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References 28

T have to write the introduction! Details will appear elsewhere...

Let us agree that “S-family of vector spaces” means the same as “vector bundle on S”.

1. FAMILIES OF DISCRETE INFINITE-DIMENSIONAL VECTOR SPACES

Is there a reasonable notion of not necessarily finite-dimensional vector bundle on a scheme?
We know due to Serre [S] that a finite-dimensional vector bundle on an affine scheme Spec R
is the same as a finitely generated projective R-module. So it is natural to give the following
definition.

Definition. A vector bundle on a scheme X is a quasicoherent sheaf of Ox-modules F such
that for every open affine subset Spec R C X the R-module H(Spec R, F) is projective.

Key question: is this a local notion? More precisely, the question is as follows. Let Spec R =
JUi, U; = Spec R;. Let M be a (not necessarily finitely generated) R-module such that M ® g R;
7

is projective for all 7. Does it follow that M is projective?

The question is difficult: the arguments used in the case that M is finitely generated fail
for modules of infinite type. Nevertheless Grothendieck [Gr2] conjectured that the answer is
positive. This was proved by Raynaud and Gruson [RG] (in Ch. 1 for countably generated
modules and in Ch. 2 for arbitrary ones). Moreover, they proved that projectivity is a local
property for the fpqc topology, not only for Zariski (in other words, if R' is flat over R and
the morphism Spec R’ — Spec R is surjective then projectivity of M ® g R’ implies projectivity
of M). In fact, they derived it as an easy corollary of the following remarkable and nontrivial
theorem due to Kaplansky [Ka|] and Raynaud-Gruson [RG], which explains what projectivity
really is. In this theorem the ring R is not assumed to be commutative.

Theorem 1.1. An R-module M 1is projective if and only if the following properties hold:
(a) M is flat;
(b) M is a direct sum of countably generated modules;
(¢) M is a Mittag—Leffler module.

The fact that a projective module can be represented as a direct sum of countably generated
ones was proved by Kaplansky [Ka]. The remaining part of Theorem 1.1 is due to Raynaud and
Gruson [RG]. The key notion of Mittag-Leffler module was introduced in [RG]. In §5 we recall
the definition and basic properties of Mittag—Leffler modules. Here I prefer only to explain what
a flat Mittag—Leffler module is. By the Govorov-Lazard lemma, a flat R-module M can be
represented as the inductive limit of a directed family of finitely generated projective modules
P;. According to [RG], in this situation M is Mittag—Leffler if and only if the projective system
formed by the dual (right) R-modules P := Hompg(P;, R) satisfies the Mittag-Leffler condition:
for every i there exists j > i such that Im(P;} — P;) = Im(FP; — P;) for all k > j.

Remarks. (i) One gets a sightly different definition of not necessarily finite-dimensional vector
bundle on a scheme if one replaces projectivity by the property of being a flat Mittag—Leffler
module. The product of infinitely many copies of Z is an example of a flat Mittag—LefHer
Z-module which is not a projective Z-module (see 5.6(7,?) for more details). Informally the
property of being a flat Mittag-Leffler module can be regarded as “projectivity with human
face”. Should I ask Hirschfeldt to help me say something more precise?? E.g., one
does not need the axiom of choice to prove that a vector space over a field is a flat Mittag—Leffler
module, but it is not clear how to prove without this axiom that R is a direct summand of a free



INFINITE-DIMENSIONAL VECTOR BUNDLES IN ALGEBRAIC GEOMETRY 3

Q-module (by the way, without the axiom of choice it is not true that if F' is a direct summand
of a free module then F' is projective, i.e., every epimorphism M — F has a section).

(ii) Instead of property (c) from Theorem 1.1 the authors of [RG] used a slightly different
one, which is harder to formulate. Probably their property has some technical advantages.

(iii) Here are some more comments regarding the work [RG|. First, there is no evidence
that the authors of [RG] knew that the local nature of projectivity had been conjectured by
Grothendieck. Second, their notion of Mittag-Leffler module and their results on infinitely
generated projective modules were probably largely forgotten (even though they deserve being
mentioned in algebra textbooks). Probably they were “lost” among many other powerful and
important results of [RG] (mostly in the spirit of EGA IV).

2. FAMILIES OF TATE VECTOR SPACES, ALMOST PROJECTIVE MODULES, AND THE
K_{-FUNCTOR

2.1. A class of topological vector spaces. We consider topological vector spaces over a
discrete field k.

Definition. A topological vector space is linearly compact if it is the topological dual of a
discrete vector space.

Example: k[[t]| ~kxkx...=(kdkd...)"

A topological vector space V is linearly compact if and only if it has the following 3 properties:
1) V is complete and Hausdorff,

2) V has a base of neighborhoods of 0 consisting of vector subspaces,

3) each open subspace of V has finite codimension.

Definition. A Tate space is a topological vector space isomorphic to P @ @*, where P and @)
are discrete.

A topological vector space T is a Tate space if and only if it has an open linearly compact
subspace.

Example: k((t)) equipped with its usual topology (the subspaces t"k[[t]] form a base of neigh-
borhoods of 0). This is a Tate space because it is a direct sum of the linearly compact sapce
E[[#] and the discrete space ¢ 'k[t~!], or because k[[t]] C k((t)) is an open linearly compact
subspace.

Tate spaces play an important role in the algebraic geometry of curves (e.g., the ring of adeles
corresponding to an algebraic curve is a Tate space) and also in the theory of co-dimensional Lie
algebras and Conformal Field Theory. In fact, they were introduced by Lefschetz (L], p.78-79)
under the name of locally linearly compact spaces. The name “Tate space” was introduced by
Beilinson because these spaces are implicit in Tate’s remarkable work [T]. In fact, the approach
to residues on curves developed in [T] can be most naturally interpreted in terms of the canonical
central extension of the endomorphism algebra of a Tate space, which is also implicit in [T].

2.2. What is a family of Tate spaces? Probably this question has not been considered. We
suggest the following answer. We introduce the notion of Tate module over a (not necessarily
commutative) ring R. If R is commutative then we suggest to consider Tate R-modules as
“families of Tate spaces”.

Definition. An elementary Tate R-module is a topological R-module isomorphic to P & Q*,
where P, @) are discrete projective R-modules (P is a left module, @ is a right one). A Tate
R-module is a direct summand of an elementary Tate R-module. A Tate R-module M is quasi-
elementary if M @ R™ is elementary for some n € N.

Remark. It is easy to see that if every projective R-module is a direct sum of finitely generated
ones then every quasi-elementary Tate R-module is elementary. E.g., according to the following
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theorem due to Bass (Corollary 4.5 from [Ba2]) this is the case if R is a commutative Noetherian
ring.

Theorem 2.1. If R is a commutative Noetherian ring whose spectrum is connected then every
nonfinitely generated projective R-module is free.

Examples. 1) R((¢))" is an elementary Tate R-module.
2) A finitely generated projective R((t))-module is a Tate R-module. In general, it is not
quasi-elementary. E.g., let k be a field, R := {f € k[z]|f(0) = f(1)} and

(2.1) M = {u = u(=,t) € k[z]((t) |u(l,t) = tu(0,t)}.

Then M is a finitely generated projective R((t))-module which is not quasi-elementary as a Tate
R-module (see 2.6).

Theorem 2.2. The notion of Tate module over a commutative ring R is local for the flat
topology, i.e., for every faithfully flat commutative R-algebra R' the category of Tate R-modules
is canonically equivalent to that of Tate R'-modules equipped with a descent datum.

The proof is based on the Raynaud-Gruson technique. See 2.11 for more details.

Remark. For Theorem 2.2 to be true it is essential that we consider not only elementary Tate
modules (see Theorem 2.3).

2.3. The class of a Tate R-module in K_;(R). How to prove that a Tate R-module is not
quasi-elementary? Let 7g denote the additive category of Tate R-modules. It is easy to see
that a quasi-elementary Tate R-module has zero class in Ko(7r) (one can show that Ko(7g)
makes sense even though 7Tg is not equivalent to a small category). The converse is also true.
One also shows that Ky(7r) is canonically isomorphic to K_;(R) and that every element of
Ky(Tr) = K_1(R) can be represented as a class of a finitely generated projective R((t))-module.

The definition of the morphism Ky(7z) — K_1(R) is easy if one uses the following definition
of K_1(R), which is slightly nonstandard but equivalent to the standard ones (C. Weibel, private
communication).

Definition. K ;(R) := K(C¥®), where CX is the Karoubi envelope' of the category C
whose objects are projective R-modules and whose morphisms are defined by Hom¢ (P, P') :=
Hom(P, P")/ Hom¢ (M, M'). Here Hom¢(P, P') C Hom(P, P') is the group of finite rank op-
erators (an R-linear operator P — P’ is said to have finite rank if it can be decomposed as
P— R"— P, neN).

Remark. One easily shows that Ky(C) makes sense (even though C' is not equivalent to a small
category) and that the morphism Ko(CY0) — K(C) is an isomorphism. Here C®0 C C is the
full subcategory of countably generated projective R-modules. The category CX° is equivalent
to that of finitely generated projective modules over the “algebraic Calkin ring” Calk(R) :=
Endc R, R(®) .= R® R & ...; the equivalence is defined by P — Hom¢ (P, R(®)), P € C®o.
The ring Calk(R) is an algebraic version of the analysts’ Calkin algebra, which is defined to be
the quotient of the ring of continuous endomorphisms of a Banach space by the ideal of compact
operators.

Now the morphism Ky(7z) — K_1(R) = Ko(CX?) is defined to be the one induced by the
following functor ® : T — CX2'. Let Er C Tg be the full subcategory of elementary Tate
modules. One gets a functor ¥ : Er — C by setting (P @ Q*) := P (here P, @ are discrete
projective modules) and defining ¥(f) € Homg (P, P1), f: P& Q* — P, ® Q7, to be the image

of the composition P — P & Q* T po Q* — Q* in Hom¢g(P, P1) (one easily checks that
T(f'f) = U(f)T(f)). The functor ¥ extends to UK : Tp = EXar — OKar 354 therefore

1Recall that the Karoubi envelope of a category K is the category one gets by formally adding the images of
idempotent endomorphisms.
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induces a morphism Ky(7r) — Ko(C¥?) = K_;1(R). One can show that this morphism is an
isomorphism.

2.4. Comparison between the definitions of K_;. Should I rename this subsection into
“Various definitions of K_1777

Does the Karoubi-Villamayor functor C' commute with filtering inductive limits??

Recall that our K_;(R) is equal (more or less by definition) to Ky(Calk(R)), Calk(R) :=
End R(*°)/ End i R(®), where End i R(*) ¢ End R(®) is the ideal of finite rank operators.

On the other hand, J. B. Wagoner [Wa] defined the negative K-theory of R by K}V := K and
KY (R) := K}V (IR/mR), where [R C End R(™) is the subring of matrices with finitely many
non-zero entries in each row (not only in each column) and mR := [R N Endy R(®). A similar
definition had been introduced by M. Karoubi and O. Villamayor [KV1, KV2]: KKV := K,
and KXYV(R) := KXV (CR/mR), where CR is a certain subring of [R. (This definition was
developed by S. M. Gersten [Ge| at the level of spectra.) It is known that the morphisms
KXV — K}V are isomorphisms for all i < 0. C. Weibel informed me (private communication)
that the morphism K" (R) — K_;(R) = Ko(Calk(R)) is an isomorphism.

What about [P, PW]??

H. Bass [Ba| defined the negative K-theory of R by

(2.2) K;_1(R) := Coker(K;(R[t]) ® K;(R[t""]) — K;(R[t,t""])), i<0.

Let us denote by KB, the K_;-functor defined by (2.2). As before, we put K_1(R) := Ko(CXar).
The isomorphism between K2 5 K_; is defined as follows. We have the morphism

(2.3) Ko(R[t,t7']) = Ko(Tr) = Ko(C¥¥) = K_1(R)

that sends the class of a finitely generated projective R[t,¢ !]-module P to the class of the Tate
R-module R((t)) ®gy,~1)P. This class is opposite to that of the Tate R-module R((t™")) ®gpi-1
P (to see this notice that P embeds into R((t)) ®pgps-1) P ® R((t™")) ®pgpys-11 P as a discrete
submodule and the quotient is dual to a discrete projective R-module). This implies that the
images of both Ky(R[t]) and Ko(R[t !]) in Ko(Tr) are zero, so we get a morphism K5, (R) —
K_1(R). The fact that it is an isomorphism was essentially proved? in [?] (reference??). This
implies that (2.3) is surjective.

Remarks. (i) It follows from (2.2) that all the K;-functors, ¢ < 0, commute with filtering
inductive limits. On the other hand, proving this for the K_;-functor defined by K_;(R) :=
Ky(C¥ar) requires some efforts.

(ii) Bass proved in [Ba] that if R is left regular (i.e., it is left noetherian and every finitely
generated R-module has a finite projective resolution) or right regular then K;(R) = 0 for all
i < 0. This follows from (2.2) because according to [Ba], ch. XII, §3 the morphisms Ky(R) —
Ko(R[t]) — Ko(R[t,t!]) are isomorphisms if R is left or right regular. One can also prove the
vanishing of K ; for regular rings using the definition K (R) := Ky(CXar).

2.5. The dimension torsor. Let R be commutative. Then it follows from Theorem 8.5 of
[We2] that there is a canonical epimorphism K_1(R) — HZ (Spec R, Z), so a Tate R-module M
should define oy € H) (Spec R, Z). We will define aps explicitly as a class of a certain Z-torsor
Dimjs on Spec R canonically associated to M. Dimyy is called “the torsor of dimension theories”
or “dimension torsor”.

Let us recall the well known definition of Dimj; in the case that R is a field (so M is a
Tate space). Notice that if L C M is open and linearly compact then usually dim L = oo and
dim(M /L) = oo. But for any open linearly compact L, L' C M one has the relative dimension
d¥' = dim(L'/L' N L) — dim(L/L' N L) € Z.

2Why “essentially”??
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Definition. A dimension theory on a Tate space M is a function
d : {open linearly compact subspaces L C M} — Z

such that d(L') — d(L) = d¥'.
A dimension theory exists and is unique up to adding n € Z. So dimension theories on a Tate
space form a Z-torsor. This is Dim,.

Example. Let T be a Z-torsor, let k() be the vector space over a field k freely generated by
T. Then Z acts on k7). so k&(T) becomes a k[z, z']-module (multiplication by z coincides with
the action of 1 € Z). Put M := k((2)) ®[;,.-1] k(). Then one has a canonical isomorphism

(2.4) Dimy; — T :

to t € T one assoicates the dimension theory d; such that di(L;) = 0, where Ly C M is the
k[[z]]-submodule generated by t.

Definitions. Let M be a Tate module over a (not necessarily commutative) ring R. A sub-
module L C M is a lattice if it is open and L/U is finitely generated for every open submodule
U C L. A lattice L C M is coflat if M/L is projective.

Remarks. (i) One can show that a lattice L C M is coflat if and only if M/L is flat.
(ii) It is easy to see that every Tate R-module M has a lattice. On the other hand, M has a
coflat lattice if and only if M is elementary.

If M is a Tate module and L C L' C M are coflat lattices then L'/L is a finitely generated
projective R-module, so if R is commutative then df' := rank(L'/L) € H(SpecR,Z) is well-
defined.

Definition. Let M be a Tate module over a commutative ring R. A dimension theory on M is a
rule that associates to each R-algebra R’ and each coflat lattice L C R'®rM a locally constant
function dy, : Spec R' — Z in a way compatible with base change and so that dr, — dr, =
rank(Lo/Lq) for any pair of coflat lattices L1 C Ly C R'®grM. Here R'®@grM denotes the
completed tensor product.

One defines Dim;; to be the Z-torsor of dimension theories. To show that this is indeed a
Z-torsor, one uses the following fact. The following theorem implies that this is indeed a Z-torsor
and that if the functions d;, with the above properties are defined for all etale R-algebras then
there exists a unique way to extend the definition to all R-algebras.

Theorem 2.3. Let R be a commutative ring. Then every Tate R-module M is Nisnevich-
locally elementary; in other words, there exists a Nisnevich covering Spec R' — Spec R such that
R'®rM has a coflat lattice L'. Moreover, for every lattice L C M one can choose R' and L' so
that L' > R'®gL.

Recall that a morphism 7 : Spec R’ — Spec R is said to be a Nisnevich covering if it is etale
and there exist closed subschemes SpecR = Fy D F; D ... D F, = 0 such that each F; is
defined by finitely many equations and = admits a section over F;_1 \ F;, i =1,...,n. (If R is
Noetherian then an etale morphism Spec R’ — Spec R is a Nisnevich covering if and only if it
admits a section over each point of Spec R). So the Nisnevich topology is weaker than etale but
stronger than Zariski. The following table may be helpful:
Topology | Stalks of Ox, X =SpecR

Zariski Localizations of R
Nisnevich Henselizations of R
Etale Strict henselizations of R

Now let us return to dimension torsors. One has a canonical isomorphism

(25) DiIIl]\/[l@]\/[2 = DlIIl]\/[1 + DlIIl]\/[2 .
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So one gets a morphism Ko(7r) = K_1(R) — HL (Spec R,Z). It is surjective. Indeed, let T be

a Z-torsor on S := Spec R. Then the free Og-module OgT) generated by the sheaf of sets T is
equipped with an action of Z, so it is a module over Og|z, z~!] (multiplication by z coincides
with the action of 1 € Z). This module is locally free of rank one, so its global sections form a
projective R[z, z '-module R of rank 1. Therefore R((z)) ®R[z,2-1] R is a Tate R-module.
Its dimension torsor is canonically isomorphic to T' (cf. (2.4)).

2.6. Example. Let M be the Tate module (2.1) over R := {f € k[z]|f(0) = f(1)}. Then the
Z-torsor Dimy; is nontrivial (its pullback to S := Spec(R ®y, k) corresponds to the universal
covering of S). So the class of M in Ky(7g) = K_1(R) is nontrivial and therefore M is not
quasi-elementary. This example also shows that in Theorem 2.3 one cannot replace “Nisnevich”
by “Zariski”.

2.7. Remark. The kernel of the morphism K ;(R) — HZ(Spec R,Z) may be nonzero, even
if R is local. Examples can be found in [We3]. More precisely, §6 of [We3] contains examples
of algebras R over a field k such that HZ(SpecR,Z) = 0 but K ;(R) # 0. In each of these
examples Spec R is a normal surface with one singular point . Let R, denote the local ring of
z. According to [Wel], the map K_;(R) — K_1(R,) is an isomorphism, so K_1(R;) # 0.

2.8. The dimension torsor of a projective R((¢))-module. Let R be a commutative ring.
Let M be a finitely generated projective R((t))-module equipped with an isomorphism ¢ :
det M — R((t)). If R is a field then M has an R[[t]]-stable lattice; moreover, there is a lattice
L C M such that

(2.6) R[f]L C L, o(detL) = R[t]].

So it is easy to see that if R is a field then there is a unique dimension theory d, on M such
that d,(L) = 0 for all lattices L C M satisfying (2.6). Therefore if R is any commutative ring
then the Z-torsor Dimy, is trivialized over each point of Spec R.

Proposition 2.4. These trivializations come from a (unique) trivialization d, of the Z-torsor
Dimy,.

Remarks. (i) By Proposition 2.4 the morphism Ko(R((t))) — H'(Spec R,Z) which sends
th class of a projective R((t))-module M to the class of Dimj, annihilates the kernel of the
epimorphism det : Ko(R((t))) — Pic R((t)), so we get a morphism Pic R((t)) — HZ (Spec R,Z)
such that the diagram

Ko(R((1) %% PicR((t)

(2.7) 1 Ve
He}t (Spec Ra Z)

commutes. The composition Pic R[t,t~1]) — Pic R((t)) — HX (Spec R,Z) was studied in [We2].
(ii) The interested reader can easily lift the diagram (2.7) of abelian groups to a commutative
diagram of appropriate Picard groupoids (in the sense of 2.12.1).

2.9. The determinant gerbe. Given a Tate space M over a field Kapranov [Ka3] defines its the
groupoid of determinant theories. The definition is based on the notion of relative determinant
of two lattices in a Tate space and goes back to J.-L. Brylinski [Br] (and further back to the
Japanese school and [ACK]). If M is a Tate module over a commutative ring R then rephrasing
the definition from [Ka3] in the obvious way one gets a sheaf of groupoids on the Nisnevich
topology of S := Spec R (details will be explained in 2.12). This sheaf of groupoids is, in fact,
an Og-gerbe. We call it the determinant gerbe of M. Associating the class of this gerbe to a
Tate R-module M one gets a morphism

(2.8) Ko(Tr) = K-1(R) — Hy(S, 0%).
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Probably it is well known to K-theorists. One can get the restriction of (2.8) to Ker(K_1(R) —
H} (Spec R,Z)) (and possibly the morphism (2.8) itself) from the Brown-Gersten-Thomason
spectral sequence ([TT], §10.8).

2.10. Almost projective modules. Recall that every Tate R-module has a lattice but not
necessarily a coflat one. If M is a Tate R-module and L C M is a lattice then M/L is almost
projective in the following sense.

Definition. An elementary almost projective R-module is a module isomorphic to a direct sum
of a projective R-module and a module of finite presentation. An almost projective R-module is
a direct summand of an elementary almost projective module. An almost projective R-module
M is quasi-elementary if M @& R™ is an elementary almost projective R-module for some n € N.

Remark. It is easy to see that an R-module M is a quasi-elementary almost projective module
if and only if it is isomorphic to P/N with P projective and N C P finitely generated.

Theorem 2.5. (i) The notion of almost projective module over a commutative ring R is local for
the flat topology, i.e., for every faithfully flat commutative R-algebra R' the category of almost
projective R-modules is canonically equivalent to that of almost projective R'-modules equipped
with a descent datum.

(ii) For every almost projective module M over a commutative ring R there ezists a Nisnevich
covering Spec R' — Spec R such that R' @ g M is elementary.

Remarks. 1) A quasi-elementary almost projective module M over a commutative ring R
becomes elementary already Zariski-locally. This can be easily deduced from the following
theorem due to Kaplansky [Ka]: a projective module over a local ring is free (even if it is not
finitely generated).

2) My impression is that statement (ii) is more important than (i) even though it is much easier
to prove. Statement (i) gives you a peace of mind (without it one would have two candidates
for the notion of almost projectivity), but in the examples of almost projective modules that
I know one can prove almost projectivity directly rather than showing that the property holds
locally.

A submodule L of an almost projective R-module M is said to be a coflat lattice if L is
finitely generated and M/L is projective. It is easy to show that in this situation L has finite
presentation, so coflat lattices exist if and only if M is elementary.

Now let R be commutative. We define a dimension theory (resp. upper semicontinuous
dimension theory) on an almost projective R-module M to be a rule that associates to each R-
algebra R' and each coflat lattice L C R'® g M alocally constant (resp. an upper semicontinuous)
function dy, : Spec R© — Z in a way compatible with base change and so that dp, — dp, =
rank(Ly/L1) for any pair of coflat lattices L1 C Ly C R' ®g M. The notion of dimension
theory (or upper semicontinuous dimension theory) does not change if one considers only etale
R-algebras instead of arbitrary ones. Dimension theories on an almost projective R-module M
form a Z-torsor for the Nisnevich topology of Spec R, which is denoted by Dim;;. One defines
the canonical upper semicontinuous dimension theory d°*" on M by d{*"(z) := dimg, (K;®g L),
where R' is an R-algebra, L. C R'®g M is a coflat lattice, z € Spec R/, and K is the residue field
of z. An upper semicontinuous dimension theory on M is the same as an upper semicontinuous
section of Dim,s, by which we mean a Z-antiequivariant morphism from the Z-torsor Dimj,
to the sheaf of upper semicontinuous Z-valued functions on Spec R. Clearly d®" is a true (i.e.,
locally constant) section of Dimp, if and only if the quotient of M modulo the nilradical I C M
is projective over R/I. In this case d°*" defines a trivialization of Dim,.

If N is a Tate R-module and L C N is a lattice then the dimension torsor of the almost
projective module N/L canonically identifies with that of N.
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2.11. On the proofs. Theorems 2.2 and 2.3 are reduced to Theorem 2.5. To prove Theorem
2.5(i) we introduce the following definition: an R-module M is almost flat if there is a morphism
N — M such that N is an R-module of finite presentation and the corresponding morphism
Tory(L,N) — Tori(L, M) is surjective for every right R-module L. Then we show that in
Theorem 1.1 one can replace “projective” and “flat” by “almost projective” and “almost flat”.
Theorem 2.5(ii) is easy and more or less equivalent to the following one.

Theorem 2.6. Every element of K_1(R) vanishes Nisnevich-locally.

Remark. According to Example 8.5 of [We2] (which goes back to L. Reid’s work [Re]), this is
not true for K;, 1 < —1.

Proof. According to our definition of K_1, it suffices to prove that if P is a projective R-module
and 7 € End P is such that rank(7? — m) < oo then after Nisnevich localization there exists
7 € End P such that 72 = 7 and rank(7 — m) < co. The idea is to consider the spectrum of 7.
There exists monic f € R[\] such that f(7? — )| tm(x2—x) = 0. So f(x? —7)(7? — 1) = 0. Put
g(A) = (A2 = A\)f(A\2 — \). We have R[\]/(g) — End P, X\ — m. Now consider S := R[\]/(g) C
SpecR x Al. Clearly S D 0U 1, where 0 = SpecR x {0}, 1 = SpecR x {1}. Suppose we
have S = Sy ][ Si, where Sy and S; are open subsets such that Sy D 0 and S; D 1. Define
e € R[\/(g) = H°(S,05) by e|s, =0, e|s, = 1. Then we can put 7 := image of e in End P. We
claim that the decomposition S = Sy [[ S exists locally with respect to the Nisnevich topology
of Spec R. This is clear because such a decomposition exists if R is Henselian. O

2.12. Determinants and dimensions combined together. Following §2 of [BBE], we com-
bine the dimension torsor and the determinant gerbe into a single object, which is a Torsor over
a certain Picard algebroid (these notions are defined below). The reason why it is convenient
and maybe necessary to do this is explained in 2.12.3. The reader may prefer to skip this sub-
section and go directly to §3. Our terminology is slightly different from that of [BBE], and our
determinant Torsor is inverse to that of [BBE].

2.12.1. Terminology. According to §1.4 of [Del], a Picard groupoid is a symmetric monoidal
category A such that all the morphisms of A are invertible and the semigroup of isomorphism
classes of the objects of A is a group. A Picard groupoid is said to be strictly commutative if
for every a € Ob A the commutativity isomorphism a ® a — a ® a equals id,. As explained in
§1.4 of [Del], there is also a notion of sheaf of Picard groupoids (champ de catégories de Picard)
on a site.

We will work with the following simple example.

Example. For a commutative ring R we have the Picard groupoid Z-Picg of Z-graded invertible
R-modules (it is not stricly commutative because we use the “super” commutativity constraint
a®br (—1)P@r0®)p ® q). For a scheme S denote by Z-Picg the sheaf of Picard groupoids on
the Nisnevich site of S formed by Z-graded invertible Og-modules.

Should I write Z-Invg instead of Z-Picg??

We need more terminology. An Action of a monoidal category A on a category C is a monoidal
functor from A to the monoidal category Funct(C,C) of functors C — C. Suppose A acts on C
and C', i.e., one has monoidal functors ® : A — Funct(C,C) and ®' : A — Funct(C’,C’). Then
an A-functor C — C' is a functor F : C — C' equipped with isomorphisms F®(a) — ®'(a)F
satisfying the natural compatibility condition (the two ways of constructing an isomorphism
F®(a; ® ag) — ®'(a; ® ag)F must give the same result). An A-equivalence C — C' is an
A-functor C — C’ which is an equivalence.

There is also an obvious notion of Action of a sheaf of monoidal categories A on a sheaf of
categories C, and given an Action of A on C and C' there is an obvious notion of A-functor
C — C' and A-equivalence C — C'.
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Definition. Let A be a sheaf of Picard groupoids on a site. A sheaf of categories C equipped
with an Action of A is an A-Torsor if it is locally A-equivalent to A.

Remark. The notion of Torsor makes sense even if A is non-symmetric. But 4 has to be
symmetric if we want to have a notion of product of .A-Torsors.

2.12.2. The determinant Torsor. Let R be a commutative ring, S := Spec R. Slightly modifying
the construction of [Ka3], we will associate a Torsor over Z-Picg to an almost projective R-
module M. Recall that a coflat lattice L C M is a finitely generated (or presented??) submodule
such that M/L is projective. The set of coflat lattices L C M will be denoted by G(M). In
general, G(M) may be empty, and it is not clear if every L1, Ly € G(M) are contained in some
L € G(M). But it follows from Theorem 2.5(ii) that these properties hold after Nisnevich
localization (to show that every Li, Ly € G(M) are Nisnevich-locally contained in some coflat
lattice apply Theorem 2.5(ii) to M/(L; + Lo) or use Remark 1 after the theorem). In other
words, for every z € Spec R the inductive limit of G(R' ® g M) over the filtering category of all
etale R-algebras R’ equipped with an R-morphism z — Spec R’ is a non-empty directed set.

For each pair L; C Ly in G(M) one has the invertible R-module det(Ly/L1). It is equipped
with a Z-grading (the determinant of an n-dmensional vector space has grading n).

Definition. A determinant theory on M (resp. a weak determinant theory on M) is a rule A
which associates to each R-algebra R’ and each L € G(R'® g M) an invertible graded R'-module
A(L) (resp. an invertible R'-module A(L)), to each pair L; C L in G(R'®g M) an isomorphism

(2.9) ALle : A(Ll) (= det(Lg/Ll) = A(LQ),

and to each morphsism f : R' — R" of R-algebras a collection of base change morphisms
Ar =App : A(L') - A(R'L'), L' € G(R' ®r M). These data should satisfy the following
conditions:

(i) each Ay ; induces an isomorphism R" @ g A(L') — A(R"L');

( ) Af2f1 f2Af17

(iii) the isomorphisms (2.9) commute with base change;

(iv) for any triple Ly C Lo C L3 in G(R' ® g M) the obvious diagram

A(Ll) ® det(Lg/Ll) ® det(Lg/Lg,) L> A(Ll) ® det(Lg,/Ll)llA(LQ) K det(Lg/Lg) ;> A(Lg)
commutes.

Remark. It follows from Theorem 2.5(ii) that the notion of (weak) determinant theory does
not change if one considers only etale R-algebras instead of arbitrary ones.

The groupoid of all determinant theories on M is equipped with an obvious Action of the
Picard groupoid Z-Picg of invertible Z-graded R-modules: P € Z-Picgr sends A to PA, where
(PA)(L) := P®g A(L).

Determinant theories on R' ® g M for all etale R algebras R’ form a sheaf of groupoids Det
on the Nisnevich site of S := Spec R, which is equipped with an Action of the sheaf of Picard
groupoids Z-Picg. It follows from Theorem 2.5(ii) that Detj; is a Torsor over Z-Picg. We call
it the determinant Torsor of M.

Remark. Consider the category whose set of objects is Z and whose only morphisms are the
identities. We will denote it simply by Z. Addition of integers defines a functor Z x Z — Z, so
7Z becomes a Picard groupoid. We have a canonical Picard functor from Z-Picg to the constant
sheaf Z of Picard groupoids: an invertible Og-module placed in degree n goes to n. The Z-torsor
corresponding to the (Z-Picg)-Torsor Detys is the dimension torsor Dimjs from 2.5.
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2.12.3. On the notion of determinant gerbe. We also have the forgetful functor from the category
of Z-graded invertible R-modules to that of plain invertible R-modules. It defines a monoidal
functor F' (but not a Picard functor!) from Z-Picg to the sheaf of Picard categories O%[1] whose
category of sections over an etale S-scheme S’ is the Picard category of O§-torsors. Applying F
to the (Z-Picg)-Torsor Det ys one gets an O§[1]-Torsor, i.e., an O%-gerbe. This is the determinant
gerbe considered by Kapranov [Ka3] and mentioned in 2.9. Its sections are weak determinant
theories. As F does not commute with the commutativity constraint, there is no canonical
equivalence between the Og-gerbe corresponding to a direct sum of almost projective modules
M;, i€ I, Card I < oo, and the product of the O%-gerbes corresponding to M;, i € I (but there
is an equivalence which depends on the choice of an ordering of I). This is the source of the
numerous signs in [ACK] and the reason why we prefer to consider Torsors over Z-Picg rather
than pairs consisting of a O%-gerbe and a Z-torsor (as Kapranov does in [Ka3]).

I should mention (where??) that the (Z-Picg)-Torsor Det s depends only on M as an object
of the “up to isogeny” category. Is it true that (at least at the level of groupoids) this is a
full subcategory of the category of ind-objects of the groupoid of R-modules (to an almost
projective module M one associates the formal inductive limit of the quotients M/F with F'
finitely generated)?? In particular, one can define the determinant Torsor of a Tate R-module
(this is also clear directly).

2.12.4. The Fermion module. Suppose we are given a Tate R-module M equipped with a weak
determinant theory 7. of its determinant gerbe. If R is a field it is well known that these data
define a graded T-module A M over the Clifford algebra of M @ M*, where T is the dimension
torsor of M (the graded components of M are the semi-infinite exterior powers of M). In
fact, one can define the “Fermion module” A_M for any commutative ring R (locally for the
Nisnevich topology of Spec R one can construct A _M just as in the case that R is a field).
A\, M is projective: Nisnevich-locally this is clear, then use the Raynaud-Gruson theorem on
the local nature of projectivity (see §1).

2.12.5. A wvague picture. Let S be a spectrum in the sense of algebraic topology. We put 7¢(S) :=
7_;(S) and define 7<¥S to be the spectrum equipped with a morphism 7<¥§ — § such that
74 (1<kS) = 0 for i > k and the morphism 7*(7<FS) — 7%(S) is an isomorphism for i < k. There
is a notion of torsor over a spectrum S, which depends only on 7<!'S. Namely, an S-torsor is a
point of the infinite loop space L corresponding to (7<1S)[1] (or, equivalently, a morphism from
the spherical spectrum to S[1]). A homotopy equivalence between torsors is a path connecting
the corresponding points of L, so equivalence classes are parametrized by 7!(S) := w_1(S).

According to Beilinson, to an almost projective R-module M there should correspond a torsor
over the K-theory spectrum K (R) whose class in 7_1 (K (R)) = K_1(R) should be the class [M]
defined in 2.3 (here and in what follows the status of “should” is not clear to the author, so the
picture becomes vague). If R is commutative then by Thomason’s localization theorem ([TT],
§10.8) K(R) = RI'(S,K), where K is the sheaf of K-theories of Og (this is a sheaf of spectra
on the Nisnevich site of S). So the notion of K (R)-torsor should coincide with that of K-torsor.
Both of them should coincide with that of 7<'K-torsor. By Theorem 2.6, K' := K_; = 0, so
7S = 750K and therefore we get a morphism 751K = 70K — Ko = KL= 721720,
So to an almost projective R-module M there should correspond a K i-torsor Aar. According
to Beilinson, Ko1; and Ajps should identify with Z-Picg and the Torsor Dety; from 2.12.2 via
the following dictionary, which goes back to A. Grothendieck.

According to Corollary 1.4.17 of [Del], a sheaf of strictly commutative Picard groupoids is
essentially the same as a complex of sheaves of abelian groups with cohomology concentrated in
degrees 0 and -1. As far as I understood Lawrence Breen (24 June 2003, private communication),
this remains true if one removes the strict commutativity condition, replaces “complex” by
“spectrum” (in the sense of algebraic topology) and the cohomology groups H* by the homotopy
groups m_;, but a precise reference is unfortunately not available. Hopefully, a torsor over the
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spectrum corresponding to a Picard groupoid A is the same as an A-Torsor in the sense of
2.12.1. One also hopes that this is true for sheaves of spectra and sheaves of Picard groupoids.

Problem: make the above vague picture precise. The notion of determinant Torsor is very
useful, and its rigorous interpretation in the standard homotopy-theoretic language of algebraic
K-theory would be helpful.

3. APPLICATION: “REFINED” MOTIVIC INTEGRATION
In this section we fix a field k and assume all k-algebras to be commutative.

3.1. A class of schemes. We will use the following notation for affine spaces: A! := Spec k[z;;c7,
A% = AN,

We say that a k-scheme is nice if it is isomorphic to X x A!, where X is of finite type (the set
I may be infinite). A! is an affine space, i.e., A := Speck[z;];c; (I may be infinite). An affine
scheme is nice if and only if it can be defined by finitely many equations in a (not necessarily
finite-dimensional) affine space.

Definition. A k-scheme is locally nice (resp. Zariski-locally nice, etale-locally nice) if it becomes
nice after Nisnevich localization (resp. Zariski or etale localization).

I do not know if etale-local niceness implies local niceness. Local niceness does not imply
Zariski-local niceness (see 3.2 below).

If X = SpecR is locally nice then Q}z is almost projective by Theorem 2.5(i). So we have
the dimension torsor Dimy := DimQ}( . In the next subsection we will see that Dimx may be
nontrivial, and on the other hand, there exists a locally nice k-scheme with trivial dimension
torsor which is not Zariski-locally nice. The dimension torsor of any locally nice k-scheme is
defined by gluing together the torsors Dimy; for all open affine U C X.

3.2. Examples. (i) Define i : A® — A® by i(x1,29,...) := (0,1, 79,...). Take Al x A>® and
then glue (0,z) € Al x A% with (1,i(x)) € Al x A*®. Thus one gets a scheme X whose dimension
torsor is nontrivial and even not Zariski-locally trivial.

(ii) Let M be an almost projective module over a finitely generated k-algebra R. Let X
denote the spectrum of the symmetric algebra of M. Then X is locally nice by Theorems 2.5(ii)
and 2.1. Tt is easy to deduce from Theorem 2.1 that X is Zariski-locally nice if and only if the
class of M in K_;(R) vanishes locally for the Zariski topology (to prove the “only if” statement
consider the restriction of Q% to the zero section Spec R < X). If R and M are as in (2.1) then
we get the above Example (i).

(iii) There exists a locally nice k-scheme X with trivial dimension torsor which is not Zariski-
locally nice.? According to (ii), to get such an example it suffices to find a finitely generated
k-algebra R and an almost projective R-module M such that HZ (Spec R,Z) = 0 but the class
of M in K_;(R) is not Zariski-locally trivial. §6 of [We3] contains examples of finitely generated
normal k-algebras R with K_1(R) # 0. In each of them Spec R has a unique singular point z,
and according to [Wel], the map K_1(R) — K_;(R;) is an isomorphism. Now take any nonzero
element of K_;(R) and represent it as a class of an almost projective R-module M.

3.3. A class of ind-schemes. Functors from the category of k-algebras to that of sets will be
called “spaces”. E.g., a k-scheme can be considered as a space. An ind-scheme is a space which
can be represented as the union of a directed family of closed subschemes. An ind-scheme is
ind-affine if its closed subschemes are affine.

Main example. Let Y be an affine scheme over F' := k((t)). Define a functor Yp from the
category of k-algebras to that of sets by Yr(R) := Y(R®F), R®F := R((t)). Tt is well known
and easy to see that Y is an ind-affine ind-subscheme. If Y is an affine scheme of finite type over
F then Yr is “reasonable” in the sense of the following definition (which is due to A. Beilinson).

3In 3.12.3 we will see that one can get such X from the loop space of a smooth affine manifold.
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Definition. Let X be an ind-scheme. A closed quasi-compact subscheme Y C X is called
reasonable if for any closed subscheme Z C X such that Y C Z the ideal of Y in Oy is finitely
generated locally on Z. Do I really need quasicompactness?? We say that X is reasonable
if X is a union of its reasonable subschemes, i.e., it may be represented as the direct limit of X,
where all X, are reasonable.

(A closed ind-subscheme of a reasonable ind-scheme is a reasonable ind-scheme; a product of
two reasonable ind-schemes is reasonable. Do I need this??)

Definition. A reasonable ind-scheme X is ind-smooth if

(i) every reasonable closed subscheme of X is locally nice;

(ii) X is formally smooth, i.e., for every k-algebra R and any nilpotent ideal I C R the map
X(R) — X(R/I) is surjective.

Remark. In the above definition we do not require every closed subscheme of X to be contained
in a formally smooth subscheme. It is not clear if this property holds for SL(n)p or for the affine
Grassmannian SL(n)r/SL(n)o, O := k[[(t]], even though these ind-schemes are ind-smooth. See
also Remark (ii) from the next subsection.

3.4. Loops of an affine manifold.
Theorem 3.1. If an affine F-scheme Y is smooth then Yr is ind-smooth.

Remarks. (i) In fact, the formal smoothness of Y immediately follows from the smoothness of
Y and the definition of Y. It is property (i) from the definition of ind-smoothness that requires
some efforts.

(ii) If Y is a smooth affine F-scheme then by Theorem 3.1 every reasonable closed subscheme
X C YF is locally nice. But there exist Y and X C YF as above such that X is not Zariski-locally
nice. One can choose Y and X so that Dimyx is not Zariski-locally trivial. But one can also
choose Y and X so that Dimy is trivial but X is not Zariski-locally nice. See 3.12 for examples
of these situations. As K _; of a regular ring is zero (see 2.4), in these examples Yr cannot
be represented (even Zariski-locally) as the union of an increasing sequence of smooth closed
subschemes.

Before sketching the proof of Theorem 3.1 I will formulate a slightly more general theorem.
The point is that if Y is embedded into an affine space then the intersection of Y with a polydisk
is a very special kind of an affinoid analytic space over F' (it is defined by polynomial equations
rather than holomorphic ones). In the next subsection we formulate an analog of Theorem 3.1
for any affinoid analytic space over F'.

3.5. Loops of an affinoid space. We will use the terminology from [BGR] (which goes back
to Tate) rather than the one from [Be|. Let F(zi,...,2z,) C F[[z1,...2,]] be the algebra of
power series which converge in the polydsik |z;| < 1. As F = k((t)) one has F(zy,...,2,) =
k[z1,...,2n]((t)). For every k-algebra R the F-algebra R®F = R((t)) is equipped with the
norm whose unit ball is R[[t]]. In particular, F(zi,...,2,) is a Banach algebra. An affinoid
F-algebra is a topological F-algebra isomorphic to a quotient of F(z1,...,z,) for some n. All
morphisms between affinoid F-algebras are automatically continuous (see, e.g., §6.1.3 of [BGR]).
The category of affinoid analytic spaces is defined to be dual to that of affinoid F-algebras; the
affinoid space corresponding to an affinoid F-algebra A will be denoted by M(A).

For an affinoid analytic space Z = M(A) and a k-algebra R denote by Zp(R) the set of
continuous F-homomorphisms from A to the Banach F-algebra R®F = R((t)). It is easy to
see that the functor Zg is a reasonable ind-affine ind-scheme which has a closed subscheme
X such that the ideal of X in every bigger closed subscheme of Zp is nilpotent. X can be
constructed as follows: choose? a representation of A as Ag[t~!] with Ag isomorphic to a quotient

41f Z is reduced there is no choice: Ao is the set of f € A such that |f(z)] <1 for all z € Z
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of k[[t,z1,...2,]] which is flat over O = k[[t]] and define X(R) C Zp(R) to be the set of F-
morphsims f : A - R®F such that f(A4y) C R&O.

Theorem 3.2. If an affinoid space Z is smooth then Zg is ind-smooth.

3.6. On the proof of Theorems 3.1 and 3.2. Theorem 3.1 follows from Theorem 3.2. The
formal smoothness of the ind-scheme Zr from Theorem 3.2 immediately follows from the def-
initions. So it remains to show that every reasonable closed subscheme X = SpecR C Zp is
locally nice.

The first step is to study Q}{. For every closed subscheme Y C Zr containing X let My be
the R-module corresponding to the pullback of (2}, to X = Spec R. The projective limit M of
the R-modules My is a topological R-module. The following lemma is easy.

Lemma 3.3. (i) Let A be the affinoid F-algebra corresponding to Z. Consider the homomor-
phism of topological F-algebras A — R((t)) corresponding to the morphism Spec R = X — Zp.
Then the topological R-module M identifies with R((t)) ® 4 QY (here QY is understood in the
sense of affinoid F-algebras rather than abstract algebras, so 9}4 is a finitely generated projective
A-module). Therefore M is a finitely generated projective R((t))-module and therefore a Tate
R-module.

(ii) Q% = M/L for some lattice L C M.

By Lemma 3.3(i) and Theorem 2.3 M becomes quasi-elementary after Nisnevich localization.
One easily shows that if Spec R is connected then a quasi-elementary Tate R-module which
comes from a finitely generated projective R((t))-module is isomorphic to P & @*, where P and
Q are free discrete R-modules. Applying Lemma 3.3(ii) we see that after Nisnevich localization
Q}z becomes a direct sum of a free module and a module of finite presentation. This is a linearized
version of Theorem 3.2.

To deduce the theorem from its linearized version one works with the implicit function theo-
rem.

3.7. The renormalized dualizing complex. Fix a prime [ # chark. Let D%(X,Z;) denote
the appropriately defined bounded constructible l-adic derived category on a scheme X (see
[E, Ja]). For a general locally nice k-scheme X there is no natural way to define the dualizing
complex Kx € D%(X,Z;). Indeed, if X is the product of A* and a k-scheme Y of finite type
and if 7 : X — Y is the projection then Kx should equal 7* Ky ® (Z[2](1))®>°, which makes
no sense. But suppose that the dimension Z-torsor Dimx is trivial and that we have chosen
its trivialization 7. Then one can define the renormalized dualizing complez K% € DX, Zy).
The definition (which is straightfroward) is given below. The reader can skip it and go directly
to 3.8.

First assume that X is nice, i.e., there exists a morphism 7 : X — Y such that Y is a k-scheme
of finite type and X is Y-isomorphic to Y x Al for some set I. Let Cx be the category of all
such pairs (Y, 7). A morphism f : (Y,7) — (Y',n') is defined to be a morphism f : Y — Y’
such that 7' = fr. Such f is unique if it exists. The category Cx is equivalent to a directed
set. So to define K7 it suffices to define a functor

(3.1) Cx — DY(X,7;), (Y,m)w— K%"

which sends all morphisms to isomorphisms.

If (Y,7) € Cx then 7*Q}, C Q% is locally of finite presentation and Q% /7*Q3. is locally free.
So for every open affine U C X one has the coflat lattice I'(U, 7*Q1,) C T(U, QL) and therefore
a section of the torsor Dimyx over U. These sections agree with each other, so we get a global
section 7, of Dimx. Put

(3.2) m:=n, —n € H(X,Z),

(3-3) K} ="Ky ® (2,[2)(1))*"™,
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Now let f : (Y,7) — (Y',7') be a morphism. One easily shows that f : Y — Y’ is smooth®, so
one has a canonical isomorphism

(3.4) Ky = [*Ky ® (Z4[2)(1))®¢,
where d is the relative dimension of Y over Y. It is easy to see that 7*d = 1 — 0, so (3.4)
induces an isomorphism ay : K7™ — K7™ . We define (3.1) on morphisms by f — aj.

So we have defined K} if X is nice. The formation of K. commutes with etale localization
of X. It is easy to see that Ext*(K%,K%) =0 for ¢ < 0. So by Theorem 3.2.4 of [BBD] there

is a unique way to extend the definition of K;’( to all etale-locally nice k-schemes X so that the
formation of K;’( still commutes with etale localization.

3.8. RI'. of a locally nice scheme. Suppose we are in the situation of 3.7, i.e., we have a
locally nice k-scheme X, a trivialization 7 of its dimension torsor, and a prime [ # chark.
Assume that X is quasicompact and quasiseparated. Then we put

(3.5) RT!(X ® k,Z;) :== RT(X ® k, K%)*,

where K7 is the renormalized dualizing complex defined in 3.7. RI'¢(X ® k,Z;) is an object
of D%(Speck,Z;), i.e., of the appropriately defined bounded constructible derived category of
l-adic representations of Gal(k®/k), where k*® is a separable closure of k.

Problem. Define an object of the triangulated category of k-motives whose [-adic realization
equals RT'/(X ® k,Z;) for each | # char k. Voevodsky says this can probably be done. What
about Voevodsky’s stable homotopy category??

3.9. “Refined” motivic integration. Suppose that in the situation of Theorem 3.2 the
canonical bundle det Q}, is trivial. Choose a trivialization of det ()}, i.e., a differential form
w € HY(Z,det Q}) with no zeros. As explained in 3.5, the ind-scheme Zp has a (reasonable)
closed subscheme X such that the ideal of X in every bigger closed subscheme of Zf is nilpotent.
Choose such X. By 2.8 and Lemma 3.3 our trivialization of det 2, induces a trivialization 7 of
the dimension torsor Dim X. We put

(3. [ 1= RU2(x, 21) € Di(Speck, 2,
z
where RT'}(X,Z;) is defined by (3.5). Clearly [ |w| does not depend on the choice of X.
z

3.10. Comparison with usual motivic integration. In the situation of 3.9 (i.e., integrating
a holomorphic form with no zeros over an affinoid domain) the usual motivic integral [?] belongs
to My := M [L~!], where M] is the Grothendieck ring of k-varieties® and L € M; is the class
of the affine line. Its definition can be reformulated as follows.

Given a connected nice k-scheme X and a trivialization 7 of its dimension torsor one chooses
7:X — Y as in 3.7, defines m € H°(X,Z) = Z by (3.2) and puts [X]" := [Y]L™ € M. If X
is any quasicompact quasiseparated locally nice k-scheme choose closed subschemes X = Fy D
Fy D ... D F, = ( so that each F; is defined by finitely many equations and F; \ F;;; is nice
and connected; then put [X]" := > [F; \ F;41]". Finally, in the situation of 3.9 one puts

(3.7) ( / ) usuat = [X]7 € My,
Z

5Choosing a section Y — X one sees that Y is Y’-isomorphic to a retract of Y’ x A’ for some J. So f is
formally smooth and therefore smooth.

601 & is generated by elements [X] corresponding to isomorphism classes of k-schemes of finite type, and the
defining relations are [X] = [Y] + [X \ Y] for any k-scheme X of finite type and any closed subscheme Y C X. In
particular, these relations imply that [X] depends only on the reduced subscheme corresponding to X.
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Clearly (3.7) is well-defined, and the images of (3.7) and (3.6) in Ko(D%(Speck,Z;)) are
equal. So (3.7) and (3.6) can be considered as different refinements of the same object of
Ko(D%(Speck,Z;)). Unless the map My — Ko(D%(Speck,Z;)) is injective (which seems un-
likely), the “refined” motivic integral (3.6) cannot be considered as the refinement of the usual
motivic integral (3.7). This is why I am using quotation marks.

3.11. Remark. Our definition of “refined” motivic integration works only in the case of inte-
grating a holomorphic form with no zeros over an affinoid domain (which is probably too special
for serious applications).

On the other hand, in an unpublished manuscript V. Vologodsky defined a different kind
of “refined motivic integration” in the case of K3 surfaces. More precisely, let w # 0 be a
regular differential form on a K3 surface X over F' = k((t)), chark = 0. Let A denote the
Grothendieck ring of the category of Grothedieck motives over k, and let I,, denote the motivic
integral of w over X ®p k((t'/")) viewed as an object of A ® Q. Vologodsky defined objects
My, M5, M3 of the category of Grothedieck motives so that I, is a certain linear combination of
the classes of My, My, M3. The objects M1, My, M3 depend functorially on (X, w). His definition
of My, My, M3 is mysterious.

3.12. Counterexamples. Here are the examples promised in Remark (ii) of 3.4.

3.12.1. Nontrivial dimension torsor. Put Y := (P' x P') \ T'y, where P! is the projective line
over F := k((t)) and Ty is the graph of a morphism f : P! — P! of degree n > 0. Clearly Y
is affine, and the canonical bundle of Y is isomorphic to pjO(—2) ® p50(—2) = p;O(2n — 2),
where py,p2 : Y — P! are the projections. We claim that if » > 1 then the dimension torsor
of Yr (what is this??) is nontrivial. Moreover, there exists a morphism ¢ : Spec R — Yy,
R := {f € k[z]|f(0) = f(1)}, such that ¢*Dimy, is nontrivial. One constructs ¢ as follows.
Consider the R((t))-module M defined by (2.1). One can represent M as a direct summand of
R((t))%. Indeed, the R((t))-module

{u=u(z,t) € k[z]((¥)?|u(l,t) = At)u(0,t)}, A:= (&%)

is isomorphic to R((t))? because there exists A(z,t) € SL(2,k[r,t,t1]) such that A(0,t) is the
unit matrix and A(1,¢) = A(t) (to find A(z,t) represent A(t) as a product of elementary matri-
ces). Representing M as a direct summand of R((t))? one gets a morphism g : Spec R((t)) — P'.
As p; : Y — P! is a locally trivial fibration with fiber A!, one can represent g as p; ¢ for some
¢ : SpecR((t)) — Y. The morphism ¢ : Spec R — Yp corresponding to ¢ has the desired
property, i.e., ¢* Dimy,, is nontrivial.

3.12.2. Not Zariski-locally trivial dimension torsor. Let Y be the space of triples (v,,1"), where
1,1 are transversal 1-dimensional subspaces in F2 and v € I. The dimension torsor of Yz is
not Zariski-locally trivial. Moreover, slightly modifying the construction of 3.12.1 one gets a
morphism ¢ : SpecR — Yg, R := {f € k[z]|f(0) = f(1)}, such that ¢* Dimy,, is not Zariski-
locally trivial.

3.12.3. Any “unpleasant thing” can happen. This is what the following theorem essentially says.
E.g., combining statement (ii) of the theorem with Weibel’s examples mentioned in 2.7 one sees
that for some smooth scheme Y over F' = k((t)) with trivial canonical bundle there exists a
reasonable closed subscheme of Yr which is not Zariski-locally nice (even though its dimension
torsor is trivial).

Theorem 3.4. Let R be a k-algebra and u € K_,(R).

(i) There exists a smooth scheme Y over F = k((t)) and a morphism f : Spec R — Yr such
that the pullback of the cotangent sheaf of Yr to Spec R has class u.

(i3) If the image of u in H% (Spec R,Z) equals 0 then one can choose Y to have trivial canonical
bundle (in this case the dimension torsor of Y is trivial).
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To prove the theorem we generalize the construction of 3.12.2.

Proof. As the morphism (2.3) is surjective one can represent u € K_1(R) as the image of some
element u' € Ko(R[t,t7!]). One can choose u' to be representable as the class of a projective
R[t,t ']-module P. Without loss of generality we can assume that P has constant rank m.
Represent P as a direct summand of R[t,¢ 1]™*". Such a representation defines a morphism
Spec R[t,t7!] — G/H, where G = Aut(k™ @ k"), H = Autk™ x Autk™ (G and H are viewed
as algebraic groups over k). The composition Spec R((t)) — Spec R[t,t '] — G/H defines a
morphism Spec R — (G/H)F.

Now we define the desired manifold Y by Y = (GxV')/H, where V is a suitable representation
of H. The morphism f : Spec R — YF is defined to be the composition of the above morphism
Spec R — (G/H)p and the zero section (G/H)r — Yp. It is easy to see that to prove (i) it
suffices to take V = ((LieG)/(Lie H))* @ W*, where W is the representation of H in k. We
claim that to prove (ii) it suffices to take V = ((LieG)/(Lie H))* @ W* @ det W.

To justify this claim we have to show that if u has zero image in H) (Spec R, Z) then the class
of det P in Ko(RJ[t,t7!]) has zero image in K _;(R). The commutative diagram (2.7) shows that
the class of det P has zero image in H}, (Spec R, Z). So it remains to prove that if v € Pic R[t,t7!]
has zero image in H}, (Spec R,Z) then v has zero image in K _1(R).

According to the main result of [We2] (see Lemma 1.5.1 and Theorem 5.5 of loc.cit.), v can
be represented as

v=1'4+2", o €Im(PicR[t] = PicR[t,t ']), v" € Im(Pic R[t '] — Pic R[t,t ']).
As Pic R[[t]] = Pic R the image of v in Pic R((t)) belongs to Im(Pic R[t '] — Pic R((t))). So

the image of v in Ko(R((t))) belongs to the image of Ko(R[t™!]) in Ko(R((t))). Finally, the
composition Ko(R[t™!]) — Ko(R((t))) = K_1(R) equals 0 (see 2.4). O

4. FAMILIES OF VECTOR BUNDLES ON A PUNCTURED POLYDISK

R commutative, S := (Spec R|[[t1,...,ty]]) — 0, where 0 C Spec R[[t1,...,ty]] is defined by
t1 =...=1t, =0. Let C be the category of vector bundles on S (of finite rank).

If n > 1 then for every L € C the top cohomology H" !(S,L) is an almost projective
R-module.

Related construction (it was Beilinson who suggested me that it should exist). Consider
Drert(§) = K®(C) :={homotopy category of bounded complexes in C}. Then RT : K*(C) —
D(R) can be decomposed as

(Rr)topol
—

K*(0) K (Tr) =2 D(R),

where Tp is the category of Tate R-modules.

Remark. Commutativity is unnecessary in the theorem and in the construction (it is easy to
define C, RT', and (RT)ypo1 without the commutativity assumption).

5. APPENDIX: MITTAG-LEFFLER MODULES (AFTER RAYNAUD AND GRUSON)

This is a brief overview of the results by Raynaud and Gruson [RG] on Mittag-Leffler modules.
All the results and proofs in this section are taken from [RG].

5.1. Set-theoretical Mittag-Lefller condition. Suppose we have a projective system of sets
(Ei,uij : Ej — E;), i € I, where I is a directed set. Recall that according to EGA Oyyp 13.1.2
such a system satisfies the Mittag- Leffler condition " if for every i € I there exists j > i such that
uij(Ej) = ui(Ey) for all k > j. This condition is satisfied if and only if the projective system
(Ej,u;;) is equivalent® to a projective system (Ea,ﬂa/j) in which the maps u,s are surjective.

"Its relation to Mittag-Leffler’s theorem from complex analysis is explained at the end of §3.5 of Ch. IT of [Bol].

8That is, isomorphic as a pro-object of the category of sets. See §8 of [GV] for the basic notions concerning
ind-objects and pro-objects
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To prove the “only if” statement it suffices to put E; = ui;(E;) for j big enough. Let us recall
the following basic lemma.

Lemma 5.1. If a projective system of non-empty sets (Y;)icr parametrized by a countable di-
rected set I satisfies the Mittag-Leffler condition then its projective limit is non-empty.

Proof. Replacing our projective system by an equivalent one we can assume that all the maps
E; — E; are surjective. Then the statement becomes obvious because as I is countable one can
replace it by N equipped with the usual order. O

The following example shows that the countability assumption is essential. Let I be the set
of finite subsets of an uncountable set A (I is ordered by inclusion). For every finite F' C A
the set Ef of injections F' — N is nonempty, and the restriction maps Epr — Ep, F' D F, are
surjective, but the projective limit of the sets Er is empty.

Remark. Of course, the statement of the lemma still holds if I is any directed set with a cofinal
countable or finite subset. According to [Bo2], Ch. III, §7, Exercise 4d, there is a converse
theorem: if a directed set I is such that every projective system of non-empty sets labeled by
1 with surjective transition maps has non-empty projective limit then I has a cofinal finite or

countable subset. To show this, consider the set E; of finite sequences i1,...,i, € I (n € N is
not fixed) such that i, > ¢ and there is no m € {1,...,n — 1} with 4,, > 4. For ¢ > j define a
map E; — E; by (i1,...,in) = (i1,-..,im), where m € {1,...,n} is the smallest number such

that 4,, > j. Thus we get a projective system of nonempty sets such that all the transition maps
E; — Ej, i > j, are surjective. Finally, a point of the projective limit of the sets F; is the same
as a sequence’ i1, 49, ... of different elements of I such that the subset {#1,12,...} C I is cofinal
(i.e., for every i € I there exists k with iy = 7).

What was Deligne’s example about?
5.2. Definition of Mittag-Lefler module.

5.2.1. Let A bearing. Denote by C the category of A-modules of finite presentation. According
to [RG], p.69 an A-module M is said to be a Mittag- Leffler module if every morphism f : F — M,
F € C, can be decomposed as F-5G — M, G € C, so that for every decomposition of f as

FLQ - M, G' € C, there is a morphism ¢ : G’ — G such that u = pu'.

5.2.2. Suppose that M = limM;, ¢ € I, where I is a directed ordered set and M; € C. For i < j
ﬁ

let u;; denote the morphism M; — M;. According to loc.cit, M is a Mittag-Leffler module if
and only if

(5.1) Vi€ Idj >iVk > 1 ujj = @ijku for some ;5 + My, — M;

A similar statement holds if [ is a filtering category. If I is the category of all morphisms from
objects of C to M and M; € C is the source of the morphism ¢ then the statement is tautological.

Remark. Property (5.1) of inductive systems (M;), M; € C, makes sense if C is replaced by any
category C'. It is easy to see that (5.1) depends only on the equivalence class of the inductive
system, so there is a notion of Mittag-Leffler ind-object. If C’ is dual to the category of sets
(i.e., if one has a projective system of sets (E;,u;; : E; — E;)) then (5.1) is nothing but the
Mittag-Leffler condition from 5.1.

9This sequence may be infinite or finite (and even empty if I = 0).
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5.2.3. Suppose that M = limM;, M; € C. According to [RG] M is a Mittag-Leffler module if
—

and only if for any contravariant functor ® from C to the category of sets the projective system
(®(M;)) satisfies the Mittag-Leffler condition (to prove the “if” statement consider the functor
®(N) = Hom(N, [[ M;) or &(N) = | |Hom(N, M;) ).

2

13
Assume that M is flat. Put M = Hom(M;, A). According to [RG], M is a Mittag-Leffler
module if and only if the projective system (M;") satisfies the Mittag-Leffler condition. This is
clear if the modules M; are projective. The general case follows by the Govorov—Lazard lemma,
(there is an inductive system equivalent to (M;) which consists of finitely generated projective
modules).

5.3. Definition of strictly Mittag-Leffler module. According to [RG], p.74 a module M
is strictly Mittag-Leffler if for every f : F — M, F € C, there exists u : F — G, G € C, such
that f = gu and v = hf for some g : G - M, h : M — G (recall that C is the category of
modules of finite presentation). If M = li‘n:Mi, M; € C, and w;j : M; — Mj, u; : M; — M are
the canonical maps then M is strictly Mittag-Leffler if and only if for every 7 there exists j > ¢
such that u;; = @;;u; for some ¢;; : M — M;.

5.4. Relations between various classes of modules. Clearly a stritly Mittag-Leffler is
Mittag-Leffler. It is also easy to see (?) that a projective module is strictly Mittag-Leffler
and flat. The converse statements are not true in general (see 5.6). The following theorem is
due to Raynaud and Gruson [RG].

Theorem 5.2. The following conditions are equivalent:

(i) M is a flat Mittag-Leffler module;

(i) every finite or countable subset of M is contained in a countably generated projective
submodule P C M such that M /P is flat;

(iii) every finite subset of M is contained in a projective submodule P C M such that M/P
1s flat.

In particular, a projective module is Mittag-Leffler and a countably generated'® flat Mittag-
Leffler module is projective.

The implication (iii)=-(i) is easy. (It suffices to show that if F' and F' are modules of finite
presentation and ¢ : F — F' 1) : F' — M are morphisms such that 1¥¢(F) C P then there exists
9 : F' — M such that ¥ (F') C P and ¢ = 1¢; use the fact that Hom(L, M) — Hom(L, M/P)
is surjective for every L of finite presentation, in particular for L = Coker ).

The implication (i)=>(ii) is proved in [RG], p.73-74. The key argument is as follows. Suppose
we have a sequence P; — P, — ... where Py, P,,... are finitely generated projective modules
and the projective system (P;") satisfies the Mittag-Leffler property. To prove that P := 11_n>1Pz

3
is projective one has to show that for every exact sequence 0 -+ N’ — N — N” — 0 the map
Hom(P, N) — Hom(P, N") is surjective. For each 7 the sequence

0 — Hom(P;, N') — Hom(P;, N) = Hom(P;, N") = 0

is exact and the problem is to show that the projective limit of these sequences is exact. Ac-
cording to EGA Oy 13.2.2 this follows from the Mittag-Leffler property of the projective sys-
tem (?;), ?; := Hom(P;, N') and the countability of the set of indices . In other words, if
f € Hom(P, N") and f; is the image of f in Hom(P;, N") then to show that the projective limit
of the sets f € Hom(P, N") belongs .

Here is another proof of the projectivity of P (in fact, another version of the same proof).
Denote by f; the map P; — F;;1. The Mittag-Lefller property means that after replacing the
sequence {P;} by its subsequence there exist g; : P17 — P; such that g;+1fiv1fi = fi- Put

10The countable generatedness assumption is essential; see 5.6.
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P := P;. Denote by f:P — P and g: P — P the operators induced by the f; and g;. Then
i
gf? = f. We have the exact sequence

0-PAp 5P 0

Since P is projective it suffices to show that this sequence splits, i.e., there is an h : P — P such
that h(1 — f) = 1. Indeed, set h =1 — (1 — g)"'gf and use the equality gf? = f.!!

5.5. Mittag-Lefller O-modules on schemes.

Proposition 5.3. Let A — B be a morphism of commutative rings. If M is a Mittag-Leffler
A-module then B @4 M is a Mittag-Leffler B-module. If B is faithfully flat over A then the
converse 18 true.

This is proved in [RG]. The proof is easy: represent M as an inductive limit of modules of
finite presentation and use 5.2.2.

So the notion of a Mittag-Leffler O-module on a scheme is clear as well as the notion of
Mittag-Lefller OP-module on an ind-scheme, but where should I mention this??.

Proposition 5.4. A flat Mittag-Leffler O-module F of countable type on a noetherian scheme
S s locally free. If S is affine and connected, and F is of infinite type then F is free.

This is an immediate consequence of Theorems 5.2 and 2.1.
5.6. Examples.

5.6.1. Mittag-Leffler modules over Dedekind rings. Let A be a Dedekind ring and K be its field
of fractions. A flat (i.e., torsion-free) A-module M is Mittag-Leffler if and only if for every
finite-dimensional subspace V C M ® 4 K the A-submodule V N M is finitely generated.

5.6.2. The module Al. (i) According to [RG], p.77, 2.4.1 for every noetherian A and projective
A-module P the A-module P* := Homy (P, A) is strictly Mittag-Leffler and flat. To prove that
P* is strictly Mittag-Lefller one can argue as follows: for any f : FF — P* with F' of finite type
the image of f*: P — F* is generated by some [1,...,l, € F*; the [; define u : F — A™ such
that f = gu and u = hf for some g: A" — P* h: P* —» A".

In particular, if A is noetherian then for every set I the A-module Al is strictly Mittag-Leffler
and flat.

(ii) According to Baer (see p.48 and p.82 of [Ka2]), if A is a Dedekind ring and not a field
then A! is not projective for infinite I. Indeed, we can assume that I is countable. Fix a
non-zero prime ideal p C A and consider the submodule M of elements a = (a;) € A such that
a; — 0 in the p-adic topology. If Al were projective the localization M, would be free. Since
M /pM has countable dimension M, would have countable rank. But M contains a submodule
isomorphic to A, so (A7) p would have countable rank. This is impossible because the dimension
of (AT),/p - (AT)y = (A/p)! is uncountable.

(iii) Suppose that A is finitely generated over Z or over a field'2. If A is not Artinian and T
is infinite then A’ is not projective: use 5.6.2(ii) and the existence of a Dedekind ring B finite
over A.

What is the correct place for the following paragraph?

(b) If L is a non-projective flat Mittag-Lefler module then there exists a non-split exact
sequence 0 - N' -+ N — L — 0 where N and N’ are flat Mittag-Leffler modules. Indeed, if N
is a projective module and N — L is an epimorphism then it does not split and Ker(N — L) is
Mittag-Leffler ([RG], p.71, 2.1.6).

D Arinkin noticed that it is clear a priori that if f and g are elements of a (non-commutative) ring R such
that gf*> = f and 1 — g has a left inverse then 1 — f has a left inverse. Indeed, denote by 1 the image of 1 in
R/R(1— f). Then f1 =1, gf*1 = g1, s0 g1 = 1 and therefore 1 = 0.

12We do not know whether it suffices to assume A noetherian.
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5.6.3. Non-strictly Mittag-Leffler modules. (i) It is noticed in [RG] that if

(5.2) 0= ALM — M -0

is a non-split exact sequence of A-modules and M is flat and Mittag-Leffler then M’ is Mittag-
Leffler but not strictly Mittag-Leffler (an example of this situation will be given in (ii) below).
Indeed, if M’ were strictly Mittag-Leffler then there would exist a module G of finite presentation
and a morphism v : A — G such that f = gu and v = hf for some g : G - M', h : M' — G.
Since M is a direct limit of finitely generated projective modules one can assume that Img C
Im f. Then gh would define a splitting of (5.2), i.e., one gets a contradiction.

Here is another argument (which uses material from the next section??). The fiber of
Fyp over 0 € Fyy is a closed subscheme of Fj» canonically isomorphic to Spec A x Al; if (5.2)
is non-split then the projection Spec A x A! — Al cannot be extended to a function Fy;s — Al,
so by 6.2.4 M’ is not strictly Mittag-Leffler.

(ii) Let A be a Dedekind ring which is neither a field nor a complete local ring. Then according
to [RG], p.76 there is a non-split exact sequence (5.2) such that M is a flat strictly Mittag-Leffler
A-module. Here is a construction. Let K del}\ote /‘Ehe field oi fractioni of A. Fix a non-zero prime
ideal p C A and consider the completions Ay, Ky; then Ay # A, K, # K. Denote by M the
module of sequences (a,,) such that a, € p~" and (a,) converges in I?,,; we have the morphism
lim: M — I?p. Notice that M is a strictly Mittag-Lefler module!'3. Indeed, according to 5.6.2(i)
above [[>°, p~" is strictly Mittag-Leffler and ([[;>,p~™)/M is flat, so M is strictly Mittag-
Leffler. We claim that Ext(M, A) # 0, i.e., the morphism ¢ : Hom(M, K) — Hom(M, K/A) is
not surjective. More precisely, let [ : M — K/A be the composition of lim : M — I/(\'p and the
morphisms K, — K,/A, < K/A. We will show that | ¢ Im ¢.

Suppose that [ comes from 1M — K. The restriction of 1 to p™™ C M defines ¢, €
Hom(p™", A) = p™. Then ! =" where I’ : M — K, maps (an) € M to

[e.e]
(5.3) Z Cnln + nlglolo ap .

n=1
Indeed, I — [ is a morphism M/My, — A\p where M is the set of (a,) € M such that a, =0
for n big enough; on the other hand, Hom(M /M, Ay) = 0 because M /M, is p-divisible (i.e.,
pM + My = M). Since I' = | the expression (5.3) belongs to K C K, for every sequence

(an) € M. This is impossible (consider separately the case where the number of nonzero ¢;,’s is
finite and the case where it is infinite).

Remark. In (ii) we had to exclude the case where A is a complete local ring. The true reason
for this is explained by the following results.

(a) According to [Je] if A is a complete local noetherian ring, M is a flat A-module, and N is
a finitely generated A-module then Ext(M,N) = 0.

(b) If A is a projective limit of Artinian rings then every flat Mittag-Leffler A-module is
strictly Mittag-Leffler (see [RG], p.76, Remark 4 from 2.3.3).

6. APPENDIX: MITTAG-LEFFLER MODULES AND IND-SCHEMES

Where should I write that A is a commutative ring?

In this section (whose results are not used in the rest of the work) we show that the notion of
flat Mittag-Lefler module is, in some sense, a linearized version of the notion of formally smooth
ind-scheme of ind-finite type (see 6.1, 6.2.2, 6.2.3). Using the fact that countably generated flat
Mittag-Leffler modules are projective we describe formally smooth affine Ny-formal schemes of
ind-finite type (see 6.2.10, 6.2.11).

13The fact that M is a Mittag-Leffler module is clear: A is a Dedekind ring, M is flat, and for every finite-
dimensional subspace V C M ® K the module V N M is finitely generated
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In ?? we assumed that “ind-scheme” meant “ind-scheme over a field”. In this section we drop
this assumption.

6.1. Where should I put this? Consider the following two classes of functors from the cate-
gory of A-modules to the category of abelian groups:

1) For an A-module M one has the functor
(6.1) L— L®aM,

2) For a projective system of A-modules N; (where ¢ belong to a directed ordered set) one
has the functor

(6.2) L + limHom(N;, L)
‘)

%

6.1.1. Proposition. (i) The functor (6.1) is isomorphic to a functor of the form (6.2) if and only
if M is flat.

(ii) The functor (6.1) is isomorphic to the functor (6.2) corresponding to a projective system
(N;) with surjective transition maps N; — N;, @ < j, if and only if M is a flat Mittag-Leffler
module.

(iii) The functor (6.2) corresponding to a projective system (N;) with surjective transition
maps N; = N;, i < j, is isomorphic to a functor of the form (6.1) if and only if the functor (6.2)
is exact and the modules N; are finitely generated.

Proof. If (6.1) and (6.2) are isomorphic then (6.1) is left exact, so M is flat. If M is flat then
by the Govorov-Lazard lemma M = h‘1>nPZ where the modules P; are projective and finitely

generated, so the functor (6.2) corresponding to N; = P;* is isomorphic to (6.1).

We have proved (i). To deduce (ii) from (i) notice that for P; as above the projective system
(P;) is equivalent to a projective system (NN;) with surjective transition maps N; — N; if and
only if (P;) satisfies the Mittag-Leffler condition (see 5.1).

To prove (iii) notice that functors of the form (6.1) are those additive functors which are
right exact and commute with infinite direct sums (then they commute with inductive limits).
A functor of the form (6.2) is right exact if and only if it is exact. If the modules N; are
finitely generated then (6.2) commutes with infinite direct sums. If the transition maps N; —
N; are surjective and (6.2) commutes with inductive limits then the modules N; are finitely

generated. O

6.1.2. According to 6.1.1 a flat Mittag-Leffler module is “the same as” an equivalence class of

projective systems (IN;) of finitely generated modules with surjective transition maps N; — Nj,

i < j, such that the functor (6.2) is exact. More precisely, M = li_I)nHom(Ni,A) (then the
i

functors (6.1) and (6.2) are isomorphic).

6.2. How should I call this subsection??

Proposition 6.1. Let X be a formally smooth ind-scheme of ind-finite type over a field. Then
the OP-modules ©x, Dx, D;x (see ??) are flat Mittag-Leffler modules.

Proof. Let us prove that the restriction of Dx to a closed subscheme Y C X is a flat Mittag-
Leffler Oy-module (the same argument works for © x and D;x). We can assume that Y is affine
(otherwise replace X by X \ F for a suitable closed F C Y). According to 6.1.1 it suffices to
prove that

(1) The functor L — L ® Dx defined on the category of Oy-modules is exact,

(2) it has the form (6.2) where the Oy-modules N; are coherent.

By definition, L ® Dx is the sheaf D(L) defined by (??). So (ii) is clear. We have proved (i) in
7. O
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6.2.1. Proposition. Let X be a formally smooth Ny-ind-scheme of ind-finite type over a field,
Y C X alocally closed subscheme. Then the restriction of @ x to Y is locally free. If Y is affine
and connected, and the restriction of © x to Y is of infinite type then it is free.

This follows from Propositions 6.1 and 5.4.

6.2.2. Proposition. Let A be a ring, M an  A-module. Define  an
“A-space” Fy; (i.e., a functor from the category of A-algebras to that of sets) by Fys(R) = MQR.
Then F)s is an ind-scheme if and only if M is a flat Mittag-Lefller module. In this case F)s is
formally smooth over A and of ind-finite type over A.

Proof. If M is a flat Mittag-Leffler module then by 6.1.1(ii) F; is an ind-scheme and by 6.1.1(iii)
it is of ind-finite type over A. Formal smoothness follows from the definition. Now suppose
that Fjs is an ind-scheme. Represent F); as li_n}Si where the S; are closed subshemes of F);

containing the zero section 0 € Fj;(A). Denote by N; the restriction of the cotangent sheaf of
S; to 0 : Spec A — S;. Then the functor (6.2) is isomorphic to (6.1), so by 6.1.1(ii) M is a flat
Mittag-Leffler module. O

Remark. If M is an arbitrary flat A-module then M is an inductive limit of a directed family
of finitely generated projective A-modules M;, so Fyy = li_I>nFMi is an ind-scheme in the broad

sense (the morphisms Fyy, — F); are not necessarily closed embeddings). It is easy to see that
if Fs is an ind-scheme in the broad sense then M is flat.

6.2.3. Proposition. Let (IN;);c; be a projective system of finitely generated A-modules parametrized
by a directed set I such that all the transition maps N; — N;, j > i, are surjective. Put
A(N;) := SpecSym(N;), S == h_II)lA(Nz) The ind-scheme S is formally smooth over A if and

i
only if S is isomorphic to the ind-scheme Fj; from 6.2.2 corresponding to a flat Mittag-Leffler
module M.

Proof. S is formally smooth if and only if the functor (6.2) is exact (apply the definition of
formal smoothness to A-algebras of the form A® J, A-J C J, J2 = 0). Now use 6.1.1(iii). O

6.2.4. Proposition. Let M be a flat Mittag-Leffler module, F; the ind-scheme from 6.2.2. The
following conditions are equivalent:

(1) the pro-algebra corresponding to Fis (see ?7(i) ) is a topological algebra;

(2) M is a strictly Mittag-Leffler module in the sense of ?7.

Proof. Represent M as h_I)nPZ where the modules P; are finitely generated and projective. Put
N; :=Im(P; — P}) where j is big enough. Consider the following conditions:

(a) the maps y; : {iﬂlSym(Nr) — Sym(N;) are surjective;

T
(b) Im ¢; D N; for every i;
(c) the map l(iLnNr — N; is surjective for every i;
T
(d) for every i there exists j > i such that the images of Hom(M, A) and Hom(P;, A) in
Hom(P;, A) are equal.

Clearly (i)<>(a)<(b)<(c)<(d). For ¢ < j consider the maps u;; : P; — Pj and u; : P; — M.
To show that (d)<(ii) it suffices to prove that the images of Hom(M, A) and Hom(P;, A) in
Hom(F;, A) are equal if and only if u;; = @u; for some ¢ : M — P;. To prove the “only if”
statement notice that the images of Hom(M, P;) and Hom(P;, P;) in Hom(P;, P;) are equal and
therefore the image of id € Hom(P;, P;) in Hom(P;, P;) is the image of some ¢ € Hom(M, P;).

O
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6.2.5. Before passing to the structure of formally smooth affine Ny-ind-schemes let us discuss
the relation between the definition of formal scheme from ?? and Grothendieck’s definition (see
EGA I). They are not equivalent even in the affine case. A formal affine scheme in our sense is
an ind-scheme X that can be represented as li_I)nSpec R, where (R,) is a projective system of

rings such that the maps u.g : Rg — Rq, B > «, are surjective and the elements of Keru,g are
nilpotent. Grothendieck requires the possibility to represent X as lim Spec R, so that the maps
‘)

(6.3) {iinRg — R,
B

are surjective'® and the ideals Ker u, g are nilpotent. A reasonable Ry-formal scheme in our sense
is a formal scheme in the sense of EGA 1. A quasi-compact formal scheme in Grothendieck’s
sense having a fundamental system of “defining ideals (English?)” (“Idéaux de définition”; see
EGA 110.5.1) is a formal scheme in our sense; in particular, this is true for noetherian formal
schemes in the sense of EGA 1.

Since we are mostly interested in affine Ny-formal schemes of ind-finite type over a field the
difference between our definition and that of EGA T is not essential.

6.2.6. Proposition. Let X be a formally smooth Ng-ind-scheme of ind-finite type over A, S C X
a closed subscheme such that S — Spec A is an isomorphism. Suppose that Xyeq = Sreq (in
particular, X is a formal scheme). Let M denote the A-module of global sections of the restriction
of the relative tangent sheaf ©x/4 to S. Then M is a countably generated projective module

and (X, S) is isomorphic to the completion Fyr of the ind-scheme Fy (see 6.2.2) along the zero
section.

Remark. 'The OP-module ©x/4 on a formally smooth ind-scheme X of ind-finite type over A
is defined just as in the case A = C (see 77, 77).

Proof. Just as in 6.1 one shows that M is a flat Mittag-Leffler module. The Ny assumption
implies that M is countably generated. By Theorem 5.2 M is projective.
Represent X as limX,, n € N, where the X,, are closed subschemes of X containing S such
—

that X,, C X,41. Let X(!) be the first infinitesimal neighbourhood of $ in X, i.e., X(!) is the
union of the first infinitesimal neighbourhoods of S in X,,, n € N. Clearly X(1) = FJS) :=the
first infinitesimal neighbourhood of 0 € Fj;. The embedding X — 1/7’\M can be extended to
a morphism ¢ : X — Fy (to construct ¢ define ¢, : X, — Fuy so that Onlx, 1 = @n-1
and the restriction of ¢, to X, N X is the canonical embedding X, N X() — FIS); this is
possible because ﬁM is formally smooth over A). Quite similarly one extends the embedding
FE) = XM < X to a morphism 1 : Fu — X. Since @ and 7 induce isomorphisms between
F]S) and X1 we see that ¢ and 1 are ind-closed embeddings and ¢ is an isomorphism. So ¢
and 1 are isomorphisms. O

6.2.7. Example. We will construct a pair (X, S) satisfying the conditions of 6.2.6 except the ¥
assumption such that (X, S) is not A-isomorphic to a formal scheme of the form Fy;.

Suppose we have a nontrivial extension of flat Mittag-Leffler modules
(6.4) 0N —-N-—L—0.

Such extensions do exist for “most” rings A; see 2?15, 5.6.2(iii), 5.6.3(ii). After tensoring (6.4) by
A[t] we get the extension 0 — N'[t] — N[t] — L[t] — 0. Multiplying this extension by ¢ we get

MThis is stronger than surjectivity of uqg; e.g., if M is a flat Mittag-Leffler A-module that is not strictly
Mittag-Leffler then the arguments from 6.1.1 show that the completion of Fs along the zero section cannot be
represented as lim Spec R, so that the maps (6.3) are surjective.

—

15This was a reference to the following: If L is a non-projective flat Mittag-Leffler module then there exists a
non-split exact sequence 0 —+ N’ —+ N — L — 0 where N and N’ are flat Mittag-Lefler modules. Indeed, if NV
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0 — N'[t] - Q — L[t] — 0. The ind-scheme Fy, is formally smooth over A[t] and therefore over
A. Let S C F be the image of the composition of the zero sections Spec A — Spec A[t] — Fg.
Denote by X the completion of F along S.

Before proving the desired property of (X, S) let us describe X more explicitly. For an A-
algebra R an R-point of Fg is a pair consisting of an A-morphism A[t] - R and an element
of @ ® 4 R. In other words, an R-point of Fg is defined by a triple (n,l,t), n € N ®4 R,
le Ly R, te R, such that

(6.5) w(n) =t

where 7 is the projection N ® 4 R - L ®4 R.

So Fg is a closed ind-subscheme of Fy x Fj, x Al defined by the equation (6.5). Therefore
X C Fy x F x Al is defined by the same equation (6.5) (here Al is the completion of Al at
0eAl).

Now suppose that (X, S) is A-isomorphic to ﬁM. Then M is the module of global sections of
the restriction of ©x/4 to S. Linearizing (6.5) we see that

(6.6) M=NoLoACNaLS® A.
The composition
(6.7) Fu =5 X & Fy x Fp, x Al

is defined by a “Taylor series” > -7, ¢, where ¢, is a homogeneous polynomial map M —
N @ L @ A of degree n; clearly ¢ is the embedding (6.6). Put f = pry opy where pry is the
projection N® L@® A — N. Since M = N' ® L & A the module of quadratic maps M — N
contains as a direct summand the module of bilinear maps L x A — N, i.e., Hom(L, N). The
image of f in Hom(L,N) defines a splitting of (6.4) (use the fact that the morphism (6.7)
factors through the ind-subscheme X C Fiy x Fj, x Al defined by the equation (6.5)). So we get
a contradiction.

6.2.8. Proposition. Let X be a formally smooth ind-scheme over a ring A. Suppose that one of
the following two assumptions holds:

(i) X is ind-affine;

(ii) A is noetherian and X is of ind-finite type over A.

Then X is the union of a directed family of ind-closed Nyp-ind-schemes formally smooth over A.

Proof. 1t suffices to show that for every increasing sequence of closed subschemes Y,, C X there
is an ind-closed Ng-ind-scheme Y C X formally smooth over A such that Y D Y, for all n.
Suppose that X is ind-affine. Then each Y, is affine. Represent Y;, as a closed subscheme of
a formally smooth scheme V), over A (e.g., represent the coordinate ring of Y,, as a quotient of
a polynomial algebra over A). Let Y,, C V,, be the first infinitesimal neighbourhood of Y;, in V;,.
Since X is formally smooth the morphism Y,, < X extends to a morphism Y, — Z,, C X for
some closed subscheme Z, C X. Put Y,EZ) = Z1U...UZ,. Now apply the above construction
to (Yn(2)) and get a new sequence (Y,S?’)), etc. The union of all V¥ is formally smooth over A.
If X is ind-quasicompact but not ind-affine an obvious modification of the above construction
yields an ind-closed Rg-ind-scheme Y C X containing all the Y;, such that for any affine scheme
S over A and any closed subscheme Sy C S defined by an Ideal Z C Og with Z2 = 0 every
A-morphism Sy — Y extends locally to a morphism S — Y. If assumption (ii) holds then this
implies the existence of a global extension. O

is a projective module and N — L is an epimorphism then it does not split and Ker(N — L) is Mittag-Leffler
(RG], p-71, 2.1.6).



26 VLADIMIR DRINFELD

6.2.9. Should I rather denote the ground field by £?? In this case I should avoid
using k for other purposes!

We are going to describe formally smooth affine Ng-formal schemes of ind-finite type over a
field C (according to 6.2.8 the general case can, in some sense, be reduced to the R case). First
of all we have the following examples.

(0) Put Ry := Clz1, ..., Zm][[Tm+ns - - - » Tman]]- Then Spf Ry, is a formally smooth affine
Ng-formal scheme over C.

(i) Let I C Ryp be an ideal, A := Ry,,/I. Denote by Z the sheaf of ideals on Spf R,
corresponding to I. Of course, Spf A is an affine Ng-formal scheme of ind-finite type over
C. Tt is formally smooth if and only if for every u € Spf A the stalk of Z at u is generated
by some fi,..., fr € I such that the Jacobi matrix (g:f; (u)) has rank r.

(ii) Suppose that A is as in (i) and Spf A is formally smooth. Then Spf A[[y1,y2,...]] is a
formally smooth affine Ny-formal scheme of ind-finite type over C.

In 6.2.10 and 6.2.11 we will show that every connected formally smooth affine Ny-formal
scheme of ind-finite type over a field is isomorphic to a formal scheme from Example (i) or (ii).

6.2.10. Proposition. Let X be a formally smooth affine formal scheme of ind-finite type over a
field C such that ©x is coherent (i.e., the restriction of @ x to every closed subscheme of X is
finitely generated). Then X is isomorphic to a formal scheme from Example 6.2.9(i).

Proof. Represent X as li_n)lSpec A; so that for 7 < j the morphism A; — A; is surjective with

nilpotent kernel. The algebras A; are of finite type. We can assume that the set of indices 7 has
a smallest element 0. Put I; := Ker(A4; — Ap).

Lemma 6.2. For every k € N there exists i1 such that the morphisms A;/IF — AZ-I/IZ-’“1 are
bijective for all © > 1.

Assuming the lemma set Ay := A;/IF for i big enough, Iiry = Ker(Ay — Ag). Clearly
Ay = Ao, Agy = Ap)/Igry L) = Ts1)/Ijy1)- Ome has X = SpfA, A = limAw).
Choose generators Z1, . . . , T, of the algebra A1) = Ag and generators Tpm1, - - - ; Zm+n of the Ao-
module I(yy. Lift Z1,...,Zmin t0T1, ..., Tmin € A. Put Ry := Clz1, - - s T[Tt 15 - - -5 Tt
There is a unique continuous homomorphism f : R,,, — A such that z; — z;. Clearly f is
surjective. Moreover, f induces surjections a* — Ker(4 — A(k)), where a C R, is the ideal
generated by Zy41,--.; Tmin- S0 f is an open map. Therefore f induces a topological isomor-
phism between A and a quotient of R,,,. The proposition follows.

It remains to prove the lemma. There exists iy such that for every ¢ > 4y the morphism
Spec A;, — Spec A; induces isomorphisms between tangent spaces (indeed, since the restriction
of ©x to Spec Ay is finitely generated the functor (6.2) corresponding to the Ag-modules N; :=
Q2; ® 4, Ao is isomorphic to the functor L — Hom((Q), L) for some Ay-module @, so there exists i
such that N; = N;, for i > ip). We can assume that i9 = 0. Put Y; := Spec Ai/If (in particular,
Yy = Spec Ap). The morphisms Yy — Y; induce isomorphisms between tangent spaces.

Represent Ay as C[z1,...,z,]/J and set Yo = SpecC[z1,...,z,]/J*. Since X is formally
smooth the morphism Yy — X extends to a morphism ?0 — X. Its image is contained in
Y;, for some 7;. Let us show that for ¢« > ¢; the embedding v : Y;, — Y; is an isomorphism.
We have the morphism f : Yo — Y;,. On the other hand, the morphism Yy — Yo extends to
g:Y — Yo. The composition vfg : Y; — Y; induces the identity on Y. So vfg is finite and
induces isomorphisms between tangent spaces. Therefore v fg is a closed embedding. Since Y;
is noetherian a closed embedding Y; — Y; is an isomorphism. So vfg is an isomorphism and
therefore v is an isomorphism. a

6.2.11. Proposition. Let X be a connected formally smooth affine Ny-formal scheme of ind-finite
type over a field C such that ©x is not coherent (i.e., the restriction of © x to Xy eq is of infinite
type). Then X is isomorphic to a formal scheme from Example 6.2.9(ii).
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Proof. We will construct a formally smooth morphism

X — Spt Clly1,y2,- - -]
whose fiber over 0 € SpfC([y1,v2,...]] is a formal scheme from 6.2.9(i). Represent X as
li_r)nSpec An, n € N so that for every n the morphism A,,; — A, is surjective with nilpo-

tent kernel. The algebras A,, are of finite type. By 6.2.1 the restriction of © x to Spec A,, is free;
it has countable rank. This means that for every n the projective system (Q4, ® 4, An), # > n,
is equivalent to the projective system

L= A3 5 A% 4,
(here the map AE*T! — AF is the projection to the first k& coordinates). So after replacing the
sequence (A,,) by its subsequence one gets the diagram
o Qg Fy = Qy, » F1 = Qy,
where the F;, are finitely generated free A,-modules and the A-modules Gy, := Ker(Fp11®a,,,,
A, — F,) are also free. For each n choose a base epi,...,en, € Gpn. Lift e, to €, €
Ker(Q4,,» ®4,4» An = Fy) C Ker(Q4,,, ®4,,, An — Q4,) and represent e,; as dfp;, fni €
Ker(Ant2 — Ag). Finally lift f; to fni € A := l(iLnAm and organize the f,;, n € N, i < ky,

into a sequence @1, 9,... . This sequence converges to 0, so one has a continuous morphism
Clly1,y2,--.]] = A such that y; — ¢;. It induces a morphism

(6.8) f:X =Y =SpfC[[y1,y2,--.]]

It follows from the construction that the differential

(6.9) df : ©x — "0y

is surjective and its kernel is coherent (indeed, it is clear that these properties hold for the
restriction of (6.9) to Spec A1 C X, so they hold for the restriction to Spec A4,,, n € N).

Lemma 6.3. A morphism f : X — Y of formally smooth ind-schemes of ind-finite type is
formally smooth if and only if its differential (6.9) is surjective. In this case Ox/y 1s the kernel

of (6.9).

Assuming the lemma we see that (6.8) is formally smooth and ©x/y is coherent. So the fiber
X of (6.8) over 0 € Y satisfies the conditions of Proposition 6.2.10. Therefore X is isomorphic
to a formal scheme from Example 6.2.9(i). Let us show that X is isomorphic to X := Xo X Y.
Indeed, since X is formally smooth over Y the embedding X, < X extends to a ¥Y-morphism
@: X — X. Since X is formally smooth over Y the embedding Xy — X extends to a Y-
morphism 8 : X — X. Both « and B are ind-closed embeddings (if a morphism v : Y — Z
of schemes of finite type induces an isomorphism Y..q — Z..q and each geometric fiber of v is
reduced then v is a closed embedding). The Y-morphism fSa : X x Y — Xy X Y induces the
identity over 0 € Y, so S« is an isomorphism. Therefore o and 8 are isomorphisms, so we have
proved the proposition.

The proof of the lemma is standard. The statement concerning © x,y follows from the defi-
nitions. To prove the first statement take an affine scheme S with an Ideal Z C Og such that
TZ? = 0 and let Sy C S be the subscheme corresponding to Z. For a morphism v : Sy — X denote
by Ex(S,Z,) (resp. Ey(S,Z,)) the set of extensions of ¢ (resp. of f1) to a morphism S — X
(resp. S — Y). Formal smoothness of f means that f. : Ex(S,Z,v) — Ey(S,Z,) is surjective
for all S, Z, ¢ as above. Since X and Y are formally smooth Ex(S,Z,4) and Ey(S,Z,%) are
non-empty. According to 16.5.14 from [Gr] they are torsors (i.e., non-empty affine spaces) over
VX(Sazaw) = Hom(qp*QXaI) = P(S(),Q,D*GX ® I) and VY(SaI1 ¢) = F(So,?,b*f*@y' ®I) The
map f, is affine and the corresponding linear map I'(Sp, v*Ox ® Z) — I'(Sp,¢¥* f*Oy ® ) is
induced by (6.9). So the first statement of the lemma is clear. O
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[ACK]

[Ba]
[Ba2]
[BBD]
[BBE]
[Be]
[BGR]

[Bol]
[Bo2]

[BFG]
[Br]
[Del]
(E]
[FGK]

[Ge]
[Gr]

[Gr2]
[GV]

[Ja]
[Je]
[Kal
[Ka2]
[Ka3]
[KV1]

[KV2]
(L]

[P]
(PW]
[RG]
[Re]
[S]

[T]

[TT]

[Wa]
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