported at x; here jx is the embedding A1 r {x} ↪→ A1.

7Here “essentially” means that we discard the varying finiteness conditions of the references.
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on any curve (see [FBZ] 18.3.3 and [HL2]). In this way it amounts to a “universal”
chiral algebra, i.e., a rule that assigns to any curve a chiral algebra on it, in a way
compatible with the étale localization

When one is interested in local questions, such as the usual representation
theory, chiral algebras are essentially equivalent to vertex algebras. In practice,
however, chiral algebras are considerably more flexible: for example, twists of vertex
algebras (see 3.4.17) and constructions like that of Aas

x (see 3.6.4) are painful in the
pure vertex algebra setting.

Let us mention that all kinds of vertex/chiral algebras can be seen as chiral
algebras on appropriate c-stacks (see 2.9, 3.1.16, 3.3.14), the above-mentioned func-
tors and equivalences being mere base change. In the exposition we stick to the
usual D-module setting.

0.16. We started this work with the modest intent of understanding the inge-
nious formal power series manipulations that haunt the books on vertex operator
algebras. For a VOA insider, untrammelled by algebro-geometric affections, the
mode of the output might resemble though zadopasomy$i vol’s8 features.

A challenging problem is to define chiral algebras on higher-dimensional X
(see [B2] and [Tam2] in this respect). The definitions from 0.8 and 0.11 formally
work also for dim X > 1, but to make them sensible, one must plunge at once
into the homotopy setting which we had no courage to do (see 0.12). Notice that
coisson algebras live in any dimension, so it may be reasonable to look first for the
corresponding quasi-classical objects.

Let us also mention that while the general format of the classical setting is
covered nicely by the compound tensor category axiomatics (see 1.4), chiral algebras
proper defy such treatment.

We consider chiral algebras on usual curves, while some applications demand
the setting of super curves. Presumably, the rendition should not be difficult.

0.17. The book consists of four chapters. The first one discusses some relevant
abstract nonsense. The classical (coisson) story occupies the second chapter. The
third chapter deals with the local theory of chiral algebras proper (some readers
may find the exposition of the textbooks [K], [FBZ] livelier,9 and we do recommend
parallel reading). It divides into two parts: the first considers basic structures and
their interrelations while the second deals with elementary methods of constructing
chiral algebras. The final chapter treats global theory, i.e., the formalism of chiral
homology. It contains an exposition of the general machinery and some results

8“V barbari �e sut~ voly glagol�ts� epistony, zane ne pasutc� oby-
qa$ino kak vol mesta sego, iduwe vpered, no onye pasuts� nazad, potomu qto
rogi u nih sut~ kr�kovaty i sklon��ts� napered ... utyka�tc� rogi ih v
zeml�”, iz “Damaskina arhiere� Studita sobrani� ot drevnih filosofov o
nekih sobstvah estestva �ivotnyh”. “In Barbary there are oxen called epistomi for
they do not graze walking forward in the usual manner of the ox of our land, but move back-
wards, since horns of theirs are crooked and bent forward ... sticking into the earth,” from “A
collection (of excerpts) from ancient philosophers on certain properties of the nature of animals”

by Damaskin, the high priest of the Studiy monastery.
9“U nas dva�dy dva to�e qetyre, da vyhodit kak-to bo$iqee.” M. Gas-

parov, “Zapiski i Vypiski”; kommentari$i k pon�ti� “Narodnost~”. “At
ours two by two is also four, yet it comes livelier”, from M. Gasparov, “Notes and Excerpts”, a

comment on the notion narodnost’ (which has no adequate English analog).
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showing that the chiral homology functor transforms the constructions of chiral
algebras from Chapter 3 to parallel constructions for BV algebras.

It is known that distilled axioms are pretty indigestible. We strongly suggest the
reader follow the complicated alembics of Chapter 1 simultaneously with respective
sections of more wholesome Chapters 2 and 3.

0.18. We were particularly motivated by the observation that chiral algebras
provide a natural tool for tackling geometric automorphic forms in the D-module
setting. This can be seen already in the oper construction at the critical level (see
[BD]). One hopes that general automorphic D-modules come as (higher) chiral
homology of twisted chiral Hecke algebras (where the moduli of G-bundles and de
Rham G∨-local systems are parameters of the twists). A related local problem
is to describe a “spectral decomposition” of the category of representations of an
affine Kac-Moody algebra (at negative integral level) with spectral parameters being
moduli of G∨-local systems on the punctured formal disc (see [Be]). The chiral
Hecke algebras arise from the global geometry of the affine Grassmannian; when
G is a torus, they amount to lattice Heisenberg algebras. We will return to these
subjects elsewhere.

A general matter of special interest is the factorization property of chiral ho-
mology for degenerating families of curves. At the moment, it is to some extent
understood only for Hch

0 of rational field theories (the Verlinde rules). Presumably,
there should be an interesting theory beyond the rational situation with Verlinde’s
summation over the finite set of irreducibles replaced by “integration” over an ap-
propriate “compact space”. The (twisted) chiral Hecke algebra may provide an
example of such a situation.

0.19. Our sincere gratitude is due to Sasha Belavin and Pierre Deligne. Apart
from an obvious influence of their ideas, it was in their apartments in 1992–1995
where the prime part of the work was done. During the (all too long) course of
writing, we were greatly helped by many mathematicians; we are very grateful to
S. Arkhipov, J. Bernstein, R. Bezrukavnikov, P. Bressler, B. Feigin, E. Frenkel,
V. Ginzburg, V. Hinich, Y.-Z. Huang, M. Kapranov, D. Kazhdan, J. Lepowski,
Yu. Manin, B. Mazur, V. Schechtman, I. Shapiro, G. Segal, J. Wiennfield, G. Zuck-
erman, and, especially, D. Gaitsgory, for their interest, inspiration, and correction
of mistakes. The first author would also like to thank his wife and children10 for
their ability to endure the rewritings of the draft. We are grateful to Dottie Phares
of IAS and Richard Lloyd of MIT for the careful typing of the first version of the
first part of the manuscript back in 1994–1995, and to Sergei Gelfand and Arlene
O’Sean of the AMS for the editing of the manuscript. The authors were partially
supported by NSF grant DMS-0100108.

0.20. A few words about notation commonly used in the book. “x ∈ Y ” means
that either x is an element of a set Y or x is an object of a category Y or x is a
local section of a sheaf Y . For a category M we denote by M◦ the dual category;
Sets is the category of all sets. For a smooth variety X we denote by ΘX and DX

the tangent sheaf and the algebra of differential operators.

10“I slonovu� �e oustraxaet �rost~ malaa kviqawaa svinaa poros�-
ta”, iz “Pohvaly Bogu o sotvorenii vse$i tvari Georgi� Pisidy.” “And the
elefant rage is terrified by tiny squealing swine piggies,” from “A praise unto the Lord for the

creation of all living creatures” by George Pisida.


