Appendix: the case of a surface

Al. Below R is a commutative coefficient ring. Denote by Lgr the Picard
groupoid of Z-graded super R-lines. So an object of L is a pair (L, deg; ), where
L is an invertible R-module, deg; € ZSP*“F := the group of Z-valued locally con-
stant function on Spec R; the operation on Lg is (L,deg;) ® (L', deg;,) := (L ®
L', deg; + deg;,) with the commutativity corrected by the super sign (—1)d¢sz degr’

Our X is a compact real-analytic surface with boundary Y whose connected
components are denoted by Y,, a € A. Let F be a complex of sheaves of R-
modules on X whose fibers are perfect and the restriction of its cohomology to
X \Y, and to Y minus finitely many points, is locally constant. Then RT'(X, F)
is a perfect R-complex, so we have det RI'(X, F) € L. Let v be any continuous
nowhere vanishing 1-form on X \Y. Our aim is to assign to each component Y,
a graded super R-line £(F'),y, which has local origin, i.e., depends only on the
restriction of our datum to a neighborhood of Y,, and define the e-factorization
isomorphism

(A1.1) ®aE(F)oy, = det RT(X, F).

The constructions are presented in A6; they are based on a theorem from Ab5.

A2. A shot of abstract nonsense. Let A be a Boolean algebra. Recall that it is
realized canonically as the Boolean algebra of open compact subsets of a pro-finite
set P = Spec A.}

Let £ be a Picard groupoid;? we write the operation in £ as ®. The group of
isomorphism classes of objects in £ is denoted by mgL, the group of automorphisms
of the unit object 1, is denoted by m £; these groups are commutative (and written
multiplicatively). For any L € £ one has a canonical identification 7 L = AutL,
¢ — idp ® ¢. There is a natural homomorphism € : mg£ — 7 £ which sends an
object L € L to the symmetric constraint symmetry of L ® L; L is said to be even if
€(L) =1 and odd otherwise; let LY C L be the Picard subgroupoid of even objects.
L is said to be discrete if its 1 £ is trivial; such an £ amounts to an abelian group.
For any L there is an evident morphism of Picard groupoids £ — mpL.

(a) An L-measure (A\,m) on A (or on P) is a rule that assigns to every Q € A
an object A(Q) € L, and to every finite set {Q;} C A such that @Q; N Q; = 0 for
i # i’, an identification m : ®A(Q;) = A(UQ;). One demands m to be transitive in
the obvious sense. We often drop m from the notation.

L-valued measures form a Picard groupoid which we denote by Meas(A, L) or
Meas(P, L). Tt is functorial with respect to morphisms of P’s and £L’s. Notice that
mMeas(P, L) = Meas(P,m1L) (the usual group of m L-valued measures on P);
the projection £ — moL yields a homomorphism mgMeas(P, L) — Meas(P,moL)
which is bijective if A is countable or if 71 £ is finite.

FExercise. Let ZF be the group of Z-valued locally constant functions on P; for
Q € Alet 1o € Z” be the characteristic function of @ C P. Consider the Picard

Here A is considered as a commutative Z/2-algebra with the operations QQ’ := Q N Q’,
RQ+Q =QuUQ)~(@QNQ).
2I.e., a symmetric monoidal category all of whose objects and morphisms are invertible.

1



2

groupoid Hom(Z7, L) of Picard groupoid morphisms ¢ : Z¥ — L. There is a
fully faithful embedding of Picard groupoids Hom(Z”, £) < Meas(P, L), ¢ — Ay,
where A\y(Q) = ¢(1g) and m comes since 1,,g, = X1g,. Show that its essential
image equals Meas(P, L)’ = Meas(P, L), ie., in the L-setting an outright
integration of functions makes sense only for even \’s.

Remark. Suppose that we write P as the projective limit of a directed family
of finite sets P, and surjections mao/ : Por — Pa, &’ > «; so for every b € P, we
have an open Q. C P. An L-measure A is the same as a datum of objects A, (b) =
MQap) € L, a € Py, together with identifications maars : Ao (b') = Ao (b), where
b € P, and b’ run the set of all elements of P,/ such that 7, (V') = b; the mya’s
should satisfy the transitivity property.

(b) Inclusion-exclusion formula: Take @ € A and a finite collection {Qg}, B € B,
such that Q = UQg. For a non-empty subset S C B set Qg := ﬁﬂs Qs.
€

Lemma. If all \(Qgs) are even, then one has a canonical isomorphism

_1\Isi+1r ~
(A2.1) uéQﬁ}rw;échA(Qs)@( DTS ANQ).

Proof. For a non-empty S C B let ()(g) be the complement in Qg to the union
of Qs/ where S" © S, S’ # S. Then Q is the disjoint union of all Qs)’s, S C B.
Intersecting our datum with @ g), we are reduced to the situation where all Qg’s
are equal. Here (A2.1) is immediate. O

Remark. Let Q =UQ~, v € I', be another presentation of @ such that \(Qr) €

L for every non-empty I’ C I'. Let us compare pp := ,uggﬁ} and pp = H{QQ”}. De-

note by Lg, Lr their sources, and set Lgr := ®)\(QSﬁQT)(_l)(‘SW)(‘TlH), the ten-
sor product is indexed by all non-empty S C B, T' C I'. There is a natural morphism

v : Lpr = Lp defined as the tensor product of morphisms (uéﬁmQS})‘@(_l)lsHl

for ) # S C B, and a similarly defined morphism vr : Lpr — Lr. Now one has
1BVB = prvr; to prove this, one reduces the statement to the case when all Qg
and (. coincide, where the statement is obvious.

(c) Let Z C A be a Boolean ideal, and A/Z the quotient Boolean algebra, so
SpecA/Z =: P’ is a closed subset in P, and Z consists of open compact subsets
of P\ P’. Let Meas(A, £)T be the Picard groupoid of pairs (), ) where A is an
L-valued measure on A and ¢ is a trivialization of the restriction A|z of A to Z.3
So ¢ is a datum of identifications +(Q) : A(Q) = 1, Q@ € Z, multiplicative with
respect to disjoint union decompositions of ()’s. The pull-back functor yields an
equivalence of the Picard groupoids Meas(A/Z, L) = Meas(A, L)~.

Take any (), ¢) as above, and let @, {@s} be a datum as in (b) such that @, {Q}
lie in Z. Since A is trivial on Z, the lemma in (b) is applicable, so we have isomor-
phism (A2.1). Now ¢ trivializes both objects in (A2.1), and one has

(A2.2) SgBL(Qs)@—”‘S'“ — Q).

3In the definition of £-measure we need not assume that the Boolean algebra is unital, so one
has the Picard groupoid Meas(Z, L) of L-measures on P ~ P’, and ¢ is an identification of A|z
with the trivial object of this Picard groupoid.
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(d) Let Z be as in (c), and D C Z be a subset closed under N such that every
@ € T can be represented as UQs with {Qz} C D.

Lemma. Let \ be any L-measure on A and v be any datum of trivializations
L(Q) : MQ) = 12 defined for Q € D. If (A2.2) holds whenever Q,{Qy} are in D,
then ¢ extends in a unique manner to a trivialization v of \|z.

Proof. Tt is clear that |z takes values in trivial objects of Z, so (A2.1) makes
sense there. Take any @ € 7 and represent it as UQg, 8 € B, for {Q3} C D. Let

198}(Q) be a trivialization of A\(Q) defined, using (A2.1), as S® L(QS)@)(_I)'S‘H.
CB

The comparison picture from Remark in (b) shows that :{24}(Q) does not depend
on the choice of particular {Qs}. Set ¢(Q) = «{9s}(Q); it is immediate that ¢ is
multiplicative, and we are done. O

A3. We return to the setting of Al. Below a curve is a subset C' C X whose
closure C is a semi-analytic curve, C ~. C is finite, and CNY = (. A stratification
of X is always assumed to be semi-analytic (its 1-strata are curves) and such that
no 0 strata lie on Y (i.e., each Y, lies in an open stratum). A constructible set
in X is a union of strata of a stratification. Denote by C the Boolean algebra of
constructible sets.

For every locally closed constructible subset Q C X, we have a perfect com-
plex RI'.(Q, F') := RT'(Q, 5, F'), hence a graded super R-line det RT'<(Q, F) of the
degree equal to the Euler characteristics x(Q, F). If Q1 — @ is an open embed-
ding where ; is also constructible, and @2 := @ ~ @1, then the exact triangle
RT.(@Q1,F) — RT.(Q,F) — RI'.(Q2, F) yields an isomorphism

(A3.1) det RT'.(Q1, F) ® det RT'.(Q2, F) = det RT(Q, F).

Proposition. There is an Lr-measure Ap on C together with identifications
T =10 : Ar(Q) = det RT'.(Q, F) for each locally closed constructible Q C X, such
that for every Q, Q1, Q2 as above, the T identify the isomorphism from (A3.1) with
the structure isomorphism m : Ap(Q1) ® Arp(Q2) = Ar(Q). The datum (\p,T) is
unique up to a unique isomorphism.

Proof. Use Remark in A2(a): Our a’s run the set of all constructible stratifi-
cations with its usual ordering, P, is the set of strata of the stratification. Then
T specifies each line A\, (b), b € P,, and (A3.1) defines the datum of mqq. The
details are left to the reader. i

Remarks. (i) If @ is a constructible subset which is not locally closed, then @ is
not locally compact, so R['.(Q, F') is not defined.

(ii) Ar has local origin: For an open U C X, let C(U) C C be the Boolean ideal
of constructible @’s such that () C U. Then the restriction of Ap to C(U) depends
only on Fly.

A4. Now let us switch in v. We need an auxiliary datum of a v-cone N, which
is a continuous family of non-degenerate closed sectors N, C T, X, x € X \'Y, such
that (v, N, ~ {0}) < 0.



A curve C is said to be N-transversal if for every « € C each tangent line to C
at = intersects N, U —N, by {0}. A stratification is N-transversal if such are its
1-strata. A constructible set () is said to be:

- N-transversal, if it is a union of strata in an N-constructible stratification;

- N-special, if it is N-transversal and a point x € 0Q) lies in @ if and only there
are points y € Int (Q) close to x and such that y —z € N, (in the evident sense);

- N-lens, if Q is N-special, locally closed, and @ is homeomorphic to a disc.

Let CN > ¢N > CY be the subsets of C that consist of those @) that are,

respectively, N-transversal, N-special, N-special and satisfisfy Q N'Y = (. Let
JN C C be the subset of N-transversal Q’s of dimension < 1.

Proposition. (i) CN, CN are Boolean subalgebras of C, JN is a Boolean ideal
in C, and C{' is a Boolean ideal in CIV. Every N-lens lies in C{ .

(ii) If Q is N-special, then Int (Q) equals Int (Q), and it is dense in Q.

(iii) The composition CN < CN — CN /TN is a bijection.

Denote the inverse Boolean algebras isomorphism (fN/jN SN by VsV,
(iv) Each point in X \'Y admits a base of neighborhoods formed by N -lenses.
(v) Any Q € CY can be written as a union of finitely many N -lenses.

(vi) If Q is an N-lens, then Q \ Q is a closed interval in the circle 0Q.

(vii) Suppose that P € CY is locally closed and is contained in an N-lens. Then
each connected component of P is an N-lens. In particular, all the connected com-
ponents of an intersection of finitely many N -lenses are N -lenses.

Proof. (i), (ii), (iii) are straightforward.

(iv) Take any a € X \ Y choose a real analytic local coordinate system (x,y)
at a such that a = (0,0) and v, = dy. For R, > 0 let Ugrs be the intersection of
two open discs of radius R centered at (0, £(R — ¢)). If R is very big and ¢ is very
small, then U]'% (which is the intersection of the open disc centered at (0, R — 9)
and the closed one centered at (0,0 — R)) is an N-lens in X. These N-lenses form
a base of neighborhoods of a.

(v) We need a preliminary. Let a be a point in X \Y and C be the germ at
a of an N-transversal curve. Let (x,y) be coordinates as in (iv). By the implicit
function theorem, one has two finite sets of functions: {y = g1(x),... ,y = gr(z)}
defined for ¢ > = > 0, and {y = hi(x),... ,y = hy(z)} defined for —e < = < 0,
all vanishing at = = 0, such that C is the union of their graphs. Our C is semi-
analytic, so for small enough € all g;, h; are monotone and one can order them so
that ¢1(z) < ... < ga(x) for e > z > 0, and hi(x) < ... < hy(z) for —e < z < 0.
Choose R, ¢ asin (iv) such that U];té is an N-lens that lies in the interval —e < z < e.
Suppose C meets both half-planes > 0, < 0, i.e., both sets {g;} and {h;} are
non-empty. Then C cuts Ugs into pieces {Uy} such that each U," is an N-lens, and
uU = Ugs.

Let us return to the proof of (v). Our assertion is local: it suffices to find for any
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a € @ its neighborhood whose intersection with @ can be represented as a union
of N-lenses. The case a € Int(Q) is covered by (iv). For a € 9Q, choose (z,y)
as above; let C be a curve defined as the germ of 9Q at a if 0@ intersects both
half-planes > 0, z < 0; if not, C' is the union of dQ) and the line y = 0. Then, by
(iii), @ N U];ZS is the union of those of the above N-lenses U,j that meet @, q.e.d.

(vi) Set I := Q~ Q. Since Q is locally closed, I is a union of finitely many closed
intervals and points in the circle 9Q = 9Q) (see (ii)).

Take any a € 9@, and choose local coordinates (x,y) as in (v). The curve 0Q
has one branch at a, so, by (v), it is either the graph of a continuous function
y = k(x) defined for —e < x < ¢, or it lies in the half-plane x > 0, where it is the
union pieces y = ¢g1(z), y = g2(x), or it lies in the half-plane z < 0, where it is
is the union of pieces y = hy(x), y = ha(z). In the first case @ equals either of
the domains y < k(z), or y > k(x). In the second case, the assumption that @ is
locally closed implies that @ equals the domain g;(x) < y < go(z); similarly, in the
third case @ equals the domain hq(x) < y < ha(z).

This shows, in particular, that I does not contain isolated points. In a moment
we will define a continuous retraction 7 : Q — I. Its existence implies that [ is
connected and # 0Q), hence it is a single interval, and we are done.

Choose a non-vanishing smooth vector field 7 on a neighborhood of @ which
takes values in N. For x € Q follow the integral line z(t), x(0) = =, of 7. Let us
show that the trajectory x(t) meets I at certain ¢ > 0. If not, then = ¢ I and the
trajectory x(t), t > 0, stays in Int(Q). Our 7 does not vanish, so, by the Poincaré-
Bendixon theorem (see e.g. [KH]),* Int(Q) contains a periodic trajectory T of 7.
Then T is the boundary of a disc D in Int(Q), and 7|p is a non-vanishing vector
field tangent to T', which does not exist; contradiction.

Take a smallest ¢ > 0 such that z(t) € I (then 2((0,1) C Int(Q)), and set () :=
x(t). The above picture of @ near the boundary shows that 7 is a continuous
retraction onto I.

(vii) Every connected component of P is N-special, so we can assume that P is
connected. We need to show that P is homeomorphic to a disc.

Let Q be an N-lens that contains P. Consider a retraction m : Q — I from (vi).
By construction, (@) is the interior I° of I, and for every t € I° the fiber Q; of ™
is a closed interval. We orient it so that v|q, is positive.

Set K := 7(P); this is a closed interval since P is connected and P is N-special.
Let t be any interior point of K, so P; := PN(); is a union of finitely many intervals
and points in Q;. Let us show that

(x)  The interior of P; (in Q) lies in the interior of P.

If not, take any y € Int(P;) N OP. Since P is N-special, 9P = 9P does not
contain isolated points and P, N dP is finite. Thus a punctured neighborhood of y
in P lies in Int(P), so y € P since P is N-special. Let U C Int(P) be any open
subset with connected fibers such that y is the bottom point of the fiber U;. For
t' € I,t #t, let s(t') be the bottom point of the connected component of Py that

4] am grateful to Benson Farb for comments and the reference.
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contains Uy. These points form a subset S C 9P. Since P is N-special, one has
S C OP ~ P. From y € 9P it follows easily that y € S. Since P is locally closed,
this contradicts the fact that y € P, and we are done.

Now let C; be any connected component of P; for a generic t € K. This is
an interval (since P is N-invariant). Let us move t, say, to the left. By (%), our
component changes continuously until it degenerates into a point. Same happens
when we move t to the right. Notice that C; ~ P is the bottom point of Cy, so
the two points, in which C; degenerate, do not lie in P as well, since P is locally
closed. Thus C; N P sweep a connected component of P, so the whole P, and P is
homeomorphic to a disc as stated. O

A5. If ) is an N-lens, then, by A4(vi), one has RI'.(Q, F') = 0. Denote by ¢(Q)
the corresponding trivialization of \p(Q) = det RT'.(Q, F).

N

Theorem. The restriction of Ar to C{¥ admits a unique trivialization N such

that for any N-lens Q one has /™ (Q) = 1(1g).

Proof. The uniqueness of ¢ follows from A4(v)(vii). Let D be the subset of C¥
whose elements are those ) that are locally closed and whose connected components
are N-lenses. As above, for such a @ one has RI'.(Q,F) = 0, hence A\p(Q) =
det RT'.(Q, F') has a natural trivialization ¢(Q). By A4(v)(vii), D satisfies the
assumptions of A2(d) with Z = C{¥. Therefore the theorem follows from the lemma
in A2(d) and the next statement:

Lemma. Let Q be an N-lens and {Qg}, B € B, be a finite set of N-lenses such
that UQg = Q. Then the trivializations (Q) and «(Qs), 0 # S C B, satisfy (A2.2).

Proof. (a) To write (A2.1) explicitly, we choose an N-transversal stratification
{K,} such that if K, N Qs # 0 for some r, 3, then K, C Q. For each non-

empty S C B denote by )\%S) the tensor product ® det RT'.(K,, F') with respect

to all 7 such that K, C Qg if and only if 3 € S. Then det R[(Q, F) = @Sm;?’

and det RT'.(Qs, F) = ® )\%S/). Excluding )\%g) ’s from the equations, we get the
S'DS

isomorphism ug?ﬁ} : %}det RT.(Qg, F)®(D"" 2 det RT.(Q, F).

(b) We want to check that ug)ﬁ } is compatible with the trivializations 1(Q) and
1(Qs). To do this, we will find a finite filtration ) = F_; C Ey C ... C E,, = Q,
where E; are closed subsets of @), such that for every i one has (here P, := E;~\FE;_1):

(i) For any N-transversal locally closed K the complex RI'.(K NP;, F') is perfect;
(i) If P,NQp # 0, then P, C Qp;
(iii) One has RT'.(P;, F) = 0.

Such a filtration yields usual factorizations det RT'.(Q, F) = ® det RT'.(P;, F),
det RT(Qs, F) = ®det RT.(Qs N P;, F). Now RT.(P,, F), RT.(Qs N P, F) are
acyclic complexes by (iii) and (ii), so we have the corresponding trivializations
L(P;), t(Qs N P;) of their determinant lines; it is clear that «(Q) = ®u(P;) and

(Qs) = (QsNP;). Our ,uggﬁ } equals the tensor product of the similarly defined
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isomorphisms 52" @ det RTo(Qs 1 P, F)®(-D"" % et RT.(P;, F). Thus

the compatibility of ,uggﬁ } with the trivializations 1(Q) and ¢(Qs) follows from the

compatibility of Mgf?ﬁ P ith t(P;) and t(Qs N P;). The latter is evident due to
(i), and we are done.

(¢) It remains to construct E;’s. Consider the projection © : @) — I° from
the proof of A4(vi)(vii). The fibers Q¢, t € I°, are semi-open intervals, hence
Rmig,(F) = 0. By A4(vii), for any non-empty S C B one has R(7|qg )i, F' = 0.

Let B C I° be a finite subset such that over I° ~\ B all the projections Qg — I°
are locally trivial. Let IV be the partition of I° by the points in B and the open
intervals between successive points in B; set Q7 := 7~ !(I7). For any Q7 every Qg
such that QzNQ~ # 0 yields two closed subspaces of () that consist of points lying
below one or the other boundary components of Qg N Q~. Let {EJ} be the set of
all subspaces of ()7 obtained in this manner, with Q)7 itself added; we order them
by inclusion. This is a finite filtration of Q7 by closed subspaces. Notice that each
E] is a fibration over I” whose fibers are semi-open intervals, and P] NQs # 0
implies P]' C Qp; here P; := EJ \ E] ;. Combining E}’s for all 4’s, we get the
promised E;’s (with {P;} = {P]}). O

Remarks. (i) By A4(v), ¢V has local origin: for an open U C X the restriction
of 1N to C}(U) depends only on F|y and N|y.

(ii) If N/ C TX is another v-cone, then N + N’ is also a v-cone, CNtN' ¢
CN ncN', same for CV, C¥, and NNV = LN’CN+N’ =N | o
0 0

A6. Now we can make good the promise of Al.

Lemma. For any component Y, and an open U, such that UNY =Y, there
exists Qo € CN(Uy) :=CN NC(Uy,) such that Qu D Y.

Proof. We can assume that 0U, N'Y = (). Using A4(iv), cover dU,, by a finite
set of N-lenses {Q;}. Then V, := U, \ UQ; is N-transversal; set Q, = V. O

Consider the quotient Boolean algebra C%V /C}". We have a morphism of Boolean
algebras CV /C{V — 24, Q — QNY; here 24 is the Boolean algebra of all subsets of
the set A of connected components of Y. By the lemma, this is an isomorphism of
Boolean algebras; let & : 24 5 CV/ C{¥ be the inverse isomorphism. The lemma also
shows that for U, from loc. cit. the map C (U, )/CY (Us) — 21°}, Q — QnY = QN
Y,, is an isomorphism as well, so we have its inverse r,, : 21 5 ¢N(U,,)/CY (U,,).

By A2(c), (Ar,tN) can be considered as an Lpg-measure AN on CV/C{V. Set
E(F),y, = M¥ro({a}); this is our e-factor. The image of X in CV/C} equals
k(A) = Uk ({a}), so one has the canonical identifications ®E(F),y, = @AY ko ({a})
BN (Uka({a}) = MY (k(A)) = Ap(X) % det RT(X, F). One defines (A1.1) as
their composition.

Explicitly, £(F),y, = Ar(Qa), where @, is any constructible set as in the
lemma. To define (A1.1), we choose neighborhoods U, of Y,, such that different U,
do not intersect, a v-cone N, and a set of N-lenses ()g such that UQz D X \ UU,.
Set Qo = Uy N~ UQg. Then E(F),y, = Ar(Qa), and (Al.1) comes from the



isomorphism m : (®Ar(Qa)) @ Ar(UQg) = Ap(X) and a trivialization of Ar(UQp)
defined by the trivializations ¢(Qg) via identification (A2.1) (the latter described
explicitly in part (a) of the proof of the lemma in A5).

The construction of £(F),, and the e-factorization does not depend on the
auxiliary datum of U,’s and the v-cone N: for U, this is evident, for N use Remark
(ii) in A5. Finally, the local origin of £(F), follows from Remark (i) in A5.

Ezercise. The degree of the graded super R-line £(F),y, equals x(Ya, F) +
rk(F)w,(v), where w, (v) € Z is the winding number of v around Y.

Ezxamples. Suppose Y, is a circle of radius r around 0 € C and U, equals
{z:7r <|z| < R}. Let us write @, from the corollary for some forms v explicitly:

(a) For v = Redz/z one can take Q, = U,; for v = —Redz/z take Q, = U,.

(b) v = Rez""'dz, n > 0: Draw a cogwheel of a radius > r centered at 0
with cogs at the arguments - + %’T, k = 1,...,2n, pointing outside the circle.
Our @, is the union of the interior of the cogwheel and the points with arguments
o 277” <0< g 2]7”,]' =1,...n, on its boundary.

(c) v = Rez"'dz,n < 0: Draw a cogwheel with cogs in the same position as
for —n, but pointing inside the circle. Our @), is the union of the interior of the
cogwheel and the points with arguments on the boundary it is 0 for arguments
- 277” <0< o QJT” on its boundary.

2n

6. The determinant of the cohomology
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