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1. Introduction

1.1. The local-global compatibility conjecture. Fix a prime p, as well as a
finite extension E of Qp. If Kp is an open subgroup of GL2(Ẑp) (referred to as a
“tame level”), then one can define a certain E-Banach space Ĥ1(Kp)E , equipped
with an action of GQ × GL2(Qp), by taking the inductive limit of the étale co-
homology with coefficients in E of the modular curves of arbitrary p-power level
and of tame level Kp, and then completing with respect to the norm induced by
the OE-submodule of integral cohomology classes. Passing to the locally convex
inductive limit over all tame levels Kp, we obtain a complete locally convex topo-
logical E-vector space Ĥ1

E equipped with a representation of GQ × GL2(Af ) that
is (so to speak) “smooth in the prime-to-p-directions, but unitary Banach in the
p-adic direction”. (See Subsection 7.2 for the precise definitions of these various
topological vector spaces.) The object of this note is to explain a conjecture on the
multiplicities with which certain GQ-representations appear in Ĥ1

E . This conjecture
is in some sense the most optimistic possible, in light of what is already known, or
believed, to be true.

In order to state the conjecture, we must first admit the truth of a “local p-
adic Langlands conjecture for GL2”. The idea that such a conjecture should (or
even could) exist is due largely to Breuil, and has been extensively developed both
by him and others. In what follows, we will take as given the most optimistic
version of this conjecture, namely that to any continuous representation of GQp

on a two dimensional E-vector space V there is associated in a natural manner an
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admissible unitary Banach space representation B(V ) of GL2(Qp) over E. Granting
the existence of this local correspondence, we may now state our conjecture.

1.1.1. Conjecture (Local-global compatibility). If V is an arbitrary odd irreduc-
ible continuous two dimensional representation of GQ over E that is unramified
outside of a finite set of primes, then the space HomGQ(V, Ĥ1

E) (which is naturally
a GL2(Af )-representation) decomposes as a restricted tensor product

HomGQ(V, Ĥ1
E) ∼−→ B(V |Dp

)⊗
⊗
` 6=p

′ πm
` (V ),

where B(V |Dp
) is the admissible unitary Banach space representation of GL2(Qp)

associated to V |Dp
via the local p-adic Langlands correspondence, while for each

prime ` 6= p, πm
` (V ) is the admissible smooth representation of GL2(Q`) associated

to V |D`
via the modified classical local Langlands correspondence discussed in 2.1.1

below.1

At least for those V that are attached to classical modular forms, this conjecture
is due to Breuil [13]. One of our goals will be to provide some justification for
extending his conjecture to more general V .

Of course, for Conjecture 1.1.1 to have a precise meaning, one has to make the
local p-adic Langlands correspondence precise. Thus a second goal of our paper is
to discuss various results and conjectures related to the local correspondence. So
far this correspondence has been specified for two dimensional GQp-representations
that are trianguline in the sense of [27] (with some caveats in the case of reducible
representations). This is work primarily of Breuil and Colmez. In Section 6 we will
recall the definition of this trianguline correspondence in detail.

Currently, very little seems to have been proved regarding the existence of the
local correspondence for those two dimensional GQp

-representations V that are not
trianguline.2

Nevertheless, it is possible to formulate a minimal set of requirements that the
local p-adic correspondence should satisfy, and we do this in Conjecture 3.3.1 below.
Our set of requirements is by no means definitive (and it certainly does not specify
the correspondence uniquely; cf. Remark 3.3.6 below). However, it does serve to
formalize some of the ideas and expectations about the relationship between p-adic
Galois representations and p-adic representations of GL2(Qp) that have appeared
in the literature in the last several years.3 Of all the conditions that we incorporate
into our conjecture, perhaps the most novel is a condition (namely condition (8)
of Conjecture 3.3.1) that relates locally analytic Jacquet modules on the GL2(Qp)
side (as defined in [32]) to a certain notion of refinement on the GQp side (related

1The representation πm
` (V ) coincides with the representation π`(V ) attached to V |D`

by the
classical local Langlands correspondence with respect to the Tate normalization, except in those
cases in which the latter representation is not generic (i.e. not infinite dimensional).

2Breuil and Strauch (in unpublished work) have proposed a candidate for B(V ) in (at least
some of) those cases when V is potentially semi-stable but not trianguline. However, as far as I
am aware, little is known about their proposed B(V ). For example, it does not seem to be known
whether or not it is non-zero.

3A caveat: There is an important connection between the GQp and GL2(Qp) worlds, discovered
by Colmez, which we have not attempted to incorporate into our conjecture; see Remark 3.3.7
below.
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to the one introduced in [45] for crystalline representations, and also closely related
to the theory of two dimensional trianguline representations developed in [27]).

Having formulated Conjecture 3.3.1, we are immediately confronted with the
problem of proving that it is satisfied by the correspondence as it has been defined in
the trianguline case. A good part of the paper is devoted to discussing this problem
either directly or indirectly (although we do not solve it – see Subsection 6.6 for a
discussion of what parts of the problem remain open). We focus in particular on
describing the relationship between the trianguline correspondence and the theory
of Jacquet modules. For this we rely heavily on the constructions and results of
[27, 32, 35].

When Conjectures 1.1.1 and 3.3.1 are combined, they provide an appealing
framework within which to consider a number of important conjectures relating
p-adic Galois representations and modular forms. For example, we will prove the
following result.

1.1.2. Proposition. Assume that the local p-adic Langlands correspondence exists,
and satisfies Conjecture 3.3.1. Then Conjecture 1.1.1 has the following conse-
quences. (As usual we let V denote an odd irreducible continuous two dimensional
representation of GQ over E.)

(1)? The representation V |Dp
is potentially semi-stable with distinct Hodge-Tate

weights if and only if V is the twist by a power of the p-adic cyclotomic
character of a Galois representation attached to a classical cuspidal Hecke
eigenform of weight k ≥ 2.

(2)? The representation V |Dp
is trianguline if and only if V is a twist of a

Galois representation attached to a p-adic overconvergent cuspidal Hecke
eigenform of finite slope.

The ? are to indicate that each assertion is contingent on Conjectures 1.1.1
and 3.3.1. The first statement is a conjecture of Fontaine and Mazur [37, Conj. 3c].
The second statement implies [41, Conj. 11.8], but is in fact stronger; it also implies
the equality X◦

fs = Xfs discussed in note (2) on p. 450 of that reference.
Proposition 1.1.2 is proved in Subsection 7.9 below. (More precisely, it is a

reformulation of parts (3)? and (4)? of Proposition 7.9.1.) The proof of (2)? depends
on a result which may be of interest in its own right. If Kp is a fixed tame level,
then applying the theory of locally analytic Jacquet modules to Ĥ1(Kp)E one can
construct a certain coherent sheaf of algebras on the space T̂ of characters of (Q×

p )2,
whose relative spectrum SpecA(Kp) was shown in [33, §4.4] to contain the reduced
eigensurface of tame level Kp. The question of whether or not this inclusion is
an equality was left open in that reference. Theorem 7.5.8 below shows that this
inclusion is (essentially) an equality. As the proof of this theorem is rather technical,
we only sketch it here. The details will appear elsewhere.

We now state some partial results in the direction of Conjecture 1.1.1 related to
the case when V is an irreducible two dimensional GQ-representation associated to
an overconvergent p-adic eigenform of finite slope. (In this case V |Dp

is trianguline –
see [41] and also Thm. 7.6.1 below. Thus B(V |Dp

) is defined, and Conjecture 1.1.1
has a precise meaning.) The following theorem incorporates results of Berger,
Breuil, and Colmez, as well as of the author.

1.1.3. Theorem. Let V be an irreducible continuous GQ-representation attached to
an overconvergent eigenform f over E of finite slope. Assume furthermore that:
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(a) If V |Dp
is irreducible and potentially semi-stable (in which case f is nec-

essarily classical of weight k ≥ 2, by [41, Thm. 6.6]) then it is Frobenius
semi-simple.

(b) If V |Dp
is reducible then it is potentially crystalline, and f is classical of

weight k ≥ 2.
The following results then hold:

(1) If V |Dp
is indecomposable and f is classical then there is an isomorphism⊗

` 6=p

′ πm
` (V ) ∼−→ HomGL2(Qp)

(
B(V |Dp

),HomGQ(V, Ĥ1
E)
)
.

(2) In general, if f has tame level Kp, then there is a GL2(Qp)-equivariant
embedding B(V |Dp

) → HomGQ(V, Ĥ1
E)K

p

.

The next theorem provides something of a converse to the previous one.

1.1.4. Theorem. Let V be as in Conjecture 1.1.1, and suppose furthermore that
V is not a twist of a representation having finite image. Let W be an irreducible
trianguline continuous two dimensional representation of GQp

. If there is a non-
zero continuous GL2(Qp)-equivariant map B(W ) → HomGQ(V, Ĥ1

E), then V is a
twist of a representation attached to an overconvergent eigenform of finite slope,
and V |Dp

∼= W.

These theorems follow from the results proved in Subsection 7.10 below.
Let us close this introductory discussion by remarking that one could hope for

a still stronger conjecture than Conjecture 1.1.1, for while this conjecture predicts
the multiplicities with which all odd irreducible two dimensional Galois represen-
tations appear inside Ĥ1

E , it does not explain how they are “glued together” inside
Ĥ1
E . By contrast, the classical Langlands correspondence provides a complete de-

scription of the parabolic cohomology of modular curves as a representation of
GQ ×GL2(Af ) (see Theorem 2.5.1 below). In a forthcoming paper we will formu-
late a strengthening of Conjecture 1.1.1 that gives an analogous description of Ĥ1

E

(or more precisely, of the localization of Ĥ1
E at the maximal ideal in an appropri-

ate Hecke algebra corresponding to some fixed absolutely irreducible residual two
dimensional GQ-representation) as a GQ ×GL2(Af )-module.

1.2. Contents and arrangement of the paper. In Section 2 we briefly recall the
classical Langlands correspondence for GL2/Q in both the local and global contexts.
Given that our ultimate subject is Conjecture 1.1.1, we put a particular emphasis on
the realization of the global correspondence in the cohomology of modular curves.

Sections 3, 4, 5, and 6 are devoted to discussing various aspects of the local
p-adic Langlands conjecture.

In Section 3, after presenting some initial motivation and recalling the notion
of admissible unitary Banach space representations of GL2(Qp), we present our
conjecture regarding the local p-adic Langlands correspondence (Conjecture 3.3.1).

In Section 4 we introduce the concept of a refinement of a two dimensional
GQp-representation, and establish some basic properties on the existence and clas-
sification of refinements. (For this we rely heavily on the work of Colmez [27].) A
fundamental point is that a two dimensional GQp

-representation admits a refine-
ment if and only if it is trianguline. Furthermore, as we explain, the language of
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refinements gives a convenient way to express the classification (due to Colmez) of
two dimensional trianguline representations.

In Section 5 we recall what little is known about the classification of topologically
irreducible admissible unitary GL2(Qp)-representations. One basic technique for
studying such a representation B is to pass to the subspace Ban of locally analytic
vectors, which is dense in B, and is a strongly admissible locally analytic GL2(Qp)-
representation. Unfortunately, not much is known about the classification of such
representations in general. However, one is much closer to having a classification
of those B for which either Blalg (the space of locally algebraic vectors in B) or
JP(Qp)(Ban) (the Jacquet module of Ban with respect to the Borel subgroup of
upper triangular matrices in GL2(Qp)) is non-zero, as we explain in some detail.
The discussion relies heavily on work of Colmez [26, 27] and of the author [32, 35].

As we remarked above, the local correspondence V 7→ B(V ) has been defined
for most trianguline two dimensional GQp

-representations V . More precisely, it
has been defined for irreducible trianguline V by Breuil and Colmez [12, 26], and
for Frobenius semi-simple potentially crystalline reducible V by Breuil and the
author [6, 14]. In Section 6 we recall the definition of the correspondence in these
various cases, and also discuss the expected structure of B(V ) in the remaining
reducible cases. We discuss the extent to which this explicit correspondence is
known to satisfy the conditions of Conjecture 3.3.1. We also state a conjecture on
the structure of the space of locally analytic vectors B(V )an in B(V ) (generalizing
a conjecture of Breuil in the potentially crystalline case).

With our discussion of the local p-adic Langlands conjecture completed, in Sec-
tion 7 we return to the subject of Conjecture 1.1.1. We begin by describing in
more detail the completions Ĥ1(Kp)E and Ĥ1

E introduced above. After an aside
on various notions and results related to systems of Hecke eigenvalues, we dis-
cuss the structure of (Ĥ1

E)lalg, and of the Jacquet module JP(Qp)

(
Ĥ1(Kp)E,an

)
.

In particular, we state and sketch the proof of Theorem 7.5.8, which establishes
the precise relationship between JP(Qp)

(
Ĥ1(Kp)E,an

)
and the eigensurface of tame

level Kp. After another aside, in which we reformulate some of the results of [41]
in the language of refinements, we turn to our main topic: the local-global com-
patibility conjecture. We state the conjecture in various forms, and deduce some
of its consequences (perhaps the most interesting of which are the two stated in
Proposition 1.1.2). Finally, we state and prove some results (summarized in The-
orems 1.1.3 and 1.1.4 above) that provide some small amount of evidence for the
conjecture.

1.3. Notation, terminology, and conventions. We fix an algebraic closure Q of
Q, as well as an algebraic closure Q` of Q` for each prime `. We also fix embeddings
ı` : Q ↪→ Q` for each `, and an embedding ı∞ : Q ↪→ C. As usual, we write
GQ := Gal(Q/Q) and GQ`

:= Gal(Q`/Q`). The embedding ı` induces an embedding
GQ`

↪→ GQ for each `; we sometimes denote the image by D` (the decomposition
group at `).

For each prime `, the residue field of the integral closure of Z` in Q` is an algebraic
closure F` of the finite field F`. There is a natural surjection GQ`

→ Gal(F`/F`),
with kernel equal to the inertia subgroup I`; the target of this surjection is procyclic,
topologically generated by the Frobenius Frob`. For each prime ` we let W` denote
the Weil group at `; i.e. the subgroup of GQ`

consisting of elements which act on F`
via an integral power of Frobenius. We topologize W` in the usual way, by declaring
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the inertia subgroup (endowed with the topology it inherits as a closed subgroup
of GQ`

) to be open. The local Artin map induces an isomorphism Q×
`

∼−→ W ab
` ,

which we normalize by identifying the uniformizer ` in Q×
` with a lift of Frob−1

`

(i.e. geometric Frobenius).
We let Ẑ denote the profinite completion of Z, and as usual we write Af :=

Q⊗Z Ẑ for the ring of finite adèles over Q. More generally, if Σ is any finite set of
primes then we write ẐΣ to denote the prime-to-Σ profinite completion of Z, and
AΣ
f := Q⊗Z ẐΣ to denote the prime-to-Σ finite adèles. If Σ = {`} for a single prime

`, we write Ẑ` := Ẑ{`} and A`f := A{`}
f . The embeddings Q → Af and Ẑ → Af

induce an isomorphism Q>0 × Ẑ× ∼−→ A×
f , and hence an isomorphism

(1) Ẑ× ∼−→ Q>0\A×
f .

The global Artin map (which we normalize to be compatible with our choice of
normalization of the local Artin maps) induces an isomorphism

(2) Q>0\A×
f

∼−→ G ab
Q .

As usual, we will use the isomorphisms (1) and (2) to identify characters ψ of G ab
Q

with characters of Ẑ×. If ψ is unramified outside of a finite set of primes Σ, then
the corresponding character of Ẑ× factors through the projection Ẑ× → Ẑ×/(ẐΣ)×,
and thus we will regard ψ as a character of Ẑ×/(ẐΣ)×. Let us point out that if ψ
is a character of G ab

Q unramified outside of Σ, if ` is a prime not in Σ, and if ψ`
denotes the restriction of ψ to W ab

` , identified with a character of Q×
` via the local

Artin map, then we have the formula ψ(`) = ψ`(`−1) (where on the left hand side
` is regarded as an element of Ẑ×/(ẐΣ)× and on the right hand side as an element
of Q×

` ).
The prime p will be fixed throughout the paper. We let | |: Q×

p → Q×
p denote

the p-adic absolute value, normalized by | p |= p−1. (We will occasionally use the
same notation to denote the `-adic absolute value on Q×

` , for some prime ` 6= p,
normalized so that | ` |= `−1. We will always make it clear when we are doing
this.) For any integer w, we write simply zw to denote the character Q×

p → Q×
p

defined by z 7→ zw.
We let ε : GQ → Z×p denote the p-adic cyclotomic character. We use the same

symbol ε to denote its restriction to GQp . (It will be clear from the context whether
we are referring to the global or local character.) Global class field theory identifies
ε with the character of Ẑ× given by projection onto the pth factor: Ẑ× → Z×p .

We fix a finite extension E of Qp contained in Qp. We let OE denote the ring of
integers in E, $ the uniformizer of OE , and F := OE/$ the residue field of OE .

A continuous character η : Wp → E× extends to a continuous character of
GQp if and only if η is unitary, i.e. if and only if η takes values in O×

E . If this
extension exists, it is unique, and we denote it by the same symbol η. If α ∈ E×,
we let ur(α) : Q×

p → E× denote the character that maps p to α and is trivial
on Z×p . Regarded as a character of Wp, the character ur(α) is unramified (hence
the notation) and maps a geometric Frobenius element to α. This character is
unitary, and hence extends to a continuous E-valued character of GQp , precisely
when α ∈ O×

E . Assuming this condition holds, then according to the convention just
signalled, we use the same notation ur(α) to denote the extended character. The
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same convention allows us to regard the local cyclotomic character ε as a unitary
character of Q×

p . We then have the following useful formula: ε =| | z.
For any commutative ring R with 1 we let GL2(R) denote (as usual) the group

of invertible 2 × 2 matrices over R, let P(R) denote the subgroup of upper trian-
gular matrices, let P(R) denote the subgroup of lower triangular matrices, and let
T(R) := P(R)

⋂
P(R) denote the subgroup of diagonal matrices. There is a canon-

ical identification T(R) = (R×)2 (given by identifying
(

a 0
0 d

)
with the ordered pair

of units (a, d)).
If B is an E-Banach space equipped with a continuous action of GL2(Qp), then

we let Blalg (resp. Ban) denote the GL2(Qp)-subspace of locally algebraic (resp.
locally analytic) vectors in B (as defined in [31]; see also [51] in the case of locally
analytic vectors). Recall that the space Ban may be equipped in a natural way with
an inductive limit topology, making it a barrelled locally convex E-space equipped
with a locally analytic action of GL2(Qp). (See [31], but note that in that reference
Ban is denoted by Bla.) The topology on Ban is finer than the topology induced
on it as a subspace of B. In [51] another topology on Ban is considered, which
realizes it as a closed subspace of the space of locally analytic B-valued functions
on GL2(Qp). When B is admissible unitary, which is the main case of interest to us,
these two topologies coincide [14, Rem. A.1.1], and [51, Thm. 7.1] shows that Ban

is a strongly admissible locally analytic representation of GL2(Qp) (in the sense of
[49]), which is dense as a subset of B.

We let T̂ denote the rigid analytic space over E that classifies the continuous
(equivalently, locally analytic) characters of T(Qp). For any finite extension E′ of
Qp, the space T̂(E′) of E′-valued points of T̂ is thus canonically identified with
the space of continuous characters T(Qp) → E′×. Via the canonical identification
T = (Q×

p )2 we may regard an element χ ∈ T̂(E) as an ordered pair (χ1, χ2) of
characters χi : Q×

p → E×; we will then write χ = χ1 ⊗ χ2. We may equally well
identify the pair (χ1, χ2) with a representation Q×

p → T(E) = (E×)2, and hence
via local class field theory with a representation Wp → T(E). In summary, we have
a natural identification T̂ (E) = Homcont(Wp,T(E)).

We will have cause to consider several kinds of parabolically induced representa-
tions attached to characters χ1 ⊗ χ2 ∈ T̂(E). For any such character we may form
the continuous induction

(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
cont

and the locally analytic induction(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
an

. Each is defined as a space of functions f : GL2(Qp) → E

satisfying the condition

(3) f(pg) = χ1(a)χ2(d)f(g)

for all g ∈ GL2(Qp) and p =
(

a 0
∗ d

)
∈ P(Qp). The GL2(Qp)-action is via

right translation. For the continuous (resp. locally analytic) induction, the func-
tion f is required to be continuous (resp. locally analytic). Since the projection
GL2(Zp) → P(Qp)\GL2(Qp) is surjective, restricting functions to GL2(Zp) em-
beds the continuous (resp. locally analytic) induction as a closed subspace of the
space of continuous (resp. locally analytic) functions on GL2(Zp). Thus it is nat-
urally an admissible Banach space representation of GL2(Qp), in the sense of [50]
(resp. a strongly admissible locally analytic representation of GL2(Qp), in the sense
of [49]). The locally analytic induction is naturally identified (as a topological
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GL2(Qp)-representation) with the space of locally analytic vectors in the continu-
ous induction (as follows from [31, Prop. 3.5.11]).

If χ1χ
−1
2 has non-negative integral Hodge-Tate weight, then we may also form

the locally algebraic induction
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
lalg

, defined to consist of those

functions f satisfying condition (3), and such that
(
χ−1

2 ◦ det
)
(g)f(g) is a locally

algebraic function on GL2(Qp). If χ2 itself is of integral Hodge-Tate weight, then
the locally algebraic induction is naturally identified with the subspace of locally
algebraic vectors in the continuous induction. In general (i.e. if χ2 is not of integral
Hodge-Tate weight), then it consists of the subspace of locally SL2-algebraic vectors
in the continuous induction. (Hopefully this slight inconsistency in our use of the
terminology “locally algebraic” will not cause confusion.)

Finally, if χ1 and χ2 are smooth characters of T(Q`) for some prime `, with values
in any field, then we will write

(
IndGL2(Q`)

P(Q`)
χ1⊗χ2

)
sm

to denote the corresponding

smooth induction. (In the case when ` = p and χ1 ⊗ χ2 ∈ T̂(E) with both χ1 and
χ2 being smooth characters, smooth induction is a special case of locally algebraic
induction.)

If we are given a family π` of GL2(Q`) vector spaces indexed by the primes `
lying outside some finite set of primes Σ, such that for almost all ` the representa-
tion π` contains a non-zero GL2(Z`)-invariant vector e`, unique up to multiplication
by a scalar, then we will denote by

⊗′
` 6∈Σ π` the restricted tensor product of the

representations π` with respect to the vectors e` (as discussed in [40, §9], for ex-
ample, where the notation is

⊗
e`
π`.). The restricted tensor product is naturally a

GL2(AΣ
f )-representation, which up to isomorphism is independent of the choice of

the e`.
We let 1 denote the trivial character (of any group; in any particular usage, the

group in question will be clear from the context).
If M is a Zp-module, or a sheaf of Zp-modules, and A is a Zp-algebra, then we

sometimes write MA := A⊗Zp M .
We assume that the reader is familiar with the basic aspects of the p-adic Hodge

theory of GQp
-representations, including Hodge-Sen-Tate weights, the period rings

of Fontaine and the related conditions on a representation of being Hodge-Tate, de
Rham, (potentially) semi-stable, or (potentially) crystalline. We use the standard
notation for these period rings, and for the associated Dieudonné modules. (We
always form Dieudonné modules in the covariant sense – i.e. by tensoring with the
corresponding period ring and then passing to GQp-invariants.) A useful survey of
this material is given in [4]. (We caution the reader that in this reference, Hodge-
Sen-Tate weights are referred to as generalized Hodge-Tate weights.)

1.4. Acknowledgments. It is a pleasure to thank Christophe Breuil for all the
conversation and correspondence in which he has explained various aspects of his
“p-adic Langlands philosophy” to me, as well as for his thoughtful remarks on
some earlier drafts of the present work. I would also like to thank Kevin Buzzard,
Frank Calegari, Gaetan Chenevier, Toby Gee, Michael Harris, Haruzo Hida, Mark
Kisin, Robert Pollack, Peter Schneider, and Eric Urban for helpful discussions and
remarks related to various aspects of this note.
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2. Classical Langlands for GL2/Q

In this section we briefly describe the classical Langlands correspondence for GL2

over Q.

2.1. The classical local Langlands correspondence. For any prime `, the lo-
cal Langlands correspondence for GL2(Q`) (whose existence was established by
Tunnell [61], building on earlier results of Jacquet-Langlands [40] and Langlands
[43]) establishes a certain bijection between the set of isomorphism classes of irre-
ducible admissible smooth representations of GL2(Q`) on Qp-vector spaces, and the
set of isomorphism classes of two dimensional Frobenius semi-simple Weil-Deligne
representations WD` → GL2(Qp) over Qp (as defined in [29, §8] or [58, §4]).

In fact there are various choices of correspondence, depending on the desired
normalization. The so-called unitary correspondence is uniquely determined by the
requirement that the local L- and ε-factors attached to a pair of corresponding iso-
morphism classes should coincide. However, in our discussion we will always employ
the so-called Tate normalization (as described in [29]). If σ is a two dimensional
Frobenius semi-simple representation of WD` over Qp, then we let π`(σ) denote
the irreducible admissible smooth representation of GL2(Q`) associated to σ via
the Tate normalized local Langlands correspondence. One advantage of the Tate
normalization is that if the isomorphism class of the Weil-Deligne representation
σ is in fact defined over a finite extension E of Qp, then the same is true of the
isomorphism class of the GL2(Q`)-representation π`(σ).

For definiteness, we recall the definition of π`(σ) in the case when σ ∼= χ1

⊕
χ2

for two characters χi of Q×
`
∼= W ab

` (the isomorphism being provided by the local
Artin reciprocity map). If χ1χ

−1
2 6=| |±1 (where | | denotes the absolute value

character of Q×
` ), then

π`(σ) :=
(
IndGL2(Q`)

P(Q`)
χ1 ⊗ χ2 | |

)
sm
,

while if χ1χ
−1
2 = | | (resp. | |−1), then π`(σ) := χ1 ◦ det (resp. χ2 ◦ det). (As we

recall in more detail below, in these latter two cases, the smooth induction of χ1⊗χ2

is not irreducible.) The collection of representations of GL2(Q`) attached to such
σ is known as the principal series. In particular, the collection of representations
π`(σ) attached to those σ for which χ1 and χ2 are both unramified is known as
the unramified principal series. Its members can be characterized intrinsically as
those irreducible admissible smooth GL2(Q`)-representations that contain a non-
zero GL2(Z`)-fixed vector.

For later use, it will be convenient to recall some additional terminology used in
the classification of irreducible admissible smooth GL2(Q`)-representations. Note
that the parabolic induction

(
IndGL2(Q`)

P(Q`)
1⊗1

)
sm

evidently contains the trivial char-

acter of GL2(Q`) as a subrepresentation. The quotient of
(
IndGL2(Q`)

P(Q`)
1 ⊗ 1

)
sm

by
this one dimensional subrepresentation is an irreducible representation of GL2(Q`)
called the Steinberg representation [19, §8], which we will denote by St. The twists
of St are known collectively as the special representations of GL2(Q`). They corre-
spond under the local Langlands correspondence to those Weil-Deligne representa-
tions that are reducible but not semi-simple.

The irreducible admissible smooth representations of GL2(Q`) that are neither
principal series nor special are called cuspidal. They are characterized intrinsically
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by the property that their matrix coefficients are compactly supported modulo the
centre of GL2(Q`). They correspond under the local Langlands correspondence to
the irreducible Weil-Deligne representations.

2.1.1. A modified local Langlands correspondence. In what follows we will need a
slightly modified version of the local Langlands correspondence. Recall that an
irreducible admissible smooth representation π of GL2(Q`) over Qp is called generic
if π admits a Whittaker model, or equivalently, if it is infinite-dimensional (see
Thm. 2.14 of [40], together with the discussion on p. 62 of this reference). Otherwise
we say that π is non-generic. The only non-generic irreducible admissible smooth
representations are those of the form χ ◦ det, where χ is a Q×

p -valued character of
Q×
` [40, Prop. 2.7].
If σ is a two dimensional Frobenius semi-simple representation of WD` for which

π`(σ) is generic, then we define πm
` (σ) := π`(σ). The only σ for which π`(σ) is

non-generic are those of the form

σ ∼=
(
χ | |−1 0

0 χ

)
,

where χ is some character of Q×
` (uniquely determined by σ), and | | denotes the

absolute value character of Q×
` ; as we recalled above, the usual Tate normalized

local Langlands correspondence is defined on such σ by π`(σ) := χ ◦ det. For such
σ, we define πm

` (σ) :=
(
IndGL2(Q`)

P(Q`)
χ | |−1 ⊗χ | |

)
sm
, which is a reducible but

indecomposable infinite dimensional representation of GL2(Q`). It is a non-split
extension of the character χ ◦ det by the twist St⊗ χ [19, §8].

2.1.2. From local Galois representations to GL2(Q`)-representations. We finish this
subsection by recalling the manner in which the local Langlands correspodence may
be used to attach admissible representations of the groups GL2(Q`) to two dimen-
sional Galois representations. Let V be a continuous two dimensional representa-
tion of GQ`

defined over Qp. If ` is a prime distinct from p, then we may attach a
Weil-Deligne representation

σ(V ) : WD` → GL2(Qp)

to V via a recipe of Deligne [29, §8] (see also [58, Thm. 4.2.1]). We may further-
more Frobenius semi-simplify σ(V ) (see [29, 8.6]) to obtain a Frobenius semi-simple
Weil-Deligne representation σss(V ). We then write π`(V ) := π`(σss(V )), and also
πm
` (V ) := πm

` (σss(V )). If ` = p and V is furthermore potentially semi-stable, then
we may attach a Weil-Deligne representation

σ(V ) : WDp → GL2(Qp)

to V via a recipe of Fontaine [36, §2.3.7]. (See also [59], which gives a succinct de-
scription of the construction for representations having coefficients in Qp.) Again,
we may Frobenius semi-simplify to obtain a Frobenius semi-simple Weil-Deligne
representation σss(V ), and we write πp(V ) := πp(σss(V )), and also πm

p (V ) :=
πm
p (σss(V )).
If V is a two-dimensional continuous GQ`

-representation over Qp for which π`(V )
is defined (i.e. V is arbitrary if ` 6= p, and V is potentially semi-stable if ` = p),
then we say that V is generic if π`(V ) is generic, or equivalently, if π`(V ) = πm

` (V ).
Otherwise, we will say that V is non-generic.
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2.1.3. Remark. If V is defined over the finite extension E of Qp, then the isomor-
phism class of the Weil-Deligne representation σss(V ) is defined over E, and thus
so is the isomorphism class of each of πp(V ) and πm

p (V ) (since we have used the
Tate normalization for the local Langlands correspondence). It follows that each of
these representations may be defined over E. (See [20, Prop. 3.2] for the analogous
statement in the case of GLn(F ), for any finite extension F of Q`, and any n ≥ 1.)

2.2. Representations of GL2(Af ) attached to two dimensional global Ga-
lois representations. One may use the local Langlands correspondence to attach
representations of adèlic groups to global Galois representations. Suppose that V is
a two dimensional Qp-vector space equipped with a continuous action of GQ that is
unramified away from a finite number of primes. For each prime ` distinct from p,
the local Langlands correspondence recalled in the preceding subsection gives rise
to an irreducible admissible smooth representation π`(V ) := π`(V |D`

) of GL2(Q`),
defined over Qp. Since V is unramified at almost all primes `, the representation
π`(V ) lies in the unramified principal series for almost all `, and so we may form
the restricted tensor product

πp(V ) :=
⊗
` 6=p

′ π`(V ),

which is an irreducible admissible smooth representation of GL2(Apf ) defined over
Qp.

We also introduce notation for the modified version of this construction, in which
we use the modified local Langlands correspondence described in 2.1.1. Namely, we
define

πm, p(V ) :=
⊗
` 6=p

′ πm
` (V ).

This is an admissible smooth GL2(Apf )-representation.
If V |Dp

is furthermore potentially semi-stable, then we may form the irreducible
admissible smooth representation πp(V ) := πp(V |Dp

) of GL2(Qp). We may then
define

π(V ) := πp(V )⊗ πp(V ) =
⊗
`

′ π`(V )

(the restricted tensor product now running over all primes). This is an irreducible
admissible smooth representation of GL2(Af ). (We could also define a modified
representation πm(V ), but we will not have need of this.)

2.2.1. Remark. Remark 2.1.3 shows that if V is defined over the finite extension
E of Qp, then so are πp(V ), πm, p(V ), and (if V |Dp

is potentially semi-stable) π(V ).

2.3. Galois representations attached to newforms. If f is a cuspidal newform
of weight k ≥ 1 and conductor N defined over Qp, then associated to f is a two
dimensional irreducible continuous representation Vf of the absolute Galois group
GQ (constructed by Shimura [54] when k = 2, by Deligne [28] when k > 2, and
by Deligne-Serre [30] when k = 1). This representation is characterized by the
following condition: it is unramified outside of the primes dividing Np, and for
each ` - Np, the geometric Frobenius at ` has the characteristic polynomial

(4) X2 − a`X + χ(`)`k−1;
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here a` denotes the ` th Hecke eigenvalue of f , and χ : (Z/N)× → Q×
p denotes the

nebentypus character of f . As we now recall, one can formulate a more precise
relationship between the Galois representation Vf and the newform f , which takes
into account the local properties of each of them at all primes (including those
dividing Np), in terms of their associated GL2(Af )-representations.

On the one hand, there is a natural action of the group GL2(Af ) on the space of
cuspforms over Qp of weight k and arbitrary level which makes the space of modular
forms an admissible smooth representation of GL2(Af ). Under this action, the
newform f generates an irreducible representation π(f).4 On the other hand, Vf
is unramified away from a finite number of primes, and is known to be potentially
semi-stable at p, and so we may associate to Vf an irreducible admissible smooth
representation π(Vf ) of GL2(Af ) via the procedure of the preceding Subsection.

2.3.1. Theorem. There is a GL2(Af )-equivariant isomorphism π(f) ∼−→ π(Vf ).

This theorem expresses the compatibility of the local and global Langlands cor-
respondence. As already intimated, it provides a significant strengthening of the
formula (4) for the characteristic polynomials of Frobenius acting on Vf . (One re-
covers that formula from the isomorphism of the theorem by considering the action
just of those groups GL2(Q`) for ` - Np.)

Both the construction of the representations Vf and the proof of Theorem 2.3.1
rely on an analysis of the étale cohomology of modular curves. We briefly recall
some of the details in the following subsections.

2.4. Cohomology of modular curves. If Kf is an open subgroup of GL2(Ẑ)
(which we think of as a “level”), then we let Y (Kf ) denote the open modular curve
over Q that classifies elliptic curves with a Kf -level structure (i.e. elliptic curves
E equipped with a Kf -orbit of isomorphisms (Q/Z)2 ∼−→ Etor := lim

−→
n

E[n]). This

curve is a fine moduli space provided that the intersection SL2(Z)
⋂
Kf is torsion

free. Under this assumption on Kf , let pr denote the projection to Y (Kf ) from
the universal elliptic curve over Y (Kf ), and define V3 = R1pr∗Zp. For any integer
k ≥ 2, set Vk := Symk−2V3; this is a free of rank k − 1 étale local system of
Zp-modules on Y (Kf ).

If K ′
f ⊂ Kf is an inclusion of levels, then there is an induced surjection Y (K ′

f ) →
Y (Kf ) (“pass to the underlying Kf -level structure”), and the pullback under this
map of the local system Vk on the target is naturally isomorphic to the correspond-
ing local system Vk on the source (which justifies our omission of the level Kf from
the notation for Vk).

There is a natural right action of GL2(Af ) on the directed system of curves
Y (Kf ), and the local systems (Vk)Qp

are equivariant with respect to this action.
This action, and the stated equivariance, are most easily seen on the level of complex
points. The Riemann surface of C-valued points of Y (Kf ) is equal to

Y (Kf )(C) := GL2(Q)\
(
C r R×GL2(Af )

)
/Kf

(where GL2(Q) acts on CrR via linear fractional transformations, and on GL2(Af )
via left multiplication, while Kf acts trivially on C r R, and on GL2(Af ) via right

4To be precise about our choice of normalization, if πu(f) denotes the unitary GL2(Af )-

representation attached to f , then π(f) := πu(f)⊗ | |(2−k)/2 .
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multiplication). For each integer k ≥ 2 the pullback of Vk to Y (Kf )(C) is a local
system in the complex topology admitting the description

Vk/Y (Kf )(C) := GL2(Q)\
(
C r R×GL2(Af )× Symk−2Z2

p

)
/Kf

(where the double quotient is taken with respect to the action map

GL2(Q)×
(
C r R×GL2(Af )× Symk−2Z2

p

)
×Kf → C r R×GL2(Af )× Symk−2Z2

p

defined via γ×(τ, g, v)×k 7→ (γτ, γgk, k−1
p v); here kp denotes the pth component of

the element k ∈ Kf ). The right action of GL2(Af ) on the complex curves Y (Kf )(C)
and on the sheaves (Vk/Y (Kf )(C))Qp

is then defined via

(τ, g)× g′ 7→ (τ, gg′)

and
(τ, g, v)× g′ 7→ (τ, gg′, (g′p)

−1v)

for g′ ∈ GL2(Af ) (where g′p denotes the pth component of g′). We refer to [42, §3]
for a detailed discussion of the GL2(Af )-action on the curves Y (Kf ) and the local
systems (Vk)Qp

over Q that underlies the action just described on the C-points.
For any integer n, and any choice of ∗ ∈ {∅, c,par}, we let Hn

∗ denote étale
cohomology computed with respect to the support condition ∗: i.e. either no sup-
port condition, compact supports, or parabolic cohomology (that is, the image of
compactly supported cohomology in cohomology). Now fix an integer k ≥ 2, and
define

H1
∗ (Vk) := lim

−→
Kf

H1
∗ (Y (Kf )/Q,Vk).

This space is equipped with a natural continuous action of GQ := Gal(Q/Q), and
hence so is the base-change H1

∗ (Vk)Qp
. The right action of GL2(Af ) on the direct

system of curves Y (Kf ), and the equivariance of the local systems (Vk)Qp
under

this action, induces a left action of GL2(Af ) on H1
∗ (Vk)Qp

that commutes with the
GQ-action on this space.

2.5. Cohomological realization of the classical Langlands correspondence.
Let us fix a weight k ≥ 2. Eichler-Shimura theory, which describes the space
H1

par(Vk) (with its GL2(Af )-action) in terms of the space of cuspforms of weight
k (see [42, §2] for an account in representation-theoretic language), shows that
H1

par(Vk)Qp
is semi-simple as a GL2(Af )-representation, that its simple direct sum-

mands are precisely isomorphic to the representations π(f) (as f runs over all cus-
pidal newforms of the given weight k), and that each representation π(f) appears
with multiplicity two in H1

par(Vk)Qp
. Thus we may write

H1
par(Vk)Qp

∼−→
⊕
f

Mf ⊗Qp
π(f),

where Mf = HomGL2(Af )(π(f),H1
par(Vk)) is a uniquely determined continuous two

dimensional representation of GQ over Qp.
Since each multiplicity space Mf is a Galois subrepresentation of the étale coho-

mology of a curve with coefficients in the local system (Vk)Qp
of geometric origin,

it is unramified away from a finite number of primes, and is potentially semi-stable
at p. Thus we may define the GL2(Af )-representation π(Mf ) using the procedure



14 MATTHEW EMERTON

described in Subsection 2.1. The key result concerning the multiplicity spaces Mf

then states that for each f there is a GL2(Af )-equivariant isomorphism

(5) π(Mf )
∼−→ π(f).

By considering the local factors of these two representations just at primes ` - Np,
one finds that Mf is a model for Vf , the Galois representation associated to f .
(Indeed, this is the approach taken by Deligne to constructing the representation
Vf .) The isomorphism (5) then implies Theorem 2.3.1 (for f of weight k ≥ 2). The
following theorem summarizes the situation.

2.5.1. Theorem. For any given k ≥ 2, there is a GQ × GL2(Af )-equivariant iso-
morphism

H1
par(Vk)Qp

∼−→
⊕
f

Vf ⊗Qp
π(Vf ),

where f runs over all cuspidal newforms defined over Qp of weight k.

The isomorphism (5) was established in general by Carayol [18] (for the local
factors at the primes ` 6= p) and Saito [47] (for the local factors at p), building on the
work of many people, including Eichler, Shimura, Igusa, Deligne, and Langlands.

Note that since Vf is determined up to isomorphism by π(Vf )
∼−→ π(f), we see

that the Vf are non-isomorphic for distinct f . Combining the conjecture of Fontaine
and Mazur on geometric Galois representations [37, Conj. 1] and Langlands’ con-
jecture relating automorphic forms and motives [20], one expects that (for fixed k)
the representations Vf range over all irreducible continuous two dimensional p-adic
representations of GQ that are unramified outside of a finite number of primes, and
that are potentially semi-stable at p with Hodge-Tate weights (1 − k, 0) (cf. [37,
Conj. 3c]). Thus Theorem 2.5.1 and the Fontaine-Mazur conjecture together imply
the following conjecture, on which Conjecture 1.1.1 is modelled.5

2.5.2. Conjecture. If V is an irreducible continuous GQ-representation over Qp

that is semi-stable at p with Hodge-Tate weights (1−k, 0) for some k ≥ 2, and is un-
ramified outside of a finite set of primes, then the space HomGQ(V,H1

par(Vk)) (which
is naturally a GL2(Af )-representation) is isomorphic to the irreducible smooth
GL2(Af )-representation π(V ) defined in Subsection 2.2 above.

3. The local p-adic Langlands conjecture for GL2/Qp

In this section we recall some ideas of Breuil and others related to a possible
local p-adic Langlands conjecture.

3.1. Motivation. Let ` be a prime, and let V be a two dimensional continuous
representation of the decomposition group GQ`

over Qp. As was recalled in Subsec-
tion 2.1, applying either the recipe of Deligne if ` 6= p, or the recipe of Fontaine if
` = p and V is potentially semi-stable, we may attach a Frobenius semi-simple Weil-
Deligne representation σss(V ) : WD` → GL2(Qp) to V , which in turn corresponds
via local Langlands to an admissible smooth representation π`(V ). The represen-
tation σss(V ) is in turn determined up to isomorphism by π`(V ) := π`(σss(V )).

In the case when ` 6= p, Deligne’s procedure for constructing σ(V ) from V is
reversible, and so if the original representation V was itself Frobenius semi-simple

5Note that in this conjecture we don’t explicitly require that V should be odd, since this should
follow automatically from the other assumptions on V .
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(as is conjectured to be the case when V arises as the restriction to GQ`
of a global

Galois representation attached to a cuspidal newform – this is a particular case of a
conjecture of Tate [57]) then since W` is dense in GQ`

, we see that V is determined
by V |W`

. Altogether, we see that if V is Frobenius semi-simple, then it is determined
up to isomorphism by the associated GL2(Q`)-representation π`(V ).

On the other hand, if ` = p and V is potentially semi-stable, then the con-
struction of σ(V ) from V involves passing to the potentially semi-stable Dieudonné
module of V (which is an admissible filtered (ϕ,N,GQp

)-module), and then for-
getting the Hodge filtration. In general, one can equip a given (ϕ,N,GQp)-module
with a filtration so as to make it an admissible filtered (ϕ,N,GQp)-module in many
different ways. Thus in this case V is typically not determined by π`(V ).

Breuil has conjectured that there should be a “local p-adic Langlands conjec-
ture”, which attaches to V a certain representation B(V ) of GL2(Qp) on a p-adic
Banach space. This representation B(V ) should determine V up to isomorphism.
Breuil originally limited his conjecture to the case when V is potentially semi-stable;
however, in light of developments in the field (in particular, the results of Colmez
[27]), it seems reasonable to conjecture the existence of such a correspondence for
arbitrary continuous two dimensional representations of GQp

. Although there is so
far no precise formulation of the conjecture (even in the case when V is potentially
semi-stable), one can formulate a list of at least some of the properties that it
should be required to satisfy. We will do this below, after first recalling some basic
definitions regarding Banach space representations of GL2(Qp).

3.2. Admissible unitary Banach representations of GL2(Qp). Let B be an
E-Banach space equipped with a continuous action of GL2(Qp).

3.2.1. Definition. We call B admissible unitary if there exists a norm that deter-
mines the topology of B, such that the unit ball L ⊂ B of with respect to this norm
is GL2(Qp)-invariant, and such that the induced GL2(Qp)-action on L/$L is an
admissible smooth representation of GL2(Qp) over OE/$. (Recall that $ denotes
a uniformizer in OE .)

The notion of admissibility introduced here is due to Schneider and Teitelbaum
[50]. We refer the reader to that reference for a number of equivalent characteriza-
tions of admissibility.

3.2.2. Definition. Let B be an admissible unitary Banach space of GL2(Qp) and
let L be a choice of GL2(Qp)-invariant unit ball in B. If the admissible smooth
GL2(Qp)-representation L/$L is of finite length, then we let B denote the semi-
simplification of L/$L as a GL2(Qp)-representation. (Note that if the hypothesis
holds for one choice of L then it holds for any such choice, and the semi-simple ad-
missible smooth GL2(Qp)-representation B is then well-defined up to isomorphism
independently of the choice of L.)

3.3. Statement of the conjecture. As we recalled above, in the classical local
Langlands correspondence, the matching between isomorphism classes of Frobenius
semi-simple two dimensional Weil-Deligne representations at p and isomorphism
classes of irreducible admissible smooth GL2(Qp) representations (with respect to
the unitary normalization) is uniquely determined by the requirement that the
local L- and ε-factors attached to a pair of matched objects should coincide. No
such precise formulation of a local p-adic Langlands conjecture has yet been given.
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However, following the ideas of Breuil, a consensus seems to have emerged that a
statement of the following type should be true.

3.3.1. Conjecture. There is a local p-adic Langlands correspondence that associates
to each continuous two dimensional representation V of GQp over E a corresponding
non-zero admissible unitary Banach space representation B(V ) of GL2(Qp) over E,
well-defined up to GL2(Qp)-equivariant topological isomorphism. This correspon-
dence satisfies the following properties:

(1) If V and V ′ are continuous two dimensional representations of GQp over E,
then V and V ′ are isomorphic if and only B(V ) and B(V ′) are GL2(Qp)-
equivariantly topologically isomorphic.

(2) If V has determinant χ, then B(V ) has central character χε.
(3) For any continuous character χ : GQp → E×, there is an isomorphism

B(V ⊗ χ) ∼−→ B(V )⊗ (χ ◦ det)

(where on the right hand side we regard χ as a character of Q×
p via local

class field theory).
(4) The association of B(V ) to V is compatible with extending scalars to any

finite extension of E.
(5) The representation B(V ) satisfies the hypothesis of Definition 3.2.2, and

B(V ) is associated to the semi-simplification V of the reduction mod $ of
V via the local mod $ Langlands correspondence of [10, Déf. 1.1].6

(6) If V is irreducible, then B(V ) is topologically irreducible. In general, if V ss

denotes the semi-simplification of V , then the representations B(V ) and
B(V ss) have isomorphic topological semi-simplifications.

(7) The two dimensional representation V is potentially semi-stable, with dis-
tinct Hodge-Tate weights, if and only if the subspace B(V )lalg of locally
algebraic vectors in B(V ) is non-zero. Furthermore, if these conditions
hold, then (letting w1 < w2 denote the Hodge-Tate weights of V ) the sub-
representation B(V )lalg is isomorphic to the locally algebraic representation

π̃p(V ) := πm
p (V )⊗

(
Symw2−w1−1E2

)
⊗ detw1+1

(where πm
p (V ) is the admissible smooth representation of GL2(Qp) attached

to V via the modified classical local Langlands correspondence, as explained
in 2.1.2; note that by Remark 2.1.3 this representation is defined over E).

(8) The set of refinements of V is related to the structure of JP(Qp)(B(V )an) in
the following manner: for any character η ⊗ ψ ∈ T̂(E) there is an equality
of dimensions

dim Refη⊗ψ(V ) = dim Expη| |⊗ψε| |−1
(B(V )an).

Here JP(Qp) denotes the locally analytic Jacquet module functor of [32] (see

also Subsection 5.2 below), while Refη⊗ψ(V ) and Expη| |⊗ψε| |−1
(B(V )an)

are both projective spaces over E, whose definitions can be found in Defini-
tions 4.1.7 and 5.2.3 below respectively.

The preceding conjecture merits several remarks.

6We normalize this mod $ correspondence so that it satisfies the analogue of condition (2)
above.
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3.3.2. Remark. Conditions (1), (2), (3), and (4) are standard requirements of any
Langlands-type conjecture. (The appearance of the factor ε in condition (2) reflects
our particular choice of normalization.) By imposing condition (5), expressing
the compatibility of the conjectured correspondence with reduction modulo $, we
have incorporated one of Breuil’s original motivations for introducing a local p-adic
Langlands conjecture.

3.3.3. Remark. Condition (6) reflects one way in which the conjectured local p-
adic Langlands correspondence is quite different from the classical correspondence,
in that the representations B(V ) will in some instances be topologically reducible.
In fact the analysis of the reducible case that we make in Section 6 below shows
that for any correspondence satisfying Conjecture 3.3.1, the representation B(V )
is irreducible (resp. indecomposable) if and only if V is irreducible (resp. indecom-
posable).

3.3.4. Remark. Condition (7) relates the conjectural p-adic correspondence to the
classical Langlands correspondence. Note that for a potentially semi-stable repre-
sentation V with distinct Hodge-Tate weights, the locally algebraic representation
π̃p(V ) encodes the Hodge-Tate weights of V , together with the Weil-Deligne repre-
sentation σ(V ) attached to V by Fontaine’s recipe – or equivalently, the (ϕ,N,GQp)-
module underlying Dpst(V ). 7 Breuil’s idea is that the Banach space B(V ) (at least
when V is irreducible) should be regarded as a completion of π̃p(V ) with respect
to a certain GL2(Qp)-invariant norm (depending on V ), and that the extra data of
this norm should actually determine the Hodge filtration on Dpst(V ).

In some instances the representation π̃p(V ) admits only one non-zero unitary
completion up to isomorphism. If this is the case, and if Conjecture 3.3.1 holds,
then (taking into account the preceding discussion together with condition (1) of
Conjecture 3.3.1) we see that V would have to be uniquely determined by the
(ϕ,N,GQp)-module that underlies Dpst(V ) (i.e. the Hodge filtration would have to
be uniquely determined, up to isomorphism, by the weak admissibility condition).
This latter condition holds precisely when V is irreducible and potentially crys-
talline and σ(V ) is abelian (equivalently, πp(V ) is principal series), and indeed for
such V , Breuil has conjectured that π̃p(V ) does admit a unique non-zero unitary
completion (up to isomorphism); see Conjecture 5.1.5 below. (This conjecture has
been proved by Berger and Breuil [8] for Frobenius semi-simple V , as we recall in
Theorem 5.1.6 below.)

If πp(V ) is special or cuspidal then V is not determined by the (ϕ,N,GQp)-
module underlying Dpst(V ), and so Conjecture 3.3.1 implies that π̃p(V ) should
admit a whole family of admissible unitary completions, corresponding to the dif-
ferent possible ways of putting a Hodge filtration on the (ϕ,N,GQp

)-module un-
derlying Dpst(V ) so as to make it a weakly admissible filtered (ϕ,N,GQp)-module.
Such a family has been constructed in the case when πp(V ) is special, i.e. when
V is potentially semi-stable but not potentially crystalline. (See Theorem 5.1.13
below.)

7Note that, in contrast to the `-adic setting, no information is lost about the ϕ-action on
Dpst(V ) in the process of Frobenius semi-simplifying when one passes from V to πp(V ). Indeed,
in those cases when σ(V ) contains two copies of the same character, the weak admissibility of
Dpst(V ) implies that the ϕ-action on Dpst(V ) is necessarily not semi-simple; cf. the proof of [23,

Thm. 3.1].
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3.3.5. Remark. As the discussions of Sections 5 and 6 below will make clear,
Condition (8) is an analogue in the p-adic setting of the requirement in the classical
Langlands correspondence that reducible Weil-Deligne representations be matched
with subrepresentations of parabolically induced representations of GL2(Qp).

3.3.6. Remark. The conditions of Conjecture 3.3.1 are not enough to uniquely
specify the local p-adic correspondence. As we have explained in Remark 3.3.4,
these conditions imply that if V is potentially semi-stable and πp(V ) is special
or cuspidal, then π̃p(V ) should admit a family of admissible unitary completions
corresponding to the various potentially semi-stable representations V ′ for which
π̃p(V ′) = π̃p(V ). However, there is no specification in our conjecture of the partic-
ular way that the representations V ′ and the completions of π̃p(V ) (assuming that
they do exist) should be matched.

Nevertheless, we expect that there will be a “natural” way to match each of the
representations V ′ under consideration with a certain specific completion of π̃p(V ).
(For example, in the case when πp(V ) is special, the various representations V ′ are
classified by their L-invariants, and Breuil has defined a family of completions of
π̃p(V ) that also depend on a parameter L – see [12] and also 5.1.7 below.) One
would like to find a condition (or conditions) to add to Conjecture 3.3.1 that would
uniquely determine the correspondence (analogous to the condition on L-factors
and ε-factors in the classical correspondence). Recent work of Colmez suggests one
possible such condition (see the following remark).

3.3.7. Remark. When V is irreducible and trianguline the correspondence V 7→
B(V ) has been specified – “by hand”, as it were – by Breuil and Colmez [12, 27].
It has also been specified for most reducible potentially crystalline V by Breuil and
the author [6, 14]. We will recall the definitions of the representations B(V ) in the
cases where they have been defined in Section 6 below, and also consider the extent
to which this explicit correspondence satisfies the conditions of Conjecture 3.3.1.

When V is irreducible, trianguline, and not potentially crystalline, Colmez has
shown that there is in fact an intrinsic relationship between V and the represen-
tation B(V ) that is associated to V ; namely, one can recover B(V ) as a P(Qp)-
representation directly from the overconvergent (ϕ,Γ)-moduleD†(V ) attached to V .
Building on Colmez’s methods, Berger and Breuil have done the same for those V
that are crystalline and Frobenius semi-simple. It seems likely that some suit-
able formulation of this relationship between V and B(V ) will be a key condition
in the ultimate statement of the local p-adic correspondence. However, we have
not wanted to try to predict the general form that this relationship should take,
and for this reason have not incorporated Colmez’s results into the statement of
Conjecture 3.3.1.

3.3.8. Remark. One point emphasized by Breuil in his initial postulation of a local
p-adic correspondence is that the structure of the GL2(Qp)-representation on the
space of locally analytic vectors B(V )an should reflect the p-adic Hodge theory of
the Galois representation V (see [12, §1.3]). This requirement does not appear to
have been formalized as of yet, and so we have not incorporated it as one of the
conditions in Conjecture 3.3.1. However, in Subsection 6.7 we will give a conjectural
description of the space B(V )an in the case when V is trianguline. Comparing this
conjecture with the work of Colmez, Berger, and Breuil discussed in the preceding
remark, which relates B(V ) to D†(V ), suggests that there may be an analogous
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relationship between B(V )an and Drig(V ) (see [3, 27] for a definition of the latter
object). Establishing such a relationship could be one approach to formalizing
Breuil’s proposed link between B(V )an and the p-adic Hodge theory of V .

I should note, though, that there is one condition relating B(V )an to the p-adic
Hodge theory of V that can be formulated precisely. Namely, it should be the
case that B(V )an admits a generalized infinitesimal character, and this character
(suitably normalized) should match with the Hodge-Sen-Tate weights of V . (I
would like to thank Michael Harris for pointing this out to me.) Our conjecture on
the structure of B(V )an for trianguline V is compatible with this requirement.

3.3.9. Remark. As in the classical case, one test of the correctness of the proposed
local correspondence will be its compatibility with the global situation. Thus there
is an interplay between the local Conjecture 3.3.1 and the local-global compatibility
Conjecture 1.1.1. The various results proved in Subsections 7.8, 7.9, and 7.10
below in the direction of Conjecture 1.1.1 may all be regarded as evidence for the
correctness of the formulation of the local conjecture.

3.3.10. Remark. In this remark we discuss the possible “surjectivity” of the local
p-adic correspondence. We begin with the following definition (which extends to
the characteristic zero situation terminology introduced in [2, §7] by Barthel and
Livné for mod $ representations of GL2(Qp)).

3.3.11. Definition. Let B be a topologically irreducible admissible unitary repre-
sentation of GL2(Qp) over E. We say that B is ordinary if it is a subquotient of(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

for some pair of unitary E-valued characters χ1 and χ2

of Q×
p . Otherwise, we say that B is supersingular.

The ordinary representations are precisely the ones appearing in the list of Corol-
lary 5.3.6 below, together with those of the form η ◦ det for unitary characters η
of Q×

p (as follows from Proposition 5.3.4 below).
Condition (8) of Conjecture 3.3.1, when combined with the results of Subsec-

tion 4.4 and with Proposition 5.2.1 and Lemma 5.3.3 (2) below, implies that if V
is irreducible then B(V ) is supersingular. This observation naturally suggests the
following question.

3.3.12. Question. If B is a supersingular topologically irreducible admissible uni-
tary GL2(Qp)-representation, then is B isomorphic to a representation of the form
B(V ) for some irreducible continuous two dimensional GQp-representation V ?

Given the current state of our knowledge, it seems reasonable to hope that this
question has an affirmative answer. Certainly, a large number of the conjectures
that we make in Sections 5 and 6 below are premised on the expectation that various
known phenomena in the context of GQp-representations will be mirrored by corre-
sponding phenomena in the context of admissible unitary GL2(Qp)-representations.

Finally, we note that the preceding discussion shows that the ordinary represen-
tations are never of the form B(V ) for an irreducible GQp

-representation V . In fact
we will see in the discussion of Section 6 that they appear as constituents of the
representations B(V ) attached to reducible V . This parallels the case of the local
mod $ Langlands correspondence defined in [10, Déf. 1.1].
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4. Refinements and trianguline local Galois representations

In this section we first introduce a notion of refinement of a continuous two
dimensional representation V of GQp

that generalizes the one introduced by Mazur
for crystalline representations in [45]. This notion is closely related to that of
trianguline representations: indeed, one can define the trianguline continuous two
dimensional representation of GQp

to be those that admit a refinement. We next
classify the possible refinements of a trianguline two dimensional representation,
before finally discussing the classification (due to Colmez [27]) of trianguline two
dimensional representations themselves.

4.1. Refinements. Let V be a continuous two dimensional representation of GQp

over E.

4.1.1. Definition. A refinement of V is a triple R = (η, α, r), where:
(1) η is a continuous character GQp → E× such that V ⊗ η−1 has at least one

Hodge-Sen-Tate weight equal to 0;
(2) α ∈ E×;
(3) r is a non-zero GQp-equivariant E-linear map V ∨⊗ η → (E⊗Qp B

+
crys)

ϕ=α.

Note that if (η, α, r) is a refinement of V , then in particular (E⊗QpB
+
crys)

ϕ=α 6= 0,
and so α ∈ OE r {0}. Note also that we may regard the morphism r as a non-zero
element of D+

crys(V ⊗ η−1)ϕ=α.

4.1.2. Definition. We say that a pair of refinements R = (η, α, r) and R′ =
(η′, α′, r′) of V are equivalent if there exists β ∈ O×

E and 0 6= x ∈ (E⊗ZpW (Fp))ϕ=β

such that r′ = x · r (and hence such that η′ = ηur(β−1) and α′ = αβ).

Recall that T (E) = (E×)2 (regarded as the diagonal torus of GL2(E)).

4.1.3. Definition. If R = (η, α, r) is a refinement of V , we define the associated
abelian Weil group representation to be the map σ(R) : W ab

p
∼−→ Q×

p → T (E)
defined via the pair of characters (ηur(α), (detV )η−1ur(α)−1).

By construction the determinant of σ(R) coincides with the restriction to W ab
p

of the determinant of V . Also, σ(R) depends only on R up to equivalence. In fact
we have the following more precise result.

4.1.4. Lemma. Suppose that V is not of the form η
⊕
η for some continuous E-

valued character η of GQp . If R and R′ are two refinements of V , then σ(R) = σ(R′)
if and only if R and R′ are equivalent.

Proof. We have already observed that σ(R) = σ(R′) if R and R′ are equivalent.
We now prove the converse. Write R = (η, α, r) and R′ = (η′, α′, r′). By definition,
σ(R) = σ(R′) if and only if ηur(α) = η′ur(α′). If the latter holds, then (since η and
η′ are Galois characters, and hence unitary) we see that β := α′/α ∈ O×

E . Fix 0 6=
x ∈ (E⊗ZpW (Fp))ϕ=β . Replacing R by the equivalent refinement (ηur(β−1), αβ, x ·
r), we see that we may assume that η = η′ and α = α′. If r and r′ are not
linearly dependent over E, then we find that D+

crys(V ⊗η−1)ϕ=α is two dimensional,
and thus that V ⊗ η−1 is a crystalline representation such that Dcrys(V ⊗ η−1) =
D+

crys(V ⊗ η−1)ϕ=α. It follows directly that V ⊗ η−1 is isomorphic to the direct
sum of two copies of some crystalline E-valued character of GQp

, and thus that V is
isomorphic to the direct sum of two copies of some continuous character of GQp . �



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 21

The exceptional case of the preceding lemma is easily analyzed by hand:

4.1.5. Lemma. If V = η
⊕
η for some continuous representation η : GQp → E×,

then any equivalence class of refinements of V contains a unique refinement of the
form (η, 1, r) where r is a non-zero homomorphism V ⊗ η−1 = E

⊕
E → E =

(E ⊗Qp B
+
crys)

ϕ=1. Conversely, any such r gives rise to a refinement (η, 1, r) of V .
Thus the equivalence classes of refinements of V are indexed by the points of P1(E).

Proof. If (η′, α′, r′) is a refinement of V , then η′η−1 has Hodge-Sen-Tate weight
zero, and also admits an embedding into E⊗Qp Bcrys. Thus it must be unramified.
Thus (η′, α′, r′) is equivalent to a refinement of the form (η, 1, r), which is then
clearly unique in its equivalence class. The remainder of the lemma is clear. �

4.1.6. Definition. We say that a continuous two dimensional GQp-representation
V is trianguline if it admits at least one refinement.

The notion of a trianguline GQp-representation (of arbitrary finite dimension)
was introduced by Colmez in [27, Déf. 5.1] (cf. [27, Prop. 5.3] for a proof of the
equivalence between the definition given here in the two dimensional case and the
definition given by Colmez).

4.1.7. Definition. Let V be a continuous two dimensional representation of GQp

over E.
(1) Let Ref(V ) denote the set of equivalence classes of refinements.
(2) For any σ ∈ Homcont(Wp,T(E)), set Refσ(V ) := {[R] ∈ Ref(V ) | σ(R) =

σ}. (Here [R] denotes an equivalence class of refinements, with representa-
tive R.)

If we fix σ, then Refσ(V ) is either empty or a point, except in the exceptional
case V = η

⊕
η considered in Lemma 4.1.5, in which case Refη⊗η(V ) ∼= P1(E).

Thus we regard Refσ(V ) as a projective space over E of dimension −1, 0, or 1.

4.1.8. Twisting refinements. Let ψ : GQp
→ E× be a continuous character. If

R = (η, α, r) is a refinement of V , then R ⊗ ψ := (η ⊗ ψ, α, r) is a refinement of
V ⊗ ψ. The passage from R to R ⊗ ψ evidently induces a bijection between the
set of (equivalence classes of) refinements of V and of V ⊗ ψ. In particular, V is
trianguline if and only if V ⊗ ψ is. The formation of Weil group representations is
clearly compatible with twisting: i.e. σ(R⊗ ψ) = σ(R)⊗ ψ.

4.2. Classifying refinements: the non-potentially semi-stable case. We be-
gin by recalling the following proposition, due to Colmez.

4.2.1. Proposition. Let V be a two dimensional continuous representation of GQp

over E, and suppose that η1 and η2 are two continuous characters of GQp over E
such that Dcrys(V ⊗ η−1

1 ) and Dcrys(V ⊗ η−1
2 ) are both non-zero. If the weights of

η1 and η2 do not differ by an integer, then V is the direct sum of two continuous
characters.

Proof. This a restatement of [27, Prop. 5.10]. �

The following corollary of the preceding proposition will provide the key to clas-
sifying the possible refinements of two dimensional GQp-representations.
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4.2.2. Corollary. If V is a trianguline two dimensional continuous representation
of GQp over E that is not a twist of a representation of Hodge-Tate type, and does
not split as the direct sum of two continuous characters of GQp , then V admits a
unique equivalence class of refinements.

Proof. Since V is trianguline, it admits a refinement R = (η, α, r). Replacing V
by V ⊗ η−1, we may assume that V has a Hodge-Sen-Tate weight of zero, but is
not Hodge-Tate, and that η = 1, so that r is a non-zero GQp-equivariant morphism
r : V ∨ → (E ⊗Qp B

+
crys)

ϕ=α. If (0, w) are the Hodge-Sen-Tate weights of V , then
since V is not Hodge-Tate, either w = 0 or w 6∈ Z.

Now suppose that R′ = (η′, α′, r′) is another refinement of V . Since V has
Hodge-Sen-Tate weights (0, w), we see that the weight of η′ is either 0 or w. As
(1, α, r) and (η′, α′, r′) are each refinements of V , we also see that Dcrys(V ) and
Dcrys(V ⊗(η′)−1) are both non-zero. Recalling that w is either zero or non-integral,
and that by assumption V does not split as the direct sum of two characters, we
infer from Proposition 4.2.1 that η′ must in fact be of weight zero.

If we choose 0 6= x ∈ (E⊗Qp B
+
dR)GQp=η′−1

, then x · r′ induces a GQp-equivariant
map V ∨ → E ⊗Qp

B+
dR. Thus both r and x · r′ induce elements of DdR(V ). Since

V is assumed to not be Hodge-Tate, it is in particular not de Rham, and thus x · r′
must be a scalar multiple of r. Consequently η′ must be a crystalline character
of weight zero, which is to say, an unramified character. Thus we see that R′ is
equivalent to R. �

4.2.3. Definition. We say that a refinement R = (η, α, r) of V is ultracritical if
the composite r : V ∨ ⊗ η → (E ⊗Qp B

+
crys)

ϕ=α ⊂ E ⊗Qp B
+
crys

θ→ Cp vanishes. (The
terminology is motivated by a comparison of these refinements with the “critical”
refinements introduced in Definition 4.4.7 below; see in particular Definition 4.5.2
and Lemma 4.5.3.)

Clearly the property of being ultracritical depends only on the equivalence class
of the refinement R. If R is ultracritical, then V ∨ ⊗ η is necessarily Hodge-Tate,
with weights (0, w) for some w > 0. One may then define another refinement
R(−w) := (η · ε−w, αp−w, t−w · r) of V (here t has its usual meaning as an element
of E ⊗Qp

B+
crys), whose associated Weil group representation is defined via the

characters (ηur(α)z−w,det(V )η−1ur(α)−1zw).

4.2.4. Proposition. If V is Hodge-Tate and trianguline, but not potentially semi-
stable, then V admits a unique ultracritical refinement R, and any refinement of V
is equivalent either to R or to R(−w).

Proof. Since V is assumed to be Hodge-Tate but not potentially semi-stable, its
Hodge-Sen-Tate weights are distinct integers, say w1 < w2. If R = (η, α, r) is any
refinement of V , then since V ⊗ η−1 has zero as a Hodge-Sen-Tate weight, we see
that η is Hodge-Tate of weight either w1 or w2, hence potentially semi-stable, and
thus V ⊗η−1 is also Hodge-Tate but not potentially semi-stable – and so also not de
Rham [3]. Thus DdR(V ⊗ η−1) is at most one dimensional over E. The argument
of [41, Thm. 6.9] shows that in fact DdR(V ⊗η−1) is precisely one dimensional over
E, and is supported in filtration degree either 0 (if η is of weight w1) or w2 − w1

(if η is of weight w2). In particular, if Dcrys(V ⊗ η−1) is non-zero, then it is one
dimensional, and supported in filtration degree either 0 or w2−w1. Furthermore, if
η and η′ are two characters of weights w,w′ ∈ {w1, w2}, and if Dcrys(V ⊗ η−1) 6= 0,
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then Dcrys(V ⊗ η′−1) 6= 0 if and only if η′η−1 is crystalline, and hence the product
of an unramified character and εw

′−w.
Altogether, we see that if V is trianguline, then for each wi (i = 1, 2) we may

find a character ηi of weight wi, uniquely determined up to multiplication by an
unramified character, such that D+

crys(V ⊗ η−1
i ) is non-zero (and hence one dimen-

sional over E), and is supported in filtration degree 0 (respectively w2−w1) if i = 1
(resp. i = 2), and such that η2 = εw2−w1η1. Thus if we let αi denote the eigenvalue
of ϕ on D+

crys(V ⊗ η−1
i ), and let ri denote a non-zero element of this space, then we

obtain refinements Ri := (ηi, αi, ri) of V such that any refinement of V is equivalent
to one of the Ri. Note that R2 is ultracritical, and that R1 = R2(−(w2 − w1)).
This proves the lemma. �

4.3. Classifying refinements: the potentially semi-stable case. We now con-
sider the case of potentially semi-stable representations.

4.3.1. Proposition. If V is a potentially semi-stable continuous two dimensional
representation of GQp over E, then V is trianguline if and only if the Weil-Deligne
representation σ(V ) contains a one dimensional subrepresentation that can be de-
fined over E. If V is furthermore indecomposable, then the refinements of V are in
bijection with such one dimensional Weil-Deligne subrepresentations of σ(V ).

Proof. Replacing V by a twist if necessary, we may assume that V has Hodge-Tate
weights 0 and w ≤ 0. Thus if R = (η, α, r) is any refinement of V , the Hodge-Tate
weight of η is either 0 or w. Suppose that w < 0, and that the Hodge-Tate weight of
η equals w. Then the Hodge-Tate weights of V ∨⊗η are w and 0, and the existence
of the non-zero homomorphism r : V ∨ ⊗ η → (E ⊗Qp Bcrys)+ shows that V ∨ ⊗ η is
an extension of a character of Hodge-Tate weight 0 by a character of Hodge-Tate
weight w. Since V ∨ ⊗ η is potentially semi-stable by assumption, this extension
must split, and thus V ∨ ⊗ η, and so also V itself, must be a direct sum of two
characters. In this case σ(V ) is also a direct sum of two characters, each definable
over E, and V is certainly trianguline. (See Proposition 4.4.5 for a detailed analysis
of this case.)

Thus we may suppose for the rest of the proof that V is indecomposable, in which
case if R = (η, α, r) is any refinement of V , the character η is of Hodge-Tate weight
zero. The homomorphism r then corresponds to a non-zero element of Dcrys(V ⊗
η−1)ϕ=α, or equivalently, a non-zero element of σ(V )Wp=ηur(α),N=0. Conversely,
any such non-zero element gives rise to a refinement (since our assumption that V
is indecomposable with Hodge-Tate weights w ≤ 0 implies that

D+
crys(V ⊗ η−1)ϕ=α = Dcrys(V ⊗ η−1)ϕ=α

for any η of Hodge-Tate weight zero and any eigenvalue α). The proposition follows.
�

4.3.2. Remark. If V is potentially semi-stable, but not potentially crystalline, and
indecomposable, then from the proposition we see that V is trianguline, and that
V admits a unique refinement R, up to equivalence. If w1 < w2 are the Hodge-Tate
weights of V , then the reader can easily compute that σ(R) = (η, η | |−1 zw1−w2)
for some character η of Q×

p .

4.3.3. Remark. If V is potentially crystalline, trianguline, and indecomposable,
then V admits two equivalence classes of refinements if V is Frobenius semi-simple,
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and one equivalence class otherwise. Let w1 ≤ w2 be the Hodge-Tate weights
of V . In the Frobenius semi-simple case, if R1 and R2 are two inequivalent re-
finements of V , and if σ(R1) = (η, ψ), then the reader can easily check that
σ(R2) = (ψzw2−w1 , ηzw1−w2). If V is not Frobenius semi-simple, and if R is a
refinement of V , then σ(R) = (η, ηzw1−w2) for some character η of Q×

p .

4.4. Classifying refinements: the reducible case.

4.4.1. Lemma. Let R = (η, α, r) be a refinement of V . Consider the following
conditions:

(1) One has α ∈ O×
E ;

(2) For some (equivalently, any) refinement R′ = (η′, α′, r′) equivalent to R,
one has α′ ∈ O×

E ;
(3) The equivalence class of R contains a refinement of the form R′ = (η′, 1, r′),

which is then necessarily unique up to scaling r′ by an element of E×;
(4) The image of r is one dimensional, and R is not ultracritical;
(5) For some (equivalently, any) refinement R′ = (η′, α′, r′) equivalent to R,

the image of r′ is one dimensional, and R′ is not ultracritical;
(6) V is reducible.

Then (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) =⇒ (6).

Proof. It is clear from the definitions that items (1), (2), and (3) are equivalent,
and also that items (4) and (5) are equivalent. Since (E ⊗Qp B

+
crys)

ϕ=1 = E is one
dimensional, we see that (3) implies (5). Also, if the image of r is one dimensional,
then V must be reducible, and so (5) implies (6). This image is then a crystalline
character of GQp which embeds into (E ⊗Qp B

+
crys)

ϕ=α, and so is of non-negative
Hodge-Tate weight. If R is not ultracritical, then it must in fact be of Hodge-Tate
weight zero, and hence unramified. Thus α ∈ O×

E , and we see that (4) implies (1).
�

4.4.2. Definition. We say that a refinement R = (η, α, r) of V is ordinary if it
satisfies the equivalent conditions (1), (2), (3), (4), and (5) of the preceding lemma.

The preceding lemma shows that any refinement equivalent to an ordinary re-
finement of V is also ordinary, and that V admits an ordinary refinement only if V
is reducible. More precisely:

4.4.3. Lemma. If R is an ordinary refinement of V , and if σ(R) = (η, ψ) is the
associated Weil group representation, then each of η and ψ is a unitary character
of Q×

p (and thus extends uniquely to a continuous character of GQp
), and V is an

extension of ψ by η.

Proof. Consider the unique refinement of the form (η, 1, r) in the equivalence class
of R. The map r then realizes E (with trivial Galois action) as a quotient of
V ∨ ⊗ η, and thus η embeds as a one dimensional subrepresentation of V . Since
ψ = det(V )η−1 by definition, the lemma follows. �

We now prove a series of results that completely classify the refinements of
reducible two dimensional continuous representations V of GQp . We begin with the
case when V is reducible but indecomposable.

4.4.4. Proposition. If V may be written as a non-split extension

0 → η → V → ψ → 0,
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where η and ψ are two continuous characters of GQp
, then V admits a unique

equivalence class of ordinary refinements (and so in particular is trianguline). Fur-
thermore, if we we let w denote the weight of ψη−1, then:

(1) If w 6∈ Z (so that V is not of Hodge-Tate type up to twist), then V ad-
mits just one equivalence class of refinements, namely the class of ordinary
refinements;

(2) If w ∈ Z>0 (so that V is of Hodge-Tate type, but not potentially semi-stable,
up to a twist), then V admits two equivalence classes of refinements, namely
the class of ordinary refinements, and the class of ultracritical refinements;

(3) If w ∈ Z<0 (so that V is potentially semi-stable up to a twist), then:
(a) If V is furthermore potentially crystalline up to a twist, then V

admits two equivalence classes of refinements, namely the class of ordinary
refinements, and one class of non-ordinary refinements;

(b) If V is not potentially crystalline up to a twist, then V admits
a unique equivalence class of refinements, namely the ordinary equivalence
class;

(4) If w = 0 (so that either V is unramified and Frobenius non-semi-simple, up
to a twist, or else V is not of Hodge-Tate type up to a twist), then V admits
a unique equivalence class of refinements, namely the ordinary equivalence
class.

Proof. The fact that V admits a unique equivalence class of ordinary refinements
follows immediately from Lemma 4.4.3 and our assumption on V , and claims (1)
and (2) are direct consequences of Propositions 4.2.2 and 4.2.4 respectively.

To prove claim (3), we may replace V by a twist if necessary, and so assume that
V is potentially semi-stable. The claim then follows from Proposition 4.3.1.

The non-Hodge-Tate case of claim (4) again follows from Proposition 4.2.2. Fi-
nally, if V is a twist of an unramified but non-semi-simple representation, then,
replacing V by a twist, if necessary, we may assume that in fact V is an unrami-
fied non-split extension 0 → η → V → η → 0. (The two characters appearing in
V are necessarily equal, since V is unramified but non-split.) Now suppose that
R = (η′, α, r) is a refinement of V . Since V has both Hodge-Tate weights equal to
zero, the same must be true of η′. Similarly, since η is a crystalline character, the
same must be true of η′. Thus η′ is in fact unramified, and so we may replace R
by an equivalent refinement R′ of the form R′ = (1, α′, r′). The map r′ is a GQp-
equivariant non-zero homomorphism V ∨ → (E ⊗Qp B

+
crys)

ϕ=α′ . Since V (and so
V ∨) is not semi-simple, the map r cannot be an embedding. Thus R′ is necessarily
an ordinary refinement of V , as claimed. �

We now consider the case when V is the direct sum of distinct characters.

4.4.5. Proposition. Suppose that V = η1
⊕
η2 for a pair of distinct characters η1 6=

η2 of GQp . Then V admits exactly two equivalence classes of ordinary refinements.
Furthermore:

(1) If the Hodge-Sen-Tate weight of η1η−1
2 is either zero or non-integral, then

V admits exactly two equivalence classes of refinements, namely the two
ordinary equivalence classes;

(2) If the Hodge-Sen-Tate weight of η1η−1
2 is a non-zero integer, then V admits

three equivalence classes of refinements, namely the two ordinary equiva-
lence classes and a unique equivalence class of ultracritical refinements.
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Proof. Lemma 4.4.3 shows that V admits exactly two equivalence classes of ordinary
refinements. Suppose now that R = (η, α, r) is a non-ordinary refinement of V .
Then r is a non-zero GQp

-equivariant morphism r : V ∨ ⊗ η = ηη−1
1

⊕
ηη−1

2 →
(E ⊗Qp B

+
crys)

φ=α. Since η1 6= η2, we see that r must vanish on one of the direct
summands in its source (and on exactly one, since it is non-zero). Since R is non-
ordinary, Lemma 4.4.1 (4) implies that it must be ultracritical. In particular η1η−1

2

must be of non-zero integral Hodge-Sen-Tate weight. Interchanging η1 and η2 if
necessary, we may in fact assume that η2η−1

1 has Hodge-Tate weight w > 0. We
now show (under this assumption) that η1

⊕
η2 does in fact admit an ultracritical

refinement, and that this refinement is unique up to equivalence.
If (η, α, r) is an ultracritical refinement, then we see that ηη−1

1 (resp. ηη−1
2 ) must

be of weight w (resp. weight 0), and that r must induce an embedding ηη−1
1 →

E ⊗Qp
B+

crys (and vanish on ηη−1
2 ). Thus η is a character with the property that

ηη−1
1 is crystalline of weight w. Clearly such an η exists, and any two differ by

multiplication by an unramified character. Thus we can construct an ultracritical
refinement of η1

⊕
η2, and any two such are equivalent. �

4.4.6. Remark. If V is the direct sum of two copies of the same character of GQp ,
then the refinements of V are classified by Lemma 4.1.5.

We conclude this section by introducing some terminology.

4.4.7. Definition. If V is a reducible two dimensional continuous representation of
GQp over E, then we say that a refinement R of V is critical if it is not ordinary.
(The terminology “critical” is used in analogy with the terminology “critical slope”
as it is employed in the theory of modular forms.8)

Any refinement equivalent to a critical refinement is again critical. The preceding
results show that a reducible representation V admits at most one equivalence class
of critical refinements. In order for V to admit such a class, V should be Hodge-
Tate with distinct Hodge-Tate weights up to a twist, and either not potentially
semi-stable up to a twist, or else potentially crystalline up to a twist.

4.5. The classification of trianguline representations. Colmez has classified
the trianguline representations [27, Thm. 0.5]. We will recall his result here, but
will rephrase it in the language of refinements. Note that if R is any refinement of a
trianguline two dimensional representation V , and if we write σ(R) = (η, ψ), then
ηψ is unitary, while | η(p) |≤ 1 (and hence in fact | η(p) |< 1 unless both η and ψ
are unitary). The cited result of Colmez implies in particular that any continuous
representation σ ∈ Homcont(Wp,T(E)) satisfying these conditions is of the form
σ(R) for some refinement R of some trianguline two dimensional representation
V . Furthermore, it allows us to classify the representations V that give rise to a
particular σ.

We begin with some definitions.

4.5.1. Definition. Let Homcont(Wp,T(E))+ denote the set of maps σ = (η, ψ) ∈
Homcont(Wp,T(E)) such that ηψ is unitary and | η(p) |≤ 1.

8A classical finite slope p-stablized Hecke eigenform of weight k ≥ 2 over Qp is said to be of

critical slope if its slope is equal to k − 1 (its largest possible value). Any such form is the “evil
twin” of an ordinary p-stabilized eigenform; see for example the discussion of [14, §4.1], as well as
the proof of Theorem 7.6.1 (3) below.
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4.5.2. Definition. (1) We say that σ = (η, ψ) ∈ Homcont(Wp,T(E))+ is uni-
tary if η and ψ are unitary.

(2) We say that σ = (η, ψ) ∈ Homcont(Wp,T(E))+ is critical if ηψ−1 is of
integral Hodge-Tate weight w > 0, and if σ(−w) := (ηz−w, ψzw) again lies
in Homcont(Wp,T(E))+, and is furthermore unitary.

(3) We say that σ = (η, ψ) ∈ Homcont(Wp,T(E))+ is ultracritical if ηψ−1 is of
integral Hodge-Tate weight w > 0, and if σ(−w) := (ηz−w, ψzw) again lies
in Homcont(Wp,T(E))+, and is not unitary.

This terminology is almost compatible with the corresponding terminology for
refinements.

4.5.3. Lemma. Let V be a trianguline continuous two dimensional representation
of GQp over E, and R a refinement of V .

(1) σ(R) is ultracritical if and only if V is irreducible and R is ultracritical;
(2) σ(R) is critical if and only if V is reducible and R is a critical refinement

of V .

Proof. The reader can check this by going through the classification of all possible
refinements given in the preceding sections. �

4.5.4. Theorem. Let σ = (η, ψ) ∈ Homcont(Wp,T(E))+, and suppose that σ is
neither unitary nor critical. Then there is a trianguline two dimensional continuous
representation V of GQp over E admitting a refinement R such that σ(R) = σ, and
any such V is irreducible. Furthermore:

(1) If ηψ−1 is not of the form εzn for some n > 0, then V is unique up to
isomorphism.

(2) If ηψ−1 = εzn for some n > 0, then the set of isomorphism classes of
such V can be indexed by the elements L ∈ P1(E) in such a way that, if
L ∈ E, then the members of the corresponding isomorphism class are twists
of a semi-stable representation of Hodge-Tate weights (0,−1 − n) with L-
invariant equal to L, while if L = ∞, then the members of the corresponding
isomorphism class are twists of a non-generic crystalline representation of
Hodge-Tate weights (0,−1− n).

Proof. The results of Subsection 4.4 show that the Weil group representation at-
tached to any refinement of a reducible representation is either unitary or critical.
Thus if V exists it must be irreducible. Suppose first that σ is not ultracritical. Fix
L = ∞ if σ does not satisfy the condition of (2); otherwise let L be any element of
P1(E). The pair s = (σ,L) is then an element of the space Sirr considered in [27],
and the corresponding GQp-representation V (s) (see [27, p. 5]) admits a refinement
R with σ(R) = σ (see the proof of [27, Prop. 5.3]). Conversely, it follows from [27,
Prop. 5.3] that if V admits a refinement R with σ(R) = σ, then V ∼= V (s) for some
s ∈ Sirr lying over σ. This proves the theorem for non-ultracritical σ.

If σ is ultracritical, then applying the theorem to σ(−w) we obtain a represen-
tation V admitting a refinement R such that σ(R) = σ(−w). It follows that V
is Hodge-Tate up to twist, but not potentially semi-stable up to twist, and thus
by Proposition 4.2.4 we see that V admits an ultracritical refinement R′ such that
σ(R′) = σ. This completes the proof of the theorem in general. �

The case when σ = (η, ψ) ∈ Homcont(Wp,T(E))+ is either unitary or critical is
straightforward. When σ is unitary, regarding η and ψ as Galois characters, we have
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seen that the direct sum V = η
⊕
ψ admits a refinement R such that σ(R) = σ.

If σ is critical, and w is the weight of ηψ−1, then we have seen that ηz−w
⊕
ψzw

admits a critical (in fact ultracritical) refinement R such that σ(R) = σ.
The following results describe the possible indecomposable V admitting such a

refinement R for which σ(R) = σ. (Note that Lemmas 4.4.1 and 4.5.3 imply that
any such V is reducible.)

4.5.5. Proposition. If σ = (η, ψ) is a unitary element of Homcont(Wp,T(E))+,
then there exists an indecomposable trianguline two dimensional continuous repre-
sentation V of GQp over E admitting a refinement R such that σ(R) = σ. Further-
more:

(1) If ηψ−1 6= 1, ε, then V is unique up to isomorphism.
(2) If ηψ−1 = ε, then the set of isomorphism classes of such V can be indexed

by the elements L ∈ P1(E) in such a way that, if L ∈ E, then the members
of the corresponding isomorphism class are twists of a semi-stable represen-
tation of Hodge-Tate weights (0,−1) with L-invariant equal to L, while if
L = ∞, then the members of the corresponding isomorphism class are twists
of a non-generic crystalline representation of Hodge-Tate weights (0,−1).

(3) If η = ψ, then the set of isomorphism classes of such V can be indexed by
the elements of P1(E). There is a unique (up to isomorphism) such V that
is Hodge-Tate up to twist, which is then in fact crystalline (indeed, even
unramified) up to twist.

Proof. There is an isomorphism Ext1GQp
(ψ, η) ∼−→ H1(GQp , ηψ

−1) (where Ext1 is
computed in the category of continuous GQp

-representations, and H1 indicates
continuous Galois cohomology). Using Tate local duality and the local Euler char-
acteristic formula (for example) one finds that H1(GQp , ηψ

−1) is one-dimensional
unless ηψ−1 = 1 or ε; in these latter two cases it is two-dimensional. It follows that
in the situation of (1), any two non-trivial extensions of ψ by η are isomorphic as
GQp

-representations. This proves (1).
The elements of H1(GQp

, ε), and hence the corresponding extensions of 1 by ε,
are easily computed via Kummer theory. We recall the results of this well-known
computation: one finds that any extension of 1 by ε is semi-stable, and that the
non-trivial extensions are classified (up to isomorphism as GQp

-representations) by
their L-invariants (with L = ∞ corresponding to the unique isomorphism class of
crystalline extensions). This proves (2).

The element of H1(GQp , 1), and hence the corresponding extensions of 1 by itself,
are easily computed via local class field theory. Since this computation is also well-
known, we again content ourselves with recalling the outcome: one finds that (up
to isomorphism as GQp

-representations) there is a unique non-trivial extension of
1 by itself which is Hodge-Tate, namely the non-trivial unramified extension. This
proves (3). �

4.5.6. Proposition. If σ = (η, ψ) is a critical element of Homcont(Wp,T(E))+,
then there exists exactly two isomorphism classes of indecomposable trianguline two
dimensional continuous representations V of GQp over E admitting a refinement R
such that σ(R) = σ. There is a unique such isomorphism class of V whose members
are furthermore potentially semi-stable up to a twist (and the members of this class
are then in fact potentially crystalline, up to a twist).
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Proof. Applying Proposition 4.5.5 to σ′ := (ψzw, ηz−w), we may find V that is
potentially crystalline up to a twist and admits a critical refinement R with σ(R) =
σ. Furthermore we see that V is unique up to isomorphism. (Note that when σ′

falls into case (2) of that result, only the representation corresponding to L = ∞
admits a critical refinement.)

Applying Proposition 4.5.5 to σ(−w) := (ηz−w, ψzw) yields a representation V
that admits an ultracritical refinement R with σ(R) = σ. Again we see that V
is unique up to isomorphism among the indecomposable representations admitting
such a refinement that are not potentially semi-stable up to a twist. �

4.5.7. Terminology. We say that a trianguline two dimensional continuous GQp
-

representation “admits an L-invariant” if and only if it is a twist of either a semi-
stable, but non-crystalline, representation, or of an indecomposable non-generic
crystalline representation.

The trianguline representations that admit an L-invariant are precisely the rep-
resentations that are classified by Theorem 4.5.4 (2) and Proposition 4.5.5 (2).

5. Some invariants of admissible unitary GL2(Qp)-representations

The problem of classifying topologically irreducible admissible unitary GL2(Qp)-
representations seems currently unapproachable in general, but there are two sit-
uations in which we can make some progress: namely if the admissible unitary
representation B being classified satisfies one of the following conditions:

The subspace Blalg of locally algebraic vectors in B is non-zero;(6)

The Jacquet module JP(Qp)(Ban) is non-zero.(7)

In this section we discuss some results and conjectures towards the classification of
topologically irreducible admissible unitary representations satisfying one of these
conditions.

We first discuss the problem of classifying such representations B satisfying (6).
The non-trivial results in this case are due to Colmez [26] and Berger and Breuil
[8], and all progress has been motivated by Breuil’s initial postulation of the local
p-adic Langlands correspondence in the potentially semi-stable case [12]. After a
brief review of some properties of the Jacquet module functor JP(Qp), we then turn
to the problem of classifying those B satisfying (7). In addition to the theory of the
Jacquet module, our discussion relies heavily on the results of Colmez describing
the universal unitary completions of certain locally analytic induced representations
[27].

While the two problems that we discuss are in principle independent of one an-
other, since B can satisfy either one of conditions (6) or (7) without satisfying the
other, all the results obtained so far related to the classification of representations
satisfying (6) apply only to representations that also satisfy (7). Nevertheless, even
in the cases where no progress has been made, the local p-adic Langlands correspon-
dence suggests the form that the classification should take. (See Conjecture 5.1.19
below.) On the other hand, the representations that satisfy (7) but not (6) can
be completely classified, a result that can also be viewed as a manifestation of the
local p-adic Langlands correspondence. (See Remark 5.3.13.)
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5.1. Admissible unitary representations of GL2(Qp) containing locally al-
gebraic vectors. Suppose that B is a topologically irreducible admissible unitary
GL2(Qp)-representation over E for which Blalg 6= 0. Then there exists an irreducible
admissible smooth representation U of GL2(Qp) over E, an irreducible algebraic
representation W of GL2(Qp) over E, and a GL2(Qp)-equivariant embedding

π := U ⊗E W → B.

In particular, π (when regarded as a topological GL2(Qp) representation by be-
ing equipped with is finest locally convex topology) admits a non-zero universal
unitary completion π̂ (in the sense of [34]), and π̂ maps continuously and GL2(Qp)-
equivariantly into B with dense image (since B is topologically irreducible).

5.1.1. Question. In the above situation, is the map π̂ → B necessarily surjective?

It seems reasonable to hope that the answer to this question is “yes”. (For exam-
ple, this is the case if π̂ is admissible. 9 Proposition 5.1.10 below gives an example
where this is again the case, although π̂ is not admissible.) Assuming that this is
so, we see that B is a topologically irreducible admissible quotient of π̂, and that
the problem of classifying those B for which Blalg 6= 0 reduces to the following two
problems: (a) classify those irreducible admissible locally algebraic representations
π of GL2(Qp) for which π̂ 6= 0; (b) for such π, classify the topologically irreducible
admissible quotients of π̂. Problem (a) is close to being solved in its entirety, and
substantial progress has been made on problem (b). In order to discuss the situ-
ation in more detail, as above we write π = U ⊗E W where U is an irreducible
smooth representation of GL2(Qp) and W is an irreducible algebraic representa-
tion of GL2(Qp). We may then write W =

(
Symw2−w1−1E2

)
⊗ detw1+1 for some

uniquely determined integers w1 < w2.
We first note the following lemma.

5.1.2. Lemma. If B is a finite dimensional irreducible unitary representation of
SL2(Qp) then B is the trivial representation of SL2(Qp).

Proof. Any finite dimensional continuous representation of SL2(Qp) is necessarily
locally analytic [52, LG §5.9, Thm. 2], and hence is locally algebraic, since it is finite
dimensional. It follows from [31, Prop. 4.2.8] that we may factor B as a tensor prod-
uct B ∼= U ⊗W where U is a finite dimensional irreducible smooth representation
of SL2(Qp) and W is an irreducible algebraic representation of SL2(Qp). It is well-
known that U is then necessarily trivial (see for example [40, Prop. 2.7]), and thus
we see that the irreducible algebraic representation W admits an SL2(Qp)-invariant
norm. But this implies that W is also trivial, whence the lemma. �

This lemma has the following immediate corollary.

9This is a consequence of the following result: Theorem. If φ : U → V is a G-equivariant
continuous morphism between two Banach space representations over E of the compact p-adic
locally analytic group G, and if U is admissible, then φ has closed image. This is well-known if V
is assumed to be admissible (cf. [31, Prop. 6.2.9]) but in fact holds true without that assumption,
as Breuil observed in the course of proving [12, Prop. 4.4.4 (v)]. Here is a sketch of the proof:
Replacing V with the closure of the image of φ, we may assume that φ has dense image, so
that the topological dual map φ′ : V ′ → U ′ is injective. Since U ′ is finitely generated over
E[[G]] := E ⊗OE

OE [[G]] (by our assumption that U is admissible), the same is true of V ′,
since OE [[G]], and hence E[[G]], is Noetherian [44, V.2.2.4]. Thus V is also admissible (cf. [31,
Def. 6.2.1]), and so φ has closed image, as claimed.
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5.1.3. Corollary. The only finite dimensional irreducible unitary representations
of GL2(Qp) are the characters χ ◦ det (where χ is a unitary character of Q×

p ).

From this corollary we see that in the above discussion we may restrict our
attention to the case when π (or equivalently U) is infinite dimensional. Thus we
assume this from now on. We also assume that π has a unitary central character,
since this is one obvious necessary condition for π̂ to be non-zero.

5.1.4. The principal series case. Suppose that U is principal series (and infinite
dimensional), so that we may write U = (IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)sm with χ1χ

−1
2 6=

1, | |−2. The assumption that U has unitary central character corresponds to the
condition

(8) | χ1(p)χ2(p)pw1+w2+1 | = 1.

In this case, the theory of Jacquet modules provides an additional necessary con-
dition for π̂ to be non-zero, namely

(9) | pw2χ1(p) | , | pw2+1χ2(p) | ≤ 1

(see Lemma 5.2.4 below).
The following conjecture is due to Breuil. (See Remark 3.3.4 for motivation.)

5.1.5. Conjecture. If conditions (8) and (9) hold then π̂ is non-zero, and is a
topologically irreducible admissible unitary GL2(Qp)-representation.

In particular, in this case we expect that the only topologically irreducible ad-
missible unitary quotient of π̂ is π̂ itself.

5.1.6. Theorem. Conjecture 5.1.5 is true provided that χ1 6= χ2 | |−1.

Proof. We may describe π as the locally algebraic induction

π = (IndGL2(Qp)

P(Qp)
χ1z

w2 ⊗χ2z
w1+1)lalg ∼= (IndGL2(Qp)

P(Qp)
χ2ε

−1zw2+1⊗χ1εz
w1)lalg,

where the isomorphism is provided by the theory of intertwining operators. If
either | pw2χ1(p) | = 1 or | pw2+1χ2(p) | = 1, then π is equal to the locally algebraic
induction of a unitary character, in which case it is straightforward to check that
π̂ is equal to the corresponding continuous induction, and that this continuous
induction is topologically irreducible and admissible unitary. (See [14, Prop. 2.2.1],
and also the first paragraph of the proof of Proposition 5.3.4 below.) On the other
hand, if neither of these conditions hold, and if χ1 6= χ2 | |−1, then the claim of
the theorem follows from the main result of [8]. �

5.1.7. The special case. Let us suppose now that U is special, say U = χ ◦ det⊗St
for some character χ. The condition that π have a unitary central character then
becomes

(10) | χ(p)p(w1+w2+1)/2 | = 1.

5.1.8. Theorem. Suppose that condition (10) holds.
(1) If furthermore W is one dimensional (i.e. w2 = w1+1), then π̂ is non-zero,

topologically irreducible, and admissible unitary.
(2) If W is not one dimensional (i.e. w2 > w1 + 1) then π̂ is non-zero, is not

topologically irreducible, and is not admissible unitary.
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Proof. In case (1) we see that π is the twist of St by a unitary character, and the
claim of the theorem follows from the particular case π = St, which is proved in
[12, Lem. 4.5.1].

In case (2), the fact that π̂ is non-zero is due to Teitelbaum [60] (resp. Grosse-
Klönne [38]) when W is odd (resp. even) dimensional. The fact that π̂ is not
admissible is proved in [12, Prop. 4.6.5]. The fact that π̂ is not topologically irre-
ducible follows from the explicit construction of the series of non-zero topologically
irreducible admissible unitary quotients described below. �

In the situation of case (2) of the preceding Theorem, Breuil has described a
specific series of quotients of π̂, depending on a parameter L ∈ P1(E), which he
conjectured, and Colmez has proved, to be non-zero, topologically irreducible, and
admissible unitary. We briefly recall their construction.

First note that it is no loss of generality to replace π by a unitary twist (since
twisting by a unitary character commutes with passage to the universal unitary
completion). Thus we may assume that w2 = 0, and so write w = w1 < −1. In the
cases when w is even we furthermore extend E if necessary so that

√
p ∈ E. Then,

further twisting π if necessary, we may reduce to the case

π = St⊗ | det |(1+w)/2 ⊗
(
Sym−1−wE2

)∨
.

Given L ∈ P1(E), choose (u, v) ∈ E2 \ {(0, 0)} so that u/v = L, and define the
two dimensional representation σ(L) of P(Qp) via

σ(L)
((a 0
c d

))
:=

(
1 u ordp(

a

d
) + v logp(

a

d
)

0 1

)
,

where ordp denotes the p-adic valuation (normalized so that ordp(p) = 1) and
logp denotes the Iwasawa p-adic logarithm (so logp(p) = 0). Note that up to
isomorphism, σ(L) depends only on the value of u/v = L.

Let χw denote the character

χw :=| |(1+w)/2 ⊗ | |(−1+w)/2 zwε =| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

of P(Qp), and consider the locally analytic induction

(11)
(
IndGL2(Qp)

P(Qp)
σ(L)⊗ χw

)
an
.

Since σ(L) is an extension of the trivial character of P(Qp) by itself, we see that (11)
sits in a short exact sequence

(12)

0 −→
(
IndGL2(Qp)

P(Qp)
| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

)
an
−→

(
IndGL2(Qp)

P(Qp)
σ(L)⊗ χw

)
an

pr−→
(
IndGL2(Qp)

P(Qp)
| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

)
an
−→ 0.

The representation
(
IndGL2(Qp)

P(Qp)
| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

)
an

contains

(13) | det |(1+w)/2 ⊗
(
Sym−1−wE2

)∨
as a subrepresentation. Following [12], we define

Σ(1− w,L) =

pr−1(| det |(1+w)/2 ⊗
(
Sym−1−wE2

)∨)/ | det |(1+w)/2 ⊗
(
Sym−1−wE2

)∨
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(i.e the quotient by the copy of (13) sitting in the first term of (12) of the preimage
under the projection pr of the copy of (13) sitting in the third term); then Σ(1−w,L)
is a locally analytic representation of GL2(Qp) that sits in an exact sequence

(14)

0 →
(
IndGL2(Qp)

P(Qp)
| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

)
an
/ | det |(1+w)/2 ⊗

(
Symw−1E2

)∨
→ Σ(1− w,L) →| det |(1+w)/2 ⊗

(
Sym−1−wE2

)∨ → 0.

(Our notation follows that of [12], possibly up to a unitary twist.) Since σ(L) is a
non-split extension of the trivial character by itself, one easily sees that the exact
sequence containing Σ(1− w,L) is also non-split.

The representation Σ(1− w,L) has the topological Jordan-Hölder series

(15) 0 ⊂ π = St⊗ | det |(1+w)/2 ⊗
(
Sym−1−wE2

)∨
=
(
IndGL2(Qp)

P(Qp)
| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

)
lalg

/ | det |(1+w)/2 ⊗
(
Sym−1−wE2

)∨
⊂
(
IndGL2(Qp)

P(Qp)
| |(1+w)/2 ⊗ | |(1+w)/2 z1+w

)
an
/ | det |(1+w)/2 ⊗

(
Sym−1−wE2

)∨
⊂ Σ(1− w,L),

related to which we have the following easy lemma.

5.1.9. Lemma. Each of the inclusions after the first in (15) is non-split, and has
a cokernel whose universal unitary completion vanishes.

Proof. That the second inclusion is non-split is standard. Its cokernel is isomorphic
to (

IndGL2(Qp)

P(Qp)
| |(1+w)/2 zw⊗ | |(1+w)/2 z

)
an
,

whose universal unitary completion vanishes by Proposition 5.2.1 and Lemma 5.2.4
below.

We observed above that the short exact sequence (14) is non-split, which im-
plies that the third inclusion is non-split. Its cokernel is isomorphic to | |(1+w)/2

⊗
(
Sym−1−wE2

)∨, which is finite dimensional but not a character (since w < −1),
and so has vanishing universal unitary completion by Corollary 5.1.3. �

It follows from the preceding lemma that the maps of universal unitary comple-
tions induced by the second and third inclusions have dense image. In fact we have
the following less elementary proposition.

5.1.10. Proposition. The second inclusion of (15) induces an isomorphism of uni-
versal unitary completions, while the third inclusion induces a surjection of univer-
sal unitary completions.

Proof. The first claim follows from [34, Prop. 2.5]. (See also Proposition 5.3.8
below.) The third claim is proved in [13, Cor. 3.3.4] in the case L 6= ∞. In the case
when L = ∞, it is easily checked (see the remarks below). �

5.1.11. Definition. For each L ∈ P1(E), let B(1 − w,L) denote the universal
unitary completion of Σ(1− w,L).

The preceding proposition shows that B(1− w,L) is a quotient of π̂.
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5.1.12. Remark. The completion B(1 − w,L) may be described explicitly as a
suitable quotient of a certain space of functions on Qp of class C(−1−w)/2; see [13,
Cor. 3.3.4] for the case L 6= ∞.

5.1.13. Theorem. Each of the GL2(Qp)-representations B(1 − w,L) is non-zero,
topologically irreducible, and admissible unitary. Furthermore, the representations
corresponding to distinct values of L are non-isomorphic.

Proof. In the case when L 6= ∞, the statement of the theorem is due to Colmez
[26]. In the case when L = ∞, it follows from the results of Berger and Breuil [8],
taking into account the isomorphism (16) below. �

Thus the spaces B(1−w,L) yield a series of topologically irreducible admissible
unitary quotients of π̂ indexed by the elements L ∈ P1(E). This suggests the
following question.

5.1.14. Question. Do the spaces B(1 − w,L) (for L ∈ P1(E)) exhaust the topo-
logically irreducible admissible unitary quotients of π̂?

One can at least say that no other such quotients have been described in the
literature to date.

5.1.15. Remark. The case when L = ∞ is a little different from the case when L
is finite, since the representation σ(∞) is smooth. In fact, one can check that there
is an isomorphism

(16) Σ(1− w,∞) ∼−→
(
IndGL2(Qp)

P(Qp)
| |(−1+w)/2 ⊗ | |(3+w)/2 z1+w

)
an
.

Thus in this case the space of locally algebraic vectors in Σ(1−w,∞) is larger than
π; namely one has an isomorphism(

IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm
⊗ | det |(1+w)/2 ⊗

(
Sym−1−wE2

)∨ ∼−→ Σ(1− w,∞)lalg.

5.1.16. Remark. In the case when w is odd and ≥ −p, Breuil and Mézard have
constructed a certain torsion free sheaf of OE-modules on the p-adic upper half
plane whose space of global sections is the unit ball in the topological dual of
B(1 − w,L) [15]. They have used this description of B(1 − w,L) to compute the
mod $ representation B(1− w,L).

5.1.17. The cuspidal case. We now assume that π = U ⊗ W with U irreducible
and cuspidal and W irreducible algebraic. We continue to suppose that the central
character of π is unitary. In this context we have the following easy proposition.

5.1.18. Proposition. The universal unitary completion π̂ is non-zero, and is not
admissible.

Proof. The non-vanishing of π̂ follows directly from the fact that the matrix coeffi-
cients of U are compactly supported modulo the centre (together with the assump-
tion that the central character of π is unitary); see [34, Prop. 1.18]. It is then easily
checked (by using the construction of U as a compact induction, for example) that
in fact π̂ is not admissible. �

In this case nothing general seems to be known about the possible topologically
irreducible admissible unitary quotients of π̂. One can use global considerations
to show that π does admit some non-zero admissible unitary completions, which
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one presumes (but cannot prove as of yet) are topologically irreducible quotients
of π̂. (See Remark 7.7.16 below, and recall that we expect Question 5.1.1 to have
a positive answer in general.)

Motivated by the local p-adic Langlands conjecture, Breuil has made the follow-
ing conjecture (cf. Remark 3.3.4 above and Remark 6.1.9 below).

5.1.19. Conjecture. The universal unitary completion π̂ admits a family of non-
zero, mutually non-isomorphic, topologically irreducible, admissible unitary quo-
tients, indexed by the elements of P1(E).

An optimist might guess that in fact this conjectural series of quotients exhausts
all topologically irreducible, admissible unitary quotients of π̂.

5.2. Jacquet modules. Recall that if U is any topological E-vector space of
compact type equipped with a locally analytic GL2(Qp)-representation, then the
Jacquet module JP(Qp)(U) is a certain locally analytic representation of T(Qp) over
E functorially associated to U [32]. We do not recall the definition here (see the
discussion following [32, Prop. 0.3]), but do recall that JP(Qp) is additive and left
exact. In the remainder of this subsection we describe the additional properties of
the functor JP(Qp) that we will require.

The following result describes the Jacquet modules of induced representations.

5.2.1. Proposition. Fix χ1 ⊗ χ2 ∈ T̂ (Qp).

(1) If χ1χ
−1
2 is of integral Hodge-Tate weight w ≥ 0, and if χ1χ

−1
2 6= zw | |−1,

then

JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)lalg

) ∼= (χ1 | | ⊗χ2 | |−1)
⊕

(χ2z
w ⊗ χ1z

−w).

(2) If χ1χ
−1
2 is of integral Hodge-Tate weight w ≥ 0, and if χ1χ

−1
2 = zw | |−1,

then JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)lalg

)
is a non-split extension of the char-

acter χ1 | | ⊗χ2 | |−1= χ2z
w ⊗ χ1z

−w by itself.
(3) If χ1χ

−1
2 is of integral Hodge-Tate weight w ≥ 0 then the inclusion(

IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
lalg

⊂
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
an

induces an isomorphism

JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)lalg

) ∼−→ JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)an

)
.

(4) If χ1χ
−1
2 is not of non-negative integral Hodge-Tate weight then

JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)an

) ∼= χ1 | | ⊗χ2 | |−1 .

Proof. Claims (1) and (2) follow from [32, Prop. 4.3.6] and the well-known structure
of the Jacquet modules of smooth induced representations of GL2(Qp) (cf. [19, Lem.
7.1.1 (a)]). The proofs of claims (3) and (4) (in a much more general context) will
appear in [35] (and are in any case straightforward computations working from the
definition of JP(Qp)). �

The following corollary is an immediate consequence of the preceding proposi-
tion.
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5.2.2. Corollary. For every χ1 ⊗ χ2 ∈ T̂(E) there is an embedding of T(E)-
representations

χ1 | | ⊗χ2 | |−1→ JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2)an

)
,

uniquely determined up to multiplication by a non-zero scalar.

5.2.3. Definition. Fix a compact type locally analytic GL2(Qp)-representation U
defined over E.

(1) Define Exp(U) to be the set of one dimensional T(Qp)-invariant subspaces
of JP(Qp)(U).

(2) For any line L ∈ Exp(U), write χ(L) ∈ T̂(E) to denote the character via
which T(Qp) acts on L.

(3) For any character χ ∈ T̂(E), write Expχ(U) := {L ∈ Exp(U) | χ(L) = χ}.

If we fix a character χ ∈ T̂(E), then Expχ(U) has the structure of a projective
space (possibly of infinite dimension, or possibly of dimension −1, i.e. empty),
namely it is the projectivization of the χ-eigenspace JχP(Qp)(U) in JP(Qp)(U). Thus

Exp(U) is a disjoint union of projective spaces, indexed by the characters χ ∈ T̂(E).
Recall the identification T̂(E) = Homcont(Wp,T(E)) discussed in Subsection 1.3.

We let T̂(E)+ denote the subset of T̂(E) that corresponds to Homcont(Wp,T(E))+
(as defined in Definition 4.5.1) under this identification, and we will use this iden-
tification to apply the terminology of Definition 4.5.2 to elements of T̂(E)+.

The following result imposes a limitation on the exponents that can appear in
JP(Qp)(U) in the cases of interest to us.

5.2.4. Lemma. If B is an E-Banach space equipped with a unitary representation
of GL2(Qp) for which Ban is of compact type, and if JχP(Qp)(Ban) 6= 0 for some

character χ = χ1 ⊗ χ2 ∈ T̂(E), then χ1 | |−1 ⊗χ2 | | ∈ T̂(E)+.

Proof. This is a consequence of [32, Lem. 4.4.2]. �

The following theorem provides a kind of converse to Corollary 5.2.2.

5.2.5. Theorem. Let B be an E-Banach space equipped with a unitary represen-
tation of GL2(Qp) for which Ban is of compact type, let L ∈ Exp(Ban), and write
χ(L) = χ1 ⊗ χ2. Suppose furthermore that the character χ1 | |−1 ⊗χ2 | | ε−1 is
neither critical nor ultracritical in the sense of Definition 4.5.2. Then there is a
continuous GL2(Qp)-equivariant map

(17)
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an
→ Ban,

uniquely determined up to multiplication by a non-zero scalar, so that the inclusion
L ⊂ JP(Qp)(Ban) is obtained by applying the functor JP(Qp) to (17) and composing
the resulting map with the inclusion

χ1 ⊗ χ2 ⊂ JP(Qp)

(
(IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |)an

)
provided by Corollary 5.2.2.

Proof. As in [34, §2], we identify
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an

with a space of
locally analytic E-valued functions on Qp satisfying a certain regularity condition
at infinity. We let

(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)sm (resp.

(
IndGL2(Qp)

P(Qp)
χ1 | |−1



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 37

⊗χ2 | |
)
(Qp)an) denote the closed P(Qp)-invariant (resp. (gl2,P(Qp))-invariant)

subspace of
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an

consisting of locally constant (resp.
locally analytic) functions that are compactly supported on Qp. (Here gl2 denotes
the Lie algebra of GL2(Qp).) If χ1χ

−1
2 is furthermore of integral Hodge-Tate weight

w ≥ 0, then we let
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)lalg denote the (gl2,P(Qp))-

invariant subspace of
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)an consisting of functions

that are locally polynomial of degree ≤ w.
The action of gl2 on

(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)an induces a natural

(gl2,P(Qp))-equivariant map

(18) Ugl2 ⊗Up

(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)sm

→
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)an

(where p denotes the Lie algebra of P(Qp) and Ux indicates the universal enveloping
algebra of the Lie algebra x), which is an isomorphism if χ1χ

−1
2 is not of non-negative

integral Hodge-Tate weight, and which induces a surjection

(19) Ugl2 ⊗Up

(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)sm

→
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)lalg

if χ1χ
−1
2 is of non-negative integral Hodge-Tate weight.

The defining adjointness property of JP(Qp) [32, Thm. 3.5.6] yields a natural
isomorphism

(20) Hom(gl2,P(Qp))(Ugl2 ⊗Up

(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)sm, Ban)

∼−→ HomT(Qp)(χ1 ⊗ χ2, JP(Qp)(Ban)).

If χ1χ
−1
2 is not of non-negative integral Hodge-Tate weight, then upon combining

the isomorphism (18) with [14, Prop. 2.1.4] (which is a special case of the main
result of [35]) we find that passing to Jacquet modules yields an isomorphism

(21) HomGL2(Qp))(
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an
, Ban)

∼−→ HomT(Qp)(χ1 ⊗ χ2, JP(Qp)(Ban)),

proving the theorem in this case.
If χ1χ

−1
2 is of non-negative integral Hodge-Tate weight, then by assumption

χ1 | |−1 ⊗χ2 | | ε−1 is neither critical nor ultacritical. Taking this together with
the fact that B is unitary, it follows from [32, Thm. 4.4.5] that the canonical lift
to Ban of any element in JP(Qp)(Ban) (see [32, 0.9]) is locally SL2-algebraic. It
follows directly from this, and from the construction of the map (20), that any map
in the source of (20) necessarily factors through the surjection (19), yielding an
isomorphism

(22) Hom(gl2,P(Qp))(
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)lalg, Ban)

∼−→ HomT(Qp)(χ1 ⊗ χ2, JP(Qp)(Ban)).
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The same argument that proves [34, Prop. 2.5] (which is a variation of the classical
argument of Amice-Vélu [1] and Vishik [62], and relies again on the fact that χ1 | |−1

⊗χ2 | | ε−1 is neither critical nor ultacritical) shows that the restriction map

HomGL2(Qp))(
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an
, Ban)

→ Hom(gl2,P(Qp))(
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)lalg, Ban)

is an isomorphism. Composing this isomorphism with the isomorphism (22), we
find that in this case passing to Jacquet modules again yields an isomorphism (21).
This completes the proof of the theorem. �

The following supplement to Theorem 5.2.5 treats the case when Exp(B(V )an)
contains a line L such that χ(L) is critical or ultracritical.

5.2.6. Proposition. Let B be an E-Banach space equipped with a unitary represen-
tation of GL2(Qp) for which Ban is of compact type, let L ∈ Exp(Ban), and write
χ(L) = χ1 ⊗ χ2. Suppose that χ1χ

−1
2 is of integral Hodge-Tate weight w ≥ 0.

(1) If χ1 | |−1 ⊗χ2 | | ε−1 is critical, then either there exists L′ ∈ Exp(Ban)
such that χ(L′) equals one of χ1z

−1−w⊗χ2z
1+w or χ2 | | zw⊗χ1 | |−1 z−w,

or else χ1 = χ2 and B contains a copy of the one dimensional GL2(Qp)-
invariant representation χ1 ◦ det.

(2) If χ1 | |−1 ⊗χ2 | | ε−1 is ultracritical, then

dim Expχ1⊗χ2(B(V )an) ≤ dim Expχ1z
−1−w⊗χ2z

1+w

(B(V )an).

In particular, there exists L′ ∈ Exp(Ban) such that χ(L′) equals χ1z
−1−w⊗

χ2z
1+w.

Proof. We suppose that we are in either case (1) or case (2), that is, that χ1 | |−1

⊗χ2 | | ε−1 is either critical or ultracritical. We will use the terminology and
results recalled in the proof of the preceding theorem. Let v ∈ Ban be the canonical
lift of a non-zero element in L. Suppose first that v is locally SL2-algebraic. Then
under the adjunction isomorphism (20), the inclusion

(23) L→ JP(Qp)(Ban)

arises from a (gl2,P(Qp))-equivariant map(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)lalg → Ban.

One can show without difficulty that the restriction map

HomGL2(Qp))(
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
lalg

, Ban)

→ Hom(gl2,P(Qp))(
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
(Qp)lalg, Ban)

is an isomorphism (for any character χ1⊗χ2 such that χ1χ
−1
2 is of integral Hodge-

Tate weight, and any continuous GL2(Qp)-Banach space representation B; this is
a variant of [14, Lem. A.2.4]). Thus the map (23) is obtained by applying JP(Qp)

to a non-zero continuous GL2(Qp)-equivariant map

(24)
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
lalg

→ Ban.

If this map is injective, then it induces an injection on Jacquet modules, and Propo-
sition 5.2.1 now shows that we obtain a copy of the character χ2 | | zw⊗χ1 | |−1 z−w
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in JP(Qp)(B), and so Lemma 5.2.4 implies that χ2z
w ⊗ χ1z

−w, and hence also
χ2z

w ⊗ χ1z
−wε−1, lies in T̂(E)+. Since χ1 | |−1 ⊗χ2 | | ε−1 is assumed to be

either critical or ultracritical, so that χ1z
−wε−1 ⊗χ2z

w(= χ1 | |−1 z−1−w ⊗χ2 | |
ε−1z1+w) also lies in in T̂(E)+, we conclude that in fact χ1z

−wε−1 ⊗ χ2z
w is uni-

tary, and thus that χ1 | |−1 ⊗χ2 | | ε−1 is critical. Hence we are necessarily in
case (1).

The source of (24) is irreducible (and consequently this map is necessarily injec-
tive) unless χ1χ

−1
2 | |−1=| |±1 zw. Again using the fact that χ1 | |−1 ⊗χ2 | |

ε−1 = χ1 | |−1 ⊗χ2z
−1 is either critical or ultracritical, we see that the source

of (24) is irreducible unless w = 0 and χ1 = χ2. Thus if (24) is not injective, then
χ1 = χ2 and (24) must factor through the quotient χ1 ◦ det of its source, yielding
a copy of this one dimensional GL2(Qp)-representation inside B. Clearly χ1 must
then be unitary, and so we must again be in case (1). This completes our discussion
in the case when v is locally SL2-algebraic.

Suppose now that the canonical lift v of a non-zero element of L is not locally
SL2-algebraic. If X− :=

(
0 0
1 0

)
∈ gl2, then [32, Prop. 4.4.4] shows that (X−)1+wv

is the canonical lift of a non-zero element of Jχ1z
−1−w⊗χ2z

1+w

P(Qp) (Ban). In particular,

this completes the proof of case (1). Since in case (2) no element of Jχ1⊗χ2
P(Qp) has

a locally SL2-algebraic canonical lift (as we have seen above), we see that the
action of (X−)1+w on canonical lifts in fact induces an injection Jχ1⊗χ2

P(Qp) (Ban) →

Jχ1z
−1−w⊗χ2z

1+w

P(Qp) (Ban). This yields the claimed inequality in case (2), and completes
the proof of the proposition. �

5.3. Admissible unitary representations of GL2(Qp) with non-zero Jacquet
modules. In this subsection we consider the classification of those topologically
irreducible admissible unitary GL2(Qp)-representations B for which JP(Qp)(Ban) 6=
0. We begin with the following proposition.

5.3.1. Proposition. If B is an admissible unitary GL2(Qp)-representation such
that JP(Qp)(Ban) 6= 0, then we may find a finite extension E′ of E such that
Exp(E′ ⊗E Ban) 6= ∅ (or equivalently, there is a character χ ∈ T̂(E′) such that
JχP(Qp)(E

′ ⊗E Ban) 6= 0).

Proof. Since B is admissible unitary, the locally analytic representation Ban is
admissible, and so JP(Qp)(Ban) is an essentially admissible T(Qp)-representation
[32, Thm. 0.5], corresponding to a rigid analytic coherent sheaf F on T̂ (as explained
in [31, §6.4] – the global sections of F are naturally dual to JP(Qp)(Ban)). Since
JP(Qp)(Ban) 6= 0, the coherent sheaf F is non-zero, and so has a non-empty support.
If χ ∈ T̂(E′) (for some finite extension E′ of E) is a point in the support of F , then
the fibre Fχ 6= 0. This fibre is naturally dual to JχP(Qp)(E

′ ⊗E Ban), and so we find
that this latter space is also non-zero. �

In light of the preceding result, we restrict our attention from now on to topo-
logically irreducible admissible unitary B such that Exp(Ban) 6= ∅. From Theo-
rem 5.2.5 we see that the first step in classifying such B will be to describe the
universal unitary completions of locally analytic induced representations.

We consider first the induction of a unitary character, and begin by introducing
some additional notation.
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5.3.2. Definition. Let Ŝt denote the universal unitary completion of the Steinberg
representation St.

5.3.3. Lemma. (1) The Banach space Ŝt, with its natural GL2(Qp)-action, is
topologically irreducible and admissible unitary.

(2) The inclusion St ⊂ Ŝt induces an isomorphism

| | ⊗ | |−1= JP(Qp)(St) ∼−→ JP(Qp)(Ŝtan).

Proof. Part (1) was already observed in Theorem 5.1.8 (1). To prove claim (2),
begin with the short exact sequence

0 → 1 →
(
IndGL2(Qp)

P(Qp)
1⊗ 1

)
sm
→ St → 0.

Passing to universal unitary completions yields the short exact sequence of admis-
sible unitary representations

(25) 0 → 1 →
(
IndGL2(Qp)

P(Qp)
1⊗ 1

)
cont

→ Ŝt → 0

(cf. the proof of the following proposition). Passing to locally analytic vectors
(which is an exact functor on admissible unitary representations [51, Thm. 7.1])
yields the short exact sequence

0 → 1 →
(
IndGL2(Qp)

P(Qp)
1⊗ 1

)
an
→ Ŝtan → 0.

Passing to Jacquet modules (and taking into account Proposition 5.2.1) yields an
exact sequence of T(Qp)-representations

0 → 1 → 1
⊕

| | ⊗ | |−1→ JP(Qp)(Ŝtan).

Although JP(Qp) is not a right exact functor in general, it is not difficult to check
that in this case the preceding exact sequence is exact on the right as well, proving
claim (2). �

The next proposition gives a precise description of the universal unitary comple-
tion of the locally analytic induction of a unitary character.

5.3.4. Proposition. Let χ = χ1 ⊗ χ2 ∈ T̂(E) be a unitary character.
(1) The continuous injection(

IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
an
→
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

identifies the latter representation with the universal unitary completion of
the former.

(2) The GL2(Qp)-representation
(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
cont

is admissible unitary.

(3) If χ1 6= χ2 then
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

is topologically irreducible.

(4) If χ1 = χ2 then
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

sits in a non-split exact sequence

0 → χ1 ◦ det →
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

→ χ1 ◦ det⊗Ŝt → 0.

Proof. Claim (1) follows directly from the fact that the character χ is unitary; it
is a straightforward generalization of the standard fact in p-adic analysis that the
space of locally analytic E-valued functions on P1(Qp) is dense in the space of
continuous E-valued functions with respect to the sup norm (which is the special



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 41

case of claim (1) when χ is the trivial character). We note that when χ1⊗χ−1
2 is of

non-negative integral Hodge-Tate weight, the same reasoning (locally polynomial
functions are dense in continuous functions) shows that

(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
cont

may
be regarded as the universal unitary completion of the locally algebraic induction(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
lalg

.

It was already observed in Subsection 1.3 that the continuous induction is ad-
missible. This proves claim (2).

Suppose now that χ1 6= χ2. If χ1 ⊗ χ−1
2 is of non-negative integral Hodge-Tate

weight then claim (3) is proved in [14, Prop. 2.2.1]. If not, then the same proof
works, but is even simpler, since

(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
an

is topologically irreducible.
If χ1 = χ2, then claim (4) results from twisting the short exact sequence (25) by
χ1 = χ2. �

5.3.5. Remark. Parts (2), (3), and (4) of this proposition have also been observed
by Schneider and Teitelbaum.

5.3.6. Corollary. If B is a topologically irreducible admissible unitary Banach space
representation of GL2(Qp) such that Expχ1| |⊗χ2| |−1

(Ban) 6= ∅ for some unitary
character χ1 ⊗ χ2 ∈ T̂(E) then either:

(1) B ∼−→
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

(if χ1 6= χ2); or

(2) B ∼−→ χ1 ⊗ Ŝt (if χ1 = χ2).

Proof. It follows from Theorem 5.2.5 and Proposition 5.3.4 (1) that there is a non-
zero continuous GL2(Qp)-equivariant map(

IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
cont

→ B.

Since the source and target of this map are admissible unitary (the source by
Proposition 5.3.4 (2) and the target by assumption), we see that it has closed
image [31, Prop. 6.2.9], and hence is surjective. The Corollary then follows from
Proposition 5.3.4 (3) and (4). �

The next result, which treats the universal unitary completions of the locally
analytic inductions of non-unitary characters, lies significantly deeper than Propo-
sition 5.3.4.

5.3.7. Theorem. Let χ = χ1 ⊗ χ2 ∈ T̂(E)+ be such that the following conditions
hold:

(1) χ1 ⊗ χ2 is not unitary;
(2) The ratio χ1χ

−1
2 does not have non-negative integral Hodge-Tate weight.

Then the universal unitary completion of
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
an

is a non-zero,
topologically irreducible, admissible unitary GL2(Qp)-representation.

Proof. Arguing as in the proof of [8, Thm. 4.3.1] (cf. the proof of [14, Thm. 2.2.2]),
one sees that the universal unitary completion in question may be identified with
the space B(s) of [27], taking s to be the character χ1 ⊗ χ2ε. The theorem is thus
a restatement of [27, Thm. 0.12]. �
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5.3.8. Proposition. Let χ1⊗χ2 ∈ T̂(E)+ be such that χ1χ
−1
2 is of integral Hodge-

Tate weight w ≥ 0. If χ1 ⊗ χ2ε
−1 is neither critical nor ultracritical, then the

inclusion
(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
lalg

⊂
(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
an

induces an isomorphism
on universal unitary completions.

Proof. This is proved in [34, Prop. 2.5], and independently in [8]. (Although the
case χ1χ

−1
2 z−w =| |−2 is not explicitly considered in [34], the proof as written

applies to it perfectly well.) �

5.3.9. Remark. If χ1χ
−1
2 = zw for some w > 0 then the surjection(

IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
lalg

→
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
lalg

/χ1 ⊗
(
SymwE2

)∨
induces an isomorphism on universal unitary completions, since Corollary 5.1.3
implies that the universal unitary completion of | |−w/2 ⊗

(
SymwE2

)∨ vanishes.

5.3.10. Definition. If χ1 ⊗χ2 ∈ T̂(E)+ is such that χ1 ⊗χ2ε
−1 is neither unitary,

critical, nor ultracritical, then we write B(χ1⊗χ2) to denote the universal unitary
completion of

(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
an

.

5.3.11. Remark. In the context of the preceding definition, if we write r :=
ordp(χ1(p)), then the completion B(χ1⊗χ2) may be described explicitly as a suit-
able quotient of a certain space of functions on Qp of class Cr. (See [13, §3.3] and
[8, Thm. 4.3.1]; as we remarked in the proof of Theorem 5.3.7, the second cited
result extends to apply to any of the completions B(χ1⊗χ2) under consideration.)

5.3.12. Remark. If, in the context of the preceding definition, the character χ1⊗χ2

satisfies condition (2) of Theorem 5.3.7, then that theorem shows that B(χ1 ⊗ χ2)
is topologically irreducible and admissible unitary. Suppose on the other hand
that χ1χ

−1
2 is of integral Hodge-Tate weight w ≥ 0. If χ1χ

−1
2 z−w is furthermore

6= 1, | |−1, | |−2, then Proposition 5.3.8 shows that B(χ1⊗χ2) may be identified with
the unitary universal completion of

(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
lalg

, which is a unitary twist
of a representation to which Theorem 5.1.6 applies. Thus that Theorem shows that
in this case B(χ1⊗χ2) is again topologically irreducible and admissible unitary. (If
Conjecture 5.1.5 holds in full generality, then we see that the same is true without
the requirement that χ1χ

−1
2 z−w 6=| |−1.) If χ1χ

−1
2 z−w =| |−2, then Remark 5.1.15

shows that B(χ1⊗χ2) is a unitary twist of B(2−w,∞), and so by Theorem 5.1.13
is also topologically irreducible and admissible unitary. Finally, if χ1χ

−1
2 z−w = 1

(in which case necessarily w > 0, since χ1⊗χ2 is non-unitary by assumption) then
Theorem 5.1.8, Proposition 5.3.8 and Remark 5.3.9 together show that B(χ1⊗χ2)
is neither topologically irreducible nor admissible unitary.

5.3.13. Remark. For characters χ1 ⊗ χ2 ∈ T̂(E)+ such that χ1 ⊗ χ2ε
−1 is neither

unitary, critical, nor ultracritical, we have seen that the representation B(χ1 ⊗ χ2)
is (or should be) admissible unitary and topologically irreducible precisely when
χ1⊗χ2ε

−1 corresponds to a unique trianguline two dimensional GQp
-representation

with respect to the classification scheme of Theorem 4.5.4. This can be viewed as
evidence in favour of a “p-adic local Langlands philosophy”.

5.3.14. Corollary. Let B be a topologically irreducible admissible unitary Banach
space representation of GL2(Qp) such that Expχ1| |⊗χ2| |−1

(Ban) 6= ∅ for some
character χ1 ⊗ χ2 ∈ T̂(E) satisfying the following conditions:
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(1) χ1 ⊗ χ2ε
−1 is neither unitary, critical, nor ultracritical;

(2) χ1χ
−1
2 z−w 6= 1, | |−1 for any integer w ≥ 0.

Then B is isomorphic to B(χ1 ⊗ χ2).

Proof. Note that by Lemma 5.2.4 we have χ1 ⊗ χ2 ∈ T̂(E)+. The result now
follows by an argument similar to that used to prove Corollary 5.3.6, applying
Remark 5.3.12 in place of Proposition 5.3.4. �

If Conjecture 5.1.5 were known to be true in full generality then the preced-
ing corollary would hold with condition (2) replaced by the weaker condition that
χ1χ

−1
2 6= zw for any w > 0.

5.3.15. Remark. Suppose that B is a topologically irreducible admissible unitary
Banach space representation of GL2(Qp) that is not one dimensional (and hence
is infinite dimensional by Corollary 5.1.3) such that Expχ1| |⊗χ2| |−1

(Ban) 6= ∅ for
a character χ1 ⊗ χ2 ∈ T̂(E)+ for which χ1 ⊗ χ2ε

−1 is critical (resp. ultracritical).
Part (1) (resp. part (2)) of Proposition 5.2.6 then shows that there is also a unitary
character (resp. a character satisfying the conditions of Theorem 5.3.7) ψ1 ⊗ ψ2 ∈
T̂(E) for which Expψ1⊗ψ2(Ban) 6= ∅; the representation B is then classified by
Corollary 5.3.6 (resp. Corollary 5.3.14).

5.3.16. Lemma. If χ1⊗χ2ε
−1 ∈ T̂(E)+ is neither unitary, critical, nor ultracritical,

if χ1χ
−1
2 is of integral Hodge-Tate weight w ≥ 0, and if χ1χ

−1
2 z−w 6= 1, | |−2, then

there is an GL2(Qp)-equivariant topological isomorphism B(χ1⊗χ2) ∼= B(χ2 | |−1

zw, χ1 | | z−w).

Proof. Proposition 5.3.8 shows that B(χ1 ⊗ χ2) (resp. B(χ2 | |−1 zw, χ1 | | z−w))
may be identified with the universal unitary completion of

(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
lalg

(resp.
(
IndGL2(Qp)

P(Qp)
χ2 | |−1 zw ⊗ χ1 | | z−w

)
lalg

). The theory of intertwining
operators for smooth parabolic induction yields an isomorphism between these two
locally algebraic inductions. �

We close this section by considering one more universal unitary completion, this
time in a critical case.

5.3.17. Definition. Let B(2,∞) denote the universal unitary completion of the
smooth induction

(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm
.

(The notation will be explained in Subsection 6.5 below.)

5.3.18. Lemma. If B is a Banach space equipped with a unitary GL2(Qp)-action,
then any continuous GL2(Qp)-equivariant injection

(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm
→ B

extends uniquely to a continuous GL2(Qp)-invariant injection B(2,∞) → B.

Proof. By the very definition of the universal unitary completion, any continuous
GL2(Qp)-equivariant map φ :

(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm
→ B extends uniquely

to a continuous GL2(Qp)-invariant map φ̃ : B(2,∞) → B. Taking L = ∞ in the
discussion of Subsection 6.5 below shows that the representation B(2,∞) sits in a
non-split short exact sequence

0 → Ŝt → B(2,∞) → 1 → 0.
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Since Ŝt is topologically irreducible, by Lemma 5.3.3 (1), we see that if φ̃ is not
injective, then its restriction to Ŝt vanishes. But this implies that the restriction of
φ to the subrepresentation St of

(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm

vanishes, and so φ is
not injective either. �

6. The local correspondence for trianguline representations

In this section we will describe the explicit correspondence V 7→ B(V ) in the
trianguline case that was discussed in the introduction and in Remark 3.3.7. We
will see that in fact the conditions of Conjecture 3.3.1 serve to almost entirely de-
termine this correspondence. For example, among the irreducible trianguline V ,
the representations that are potentially semi-stable, but not potentially crystalline,
up to a twist, are the only ones for which B(V ) is not completly determined by
Conjecture 3.3.1. (This reflects the fact that these are the only irreducible trian-
guline representations whose classification requires Hodge-theoretic, in addition to
Weil-Deligne, invariants; cf. Remark 3.3.4 and Theorem 4.5.4.)

For reducible V the situation is more complicated. If V is the direct sum of two
characters then we can specify a corresponding GL2(Qp)-representation B(V ), and
this representation is completely determined by Conjeture 3.3.1. However if V is
indecomposable then we are not able to specify a candidate for B(V ) in general
(although we can predict what structure it should have), due mainly to our lack of
knowledge about the structure of extensions in the category of admissible unitary
representations.

Although the case of reducible V may seem somewhat marginal in relation to
the problem of constructing the local p-adic correspondence in general, we have
found it useful to study this case carefully for two reasons: firstly, the analysis in
this case illustrates how the conditions of Conjecture 3.3.1 can be used to narrow
down the possibilities for the associated GL2(Qp)-representation B(V ). Secondly,
the extensions that one expects to find on the level of Banach spaces in the case of
reducible indecomposable V provide a model for the extensions that are conjectured
to appear after passing to the subspace of locally analytic vectors in the case of
irreducible V (as we explain in Subsection 6.7 below).

I would like to close this introductory passage by mentioning that the discussion
of Subsection 6.5 below has been strongly influenced by remarks and suggestions
of Breuil.

6.1. V is irreducible. If V is an irreducible continuous two dimensional trian-
guline representation of GQp , and if R is a refinement of V , then R is neither
ordinary nor critical. Furthermore, we may and do choose R so that it is not ul-
tracritical. Write σ(R) = (η, ψ). According to condition (8) of Conjecture 3.3.1,
the admissible unitary GL2(Qp)-representation associated to B(V ) should satisfy
Expη| |⊗ψε| |−1

(B(V )an) 6= ∅. Suppose first that ηψ−1 6= | | zw for any w > 1.
Assuming that Conjecture 5.1.5 holds if necessary, we see that it follows from
Corollary 5.3.14 that B(V ) must be isomorphic to B(η ⊗ ψε). This motivates us
to make the following definitions.

6.1.1. Definition. If R is a non-ultracritical refinement of an irreducible trianguline
representation, then we define B(R) := B(η ⊗ ψε).
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Note that the definition of B(R) depends only on R up to equivalence (since this
is true of σ(R)).

6.1.2. Definition. Let V be an irreducible continuous two dimensional trianguline
GQp-representation admitting a non-ultracritical refinement R such that, writing
σ(R) = (η, ψ), we have ηψ−1 6= | |zw for any w > 1. Then we define B(V ) := B(R).

6.1.3. Remark. If V admits two inequivalent refinements R1 and R2 both sat-
isfying the conditions of the preceding definition, then V is necessarily a twist
of a Frobenius semi-simple potentially crystalline representation, and if we write
σ(R1) = (η, ψ), and let w > 0 denote the Hodge-Tate weight of ηψ−1, then
σ(R2) = (ψzw, ηz−w) (see Remark 4.3.3). Lemma 5.3.16 yields an isomorphism
B(R1) ∼= B(R2), and so we see that B(V ) is well-defined, independent of the choice
of R.

6.1.4. Remark. If in the context of Definition 6.1.2 the representation V is poten-
tially semi-stable, then ηψ−1 has Hodge-Tate weight w > 0 (since V is irreducible).
Thus Proposition 5.3.8 shows that B(V ) can also be defined as the universal unitary
completion of the locally algebraic representation π̃p(V ). (See Conjecture 3.3.1 (7)
for the definition of π̃p(V ).) Thus the definition of B(V ) given here coincides with
that given by Breuil in [12, §1.3] (perhaps up to a unitary twist, reflecting a differ-
ence between our choice of normalization of the correspondence and his).

6.1.5. Remark. If in the context of Definition 6.1.2 the representation V is not
potentially semi-stable up to a twist, so that ηψ−1 is not of positive integral Hodge-
Tate weight, then the definition of B(V ) given here coincides with that given by
Colmez [27] (again up to a possible unitary twist, reflecting a difference in normal-
izations). As was noted in the proof of Theorem 5.3.7, the proof of this follows the
same lines as the proof of [8, Thm. 4.3.1].

The only irreducible trianguline V that do not admit a refinement satisfying the
conditions of Definition 6.1.2 are those that are twists of semi-stable non-crystalline
representations. If V is of this form, then adjoining

√
p to E if necessary in the

case when w2 − w1 is even, and replacing V by a suitable twist (and taking into
account Conjecture 3.3.1 (3) and (4)) we may assume that V is semi-stable with
Hodge-Tate weights w < −1 and 0, and that the eigenvalues of ϕ on Dst(V ) are
equal to p(−1−w)/2 and p(1−w)/2. The representation V then admits a refinement
R that is unique up to equivalence, and σ(R) = (| |(1+w)/2, | |(−1+w)/2 zw).
Proposition 5.3.8 and Remark 5.3.9 show that B(R) may be identified with the
universal unitary completion of π̃p(V ) = St⊗ | |(1+w)/2 ⊗

(
Sym−1−wE2

)∨
. The

representation π̃p determines Dst(V ) as a (ϕ,N)-module, but it does not determine
the Hodge filtration on Dst(V ). This filtration depends on an additional param-
eter L ∈ E (the L-invariant of E – in defining which we follow the convention
of [26, 0.2]) that measures the relative position of the Hodge filtration on Dst(V )
and the filtration induced by the kernel of N . The semi-stable representation V
is thus classified by the locally algebraic representation π̃p(V ) together with the
invariant L.

6.1.6. Definition. If V is as in the preceding discussion, with L-invariant equal to
L, then we define B(V ) to be the corresponding quotient B(1− w,L) of B(R), as
defined in Definition 5.1.11.
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6.1.7. Remark. If V is a twist of a non-generic crystalline representation, then
adjoining

√
p to E if necessary in the case when w2 − w1 is even, and replacing V

by a suitable twist, we may assume that V is crystalline with Hodge-Tate weights
w < −1 and 0, and that the eigenvalues of ϕ on Dcrys(V ) are equal to p(−1−w)/2 and
p(1−w)/2. The representation V admits two equivalence classes of refinements. We
may choose representatives R and R′ so that σ(R) = (| |(1+w)/2, | |(−1+w)/2 zw) and
σ(R′) = (| |(−1+w)/2, | |(1+w)/2 zw). Definition 6.1.2 applies to V , and stipulates
that B(V ) := B(R′). On the other hand, Remark 5.1.15 shows that B(V ) is also
isomorphic to the quotient B(1− w,∞) of B(R). Thus we may treat all the cases
in which V admits an L-invariant in a uniform fashion.

6.1.8. Remark. If V is any irreducible trianguline representation admitting a re-
finement R with σ(R) = (η, ψ), and if we write r := ordp(η(p)), then B(V ) may
be described explicitly as a suitable quotient of a certain space of functions on Qp

of class Cr; cf. Remarks 5.1.12 and 5.3.11. The proofs of the results of Colmez
and of Berger and Breuil recalled in Remark 3.3.7, and in Theorems 5.1.6, 5.1.13,
and 5.3.7, rely heavily on this explicit description of B(V ).

6.1.9. Remark. Let V be a potentially semi-stable continuous two dimensional
GQp-representation for which πp(V ) is cuspidal. (Equivalently, V is potentially
crystalline, but becomes crystalline only over a non-abelian extension of V .) Al-
though V is not trianguline, this case is quite similar to the case in which πp(V )
is special. As in that case, V is not uniquely determined by the associated lo-
cally algebraic representation π̃p(V ). Indeed, while this representation determines
the (ϕ,GQp)-module underlying Dpcrys(V ), as well as the Hodge numbers of the
filtration on Dpcrys(V ), there is a P1(E) worth of possible choices for the Hodge
filtration itself on DdR(V ). This provides the motivation for Conjecture 5.1.19:
one hopes to find a series of topologically irreducible admissible unitary quotients
of the universal unitary completion of π̃p(V ) parameterized by the same set P1(E),
and then to define B(V ) to be that quotient of π̂ indexed by the point of P1(E)
corresponding to the Hodge filtration on DdR(V ).

6.2. V is the direct sum of two characters. Suppose that V = η
⊕
ψ for

two continuous E-valued characters η and ψ of GQp . If η 6= ψ, then V admits
two inequivalent ordinary refinements R1 and R2 such that σ(R1) = (η, ψ) and
σ(R2) = (ψ, η), and so Conjecture 3.3.1 (8) stipulates that we have an embedding

(26) η | | ⊗ ψε | |−1
⊕

ψ | | ⊗ ηε | |−1→ JP(Qp)(B(V )an).

If η = ψ, then Lemma 4.1.5 shows that we have Refη⊗η(V ) ∼= P1(E). Thus Con-
jecture 3.3.1 (8) stipulates that

Expη| |⊗ηε| |−1
(B(V )an) ∼= P1(E).

Thus we must again have an embedding of the form (26). Theorem 5.2.5 and
Proposition 5.3.4 (1) show that the embedding (26) must be induced by a continuous
GL2(Qp)-equivariant morphism

(27)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
cont

⊕(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
cont

→ B(V ).

6.2.1. Lemma. Suppose that ηψ−1 6= ε±1. If B(V ) satisfies conditions (5) and (8)
of Conjecture 3.3.1, then (27) is necessarily an isomorphism.
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Proof. The reduction modulo $ of V is equal to η
⊕
ψ (the sum of the reductions

modulo $ of the characters η and ψ). Under the modulo $ local Langlands corre-
spondence, this representation is matched with the semi-simplification of the direct
sum (

IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
sm

⊕(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
sm
.

This direct sum is also the reduction modulo $ of the source of (27). Thus Conjec-
ture 3.3.1 (5) implies that the reductions modulo $ of the source and target of (27)
have isomorphic semi-simplifications.

Since ηψ−1 6= ε±1 the two direct summands in the source of (27) are irreducible,
and so (27) must be an embedding. The observation of the preceding paragraph
implies that it is in fact an isomorphism. �

We now consider the case when ηψ−1 = ε±1. Interchanging η and ψ if necessary,
we may assume that in fact ηψ−1 = ε.

6.2.2. Lemma. If ηψ−1 = ε, and if B(V ) satisfies conditions (3), (5), (7), and (8)
of Conjecture 3.3.1, then there is an isomorphism

η ◦ det⊗B(2,∞)
⊕(

IndGL2(Qp)

P(Qp)
ηε−1 ⊗ ηε

)
cont

∼−→ B(V ).

Proof. Twisting V by η−1 (and taking into account Conjecture 3.3.1 (3)), we see
that we may in fact assume that η = 1, so that V = 1

⊕
ε−1. Conjecture 3.3.1 (7)

then stipulates that we should have an isomorphism

(28)
(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm

∼−→ B(V )lalg.

As a consequence we find that St is a subrepresentation of B(V ), and so (27) cannot
be an isomorphism. Also, by Lemma 5.3.18, the isomorphism (28) induces a closed
embedding

(29) B(2,∞) → B(V ).

Since (27) is not an isomorphism, Proposition 5.3.4 (3) and (4) show that (27)
factors through an embedding

(30) Ŝt
⊕(

IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

→ B(V ).

Considering reductions modulo $ as in the proof of the preceding lemma, we see
that the cokernel of this embedding must be one dimensional. Thus the copy of Ŝt
appearing in B(V ) by virtue of the embedding (29) must coincide with the copy
of Ŝt appearing in B(V ) by virtue of the embedding (30), and we see that B(V ) is
isomorphic to the direct sum of the sources of these two embeddings, amalgamated
along their common subrepresentation Ŝt. The lemma follows. �

In light of the preceding results, we make the following definition.

6.2.3. Definition. (1) If V = η
⊕
ψ and ηψ−1 6= ε±1 then we define

B(V ) :=
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
cont

⊕(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
cont

.

(2) If V = η
⊕
ψ and ηψ−1 = ε then we define

B(V ) := η ◦ det⊗B(2,∞)
⊕(

IndGL2(Qp)

P(Qp)
ηε−1 ⊗ ηε

)
cont

.

Note that this definition is an obvious extension of the one given in [14] in the
case when η and ψ are Hodge-Tate.
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6.3. V is reducible and indecomposable – first case. Write V as a non-split
extension

(31) 0 → η → V → ψ → 0,

and suppose that ηψ−1 6= ε±1. Combining Definition 6.2.3 (1) with condition (6)
of Conjecture 3.3.1 we see the topological Jordan-Hölder factors B(V ) should be(
IndGL2(Qp)

P(Qp)
η⊗ψε

)
cont

and
(
IndGL2(Qp)

P(Qp)
ψ⊗ηε

)
cont

. (Note that both of these repre-
sentations are topologically irreducible, by Proposition 5.3.4 (3).) Since V admits
an ordinary refinement R such that σ(R) = (η, ψ), condition (8) of Conjecture 3.3.1
requires that Expη| |⊗ψε| |−1

(B(V )an) 6= ∅, and thus by Theorem 5.2.5 and Propo-
sition 5.3.4 (1) there should be an embedding(

IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
cont

→ B(V ).

Altogether we see that if B(V ) is to satisfy the conditions of Conjecture 3.3.1 then
it must sit in a non-split short exact sequence

(32) 0 →
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
cont

→ B(V ) →
(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
cont

→ 0.

(This sequence must be non-split, by condition (1) of Conjecture 3.3.1, since by
assumption V is not the direct sum of η and ψ.)

The preceding considerations, together with Proposition 4.5.5, motivate the fol-
lowing conjecture.

6.3.1. Conjecture. Let η and ψ be a pair of unitary characters of Q×
p .

(1) If ηψ−1 6= 1, ε±1 then the space of extensions

Ext1(
(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
cont

,
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
cont

),

computed in the category of admissible unitary GL2(Qp)-representations
over E, is one dimensional.

(2) For any unitary character η of Q×
p , the spaces of extensions

Ext1(
(
IndGL2(Qp)

P(Qp)
η ⊗ ηε

)
cont

,
(
IndGL2(Qp)

P(Qp)
η ⊗ ηε

)
cont

),

computed in the category of admissible unitary GL2(Qp)-representations
over E that have central character η2ε, is two dimensional.

6.3.2. Remark. In case (1) of the preceding conjecture, any element of the Ext1

under consideration will automatically have central character ηψε, since the rep-
resentations

(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
cont

and
(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
cont

are topologically
irreducible and non-isomorphic. Thus there is not need to explicitly impose the
condition that the extensions under consideration admit a central character.

If the preceding conjecture is correct, then for a non-split extension (31) with
η and ψ satisfying the condition of Conjecture 6.3.1 (1) we would define B(V ) to
be any non-zero element of the corresponding Ext1 (any two such elements being
topologically isomorphic as GL2(Qp)-representations, by the conjecture). If on the
other hand η = ψ, then set of isomorphism classes of GQp-representations that sit
in a non-split extension (31) is parameterized by the points of P1(E), and we expect
to be able to define the correspondence V 7→ B(V ) so as to match these various iso-
morphism classes with the corresponding P1(E)-worth of topological isomorphism
classes of non-zero elements of the Ext1 considered in Conjecture 6.3.1 (2).
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If V is potentially crystalline and generic, up to a twist, and if η 6= ψ (which
puts us in case (1) of Conjecture 6.3.1), then Breuil has constructed an extension of
the desired type by taking the universal unitary completion of

(
IndGL2(Qp)

P(Qp)
ψzw ⊗

ηεz−w
)
an

(where w > 0 is the Hodge-Tate weight of ηψ−1) [6, 14]. (Note that the
character ψzw⊗ηz−w is critical.) Anticipating that Conjecture 6.3.1 (1) is correct,
we follow these references in making the following definition.

6.3.3. Definition. If 0 → η → V → ψ → 0 is a non-split extension that is po-
tentially crystalline and generic, up to a twist, and if furthermore η 6= ψ, then we
define B(V ) to be the universal unitary completion of

(
IndGL2(Qp)

P(Qp)
ψzw⊗ηεz−w

)
an
.

6.4. V is reducible and indecomposable – second case. Suppose that V is a
non-split extension of the form 0 → ψε−1 → V → ψ → 0. Twisting V by ψ−1 (and
taking into account Conjecture 3.3.1 (3)), we may assume that V is in fact of the
form

(33) 0 → ε−1 → V → 1 → 0.

The representation V is then unique up to isomorphism, and is Hodge-Tate but not
potentially semi-stable. Definition 6.2.3 (2) and Conjecture 3.3.1 (6) show that the
topological Jordan-Hölder factors of B(V ) should be Ŝt, 1, and

(
IndGL2(Qp)

P(Qp)
ε−1 ⊗

ε
)
cont

. By Conjecture 3.3.1 (7) we should have B(V )lalg = 0, and thus neither 1 nor
Ŝt can be subobjects of B(V ). Consequently there must be an inclusion

(34)
(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

→ B(V ).

By Conjecture 3.3.1 (8), together with Proposition 4.4.4 (2), we expect that

JP(Qp)

(
B(V )an

)
=| | ε−1 ⊗ ε | |−1

⊕
1⊗ 1.

If we let B denote the cokernel of (34), then the topological Jordan-Hölder factors
of B must be Ŝt and 1, and (taking into account Proposition 5.2.1 (4) and the fact
that JP(Qp) is left exact) there is an injection

1⊗ 1 → JP(Qp)(Ban).

These facts and Proposition 5.2.6 (or better, its proof) together imply that B
contains a copy either of 1 or else of

(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm

. In the latter
case we deduce from Lemma 5.3.18 and our knowledge of the topological Jordan-
Hölder factors of B that B is isomorphic to B(2,∞). One can show that there are
no non-trivial extensions of 1 by

(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

, and so since 1 is not a
subrepresentation of B(V ), we conclude that 1 cannot be a subrepresentation of
B either. Thus indeed we must have B ∼= B(2,∞), and so B(V ) must sit in a
non-split short exact sequence

(35) 0 →
(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

→ B(V ) → B(2,∞) → 0.

This suggests the following conjecture.

6.4.1. Conjecture. The space of extensions

Ext1(B(2,∞),
(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

),
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computed in the category of admissible unitary GL2(Qp)-representations over E, is
one dimensional.

6.4.2. Remark. As there are no non-zero continuous GL2(Qp)-equivariant homo-
morphisms from B(2,∞) to

(
IndGL2(Qp)

P(Qp)
ε−1⊗ε

)
cont

, any element of the Ext1 under
consideration necessarily has trivial central character.

If this conjecture were true, we would then define B(V ) to be the extension
whose existence it predicts.

6.5. V is reducible and indecomposable – third case. Suppose now that V
is a non-split extension of the form 0 → η → V → ηε−1 → 0. Twisting V by η−1

(and recalling condition (3) of Conjecture 3.3.1), we see that it suffices to consider
non-split extensions of the form

(36) 0 → 1 → V → ε−1 → 0.

Such an extension is either semi-stable (but not crystalline), and classified by the
value of its L-invariant, or else is non-generic crystalline (and uniquely determined
up to isomorphism) – the case L = ∞. As in the preceding case, Definition 6.2.3 (2)
together with condition (6) of Conjecture 3.3.1 shows that the topological Jordan-
Hölder factors of B(V ) should be Ŝt, 1, and

(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

.

In the case when L = ∞, so that V is non-generic crystalline, Conjecture 3.3.1 (7)
together with Lemma 5.3.18 shows that there must be an injection B(2,∞) →
B(V ), and thus that B(V ) must be a non-split extension

(37) 0 → B(2,∞) → B(V ) →
(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

.

(Non-split because of Conjecture 3.3.1 (1) and the fact that V is not the direct sum
of 1 and ε−1.)

6.5.1. Lemma. The universal unitary completion of
(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
an

is
a non-split extension of the form (37).

Proof. The natural injection(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
sm
→
(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
an

induces an injection of B(2,∞) into this completion We leave it to the reader to
identify the cokernel as

(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

. �

6.5.2. Conjecture. The space of extensions

Ext1(
(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

, B(2,∞)),

computed in the category of admissible unitary GL2(Qp)-representations over E, is
one dimensional.

6.5.3. Remark. Since there no non-zero continuous GL2(Qp)-equivariant homo-
morphisms from

(
IndGL2(Qp)

P(Qp)
ε−1⊗ε

)
cont

to B(2,∞), any element of the Ext1 under
consideration necessarily has trivial central character.

Presuming that the conjecture is correct, we follow [14, Rem. 2.3.1] in making
the following definition.
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6.5.4. Definition. If V is the non-split crystalline extension of the form (36) then
we define B(V ) to be the universal unitary completion of

(
IndGL2(Qp)

P(Qp)
| |−1 ⊗ | |

)
an

.

Now suppose that V is a semi-stable, non-crystalline, extension of the form (36).
In this case Conjecture 3.3.1 (7) requires us to have an isomorphismB(V )lalg

∼−→ St.
Thus we have must have an injection Ŝt → B(V ), whose cokernel has 1 and(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

as topological Jordan-Hölder factors. For such V a candi-
date for B(V ) has not yet been specified in the literature. However, we will state
a conjecture regarding its structure.

We begin by following [12], and constructing a family of non-split extensions
of the trivial character by Ŝt depending on a parameter L ∈ P1(E). Recall the
representation σ(L) of P(Qp) constructed in 5.1.7 above. This is evidently a unitary
representation of P(Qp) which extends the trivial character of P(Qp) by itself, and so
the continuous induction

(
IndGL2(Qp)

P(Qp)
σ(L)

)
cont

is an admissible unitary GL2(Qp)-
representation, which sits in a short exact sequence

(38) 0 −→
(
IndGL2(Qp)

P(Qp)
1⊗ 1

)
cont

−→
(
IndGL2(Qp)

P(Qp)
σ(L)

)
cont

pr−→
(
IndGL2(Qp)

P(Qp)
1⊗ 1

)
cont

−→ 0.

Recall that the trivial character 1 of GL2(Qp) is a subrepresentation of the continu-
ous induction

(
IndGL2(Qp)

P(Qp)
1⊗ 1

)
cont

. Following [12], we define B(2,L) = pr−1(1)/1
(i.e the quotient by the copy of 1 sitting in the first term of (38) of the preimage
under the projection pr of the copy of 1 sitting in the third term); then B(2,L) is
an admissible unitary representation of GL2(Qp) that sits in an exact sequence

0 → Ŝt → B(2,L) → 1 → 0.

(The notation follows that used in [12].) Since σ(L) is a non-split extension of
the trivial character by itself, one easily sees that the exact sequence containing
B(2,L) is also non-split. In the case L = ∞, the reader can check that B(2,∞)
is topologically isomorphic to the representation defined by Definition 5.3.17 above
(which explains our choice of notation in that definition).

We also remark that if L 6= ∞, then the evident inclusion St → B(2,L)lalg is an
isomorphism (since the function logp, which intervenes in the definition of σ(L), is
not locally algebraic).

For any extension of the form (36) we then expect the representation B(V ) to
sit in a non-split short exact sequence of admissible unitary representations

(39) 0 → B(2,L) → B(V ) →
(
IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε

)
cont

−→ 0,

where L is the L-invariant of V . Nothing is known about the existence or classi-
fication of such extensions except in the case of L = ∞, where such an extension
is constructed in Lemma 6.5.1 above. Nevertheless, we might hope that the ob-
vious generalization of Conjecture 6.5.2, with ∞ replaced by an arbitrary element
L ∈ P1(E), holds.

We close this section with the following Lemma, which bears on the question of
whether the representation B(V ), if it were to be defined as an extension of the
form (39), would satisfy conditions (7) and (8) of Conjecture 3.3.1.
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6.5.5. Lemma. If L ∈ E then the evident inclusion St → B(2,L) induces isomor-
phisms St ∼−→ B(2,L)lalg and | | ⊗ | |−1= JP(Qp)(St) ∼−→ JP(Qp)(B(2,L)an).

Proof. Both assertions are easily checked by the reader, taking into account the
truth of the analogous assertions for Ŝt in place of B(2,L) as well as the fact that
the function logp (which intervenes in the definition of σ(L), and thus of B(2,L))
is not locally algebraic. �

6.6. Compatibility with Conjecture 3.3.1. If V is a continuous two dimen-
sional trianguline representation of GQp over E, then the discussion of the preced-
ing subsections yields a precise definition of B(V ) provided V satisfies one of the
following (mutually exclusive) conditions:

(1) V is irreducible (Definitions 6.1.2 and 6.1.6);
(2) V is a direct sum of two characters (Definition 6.2.3);
(3) V is reducible, indecomposable, and is a twist of a Frobenius semi-simple

potentially crystalline representation (Definitions 6.3.3 and 6.5.4).
In the remainder of this subsection we discuss the extent to which this explicitly

defined correspondence in the trianguline case satisfies the conditions of Conjec-
ture 3.3.1. We first note that conditions (2) through (8) of that conjecture refer
only to properties of B(V ) for some particular V , while condition (1) involves com-
paring the representations B(V ) for all V . Thus in any verification of condition (1),
we will have limit the scope of that statement to those V for which B(V ) has actu-
ally been defined. We also note that conditions (2), (3), and (4) are built into the
construction of the correspondence in the trianguline case, and so there is no need
to discuss them further.

We consider first the reducible case. To avoid irritating circumlocutions, we will
assume that the correspondence V 7→ B(V ) has actually been constructed for all
reducible V (i.e. that the various extensions whose existence has been conjectured
in Subsections 6.2 through 6.5 have been actually shown to exist). In those cases
when B(V ) has actually been constructed (i.e. if V is a direct sum of two characters,
or is Frobenius semi-simple potentially crystalline up to a twist), our remarks will
apply unconditionally; in the remaining case, they will apply as soon as B(V ) has
been constructed, provided that it is an extension of the form conjectured above.

It is clear from the constructions that if V and W are two reducible continu-
ous two dimensional GQp-representations then B(V ) is topologically isomorphic to
B(W ) as a GL2(Qp)-representation if and only if V and W are isomorphic GQp-
representations. (In the case when V and W both admit an L-invariant, use the
fact that the representations B(2,L) are non-isomorphic for distinct values of L,
since this is true of the representations σ(L) that are used in their construction.)
Condition (5) is satisfied in this case (essentially by the definition of B(V ) and of
the mod $ correspondence), as are the remaining conditions (6) (by construction),
(7) (by a direct computation of locally algebraic vectors), and (8) (by a direct
computation of Jacquet modules).

We now turn to the case of irreducible V .

6.6.1. Theorem. (1) If V is an irreducible trianguline two dimensional con-
tinuous GQp-representation, and if V is not a twist of a potentially crys-
talline Frobenius non-semi-simple representation, then B(V ) is infinite di-
mensional and topologically irreducible, and satisfies Schur’s lemma: any
GL2(Qp)-equivariant continuous endomorphism of B(V ) is scalar.



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 53

(2) If V and W are trianguline two dimensional continuous representations of
GQp , each satisfying the condition of part (1), then B(V ) is topologically
isomorphic to B(W ) as a GL2(Qp)-representation if and only if V and W
are isomorphic as GQp-representations.

Proof. Given the definition of B(V ) in the various cases, it follows from Theo-
rems 5.1.6, 5.1.13, and 5.3.7 that B(V ) is non-zero and topologically irreducible.
Note that since B(V ) is a non-zero quotient of the universal unitary completion of
an irreducible infinite dimensional locally analytic representation, it must in fact
be infinite dimensional. The claim regarding Schur’s lemma is [8, Prop. 3.4.5].
(Actually, this reference only treats the case of Frobenius semi-simple potentially
crystalline V , but the argument applies equally well to the situations considered in
[26, 27].) This proves part (1), while part (2) is a restatement of [27, Thm. 0.11]. �

Part (1) of the preceding result verifies condition (6) of Conjecture 3.3.1 for
those representations to which it applies. Part (2) shows that the correspondence
V 7→ B(V ) distinguishes non-isomorphic irreducible trianguline representations
that satisfy the condition of part (1).

6.6.2. Remark. It is expected that an appropriate variation of the methods used in
the proof of the preceding result should apply to establish the remaining unproved
cases of Conjecture 5.1.5. If this expectation were to be realized, then part (1) of
the preceding theorem would apply without exception to all irreducible trianguline
two dimensional representations. These same methods are similarly expected to
allow one to extend part (2) to cover the outstanding cases. (This is implicit in the
statement of [27, Thm. 0.11]; cf. [27, Rem. 0.13].)

We also note the following lemma. Note that it does not require that V satisfy
the conditions of part (1) of the preceding theorem.

6.6.3. Lemma. Let V be an irreducible trianguline representation, let R be a non-
ultracritical refinement of V , and write σ(R) = (η, ψ). Let B be an E-Banach space
equipped with an admissible unitary GL2(Qp)-action. If B(V ) → B is a non-zero

continuous GL2(Qp)-equivariant morphism, then J
η| |⊗ψε| |−1

P(Qp) (Ban) 6= 0.

Proof. Let w denote the Hodge-Sen-Tate weight of ηψ−1ε−1. We begin by defining
a locally analytic GL2(Qp)-representation U attached to the pair (η, ψ), namely

U =


(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an

if w 6∈ Z≥0;(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
lalg

if w ∈ Z≥0 and ηψ−1ε−1 6= zw;

η ◦ det⊗St⊗
(
SymwE2

)∨if w ∈ Z>0 and ηψ−1ε−1 = zw.

(Since V is irreducible, the character η⊗ψε−1 is not unitary, and so falls into exactly
one of the three cases.) In each case we see from the definition of B(V ) that there is
a continuous injection U → B(V ) with dense image, while Proposition 5.2.1 shows
that there is an inclusion

(40) η | | ⊗ψε | |−1⊂ JP(Qp)(U).

Except in the case when w ∈ Z≥0 and ηψ−1ε−1 =| |−2 zw, the representation U
is furthermore topologically irreducible. Thus the non-zero map B(V ) → B induces
an injection U → Ban, and hence passing to Jacquet modules yields an injection
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JP(Qp)(U) → JP(Qp)(Ban). Composing this injection with the inclusion (40) gives
the lemma.

Suppose finally that we are in the exceptional case where ηψ−1ε−1 =| |−2 zw,
and that the map U → Ban is not an injection. It then induces an injection of the
finite dimensional quotient (η | |) ◦ det⊗

(
SymwE2

)∨ of U into Ban. However the
Jacquet module of this quotient is precisely η | | ⊗ψε | |−1 . Thus the lemma
follows in this case also. �

In light of Remark 6.6.2, for the remainder of this subsection we will write as if
Theorem 6.6.1 (or equivalently Conjecture 5.1.5) held true in full generality. The
cautious reader may add the necessary caveats.

6.6.4. Lemma. Let V be an irreducible trianguline representation and let χ1⊗χ2 ∈
T̂(E)+ satisfy one of the following conditions:

(1) χ1 | |−1 ⊗χ2 | | ε−1 is unitary;
(2) χ1 | |−1 ⊗χ2 | | ε−1 is critical.

Then Expχ1⊗χ2(B(V )an) = ∅.

Proof. Let R be a non-ultracritical refinement of V , and write σ(R) = (η, ψ). Since
V is irreducible, η⊗ψ is neither unitary, critical, nor ultracritical (by Lemma 4.5.3).
By construction, together with Theorem 6.6.1, the representation B(V ) is a non-
zero quotient of the universal unitary completion of

(
IndGL2(Qp)

P(Qp)
η⊗ ψε

)
an

. Taking
into account the isomorphism (21) established in the course of the proof of Theo-
rem 5.2.5, we see that Jη| |⊗ψε| |−1

P(Qp) (B(V )an) 6= 0.
Theorem 6.6.1 (1) shows that B(V ) is topologically irreducible and infinite di-

mensional, and thus it cannot contain any one dimensional subrepresentations.
Proposition 5.2.6 thus implies that if Expχ1⊗χ2(B(V )an) 6= ∅ for a character χ1⊗χ2

satisfying condition (2), then there is also a character χ′1⊗χ′2 satisfying condition (1)
for which Expχ

′
1⊗χ

′
2(B(V )an) 6= ∅. Thus we may assume that χ1 ⊗ χ2 satisfies con-

dition (1). Corollary 5.3.6 then implies that B(V ) may be identified with one of the
representations appearing in the statement of that corollary. But one checks (again
using Proposition 5.2.1) that none of these contains a copy of η | | ⊗ψε | |−1 in its
Jacquet module (since η ⊗ ψ is neither unitary nor critical). This contradicts the
conclusion of the first paragraph, and the lemma follows. �

The preceding lemma, when combined with the computation of the Jacquet mod-
ules of the representations B(V ) attached to reducible V , implies that if V is re-
ducible and W is irreducible trianguline, then B(V ) and B(W ) are not isomorphic.
Combined with Theorem 6.6.1 (2), it shows that the correspondence V 7→ B(V ) for
trianguline representations satisfies Conjecture 3.3.1 (1), if one restricts the range
of that condition to trianguline representations.

It remains to discuss conditions (5), (7), and (8) in the case of irreducible trian-
guline V . Condition (5) has been verified by Berger [5] (improving on earlier results
of various authors [7, 9, 10, 15]). We now turn to condition (7). Write B(V )exp.lalg

to denote the expected subspace of locally algebraic vectors in B(V ), according
to Conjecture 3.3.1; that is B(V )exp.lalg = 0 if V is not potentially semi-stable
with distinct Hodge-Tate weights, and B(V )exp.lalg = π̃p(V ) if V is potentially
semi-stable with distinct Hodge-Tate weights. It is clear from the construction of
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B(V ), and the fact that it is non-zero (by Theorem 6.6.1), that there is an injec-
tion B(V )exp.lalg ⊂ B(V )lalg. However it doesn’t seem to be known whether or
not this inclusion is an equality. For example, if U (resp. W ) is a special or cus-
pidal irreducible admissible smooth representation (resp. an irreducible algebraic
representation) of GL2(Qp), and if the central characters of π := U ⊗W and of
B(V ) coincide, then it doesn’t seem possible to rule out the existence of an injec-
tion π → B(V )lalg whose image is not contained in B(V )exp.lalg, since the possible
admissible unitary completions of π have not been clasified. (If V is the restriction
to GQp of the global Galois representation attached to a finite slope overconvergent
eigenform, then we can rule out this possibility, and thus verify condition (7) for
such V – see Remark 7.10.6 below.)

Our knowledge regarding condition (8) is similarly partial. Namely, we have the
following result.

6.6.5. Proposition. Let V be a trianguline irreducible two dimensional continuous
GQp

-representation, and η ⊗ ψ ∈ T̂(E)+.
(1) If η ⊗ ψ is not ultracritical, and if ηψ−1 is not of the form εzn for some

n > 0, then

dim Refη⊗ψ(V ) = dim Expη| |⊗ψε| |−1
(B(V )an).

(2) If ηψ−1 = εzn for some n > 0, then

dim Refη⊗ψ(V ) ≤ dim Expη| |⊗ψε| |−1
(B(V )an),

with equality if B(W )exp.lalg = B(W )lalg for all twists W of V .
(3) If η ⊗ ψ is ultracritical, then

dim Refη⊗ψ(V ) ≥ dim Expη| |⊗ψε| |−1
(B(V )an).

Proof. If η⊗ψ is unitary or critical then Refη⊗ψ(V ) = ∅ by Lemmas 4.4.1 and 4.5.3,
while Expη| |⊗ψ| |ε−1

(V ) = ∅ by Lemma 6.6.4. Thus we may suppose that η ⊗ ψ
is neither unitary nor critical.

We begin by establishing the inequality

(41) dim Refη⊗ψ(V ) ≤ dim Expη| |⊗ψε| |−1
(B(V )an)

for all non-ultracritical characters η⊗ψ (assumed to be neither unitary nor critical).
First note that if Refη⊗ψ(V ) is empty, then this inequality is trivially satisfied. Thus
we may as well suppose that there exists a a non-ultracritical refinement R of V
such that σ(R) = η ⊗ ψ. Lemma 6.6.3, applied to the identity map from B(V ) to
itself, then shows that the right-hand side of (41) is non-negative. Thus (41) holds
in all cases.

Now suppose that η ⊗ ψ satisfies the conditions of (1). It then follows from
Remark 5.3.12 that B(η⊗ψε) is topologically irreducible and admissible unitary. By
Theorem 4.5.4 there exits a unique (up to isomorphism) irreducible trianguline two
dimensional representation W of GQp such that Refη⊗ψ(W ) 6= ∅; then by definition
B(W ) = B(η⊗ψε). If V and W are not isomorphic then by construction of W we
have Refη⊗ψ(V ) = ∅. Also Theorem 6.6.1 (2) shows that B(V ) and B(W ) are not
isomorphic, and so by Corollary 5.3.14 we see that Expη| |⊗ψε| |−1

(B(V )an) = ∅.
Thus the equality of (1) holds in this case. Suppose on the other hand that V and
W are isomorphic. Then we must show that dim Expη| |⊗ψε| |−1

(B(V )an) = 0.
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This follows from Theorem 5.2.5 and the fact that B(V ) satisfies Schur’s lemma.
This completes the proof of (1).

Suppose next that ηψ−1 = εzn for some n > 0. The inequality of (2) is then a
special case of (41). Write π := η ⊗ St ⊗ (SymnE2)∨. Twisting both V and (η, ψ)
appropriately, we may assume that η is of integral Hodge-Tate weight, and thus
that π is locally algebraic. We then have

dim Expη| |⊗ψε| |−1
(B(V )an) = dim HomGL2(Qp)(B(η ⊗ ψε), B(V ))− 1

= dim HomGL2(Qp)(π,B(V ))− 1 = dim HomGL2(Qp)(π,B(V )lalg)− 1,

the first and second equality following from Theorem 5.2.5 and the fact that B(η⊗
ψε) is the universal unitary completion of π, and the third from the fact that π
is a locally algebraic representation. If we assume that B(V )lalg has the structure
predicted by Conjecture 3.3.1 (7), then one easily checks that dim Refη⊗ψ(V ) =
dim HomGL2(Qp)(π,B(V )lalg)− 1. (Both sides of the equation equal 0.) This gives
equality in (2).

Finally, let us assume that η ⊗ ψ is ultracritical, and let w > 0 denote the
Hodge-Tate weight of ηψ−1. Proposition 5.2.6 yields an inequality

(42) dim Expη| |⊗ψε| |−1
(B(V )an) ≤ dim Expη| |z−w⊗ψε| |−1zw

(B(V )an).

On the other hand, we have an equality

dim Refη⊗ψ(V ) = dim Refηz
−w⊗ψzw

(V )

(as follows from Proposition 4.2.4 and the fact that both dimensions are necessarily
−1 if V is not Hodge-Tate up to twist, or is potentially semi-stable up to twist).
Thus (3) follows from (1), applied to ηz−w ⊗ ψzw. �

If V is the restriction to GQp
of the GQ-representation attached to a finite slope

overconvergent eigenform, then we will show in Remark 7.10.6 below that in fact
B(V ) does satisfy condition (8).

Note that our inability to prove an equality rather than an inequality in general
in part (2) of this result is again due to our lack of knowledge of the possible
admissible unitary completions of representations of the form Special ⊗ algebraic.
One way to bypass this difficulty, and to establish conditions (7) and (8) completely
for the representations B(V ) under consideration, would be to have an explicit
description of B(V )an (which would then allow us to calculate both JP(Qp)(B(V )an)
and B(V )lalg). In the following subsection we will present a conjectural description
of B(V )an of the desired type.

6.7. Conjectures on locally analytic vectors. In this subsection we describe
the expected structure of the locally analytic GL2(Qp)-representation B(V )an asso-
ciated to any trianguline continuous two dimensional representation V of GQp over
E. We consider various cases in turn.

6.7.1. V is irreducible, and does not admit an L-invariant. According to Defini-
tion 6.1.2, in this case B(V ) is defined to be B(R) for an appropriately chosen
refinement R of V . (Any refinement that is not ultracritical will do.) Thus, if we
write σ(R) = (η, ψ), then B(V ) is equal to the universal unitary completion of the
locally analytic induction

(43)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
,
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and so there is a natural morphism

(44)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
→ B(V )an,

whose image is dense in B(V ) by construction.

6.7.2. Lemma. The map (44) is injective (provided that B(V ) is non-zero).

Proof. If ηψ−1 is not of positive integral Hodge-Tate weight, then the locally ana-
lytic induction (43) is topologically irreducible, and the lemma immediately follows.
If instead ηψ−1 is of Hodge-Tate weight w, for some integer w > 0, then (43) con-
tains the locally algebraic induction

(45)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
lalg

as its unique non-zero proper submodule. Since V is irreducible, R is not an
ordinary refinement. Also, R is not ultracritical by assumption. It follows from
Lemma 4.5.3 that 1 >| η(p) |>| p |w, and thus by Proposition 5.3.8 we see that the
locally algebraic induction (45) is itself dense in B(V ). Thus the lemma follows in
this case also. �

As we have noted in the preceding subsection, it is known in almost all cases
that B(V ) is indeed non-zero.

6.7.3. Conjecture. The cokernel of (44) is isomorphic to
(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
an
,

and thus the space of locally analytic vectors B(V )an sits in a short exact sequence
of locally analytic GL2(Qp)-representations

(46) 0 →
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
→ B(V )an →

(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
an
→ 0.

6.7.4. Lemma. Any extension of the form (46) is necessarily non-split.

Proof. If the extension (46) were to split, then the locally analytic induction

(47)
(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
an

would admit an embedding into the unitary representation B(V ). On the other
hand, since the pair of characters (η, ψ) arises from a non-ordinary refinement
(non-ordinary because V is assumed irreducible), we see that | η(p) |< 1, and thus
that | ψ(p) |> 1. A consideration of Jacquet modules (more precisely, Lemma 5.2.4)
shows that (47) does not admits a GL2(Qp)-invariant norm. Thus the extension
under consideration must be non-split, as claimed. �

Since we are in the case when V does not admit an L-invariant, the trianguline
representation V is completely determined by R, and so we expect that the exten-
sion appearing in Conjecture 6.7.3 should not depend on any additional invariant.
This suggests that, up to isomorphism, there is a unique non-trivial extension of(
IndGL2(Qp)

P(Qp)
ψ⊗ηε

)
an

by
(
IndGL2(Qp)

P(Qp)
η⊗ψε

)
an

in the category of locally analytic rep-
resentations of GL2(Qp). (Reasoning analogous to that presented in Remark 6.3.2
shows that any such extension would necessarily admit a central character.)
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6.7.5. Justification for and elaboration on Conjecture 6.7.3. Some justification for
this conjecture arises by comparison with the reducible case; see [6, Cor 7.2.6]
and 6.7.10 below. In Proposition 7.6.5 below, we will show in the case when V
arises from a twist of a finite slope overconvergent eigenform that is non-classical,
but of integral weight (so that V is Hodge-Tate, but not potentially semi-stable, up
to twist, by [41, Thm. 6.6]), that the space B(V )an does contain as a subrepresen-
tation an extension of the locally algebraic representation

(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
lalg

by
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
. This provides some evidence for the conjecture.

Consider now the case when V is potentially crystalline and generic (so that it
satisfies our assumption of not admitting an L-invariant) and also Frobenius semi-
simple. In this case it is known thatB(V )an contains an extension of

(
IndGL2(Qp)

P(Qp)
ψ⊗

ηε
)
an

by
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an

, as we now recall.
It will be harmless to replace V by a twist (since this just replaces B(V ) by the

same twist), and so we may and do assume that V is in fact potentially crystalline
with Hodge-Tate weights 0 and w, for some integer w < 0. Since V is Frobenius
semi-simple, it admits a unique (up to equivalence) pair of inequivalent refinements
R1 and R2. If we write σ(R1) = (η, ψ), then σ(R2) = (ψz−w, ηzw). Considering (44)
with R taken to be R1 and R2 in turn, we obtain maps

(48)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
→ B(V )an

and

(49)
(
IndGL2(Qp)

P(Qp)
ψz−w ⊗ ηzwε

)
an
→ B(V )an,

which are injective by Lemma 6.7.2 (since B(V ) is non-zero by Theorem 6.6.1 (1)),
and which coincide (up to multiplication by a non-zero scalar) on the common
locally algebraic subrepresentation of their sources(

IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
lalg

∼−→
(
IndGL2(Qp)

P(Qp)
ψz−w ⊗ ηzwε

)
lalg

(the isomorphism being provided by the theory of intertwining operators for smooth
principal series). Thus we obtain an injection

(50)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an

⊕̃(
IndGL2(Qp)

P(Qp)
ψz−w ⊗ ηzwε

)
an
→ B(V )an,

where
⊕̃

indicates that we form the amalgamated sum of the two summands over
their common locally algebraic subrepresentation. Since the quotient(

IndGL2(Qp)

P(Qp)
ψz−w ⊗ ηzwε

)
an
/
(
IndGL2(Qp)

P(Qp)
ψz−w ⊗ ηzwε

)
lalg

is isomorphic to
(
IndGL2(Qp)

P(Qp)
ψ⊗ηε

)
an

, we see that the source of (50) is an extension

of
(
IndGL2(Qp)

P(Qp)
ψ⊗ηε

)
an

by
(
IndGL2(Qp)

P(Qp)
η⊗ψε

)
an
. Thus in this case Conjecture 6.7.3

is equivalent to conjecturing that (50) is an isomorphism. The author learnt this
case of Conjecture 6.7.3 from Breuil. (See [8, Conj. 5.4.4].)
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6.7.6. V is irreducible, and admits an L-invariant. As in 5.1.7, we replace V by a
twist, extending E if necessary, so that V has Hodge-Tate weights 0 and w, and so
that B(V ) is equal to the universal unitary completion of Σ(1− w,L).

It follows directly from Lemma 5.1.9 that the tautological map

(51) Σ(1− w,L) → B(V )an
is an injection. We then make the following conjecture, which is the natural ana-
logue of Conjecture 6.7.3 in the present context.

6.7.7. Conjecture. The cokernel of (51) is isomorphic to
(
IndGL2(Qp)

P(Qp)
| |(−1+w)/2

zw⊗ | |(3+w)/2 z
)
an
, and thus the space of locally analytic vectors B(V )an sits in a

short exact sequence of locally analytic GL2(Qp)-representations
(52)
0 → Σ(1− w,L) → B(V )an →

(
IndGL2(Qp)

P(Qp)
| |(−1+w)/2 zw⊗ | |(3+w)/2 z

)
an
→ 0.

6.7.8. Lemma. Any extension of the form (46) is necessarily non-split.

Proof. This follows by the same argument as used in the proof of Lemma 6.7.4. �

6.7.9. V is reducible. The description of B(V )an in this case is straightforward, if
we assume that B(V ) has the structure conjectured in Subsections 6.2 through 6.5,
using the following two facts: the space of locally analytic vectors in a continuous
induction

(
IndGL2(Qp)

P(Qp)
χ1⊗χ2

)
cont

coincides with the corresponding locally analytic

induction
(
IndGL2(Qp)

P(Qp)
χ1 ⊗ χ2

)
an

; passing to locally analytic vectors is an exact
functor [51, Thm. 7.1].

If V = η
⊕
ψ and ηψ−1 6= ε±1, so that B(V ) is as defined in Definition 6.2.3 (1),

then we will have

B(V )an =
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an

⊕(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
an
.

If V = η
⊕
ηε−1, so that B(V ) is as defined in Definition 6.2.3 (2), then we will

have
B(V )an = η ◦ det⊗B(2,∞)an

⊕(
IndGL2(Qp)

P(Qp)
ηε−1 ⊗ ηε

)
an
.

As is discussed below, for any value of L ∈ P1(E), the space η ◦ det⊗B(2,L)an is
an extension of η ◦ det by η ◦ det⊗Ŝtan.

If V is a non-split extension 0 → η → V → ψ → 0, and ηψ−1 6= ε, so that
B(V ) is a non-split extension of the form (32), then B(V )an is an extension of the
form (46) which is itself necessarily non-split (since B(V ) may be recovered from
B(V )an by passing to universal unitary completions).

Finally, if V is an extension of the form 0 → η → V → ηε−1 → 0, so that B(V )
is a non-split extension

0 → η ◦ det⊗B(2,L) → B(V ) → η ◦ det⊗(IndGL2(Qp)

P(Qp)
ε−1 ⊗ ε)cont → 0,

where η ◦ det⊗B(2,L) sits in the non-split short exact sequence

0 → η ◦ det⊗Ŝt =
(
IndGL2(Qp)

P(Qp)
η ⊗ η

)
an
/η ◦ det → η ◦ det⊗B(2,L) → η ◦ det → 0

whose isomorphism class is classified by the L-invariant of V (in P1(E)), then
B(V )an and η ◦ det⊗B(2,L)an sit in extensions

0 → η ◦ detB(2,L)an → B(V )an → (IndGL2(Qp)

P(Qp)
ηε−1 ⊗ ηε)an → 0,
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and

0 → η ◦ det⊗Ŝtan =
(
IndGL2(Qp)

P(Qp)
η ⊗ η

)
an
/η ◦ det

→ η ◦ det⊗B(2,L)an → η ◦ det → 0,

both of which are non-split (for the same reason as in the previous case, namely that
B(V ) (resp. η◦det⊗B(2,L)) can be recovered fromB(V )an (resp. η◦det⊗B(2,L)an)
by passing to universal unitary completions).

6.7.10. Additional remarks. In the case when V is indecomposable (but possibly
reducible) and does not admit an L-invariant, we have seen that B(V )an should
always be a non-split extension of the form (46). When V is not of Hodge-Tate
type, or is of Hodge-Tate type but the two Hodge-Tate weights of V coincide, so
that neither η⊗ψε nor ψ⊗ ηε is of non-negative integral Hodge-Tate weight, both
the locally analytic inductions appearing in (46) are topologically irreducible [49,
Thm. 6.1], and so there is (conjecturally) no further “internal structure” in B(V )an.
However, if V is Hodge-Tate up to twist, with distinct weights, then either

(53)
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
lalg

or

(54)
(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
an

contains a locally algebraic subrepresentation, and so B(V )an has (conjecturally)
topological length three. Set w 6= 0 to be the Hodge-Tate weight of ηψ−1.

In the case when w < 0, so that V is furthermore potentially crystalline up to
twist, it is (53) that contains a locally algebraic representation, and in 6.7.5 we
saw that (when V is irreducible) B(V )an should be the amalgamated sum of two
locally analytic inductions over their common locally algebraic subrepresentation.
In the case when V is reducible, so that B(V ) is defined by Definition 6.3.3, one
can compute directly that B(V )an has this same structure [6, Cor. 7.2.6]. The
lattice of closed subrepresentations of B(V )an thus (conjecturally) has the following
structure:

B(V )an

•

(
Ind

GL2(Qp)

P(Qp)
ψ⊗ηε

)
an

��������������
•

(
Ind

GL2(Qp)

P(Qp)
ηzw⊗ψz−wε

)
an

66666666666666

•

(
Ind

GL2(Qp)

P(Qp)
ηzw⊗ψz−wε

)
an

77777777777777

(
Ind

GL2(Qp)

P(Qp)
ψ⊗ηε

)
an

��������������

0

(
Ind

GL2(Qp)

P(Qp)
η⊗ψε

)
lalg
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(where the labels indicate the corresponding topological Jordan-Hölder factors).
In the case when w > 0, so that V is not potentially crystalline up to twist, it

is (54) that contains a locally algebraic subrepresentation. Thus the extension (46)
contains a submodule W which is an extension

0 →
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
→W →

(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
lalg

→ 0,

which must also be non-split. (When V is irreducible, this follows by the same
argument that proves lemma 6.7.4. When V is reducible, so that ψ⊗ ηε is unitary,
we see that if this extension were split, then the same would be true of (46) itself,
by Proposition 5.3.8.) The lattice of closed subrepresentations of B(V )an thus
(conjecturally) has the following structure:

B(V )an

•

(
Ind

GL2(Qp)

P(Qp)
ψz−w⊗ηzwε

)
an

•

(
Ind

GL2(Qp)

P(Qp)
ψ⊗ηε

)
lalg

0

(
Ind

GL2(Qp)

P(Qp)
η⊗ψε

)
an

(where again we have labelled the various topological Jordan-Hölder factors). We
will see in Subsection 7.6 below (see Proposition 7.6.5 and its proof) that in the
case when V arises from an overconvergent eigenform of finite slope, the appear-
ance of the locally algebraic representation in the middle of the composition series,
rather than at the bottom, corresponds to the existence of the operator θw on
overconvergent forms of weight 1− w.

7. Local-global compatibility

The goal of this section is to discuss in some detail Conjecture 1.1.1 of the
introduction.

7.1. p-adic GL2(Af )-representations associated to p-adic representations
of GQ. Suppose that V is a two dimensional continuous representation of GQ de-
fined over E, which is unramified away from a finite number of primes. As in Sub-
section 2.2, we may attach the admissible smooth GL2(Apf )-representation πm, p(V )
to V , which by Remark 2.2.1 is defined over E.

Assuming that the local p-adic Langlands correspondence predicted by Conjec-
ture 3.3.1 exists, we may also associate to V |Dp

the admissible unitary Banach space
representation B(V |Dp

) of GL2(Qp) over E.
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7.1.1. Definition. Write Π(V ) := B(V |Dp
)⊗E πm, p(V ), equipped with the induc-

tive tensor product topology (in the sense of [48, §17]).

The locally convex E-space Π(V ) is equipped with an action of GL2(Af ) =
GL2(Qp)×GL2(Apf ) which makes it an admissible continuous representation of this
group (in the sense of [31, Def. 7.2.1]).

7.1.2. Remark. We remark for future reference that if V = Vf for some classical
cuspidal newform f , then πp(V ) = πm, p(V ); equivalently, the local representations
π`(V ) ∼= π`(f) are all generic [40, p. 354]. Thus for such V we may also write
Π(V ) = B(V |Dp

)⊗E πp(V ). Since the formation of Π(V ) is compatible with twisting
in an evident sense, the same remark hold for those V that are twists of Vf .

Among all the admissible continuous representations of GL2(Af ) one would like
to single out those representations of the form Π(V ) as being “automorphic”. Ide-
ally, one would have an a priori definition of what it means for an admissible con-
tinuous GL2(Af )-representation to be automorphic (perhaps in terms of a space
of “p-adic automorphic forms” equipped with an admissible continuous GL2(Af )-
action), and then one could phrase a global p-adic Langlands conjecture to the
effect that these are precisely the representations of the form Π(V ). Unfortunately,
no such a priori definition is known as of yet; more precisely, one does not actually
have a candidate for the space of p-adic automorphic forms for GL2 over Q. How-
ever, in the discussion that follows we will present a workable substitute for this
space, which one hopes should detect those Π(V ) for which V is an odd irreducible
representation.

7.2. Completed cohomology of modular curves. We recall some construc-
tions from [33]. To begin with, fix a compact open subgroup Kp of GL2(Ẑp); we
refer to Kp as the “tame level”. Fix a finite extension E of Qp with ring of in-
tegers OE . For A = OE , OE/$s (for some s > 0), or E, write H1

∗ (K
p)A :=

lim
−→
Kp

H1
∗ (Y (KpKp)/Q, A), where the inductive limit is taken over all open subgroups

of GL2(Zp), the cohomology is étale cohomology, and ∗ = ∅ or c (i.e. we are consid-
ering either cohomology with unrestricted supports or cohomology with compact
supports.)

7.2.1. Lemma. The OE-module H1
∗ (K

p)OE
is torsion free and p-adically separated.

Proof. That H1
∗ (K

p)OE
is torsion free is clear, since this is true of the étale co-

homology with coefficients in OE of any curve over an algebraically closed field.
The claim of separatedness follows from the fact that the map [33, (4.3.4)] is an
isomorphism. �

There is a natural inclusion H1
∗ (K

p)OE
⊂ H1

∗ (K
p)E . Since H1

∗ (K
p)OE

spans
H1
∗ (K

p)E as an E-vector space, Lemma 7.2.1 shows that we may put a norm
on H1

∗ (K
p)E – the so-called gauge of H1

∗ (K
p)OE

– whose unit ball is equal to
H1
∗ (K

p)OE
.

7.2.2. Definition. Define Ĥ1
∗ (K

p)E to be the p-adic Banach space obtained by
completing H1

∗ (K
p)E with respect to the gauge of H1

∗ (K
p)OE

. We let Ĥ1
∗ (K

p)OE

denote the unit ball of Ĥ1
∗ (K

p)E ; it is naturally identified with the p-adic completion
of H1

∗ (K
p)OE

.



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 63

7.2.3. Lemma. For any s > 0, there is a natural isomorphism

Ĥ1
∗ (K

p)OE
/$s ∼−→ lim

−→
Kp

H1
∗ (Y (KpK

p),OE/$s)

(where Kp runs over the directed set of all compact open subgroups of GL2(Qp)).

Proof. This follows from the isomorphism Ĥ1
∗ (K

p)OE

∼−→ H̃1
∗ (K

p)OE
discussed in

[33, §4.1]. �

The following corollary results immediately from the preceding lemma, and the
definition of Ĥ1

∗ (K
p)OE

.

7.2.4. Corollary. There is a natural isomorphism

Ĥ1
∗ (K

p)OE

∼−→ lim
←−

s

lim
−→
Kp

Ĥ1
∗ (Y (KpK

p),OE/$s).

There is a natural action of GL2(Qp) on H1
∗ (K

p)E , induced by the right action
of GL2(Qp) on the tower of modular curves Y (KpK

p) (for varying Kp and fixed
Kp). This action preserves H1

∗ (K
p)OE

, and thus extends to an action of GL2(Qp)
on Ĥ1

∗ (K
p)E which preserves Ĥ1

∗ (K
p)OE

.

7.2.5. Lemma. The GL2(Qp)-action on Ĥ1
∗ (K

p)E equips this Banach space with
an admissible unitary representation of GL2(Qp).

Proof. This is a special case of [33, Thm. 2.2.11]. �

7.2.6. Definition. If Σ is a fixed finite set of primes, we write T (or T(Σ) if we
wish to emphasize Σ) to denote the polynomial algebra OE [{T`, S`}` 6∈Σ].

Let Σ(Kp) denote the set of primes at which Kp is ramified, together with p.
For any finite set of primes Σ containing Σ(Kp), the usual action of T := T(Σ) on
H1
∗ (K

p)E via Hecke operators commutes with the GL2(Qp)-action and preserves
the lattice H1

∗ (K
p)OE

, and so extends to a continuous action of T on Ĥ1
∗ (K

p)E
that commutes with the GL2(Qp)-action and preserves Ĥ1

∗ (K
p)OE

.
If Kp

1 ⊂ Kp
2 is an inclusion of tame levels, then the injection H1

∗ (K
p
2 )E →

H1
∗ (K

p
1 )E induced by pulling back cohomology classes is GL2(Qp)-equivariant, and

induces a closed GL2(Qp)-equivariant embedding

(55) Ĥ1
∗ (K

p
2 )E → Ĥ1

∗ (K
p
1 )E .

(See [33, Prop. 2.2.13].) If Σ is any finite set of primes containing Σ(Kp
2 ), then this

embedding is also T(Σ)-equivariant.

7.2.7. Definition. Define
Ĥ1
∗,E := lim

−→
Kp

Ĥ1
∗ (K

p)E

(the inductive limit being taken over all tame levelsKp), endowed with the inductive
limit GL2(Qp)-action, and with the locally convex inductive limit topology.

There is a smooth action of GL2(Apf ) on Ĥ1
∗,E commuting with the GL2(Qp)-

action, induced by the action of GL2(Apf ) on the tower of modular curves Y (Kf ).
(See [33, Thm. 2.2.16] for more details.) This action is compatible with the action
of the Hecke algebras T

(
Σ(Kp)

)
on the various spaces Ĥ1

∗ (K
p)E , in a manner that

the following lemma makes precise.
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7.2.8. Lemma. If Kp is any tame level, then the natural injection of Ĥ1
∗ (K

p)E
into Ĥ1

∗,E induces an isomorphism of continuous GL2(Qp)-representations

Ĥ1
∗ (K

p)E
∼−→ (Ĥ1

∗,E)K
p

.

Furthermore, this isomorphism intertwines the action of T` (resp. S`) on the source

with the action of the double coset Kp

(
` 0
0 1

)
Kp (resp. Kp

(
` 0
0 `

)
Kp) on the

target, for each prime ` 6= p that is unramified in Kp.

Proof. The first claim follows from [33, Thm. 2.2.16 (ii)]. For the second claim, see
the formulas of [33, Prop. 4.4.2]. �

7.2.9. The GQ-action on Ĥ1
∗,E. Each of the spaces H1

∗ (K
p)E is also equipped with

a continuous action of GQ that preserves H1
∗ (K

p)OE
, and so extends to a continuous

action of GQ on Ĥ1
∗ (K

p)E that preserves Ĥ1
∗ (K

p)OE
. This action commutes with

the actions of GL2(Qp) and T, and is compatible with the embeddings (55). It is
unramified outside of Σ(Kp). Passing to the inductive limit, we obtain a continuous
action of GQ on Ĥ1

∗,E , commuting with the GL2(Qp) and GL2(Apf )-actions.

7.2.10. Forgetting supports. Forgetting supports induces GQ×GL2(Af )-equivariant
morphisms

(56) Ĥ1
c,OE

→ Ĥ1
OE

and

(57) Ĥ1
c,E → Ĥ1

E

that are furthermore surjective. Indeed, for each tame level Kp, the maps

(58) Ĥ1
c (K

p)OE
→ Ĥ1(Kp)OE

and

(59) Ĥ1
c (K

p)E → Ĥ1(Kp)E

are surjective. (See [33, Prop. 4.3.9] and its proof).

7.2.11. Completions of H0. We close this subsection with a brief discussion of the
spaces Ĥ0(Kp)E and Ĥ0

E , which are defined in a completely analogous fashion to
Ĥ1(Kp)E and Ĥ1

E (replacing the superscript 1 by 0 at each point). The space
Ĥ0(Kp)E is equipped with commuting actions of GQ × GL2(Qp) and T(Σ(Kp)),
while Ĥ0

E is equipped with an action of GQ ×GL2(Af ). The cup product defines a
pairing Ĥ0

E ⊗ Ĥ1
∗,E → Ĥ1

∗,E for ∗ = ∅ or c [33, Prop. 2.2.21].
Unlike the completions of H1, these completions of H0 can be described very

explicitly. Namely, there is an isomorphism

(60) Ĥ0
E

∼−→ C(Q>0\A×
f , E),

where the target of the isomorphism is the space of functions that are continuous
in the p-adic variable, and smooth in the prime-to-p-adic variables. We may de-
scribe the GQ × GL2(Af )-action on Ĥ0

E concretely in terms of this isomorphism:
global class field theory yields an isomorphism G ab

Q
∼−→ Q>0\A×

f , and GQ acts on
C(Q>0\A×

f , E) via the composite of this isomorphism with the action of Q>0\A×
f
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by translation; the group GL2(Af ) act on C(Q>0\A×
f , E) via the composite of the

determinant map det : GL2(Af ) → A×
f with the action of A×

f by translation.

7.3. Systems of Hecke eigenvalues. We will recall some basic terminology and
facts related to systems of Hecke eigenvalues. Fix a finite set of primes Σ containing
p, and write T := T(Σ) as above.

7.3.1. Definition. If A is anOE-algebra, then a system of Hecke eigenvalues defined
over A (and outside of Σ) is a homomorphism of OE-algebras λ : T → A.

If λ is a system of Hecke eigenvalues defined over A, and if M is a T-module,
then we write

(
A ⊗OE

M
)λ to denote the subspace of A ⊗OE

M on which T acts
through the character λ.

7.3.2. Definition. Let A be an OE-algebra, and let V be a free A-module of rank
two equipped with aGQ-representation that is unramified outside Σ. We then define
a system of Hecke eigenvalues over A via the formula: λ(T`) = trace(Frob−1

` | V ),
λ(`S`) = det(Frob−1

` | V ), for all ` 6∈ Σ. We refer to λ as the system of Hecke
eigenvalues associated to V .

Recall that F denotes the residue field OE/$.

7.3.3. Remark. As is well-known, if A is a finite extension of either E or F, and if
the representation V is continuous, then V is determined up to semi-simplification
by λ (by the Čebotarev density and Brauer-Nesbitt theorems).

7.3.4. Definition. If λ is a system of Hecke eigenvalues (outside of Σ) defined over
an OE-algebra A, and if ψ : Ẑ× → A× is a character, unramified outside of Σ,
then we define λ ⊗ ψ (the twist of λ by ψ) to be the system of Hecke eigenvalues
T` 7→ ψ(`)λ(T`), S` 7→ ψ(`)2λ(S`) (for ` 6∈ Σ).

Note that if λ is the system of Hecke eigenvalues attached to a two dimensional
GQ-representation V , then λ⊗ψ is the system of eigenvalues attached to the twist
V ⊗ ψ (where we identify ψ with a character of GQ via global class field theory).

7.3.5. Definition. Let A be one of the fields E or F, and let A denote its algebraic
closure. We say that a system of Hecke eigenvalues λ defined over a finite extension
of A is Eisenstein if there is a pair of continuous characters ψ1, ψ2 : Ẑ× → A

×
,

unramified outside of Σ, such that λ is the system of Hecke eigenvalues attached to
ψ1

⊕
ψ2, regarded as a GQ-representation via global class field theory. (Concretely,

this amounts to requiring that λ(T`) = ψ1(`) + ψ2(`) and λ(`S`) = ψ1(`)ψ2(`) for
all primes ` 6∈ Σ.)

7.3.6. Remark. Remark 7.3.3 shows that the system of Hecke eigenvalues associ-
ated to a continuous two dimensional GQp-representation V defined over a finite
extension of E (resp. F) is Eisenstein if and only if V becomes reducible over a
finite extension of E (resp. F).

7.3.7. Definition. We say that a p-torsion free T-module M is Eisenstein if any
system of Hecke eigenvalues λ defined over a finite extension E′ of E in Qp for
which (E′ ⊗OE

M)λ 6= 0 is Eisenstein.

There is a simple criterion for a T-module to be Eisenstein.
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7.3.8. Lemma. Suppose that M is p-adically separated p-torsion free T-module with
the following property: there is a pair of commuting representations Ψ1,Ψ2 : Ẑ× →
Aut(M), each unramified outside Σ and continuous when Aut(M) is endowed with
the weak topology (i.e. the topology of pointwise convergence), such that for all ` 6∈ Σ
we have T` acts on M via Ψ1(`) + Ψ2(`) and `S` acts on M via Ψ1(`)Ψ2(`). Then
M is Eisenstein.

Proof. This is essentially what is shown in the proof of [14, Cor. 3.1.3]. We recall
the argument. Suppose that λ is a system of Hecke eigenvalues defined over a
finite extension E′ of E for which (E′ ⊗OE

M)λ 6= 0. We again write Ψi(`) to
denote the extension of scalars of Ψi(`) to each of OE′ ⊗OE

M and E′ ⊗OE
M

(i = 1, 2). The formulas for the action of T` and S` in terms of the automorphisms
Ψi(`) show that these automorphisms commute with the action of T, and thus
that (E′ ⊗OE

M)λ is stable under the action of the Ψi(`). Furthermore, on this
space we have λ(T`) = Ψ1(`) + Ψ2(`) and λ(`S`) = Ψ1(`)Ψ2(`) for all ` 6∈ Σ.
In particular, multiplication by λ(T`) and λ(S`) preserves the non-zero p-adically
separated module (OE′ ⊗OE

M)λ, and so λ must take values in OE′ .
Replacing E by E′ and M by (OE′ ⊗OE

M)λ, we may assume that E′ = E, that
M is a non-zero T-module, and that λ is an OE-valued system of Hecke eigenvalues
such that T acts on M through λ. We then find that for each i = 1, 2, we have
Ψi(`)2 − λ(T`)Ψi(`) + λ(`S`) = 0. Replacing E by the compositum of its (finitely
many) quadratic extensions, we may assume that each of these quadratics splits
over E. Choose `1, . . . , `r ∈ Ẑ that topologically generate Ẑ×/(ẐΣ)×. Since M
is non-zero, and since the automorphisms Ψi(`j) commute among themselves, we
may find a non-zero element m of M such that each Ψi(`j) acts via a scalar on m,
and so deduce (since Ψ1 and Ψ2 are weakly continuous) that there exist continuous
characters ψ1, ψ2 : Ẑ×/(ẐΣ)× → O×

E such that Ψi(`)m = ψi(`)m (i = 1, 2). We
conclude that λ(T`) = ψ1(`) + ψ2(`) and λ(`S`) = ψ1(`)ψ2(`), and thus that λ is
Eisenstein. �

For example, one can use this criterion to show that for any tame level Kp

unramified outside Σ, the kernel of the map (57) is an Eisenstein T-module. (See
Lem. 3.1.2 and Cor. 3.1.3 of [14].)

7.3.9. Definition. If Kp is a tame level unramified outside of Σ, then we write
T̃∗(Kp) to denote the weak closure of the image of T in End

(
Ĥ1
∗ (K

p)E
)
. (Of

course here End denotes continuous endomorphisms.)

We can give a more concrete description of T̃∗(Kp). For any compact open
subgroup Kp of GL2(Qp), and any integer s > 0, write T̃∗(KpK

p)s to denote the
image of T in End

(
H1
∗ (Y (KpK

p),OE/$s)
)
. Since H1

∗ (Y (KpK
p),OE/$s) is a finite

OE-module, we see that T̃∗(KpK
p)s is a finite OE-algebra. Corollary 7.2.4 gives a

topological isomorphism

(61) T̃∗(Kp)
∼−→ lim

←−
s,Kp

T̃∗(KpK
p)s.

The surjection (59) induces a continuous homomorphism

(62) T̃c(Kp) → T̃(Kp),

which has dense image by construction.
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7.3.10. Lemma. The map (62) is an isomorphism of reduced, compact topological
OE-algebras.

Proof. The isomorphism (61) shows that both the source and target of (62) are
profinite, and so compact. Since this map is continuous with dense image, it must be
surjective. If we fix the level KpK

p, and write T̃∗(KpK
p) := lim

←−
s

T̃∗(KpKp)s, then

T̃∗(KpKp) is naturally identified with the image of T in End
(
H1
∗ (Y (KpK

p),OE)
)
.

This image is well-known to be reduced. Thus, rewriting (61) in the form

T̃∗(Kp)
∼−→ lim

←−
Kp

T̃∗(KpK
p),

we obtain a description of the algebra T̃∗(Kp) as the projective limit of a projective
system of reduced rings. This shows that T̃∗(Kp) is reduced.

Let M̂E ⊂ Ĥ1
c (K

p)E denote the kernel of (59), and write

I = T̃c(Kp)
⋂

Hom(Ĥ1
c (K

p)E , M̂E), J = T̃c(Kp)
⋂

Hom(Ĥ1(Kp)E , M̂E)

(where Hom denotes continuous homomorphisms.) Clearly I is the kernel of (62),
while J2 = 0. We claim that I = J , i.e. that any element of T̃c(Kp) that annihilates
Ĥ1(Kp) also annihilates M̂E . It will follow that I2 = 0, and thus that I = 0, since
(as we have just shown) T̃c(Kp) is reduced.

Let Eis denote the set of pairs of characters ψ1, ψ2 : Ẑ× → Q×
p , unramified

outside of Σ, associated to the various classical Eisenstein series of weight 2 and
tame levelKp. For each (ψ1, ψ2) ∈ Eis, there is a continuous homomorphism λψ1,ψ2 :
T̃c(Kp) → Qp uniquely determined by the fact that its composite with the natural
map T → T̃c(Kp) is equal to the system of Hecke eigenvalues associated to ψ1

⊕
ψ2.

(This is just the homomorphism describing the Hecke action on the Eisenstein series
attached to (ψ1, ψ2); cf. Remark 7.3.14 below.) If Iψ1,ψ2 denotes the kernel of λψ1,ψ2 ,
then the annihilator of M̂E in T̃c(Kp) is equal to

⋂
(ψ1,ψ2)∈Eis Iψ1,ψ2 . (This follows

for example from the explicit description of M̂E given in [14].) Thus we must show
that if t ∈ T̃c(Kp) annihilates Ĥ1(Kp)E , then t ∈ Iψ1,ψ2 for all (ψ1, ψ2). This is
clear, however, since the classical cohomology space H1(Kp)E contains a class with
annihilator equal to Iψ1,ψ2 (since the system of eigenvalues λψ1,ψ2 appears in the
cokernel of the map H1

c (K
p)E → H1(Kp)E). �

7.3.11. Definition. Let A be a finite field extension of E (resp. of F). We say that
a system of Hecke eigenvalues λ defined over A is promodular (resp. modular) if
it can be written as the composite of the natural map T → T̃(Kp) with a contin-
uous homomorphism λ̃ : T̃(Kp) → A, for some tame level Kp that is unramified
outside Σ.

7.3.12. Remark. Lemma 7.3.10 shows that replacing T̃(Kp) with T̃c(Kp) in the
preceding definition would yield an equivalent notion.

7.3.13. Lemma. Let λ be a system of eigenvalues defined over a finite extension
E′ of E. If (Ĥ1(Kp)E′)λ 6= 0, then λ is promodular.

Proof. Since T has dense image in T̃(Kp), we see that any element of T̃(Kp) acts
on the vectors of (Ĥ1(Kp)E′)λ through a scalar. Since T̃(Kp) acts on Ĥ1(Kp)E′ via
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continuous operators, the resulting homomorphism λ̃ : T̃(Kp) → E′ is continuous.
Since λ is obtained as the composite of the natural map T → T̃(Kp) with λ̃, we see
that λ is promodular. �

7.3.14. Remark. If f is a Hecke eigenform of weight k ≥ 2 and tame level Kp,
either cuspidal or an Eisenstein series, then the system of Hecke eigenvalues λ
attached to f is promodular. If f is of weight 2, then this follows directly from the
preceding lemma and Eichler-Shimura theory, which shows that (H1(Kp)E′)λ 6= 0.
If k > 2, then (H1(Kp)E′)λ = 0. Nevertheless, Theorem 7.4.2 below shows that
(Ĥ1

E′)
λ 6= 0, and so the preceding lemma still applies. Any weight 1 eigenform

also gives rise to a promodular system of Hecke eigenvalues: taking its product
with the members of a sequence of positive weight Eisenstein series that converges
p-adically to the constant q-expansion 1, we obtain a sequence of modular forms of
weights ≥ 2 whose members are eigenforms modulo increasingly large powers of p
that converges (on the level of q-expansions) to f .

7.3.15. Definition. Let A be a finite extension of E (resp. of F), and let V be
a continuous two dimensional GQp-representation defined over A and unramified
outside of Σ. We say that V is promodular (resp. modular) if its associated system
of Hecke eigenvalues is promodular (resp. modular).

If V is given, but the set of primes Σ is not specified, we will say that V is
promodular (or modular) if it is so with respect to some set of primes Σ containing
p together with all the ramified primes of V .

7.3.16. Remark. Let V be an absolutely irreducible continuous two dimensional
GQ-representation over F. Then V is modular in the above sense if and only if it is
modular in the usual sense of being obtained as the reduction mod $ of the Galois
representation attached to some newform. Furthermore, let X be the deformation
space associated to V (parameterizing deformations of V to GQ-representations
over Artinian local OE-algebras with residue field equal to F), which is a formal
scheme over OE , and let X be its rigid analytic generic fibre. Let Xmod denote the
rigid analytic Zariski closure in X of the set of points arising from deformations of
V attached to classical modular forms of weight ≥ 2 and level unramified outside
of Σ. One can check that a lift of V to a representation V over a finite extension A
of E is promodular in the above sense if and only if it corresponds to an A-valued
point of Xmod.

7.3.17. Proposition. Let A be a finite field extension of E (resp. of F). If λ :
T → A is a promodular (resp. modular) system of Hecke eigenvalues, then there is
a continuous two dimensional Galois representation V defined over A, unramified
outside of Σ, and such that λ is the system of Hecke eigenvalues associated to V .
Any such V is necessarily odd.

Proof. This result is well-known, but we recall the proof. Denote by λ̃ the homo-
morphism T̃(Kp) → A associated to λ (for an appropriate choice of tame level Kp).
In the case when A is an extension of F, the isomorphism (61) shows that λ̃ factors
through T(KpK

p)1 → A for some sufficiently small Kp. Thus (by the Deligne-Serre
lemma [30, Lem. 6.11]) λ can be regarded as the reduction mod $ of the system of
Hecke eigenvalues attached to some weight 2 newform f , and we take V to be the
reduction mod $ of Vf . (Note that V is odd, since Vf is.)
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Now suppose that A is an extension of E. For each newform (either cuspidal
or Eisenstein) f of weight 2 and tame level Kp, Remark 7.3.14 shows that there
is a homomorphism T̃(Kp) → Qp describing the action of the Hecke operators on
f . Let If denote its kernel. Since H1(Kp)E is dense in Ĥ1(Kp)E , Eichler-Shimura
theory show that

(63)
⋂
f

If = 0

(the intersection running over all f). Attached to each f is an odd continu-
ous two dimensional representation Vf of GQ, unramified outside of Σ, and de-
fined over (T/If )[1/p]. (When f is the Eisenstein series associated to a pair
of characters (ψ1, ψ2), set Vf = ψ1

⊕
ψ2.) Taking the product of all these, we

obtain an odd continuous representation V of GQ into GL2(
∏
f (T̃(Kp)/If )[1/p])

that is unramified outside Σ. From (63) we see that the natural (diagonal) map
T̃(Kp) →

∏
f (T̃(Kp)/If )[1/p] realizes T̃(Kp) as a subalgebra of the product. Since

the traces on V of elements of GQ lie in T̃(Kp), one sees that the continuous pseudo-
representation attached to V actually takes values in T̃(Kp) (or in T̃(Kp)⊗OE

E, if
p = 2); cf. the formulas of [24, p. 71]. Specializing this pseudo-representation with
respect to the homomorphism λ̃ yields a continuous pseudo-representation of GQ
over A that is unramified outside Σ. This continuous pseudo-representation then
underlies a continuous two dimensional odd GQ-representation, unramified outside
Σ, which is our desired representation V .

Note that (in either case) if W is any other representation associated to the same
system of Hecke eigenvalues λ then V and W have isomorphic semi-simplifications
(by Remark 7.3.3), and thus W is also odd. �

7.3.18. Remark. In the context of the preceding proposition, it follows from Re-
marks 7.3.3 and 7.3.6 that if λ is not Eisenstein then V is uniquely determined up
to isomorphism, and is absolutely irreducible.

7.3.19. Lemma. If V is a promodular continuous two dimensional representation
of GQ over E, and if ψ : GQ → E× is a continuous character, then V ⊗ ψ is again
promodular.

Proof. Choose the tame levelKp so that the system of Hecke eigenvalues λ attached
to V arises from a continuous homomorphism λ̃ : T̃(Kp) → E; further shrink Kp

if necessary so that ψ, regarded as a character of Q>0\A×
f by global class field

theory, is trivial on det(Kp). Thinking of ψ as an element of C(Q>0\A×
f , E), let

cψ denote the cohomology class in Ĥ0
E that corresponds to ψ under the isomor-

phism (60). Cupping with cψ induces an automorphism of Ĥ1
∗ (K

p)E , which inter-
twines the Hecke operator T` (resp. S`) with the operator ψ(`)T` (resp. ψ(`)2S`) for
any ` ∈ Σ(Kp). Thus the automorphsm T` 7→ ψ(`)T`, S` 7→ ψ(`)2S` of T(Σ(Kp))
induces a corresponding continuous automorphism of T̃(Kp). Composing λ̃ with
this automorphism yields a continuous homomorphism λ̃′, whose restriction to
T(Σ(Kp)) is immediately seen to coincide with λ ⊗ ψ. Thus λ ⊗ ψ, and so also
V ⊗ ψ, is promodular. �

7.4. Locally algebraic vectors in Ĥ1
∗,E. We will give an explicit description of

the space
(
Ĥ1
∗,E
)
lalg

.
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7.4.1. Definition. Let E(1) denote a one dimensional vector space over E on
which GQ × GL2(Af ) acts through the character ε ⊗ (ε ◦ det). For any n ∈ Z let
E(n) = E(1)⊗n.

Recall the definition of H1
∗ (Vk) (for k ≥ 2) from Subsection 2.5.

7.4.2. Theorem. For ∗ = ∅ or c there is a natural GQ × GL2(Af )-equivariant
isomorphism⊕

k≥2,n∈Z
H1
∗ (Vk)E ⊗E

(
Symk−2E2

)∨ ⊗E E(n) ∼−→
(
Ĥ1
∗,E
)
lalg

.

(Here GQ×GL2(Af ) acts on
(
Symk−2E2

)∨ through its quotient GL2(Qp), and the
subscript “ lalg” indicates the subspace of locally GL2(Qp)-algebraic vectors.)

Proof. This follows from the isomorphism of [33, (4.3.4)], once one notes that

{
(
Symk−2E2

)∨ ⊗ detn}k≥2,n∈Z

is a complete set of isomorphism class representatives of the irreducible algebraic
representations of GL2(Qp). �

If f is a cuspidal newform of some weight k defined over E then the two di-
mensional GQ-representation Vf may also be defined over E, as may the associated
GL2(Af )-representation π(Vf ) (see Remark 2.2.1). From Theorem 2.5.1 we see that
there is a GQ ×GL2(Af )-equivariant embedding

Vf ⊗E π(Vf ) → H1
∗ (Vk)E ,

for ∗ = ∅ or c. (We are justified in taking either value of ∗, since the Manin-
Drinfeld theorem provides a GQ × GL2(Af )-equivariant splitting of the surjection
H1
c (Vk)E → H1

par(Vk)E .)

7.4.3. Corollary. If f is a cuspidal newform of weight k defined over E, then for
either value of ∗ (i.e. ∅ or c) there is a GQ ×GL2(Af )-equivariant embedding

Vf ⊗E π(Vf )⊗E
(
Symk−2E2

)∨ → Ĥ1
∗,E .

(Here GQ×GL2(Af ) acts on
(
Symk−2E2

)∨ through the projection onto GL2(Qp).)

Proof. This follows from the preceding remarks together with Theorem 7.4.2. �

7.5. The Jacquet module of Ĥ1(Kp)E. Fix a tame level Kp. As we recalled
in the proof of Proposition 5.3.1, since Ĥ1(Kp)E is admissible unitary, its Jacquet
module JP(Qp)

(
Ĥ1(Kp)E,an

)
is an essentially admissible T(Qp)-representation, and

so corresponds to a coherent sheaf E(Kp) on the rigid analyic space T̂. (Recall
that the global sections of E(Kp) are naturally identified with the topological dual
to JP(Qp)

(
Ĥ1(Kp)E,an

)
.) Write Σ := Σ(Kp). The action of T(Σ) on Ĥ1(Kp)E

induces an action of T(Σ) on JP(Qp)

(
Ĥ1(Kp)E,an

)
, and hence on E(Kp). We let

A(Kp) denote the coherent sheaf of commutative algebras over T̂ generated by the
image of T(Σ) in the sheaf of endomorphisms of E(Kp), and let SpecA(Kp) denote
its relative spectrum over T. Thus SpecA(Kp) is a rigid analytic space over E,
equipped with a closed immersion

SpecA(Kp) → T̂× Spec
(
E ⊗OE

T(Σ)
)
,
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whose composite with the projection onto the factor T̂ is a finite morphism. We
denote a typical point of

(
SpecA(Kp)

)
(Qp) by (χ1⊗χ2, λ), where χ1⊗χ2 ∈ T̂(Qp),

and λ : T(Σ) → Qp.

7.5.1. Definition. Let W denote the rigid analytic space parameterizing the con-
tinuous characters of Z×p (i.e. “weight space”, in the usual terminology).

There is a natural action of W on T̂× Spec
(
E ⊗OE

T(Σ)
)

via twisting, given on
the level of Qp-valued points by the formula

ψ × (χ1 ⊗ χ2, λ) 7→ (χ1ψ ⊗ χ2ψ, λ⊗ ψ)

(where we extend ψ to a character of Q×
p by setting ψ(p) = 1). The closed subspaces

SpecA(Kp) of T̂×Spec
(
E⊗OE

T(Σ)
)

are invariant under twisting [33, Prop. 4.4.6].
The following results show that there are GQ-representations attached to the

points of SpecA(Kp), and that these representations appear in Ĥ1(Kp)E .

7.5.2. Proposition. If x = (χ1⊗χ2, λ) is a Qp-valued point of SpecA(Kp) (recall
that x is then in fact an E′-valued point for some finite extension E′ of E), then
the system of Hecke eigenvalues λ is promodular.

Proof. The existence of x shows that Jχ1⊗χ2
P(Qp)

(
(Ĥ1(Kp)E′)λan

)
6= 0. In particular,

(Ĥ1(Kp)E′)λan 6= 0, and so Lemma 7.3.13 shows that λ is promodular. �

7.5.3. Proposition. Let (χ1 ⊗ χ2, λ) be a point of
(
SpecA(Kp)

)
(E) for which

χ1 | |−1 ⊗χ2 | | ε−1 is neither critical nor ultracritical and λ is non-Eisenstein.
Let V be the GQ-representation over E associated to λ (by the previous Proposition
together with Proposition 7.3.17).

(1) If χ1 | |−1 ⊗χ2 | | is unitary then there is a non-zero GQ × GL2(Qp)-
equivariant continuous map

V ⊗
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
cont

→ Ĥ1(Kp)λE .

(2) If χ1 | |−1 ⊗χ2 | | is not unitary then there is a non-zero GQ ×GL2(Qp)-
equivariant continuous map

V ⊗B(χ1 | |−1 ⊗χ2 | |) → Ĥ1(Kp)λE .

(Recall from Definition 5.3.10 that B(χ1 | |−1 ⊗χ2 | |) denotes the uni-
versal unitary completion of

(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an
.)

Proof. The assumption that (χ1 ⊗ χ2, λ) lies in
(
SpecA(Kp)

)
(E) implies that the

(a priori finite dimensional) GQ-representation Jχ1⊗χ2
P(Qp)

(
(Ĥ1(Kp)E)an)λ is non-zero,

and so by the Eichler-Shimura relations (and the irreducibility of V ) contains a copy
of V . Theorem 5.2.5 thus shows that there is a non-zero GQ×GL2(Qp)-equivariant
map

V ⊗
(
IndGL2(Qp)

P(Qp)
χ1 | |−1 ⊗χ2 | |

)
an
→ Ĥ1(Kp)λE .

The proposition follows (taking into account Proposition 5.3.4 (1) in case (1)). �

The injection Ĥ1(Kp)lalg → Ĥ1(Kp)an induces a corresponding continuous injec-
tion on Jacquet modules. If we take into account the isomorphism of Theorem 7.4.2
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and the compatibility of the formation of Jacquet modules with countable direct
sums [32, Lem. 3.4.7 (iv)], we may write this injection in the form

(64)
⊕

k≥2,n∈Z
JP(Qp)

(
H1(Vk)K

p

⊗E (Symk−2E2)∨ ⊗E E(n)
)

→ JP(Qp)

(
Ĥ1(Kp)E,an

)
.

If we fix a value of k and n, then the injection H1(Vk)K
p ⊗E (Symk−2E2)∨ ⊗E

E(n) →
(
Ĥ1(Kp)E

)
an

is a closed embedding [31, Prop. 6.3.6] (the source being
equipped with its finest convex topology), and so induces a closed embedding on
Jacquet modules. Passing to the associated coherent sheaves on T̂, we obtain a
surjection of coherent sheaves of T(Σ)-modules E(Kp) → Ek,n (where we let Ek,n
denote the coherent sheaf associated to JP(Qp)

(
H1(Vk)K

p ⊗E (Symk−2E2)∨ ⊗E
E(n)

)
). Thus if we let Ak,n denote the coherent algebra of endomorphisms of Ek,n

induced by T(Σ), we obtain a closed embedding SpecAk,n → SpecA(Kp). Taking
the union over all k ≥ 2, n ∈ Z, we find that (64) induces an injective morphism of
rigid analytic spaces over T̂

(65)
∐

k≥2,n∈Z
SpecAk,n → SpecA(Kp),

which induces a closed embedding when restricted to each term of the disjoint union
in the source.

7.5.4. Lemma. For any fixed value of k and n, the sheaf Ak,n is reduced, and has
discrete support on T̂.

Proof. Recall that the locally analytic Jacquet module functor is compatible with
the classical Jacquet module functor [32, Prop. 4.3.6], and that the classical Jacquet
module of an admissible smooth representation of GL2(Qp) is an admissible smooth
representation of T(Qp), which corresponds to a sheaf with discrete support on
T̂. Since H1(Vk)K

p

E is an admissible smooth GL2(Qp)-representation, we conclude
that Ek,n, and so also Ak,n, has discrete support. Since the action of T(Σ) on
H1(Vk)K

p

E is semi-simple (as one sees from Eichler-Shimura theory), the sheaf Ak,n
is furthermore reduced. �

7.5.5. Definition. We say that a point of
(
SpecA(Kp)

)
(Qp) is classical if it is in

the image of the map on Qp-points induced by (65).

7.5.6. Definition. We denote by D̃(Kp) the rigid analytic Zariski closure of the set
of classical points in

(
SpecA(Kp)

)
red

(or equivalently, in T̂× Spec
(
E ⊗OE

T(Σ)
)
).

We refer to D̃(Kp) as the “eigensurface” of tame level Kp.

7.5.7. Remark. Since the source of (65) is reduced (Lemma 7.5.4), we may also
define D̃(Kp) as the “scheme-theoretic image” (so to speak) of that map.

For a fixed pair (k, n) the space SpecAk,n is invariant under twisting by lo-
cally constant characters in W, while twisting by εm induces an isomorphism
SpecAk,n

∼−→ SpecAk,m+n. Thus we see that D̃(Kp) is invariant under twist-
ing by characters of integral Hodge-Tate weight in W. Since these characters are
Zariski dense in W, we see that D̃(Kp) is invariant under the twisting action of W.
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The discussion of [33, §4.4] shows that in fact D̃(Kp) factors as a product

(66) D̃(Kp) ∼= D(Kp)×W

where D(Kp) denotes the reduced eigencurve parameterizing finite slope overcon-
vergent p-adic eigenforms of tame levelKp. (This justifies our designation of D̃(Kp)
as an eigensurface.) This factorization is W-equivariant, with respect to the twist-
ing action by W on the source, and the action of W by multiplication on itself on
the target.

Let us describe the isomorphism (66) more precisely. Suppose that f is a finite
slope overconvergent T(Σ)[Up]-eigenform of tame level Kp and integral weight k.
Let α ∈ Qp denote Up-eigenvalue of f , let χ denote the nebentypus of f (so that

χ : Ẑ× → Q×
p is a locally constant character unramified outside of Σ(Kp)), and

let λ : T(Σ) → Qp denote the system of Hecke eigenvalues attached to f . Let
cf ∈ D(Kp)(Qp) be the point attached to f (so that cf depends only on α and λ –
but note that λ encodes χ), and fix some ψ ∈ W(Qp). Under the isomorphism (66),
the point (cf , ψ) ∈

(
D(Kp)×W

)
(Qp) corresponds to the point

(ur(α) | | ψ⊗ur(α)−1χ−1
p | |−1 ε2−kψ, λ⊗ψ) ∈ D̃(Kp)(Qp) ⊂

(
SpecAc(Kp)

)
(Qp).

Here χp denotes the local component of χ at p, thinking of χ as a character of A×
f

via the isomorphism (1) of Subsection 1.3, and as above we extend ψ to a character
of Q×

p by setting ψ(p) = 1; thus the first coordinate

ur(α) | | ψ ⊗ ur(α)−1χ−1
p | |−1 ε2−kψ

of this point makes sense as an element of T̂, as it should. (See the discussion of
[33, §4.4], and in particular the formulas in the statement of [33, Prop. 4.4.2].)

We also note that under (66) the classical points in D̃(Kp)(Qp) lying in the
image of (SpecAk,n

)
(Qp) under the map (65) correspond to the points (cf , ψ) ∈

(D(Kp)×W)(Qp) for which f is a finite slope p-stabilized classical Hecke eigenform
of weight k, and ψ is a character of integral Hodge-Tate weight n. (Thus the
discreteness assertion of Lemma 7.5.4 is simply a rephrasing of the fact that the
collection of classical eigenforms of finite slope and fixed weight k gives rise to a
discrete set of points on the eigencurve.)

The following result clarifies the relationship between the spaces D̃(Kp) and(
SpecA(Kp)

)
red
. In its statement we employ the following notational convention:

if ψ1 and ψ2 are a pair of continuous characters GQ → E, we write ψ1⊕ψ2 to denote
the system of Hecke eigenvalues attached to the GQ-representation ψ1

⊕
ψ2.

7.5.8. Theorem. The image of the closed embedding

(67) D̃(Kp) →
(
SpecA(Kp)

)
red

is a union of connected components of the target, and its complement decomposes
as the disjoint union of a collection of one dimensional irreducible connected com-
ponents. Furthermore, the system of Hecke eigenvalues attached to any point in
this complement is Eisenstein.

Proof. We begin by recalling some of the known result about the structure of the
spaces D̃(Kp) and

(
SpecA(Kp)

)
red
. It is known that the eigencurve D(Kp) is
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equidimensional of dimension one [16], and thus D̃(Kp) is equidimensional of di-
mension two. On the other hand, it follows from [33, Prop. 2.3] that the spaces(
SpecA(Kp)

)
red

are at most two dimensional. Since they are invariant under twist-
ing, each irreducible component is of thus of dimension either one or two. Further-
more, the one dimensional irreducible components (if any exist) are also connected
components, since they consist of single W-orbits under twisting. The non-critical
slope criterion for classicality [33, Prop. 2.3.6] shows that any two dimensional com-
ponent of

(
SpecA(Kp)

)
red

contains a Zariski dense set of classical points, and thus
is in fact a component of D̃(Kp). If we write C to denote the complement of the
image of the closed embedding (67), then the preceding discussion shows that C
consists of a union of connected components of

(
SpecA(Kp)

)
red

, each consisting of
a single W-orbit, and containing no classical points.

We now recall some notation and constructions from the proof of [33, Thm. 2.1.5].
That argument, specialized to our particular case, yields the existence of a length
two complex S̃0 → S̃1 of admissible Banach Kp-representations (for some suffi-
ciently small compact open subgroup Kp of GL2(Zp)) whose cohomology groups
are naturally isomorphic to Ĥ0(Kp)E and Ĥ1(Kp)E respectively, and such that
S̃i

∼−→ C(Kp, E)ri as a Kp-representation for some ri ≥ 0 (i = 0, 1). (Actually,
that proposition discuss certain spaces H̃i rather than the completions Ĥi un-
der discussion here. However, in our situation the spaces Ĥi and H̃i coincide –
see [33, §4.1].) Passing to locally analytic vectors (which we remind the reader
is an exact functor [51, Thm. 7.1]) yields a complex S̃•an of locally analytic Kp-
representations, with cohomology groups isomorphic to

(
Ĥ•(Kp)E

)
an
, and such

that S̃ian
∼−→ Can(Kp, E)ri . Taking topological duals we obtain a complex of fi-

nite rank free Dan(Kp, E)-modules (S̃•an)′, with cohomology groups isomorphic to(
Ĥ•(Kp)E,an

)′. (Here Dan(Kp, E) denotes the nuclear Fréchet algebra of locally
analytic E-valued distributions on Kp.)

Imagine for a moment that Ĥ0(Kp)E,an vanished. We would then have a short
exact sequence

0 →
(
Ĥ1(Kp)E,an

)′ → (S̃•an)′ → (S̃•an)′ → 0,

of Dan(Kp, E)-modules in which the second and third terms are free. It would
follow that

(
Ĥ1(Kp)E,an

)′ is a direct summand of a free Dan(Kp, E)-module, and
a variant of [32, Prop. 4.2.36] would show that the support of E(Kp) in T̂, and
hence also SpecA(Kp), is equidimensional of dimension two. The discussion of the
first paragraph would then show that (67) is an isomorphism.

Now of course Ĥ0(Kp)E,an 6= 0. However, it is Eisenstein. So, heuristically, if
we localize away from the Eisenstein systems of Hecke eigenvalues, we may proceed
as if Ĥ0(Kp)E,an were zero, and so conclude that any component containing a
point

(
SpecA(Kp)

)
red

associated to a non-Eisenstein system of Hecke eigenvalues
is equidimensional of dimension two, yielding the theorem. The details of the
argument will appear in a future publication of the author. �

7.5.9. Remark. It was proved in [14, Prop. 5.3.2] that the embedding (67) induces
a bijection on ordinary points.

7.6. Refinements and the eigensurface. The following result is essentially a
reformulation of [41, Thm., p. 375].



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 75

7.6.1. Theorem. Let V be an odd irreducible continuous two dimensional repre-
sentation of GQ over E, unramified outside of a finite set of primes. Let Kp be a
tame level such that Σ(Kp) contains all the primes of ramification of V , and let
λ : T(Σ(Kp)) → E denote the system of Hecke eigenvalues attached to V .

(1) The following are equivalent:
(a) There is a Galois character ψ : GQ → E×, unramified outside of

p, such that the twist V ⊗ ψ is the Galois representation attached to an
overconvergent modular form of finite slope and of tame level Kp defined
over E.

(b) There is a character χ1⊗χ2 ∈ T̂(E) such that (χ1⊗χ2, λ) lies in
D̃(Kp)(E).

(2) Furthermore, for any character χ1 ⊗ χ2 satisfying condition (1)(b), there
is a refinement R of V |Dp

such that σ(R) = (χ1 | |−1, χ2 | | ε−1). (In
particular, V |Dp

is trianguline.)
(3) If V |Dp

is indecomposable, then the converse to (2) holds: If V satisfies the
equivalent conditions of (1), then for any refinement R of V |Dp

, writing
σ(R) = (η, ψ), the point (η | | ⊗ψε | |−1, λ) lies in D̃(Kp)(Qp).

Proof. The equivalence of the two conditions of (1) follows directly from the de-
scription (66) of D̃(Kp). Clearly the assertion of (2) is invariant under twisting.
Thus we may assume that χ1 ⊗ χ2 = ur(α) | | ⊗ ur(α)−1ε | |−1 detV |Dp

, and
that V is the Galois representation attached to an overconvergent eigenform f with
Up-eigenvalue α. It then follows from [41, Thm., p. 375] that V admits a refinement
R such that σ(R) = (ur(α),ur(α)−1 detV |Dp

). This proves (2).
We turn to proving (3). Thus V |Dp

is assumed to be indecomposable, and so
Propositions 4.2.2 and 4.4.4 (4) show that V admits a unique equivalence class
of refinements unless V |Dp

is a twist of a Hodge-Tate representation with distinct
Hodge-Tate weights. Thus, taking into account (1)(b), and applying a twist if
necessary, we see that we may assume that V is attached to an overconvergent
eigenform f of integral weight k 6= 1. Since V |Dp

is assumed to be indecomposable,
it follows from [41, Thm. 6.6] that f is classical if and only if V |Dp

is potentially
semi-stable. Let us consider this case first. Since f is classical, we may and do
assume that it is the p-stabilization of a newform.

If V |Dp
is not potentially crystalline, or is potentially crystalline but not Frobe-

nius semi-simple, then it admits a unique equivalence class of refinements, and so
there is nothing to prove. If V |Dp

is potentially crystalline and Frobenius semi-
simple, then it has two equivalence classes of refinements. The point on D̃(Kp)
given by f corresponds to one of these equivalence classes, and we must find a
second point lying over V that corresponds to the other. If V |Dp

is in fact crys-
talline, then f is the p-stabilization of a newform of prime-to-p level. If f̃ denotes
the p-stabilized twin of f , then f̃ gives the sought-after second point. If V |Dp

is
not crystalline, then f is itself a newform, whose nebentypus ω is non-trivial at p.
Let ωp be the p-part of ω. If we take f̃ to be the newform associated to the twist
f ⊗ ω−1

p , then f̃ is p-stabilized and has finite slope, and gives rise to a point on
D̃(Kp) with system of Hecke eigenvalues λ⊗ω. Twisting that point by ω−1 ∈ W(E)
gives the second point lying over V . (See [14, §4.1] for a representation theoretic
point of view on this discussion.)



76 MATTHEW EMERTON

Now suppose that V |Dp
is Hodge-Tate but not potentially semi-stable. If k > 1,

then let g be an overconvergent eigenform of weight 2 − k such that θk−1g = f.
(Such a g exists by [21, 22].) If k < 1, then let g = θ1−kf. Let x denote the point in
D̃(Kp)(E) corresponding to f , and let y denote the point in D̃(Kp)(E) obtained by
twisting the point corresponding to g by the character ε1−k. Then V is the Galois
representation attached to both x and y, and we have found two distinct points
of D̃(Kp)(E) giving rise to V , which by (2) must account for the two equivalence
classes of refinements of V . This completes the proof of (3). �

7.6.2. Conjecture. Part (3) of the preceding theorem continues to hold in the case
when V |Dp

is the direct sum of two characters.

7.6.3. Remark. The preceding conjecture can be proved in many cases. Suppose
that V satisfies the equivalent conditions of part (1) of the preceding theorem, and
also that V |Dp

= η
⊕
ψ for two characters η and ψ. If η = ψ then σ(R) = (η, η)

for every refinement of V and there is nothing to prove. Thus we may also assume
that η and ψ are distinct. There are then two cases to consider, namely the two
cases of Proposition 4.4.5.

In the first case, V |Dp
admits just its two equivalence classes of ordinary re-

finements. Part (2) of the preceding theorem then shows that the overconvergent
eigenform f to whose twist V is attached must be ordinary. Twisting and relabelling
if necessary, we may assume that V is attached to f , that η is unramified, and that
η(p) is the Up-eigenvalue of f . Thus the point of D̃(Kp) given by f corresponds
to the ordinary refinement R1 of V |Dp

for which σ(R1) = (η, ψ). Let ψ0 denote
the restriction ψ|Z×p , regarded as a character of GQ unramified outside of p. To
prove (3), we must show that there is a (necessarily ordinary) overconvergent form
g with Up-eigenvalue equal to ψ(p), and with associated Galois representation equal
to V ⊗ψ−1

0 . (The point of D̃(Kp) obtained by twisting the point corresponding to
g by ψ0 will then have V as associated Galois representation, and will correspond
to the refinement R2 for which σ(R2) = (ψ, η).) If the mod $ representation V
attached to V satisfies the necessary hypothesis, then results identifying ordinary
universal deformation rings with ordinary Hecke algebras (such as the one stated in
[17, §1]) will provide the required form g, and thus verify part (3) of the preceding
theorem in this case.

Now suppose that we are in case (2) of Proposition 4.4.5, so that V is potentially
crystalline, with distinct Hodge-Tate weights, up to a twist. Since V has three
equivalence classes of refinements, we must construct three points on D̃(Kp) that
give rise to V . Twisting V if necessary, we may thus assume that V is potentially
crystalline, and is attached to an overconvergent eigenform f of integral weight
k 6= 1. If k < 1, then V ⊗ εk−1 is attached to θ1−kf , which is of weight 2− k. Thus
we may assume that in fact f is of weight k > 1. The Fontaine-Mazur conjecture [37]
implies that in fact f should be classical. If this is so, then the argument that proves
[14, Thm. 1.1.2] in the split case provides the necessary three points. Essentially,
we have two classical points, namely an ordinary form f and an associated slope
k− 1 form f̃ (just as in the proof of classical case of the preceding theorem) as well
as a weight 2 − k ordinary form g such that θk−1g = f̃ . (The existence of g is a
consequence of the fact that V |Dp

is split [14, Thm. 1.1.3].) The results of Skinner
and Wiles [55, 56] show that in fact the Fontaine-Mazur conjecture for V is true
provided that η and ψ have distinct reductions modulo $. (The reader should bear
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in mind that V is assumed to arise from an overconvergent eigenform, so that the
residual modularity hypothesis of [56] holds for V .) Thus under this hypothesis (3)
is also true. (Note that (3) is actually equivalent to the Fontaine-Mazur conjecture
for V : if (3) holds, then we see that some twist of V must arise from an ordinary
form of weight k > 1, which is necessarily classical.)

7.6.4. Remark. Consider the projection

pr : D̃(Kp)(Qp) →
(
SpecE ⊗OE

T(Σ)
)
(Qp)

which maps a point to its associated system of Hecke eigenvalues. If λ is a non-
Eisenstein system of Hecke eigenvalues lying in the image, corresponding to the
irreducible GQ-representation V , then we see from the preceding discussion that
the fibre pr−1(λ) consists of one, two, or (admitting Conjecture 7.6.2) three points,
depending on whether V |Dp

satisfies condition (1), (2), or (3) of the following list:

(1) Either
(a) V |Dp

is indecomposable, and is not Hodge-Tate up to a twist.
(b) V |Dp

is indecomposable, and is potentially semi-stable, but not
potentially crystalline and Frobenius semi-simple, up to twist.

(c) V |Dp
is the direct sum of two copies of the same character.

(2) Either
(a) V |Dp

is indecomposable, and is Hodge-Tate, but not potentially
semi-stable, up to a twist.

(b) V |Dp
is indecomposable, and is potentially crystalline and Frobe-

nius semi-simple up to a twist.
(c) V |Dp

is a direct sum of two characters, but is not Hodge-Tate up
to a twist.

(3) V |Dp
is a direct sum of two distinct characters, and is Hodge-Tate up to a

twist.
Recall that if one restricts the projection pr to the eigencurve D(Kp) then the

behaviour is simpler: the preimage of a non-Eisenstein system of eigenvalues will
have either one or two points. Furthermore the second case occurs precisely when
the corresponding Galois representation V is Frobenius semi-simple and crystalline,
and thus attached to a newform of prime-to-p conductor (with the proviso that we
admit Conjecture 7.6.2, or equivalently, the Fontaine-Mazur conjecture, in the case
when V |Dp

is a direct sum of distinct characters whose reductions mod $ coincide;
this is the exceptional case of [41, Thm. 6.6]).

We now state a result that gives some evidence for Conjecture 6.7.3 (cf. the
discussions of 6.7.5 and 6.7.10). Suppose that V is an irreducible continuous two
dimensional GQp-representation that is trianguline and Hodge-Tate, but not poten-
tially semi-stable, up to a twist. Suppose furthermore that V is (the restriction to
GQp of) the Galois representation attached to a point of D̃(Kp)(E). Let R be the
non-ultracritical refinement of V , and write σ(R) = (η, ψ).

7.6.5. Proposition. With the preceding hypotheses and notation, the locally ana-
lytic GL2(Qp)-representation B(V )an contains a subrepresentation W that sits in
a short exact sequence

0 →
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
→W →

(
IndGL2(Qp)

P(Qp)
ψ ⊗ ηε

)
lalg

→ 0.
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Proof. Let R′ denote the ultracritical refinement of V , so that σ(R′) = (ηz−w, ψzw),
where w < 0 is the Hodge-Tate weight of ηψ−1. If λ denotes the system of Hecke
eigenvalues attached to the overconvergent eigenform giving rise to V , then Theo-
rem 7.6.1 (3) (applied to R′) shows that the point (ηz−w | | ⊗ψzwε | |−1, λ) lies in
D̃(Kp)(E) ⊂

(
SpecAc(Kp)

)
(E). In particular Jηz

−w| |⊗ψzwε| |−1

P(Qp)

(
Ĥ1
c (K

p)E,an
)
6=

0. Let u ∈ Ĥ1
c (K

p)E,an denote the canonical lift (in the sense of [32, 0.9]) of a non-
zero element of this space, and let U denote the closed GL2(Qp)-subrepresentation
of Ĥ1

c (K
p)E generated by u. As was observed in the proof of Proposition 5.2.6,

the element (X−)−wu ∈ Ĥ1
c (K

p)E,an is the canonical lift of a non-zero element of

J
η| |⊗ψε| |−1

P(Qp)

(
Ĥ1
c (K

p)E
)
. Since (X−)−wu ∈ U , it is in fact the canonical lift of a

non-zero element of Jη| |⊗ψε| |−1

P(Qp)

(
U
)
. By Theorem 5.2.5 there is thus a non-zero

map
(
IndGL2(Qp)

P(Qp)
η ⊗ ψε

)
an
→ U. Since U is unitary (being a closed subspace of

Ĥ1
c (K

p)E), this extends to a non-zero map

(68) B(η ⊗ ψε) → U.

(Recall that B(η⊗ψε) denotes the universal unitary completion of
(
IndGL2(Qp)

P(Qp)
η⊗

ψε
)
an
.)

Since B(η ⊗ ψε) is topologically irreducible and admissible (by Theorem 5.3.7)
the map (68) must be a closed embedding. Let u denote the image of u in the
cokernel of this embedding. Since (X−)−wu = 0, we see that if u is non-zero, then
it generates a copy of(

IndGL2

P(Qp)
ηz−w ⊗ ψzwε

)
lalg

∼=
(
IndGL2

P(Qp)
ψ ⊗ ηε

)
lalg

(the isomorphism being supplied by an intertwiner on the smooth factors of these
irreducible locally algebraic representations). However Lemma 5.2.4 shows that
this locally algebraic representation cannot be contained in a unitary GL2(Qp)-
representation. Thus necessarily u = 0, and so (68) is an isomorphism. IfW denotes
the closed GL2(Qp)-subrepresentation generated by u in Uan ⊂

(
Ĥ1
c (K

p)E
)
an

, then
W has the extension structure stipulated in the statement of the proposition (since
the closed subrepresentation of Uan generated by (X−)−wu is precisely a copy of(
IndGL2(Qp)

P(Qp)
η⊗ψε

)
an

). The proposition follows, once we recall that B(V ) = B(η⊗
ψε) by definition. �

7.7. Mapping Galois representations into Ĥ1
∗,E. Throughout this subsection

V will denote an irreducible continuous two dimensional representation of GQ over
E. We let V denote the semi-simplification of the reduction modulo $ of (some
GQ-invariant lattice in) V . (The resulting semi-simple GQ-representation over F is
independent of the choice of lattice.)

7.7.1. Definition. If ∗ ∈ c, ∅, then we write M∗(V ) := HomGQ(V, Ĥ1
∗,E).

Note that M∗(V ) is a GL2(Af )-invariant closed subspace of the admissible con-
tinuous GL2(Af )-representation V ∨⊗E Ĥ1

∗,E , and so is again an admissible contin-
uous GL2(Af )-representation [31, Prop. 7.2.2]. The following lemma states some
basic properties of M∗(V ).
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7.7.2. Lemma. (1) The natural evaluation map V ⊗E M∗(V ) → Ĥ1
∗,E is a

GQ ×GL2(Af )-equivariant embedding.
(2) If ψ is any continuous character ψ : GQ → E×, then there is a GL2(Qp)-

equivariant topological isomorphism M(V ⊗ ψ)∗
∼−→ M∗(V ) ⊗ (ψ ◦ det)

(where on the right hand side we regard ψ as a character of A×
f via global

class field theory).
(3) The formation of M∗(V ) is compatible with extension of scalars to finite

extensions of E.

Proof. The evaluation map is tautologically GQ × GL2(Af )-equivariant, and is an
injection since V is irreducible (and thus absolutely irreducible, being odd). The
proof of (2) is similar to the proof of Lemma 7.3.19. As in that proof, let cψ denote
the cohomology class in Ĥ0

E that corresponds to ψ under the isomorphism (60).
Then GQ acts on cψ through the character ψ, while GL2(Af ) acts on cψ through ψ◦
det. Cupping with cψ thus induces the claimed isomorphism of (2) (with the inverse
isomorphism being provided by cupping with cψ−1). Claim (3) is immediate. �

7.7.3. Lemma. If M∗(V )(Kp) 6= 0 (for ∗ = ∅ or c) and V is absolutely irreducible10

then V is modular.

Proof. If V appears in Ĥ1
∗ (K

p)E for some tame level Kp, then Lemma 7.2.3 shows
that V appears in H1

∗ (Y (KpK
p),F) for some sufficiently small compact open sub-

group Kp of GL2(Qp). The space M := HomGQ

(
V ,H1

∗ (Y (KpK
p),F)

)
is naturally

a T := T(Σ(Kp))-module. Furthermore, the T-action on this space factors through
its quotient T̃(KpK

p)1 (as defined in Subsection 7.3). Since M is finite dimensional
over F, we must have that (F′⊗FM)λ 6= 0 for some finite extension F′ of F and some
system of Hecke eigenvalues λ defined over F′. The system λ is necessarily modu-
lar, since it is in fact a system of eigenvalues of T̃(KpK

p)1. Since V is absolutely
irreducible, the natural evaluation map V ⊗F (F′ ⊗F M)λ → H1

∗ (Y (KpK
p),F′) is

injective, and the Eichler-Shimura relations then imply that λ coincides with the
system of eigenvalues associated to V . Thus V is modular, as claimed. �

7.7.4. Corollary. If M∗(V ) 6= 0, if V is absolutely irreducible, and if p 6= 2, then
V is odd.

Proof. The preceding proposition shows that V is modular, and thus odd. Since
p 6= 2, we may conclude that V is odd. �

The following result gives some control over the action of GL2(Apf ) on M∗(V ).

7.7.5. Lemma. If Kp is a tame level for which M∗(V )K
p 6= 0, then V is unramified

outside of Σ(Kp).

Proof. To say thatM∗(V )K
p 6= 0 is to say that there is aGQ-equivariant embedding

V → Ĥ1
∗ (K

p)E . The lemma thus follows from the fact that the GQ-action on
Ĥ1
∗ (K

p)E is unramified away from Σ(Kp). �

7.7.6. Corollary. If M∗(V ) 6= 0 then V is unramified at all but finitely many
primes.

10We will see in Proposition 7.7.13 below that under this assumption the spaces M∗(V ) for
either choice of ∗ coincide; in particular, if one is non-zero, so is the other.
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Proof. If M∗(V ) 6= 0, then M∗(V )K
p 6= 0 for some tame level Kp. The claim thus

follows from the preceding lemma. �

IfKp is a tame level, and Σ := Σ(Kp), then the Hecke algebra T(Σ) acts naturally
on M∗(V )K

p

.

7.7.7. Proposition. Suppose that we are in the situation of Lemma 7.7.5, and
that furthermore V is not a twist of a representation with finite image. Let λ :
T(Σ(Kp)) → E denote the system of Hecke eigenvalues attached to V (which is de-
fined, since V is unramified outside of Σ(Kp)). Then T(Σ(Kp)) acts on M∗(V )K

p

through the character λ.

Proof. The following lemma shows that our hypothesis on V is equivalent to re-
quiring that the projective representation associated to V has infinite image. The
proposition thus follows from the (proof of) [14, Prop. 3.2.3]. �

7.7.8. Lemma. The following conditions on a continuous two dimensional Galois
representation V defined over Qp are equivalent:

(1) The projective representation attached to V has finite image;
(2) V is a twist of a representation with finite image.

Proof. The claimed equivalence follows from the discussion of [53, §6]. Indeed, if
the projective image of V is finite, then [53, Cor., p. 227] shows that we may find
a continuous two dimensional representation W of GQp

over Qp which has finite
image, and whose associated projective representation coincides with that of V .
The discussion of [53, p. 226] then shows that V is a twist of W . �

Proposition 7.7.7 has the following corollary.

7.7.9. Corollary. If M∗(V ) 6= 0 for ∗ = ∅ or c and if V is not a twist of a
representation with finite image,11 then V is promodular (and in particular, is odd).

Proof. If M∗(V ) 6= 0 then M∗(V )K
p 6= 0 for some tame level Kp. If λ denotes the

system of Hecke eigenvalues attached to V , then the preceding proposition shows
that (Ĥ1

∗ (K
p)E)λ 6= 0. It follows from Lemma 7.3.13 that λ is promodular. �

7.7.10. Remark. Presumably any irreducible two dimensional Galois representa-
tion V over E for which M∗(V ) 6= 0 (for ∗ = ∅ or c) is promodular, and so also
odd. In fact these two conditions on V are conjecturally equivalent (assuming al-
ways that M∗(V ) 6= 0). Indeed, suppose that V is odd and that M∗(V ) 6= 0. We
know that V is promodular unless it is a twist of a representation with finite image.
By Lemmas 7.7.2 (2) and 7.3.19, we may assume that V does in fact have finite im-
age. The Artin conjecture, together with standard converse theorems, then implies
that V ∼= Vf for some modular form f of weight 1. (This is the so-called Strong
Artin conjecture, which is actually a conjecture of Langlands.) Thus Remark 7.3.14
shows that V is promodular.

The surjection (57) induces a GL2(Af )-equivariant continuous map

(69) Mc(V ) →M(V ).

11We will see in Proposition 7.7.13 below that under this assumption the spaces M∗(V ) for
either choice of ∗ coincide; in particular, if one is non-zero, so is the other.
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7.7.11. Conjecture. The map (69) is a GL2(Af )-equivariant topological isomor-
phism.

This conjecture was originally formulated by Breuil in the case when V = Vf for
a modular form f of weight ≥ 2. It has been proved in that case by Breuil and the
author (see Proposition 7.7.13 (2) below).

7.7.12. Remark. Since the Galois action on the kernel of (57) is abelian, it follows
directly that (69) is injective; the difficulty is to show that it is surjective. Note
that (69) is an isomorphism if and only if the induced map Mc(V )K

p →M(V )K
p

is an isomorphism for each tame level Kp.

The following proposition establishes Conjecture 7.7.11 in many cases. Part (1)
is due to Breuil; part (2) to Breuil and the author [14, Prop. 3.2.4].

7.7.13. Proposition. Conjecture 7.7.11 is true provided V satisfies either one of
the following two conditions:

(1) V is absolutely irreducible.
(2) V is not a twist of a representation with finite image.

Proof. In case (1), it follows from Lemma 7.7.3 that V is modular. Let λ : T(Σ) → F
denote the corresponding system of eigenvalues, let m denote the kernel of λ, and
let subscript m denote localization at m. It is clear that the injection

HomGQ

(
V, Ĥ1

∗ (K
p)E,m

)
→ HomGQ

(
V, Ĥ1

∗ (K
p)E
)

=: M∗(V )

is in fact an isomorphism (cf. the proof of Lemma 7.7.3). Also, since V is absolutely
irreducible, and since the kernel M̂ of (59) is Eisenstein [14, Cor. 3.1.3], we see that
the natural map Ĥ1

c (K
p)E,m → Ĥ1(Kp)E,m is an isomorphism. This proves (1).

Case (2) is proved in [14]. We present a variant on that proof here. Let λ :
T̃(Kp) → OE denote the (promodular) system of Hecke eigenvalues attached to V .
It follows from Proposition 7.7.7 that

M∗(V ) = HomGQ

(
V, (Ĥ1

∗ (K
p)E)λ

)
.

We claim that the natural map

(70)
(
Ĥ1
c (K

p)E
)λ → (

Ĥ1(Kp)E
)λ

is an isomorphism.
If M̂OE

denotes the kernel of (58), then (70) sits in the short exact sequence of
T̃(Kp)-modules

0 → M̂λ →
(
Ĥ1
c (K

p)E
)λ → (

Ĥ1(Kp)E
)λ
→ lim

←−
s

Ext1
(
T̃(Kp)/I, M̂OE

/πs
)
⊗OE

E,

where I denotes the kernel of λ, and the Ext1s are computed in the category of
T̃(Kp)-modules. On the one hand, the final term in this sequence is annihilated by
I. On the other hand, since M̂OE

satisfies the conditions of Lemma 7.3.8, by [14,
Lem. 3.1.2], the same is also true of this term, and so that lemma implies that this
term is Eisenstein. Since λ is not Eisenstein, this term must vanish. The term M̂λ

must also vanish, since M̂ is Eisenstein. This shows that (70) is an isomorphism,
as required. �
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The following result describes the structure of the space M∗(V )lalg of locally
GL2(Qp)-algebraic vectors in M∗(V ).

7.7.14. Proposition. The space M∗(V )lalg is non-zero (for either choice of ∗ ∈
{∅, c}) if and only if V is the twist by a power of ε of the representation associated
to a classical newform f over E of weight k ≥ 2.

If these equivalent conditions hold (so that in particular V |Dp
is potentially semi-

stable with distinct Hodge-Tate weights, and the locally algebraic representation
π̃p(V |Dp

) is defined – see Conjecture 3.3.1 (7)) then the following additional results
also hold:

(1) There is a canonical GL2(Apf )-equivariant isomorphism

(71) πp(V ) ∼−→ HomGL2(Qp)

(
π̃p(V |Dp

),M(V )
)
,

which induces a GL2(Af )-equivariant isomorphism

(72) π̃p(V |Dp
)× πp(V ) ∼−→M(V )lalg.

(2) For any 0 6= ξ ∈ πp(V ), regarded as an element of

HomGL2(Qp)

(
π̃p(V |Dp

),M(V )
)

via the isomorphism of (1), the closure of ξ
(
π̃p(V |Dp

)
)

in M(V ) is an
admissible unitary GL2(Qp)-representation which is independent of ξ, up
to a canonical isomorphism. Denote this completion of π̃p(V |Dp

) by π̂p(V ).
(3) There is a canonical closed GL2(Af )-equivariant embedding

(73) π̂p(V )⊗E πp(V ) →M(V ),

whose image coincides with the closure in M(V ) of M(V )lalg.
(4) The isomorphism (71) induces a canonical GL2(Af )-equivariant isomor-

phism πp(V ) ∼−→ HomGL2(Qp)

(
π̂p(V ),M(V )

)
(where Hom denotes contin-

uous homomorphisms).

Proof. There is a natural isomorphism M∗(V )lalg
∼−→ HomGQ

(
V, Ĥ1

∗,E,lalg
)
. The

first claim of the theorem thus follows from Theorems 7.4.2 and 2.5.1, once we
recall that the kernel of the natural map H1

c (Vk)E → H1
par(Vk)E (resp. the cokernel

of the natural map H1
par(Vk)E → H1(Vk)E) contains no absolutely irreducible two

dimensional Galois representations, for any k ≥ 2.
Suppose for the remainder of the proof that in fact V ∼= Vf ⊗ εn for some

newform f of weight k ≥ 2 and some integer n. The isomorphism (72) then follows
directly from the same theorems as were cited above. Since π̃p(V |Dp

) is a locally
algebraic representation of GL2(Qp), the inclusion M(V )lalg ⊂ M(V ) induces an
isomorphism

HomGL2(Qp)

(
π̃p(V |Dp

),M(V )lalg
) ∼−→ HomGL2(Qp)

(
π̃p(V |Dp

),M(V )
)
.

Combined with (72), this yields the isomorphism (71).
The isomorphism (71) in turn induces a GL2(Qp)-equivariant embedding

π̃p(V |Dp
) → HomGL2(Ap

f )(π
p(V ),M(V )).

Since πp(V ) is irreducible, and so in particular finitely generated, we see that the
target of this embedding is an admissible unitary GL2(Qp)-representation. Thus if
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π̂p(V ) denotes the closure of the image of this embedding, we see that π̂p(V ) is an
admissible unitary completion of π̃p(V |Dp

). The natural evaluation map

HomGL2(Ap
f )(π

p(V ),M(V ))⊗E πp(V ) →M(V )

is tautologically GL2(Af )-equivariant, and is injective, since πp(V ) is absolutely
irreducible. Thus it restricts to a GL2(Af )-equivariant injection (73), which must
in fact be a closed embedding, by [31, Prop. 7.2.2 (iii)]. Its image is the closure
of M(V )lalg, as follows from the explicit description of M(V )lalg provided by (72).
This proves part (3).

If 0 6= ξ ∈ πp(V ), then the closure of ξ
(
π̃p(V |Dp

)
)

coincides with the image of
π̂p(V ) ⊗ ξ under (73). Since that map is an injection, we see that this closure is
canonically identified with π̂p(V ). This gives (2).

Finally, we have the series of maps

πp(V ) → HomGL2(Qp)

(
π̂p(V ),M(V )

)
→ HomGL2(Qp)

(
π̃p(V |Dp

),M(V )
) ∼−→ πp(V ),

where the first map is the injection induced by the embedding (73), the sec-
ond map is induced by restriction, which is also an injection (since the inclusion
π̃p(V |Dp

) → π̂p(V ) has dense image), and the third map is the isomorphism (71).
By construction, the composite of these maps is the identity, and so each must be
an isomorphism. This gives (4). �

7.7.15. Remark. If f is any classical cuspidal newform f over E of weight k ≥ 2,
then π̂p(Vf ) is conjectured to be topologically irreducible. Indeed, when Vf |Dp

is irreducible, it is conjectured to coincide with B(Vf |Dp
), the admissible unitary

GL2(Qp)-Banach space representation attached to Vf |Dp
via Conjecture 3.3.1 (see

Conjecture 7.8.1 below). This is known when Vf |Dp
is trianguline and Frobenius

semi-simple (using the definition of B(Vf |Dp
) given in Subsection 6.1); see Theo-

rem 7.10.1 below. On the other hand, if V |Dp
is reducible, then π̂p(V ) coincides with

the universal unitary completion of π̃p(VDp
) (since this universal unitary completion

is admissible unitary and topologically irreducible, by Lemma 5.3.3 and Proposi-
tion 5.3.4). Thus in this case we find that π̂p(V ) is a topologically irreducible closed
subrepresentation of the reducible representation B(Vf |Dp

) (at least in those cases
when a definition of B(Vf |Dp

) has been given in Section 6.)

7.7.16. Remark. Let π be a locally algebraic representation of GL2(Qp) of the form
π := U ⊗ (Symk−2E2)∨, where U is an absolutely irreducible admissible smooth
representation of GL2(Qp). The preceding proposition shows that if π can be
realized as π̃p(Vf |Dp

) for some cuspidal newform f of weight k, then π has a non-
zero universal unitary completion, and in fact admits a non-zero admissible unitary
completion, namely π̂p(Vf ). If we suppose that U is cuspidal and that π has unitary
central character, then we can always realize π in the form π̃p(Vf |Dp

) (at least after
making a twist and replacing E with a finite extension); thus we have verified the
remarks made following the proof of Proposition 5.1.18.

Our final result of this subsection provides a characterization of the represen-
tations V attached to points of the eigensurface D̃(Kp) in terms of the structure
of M(V )K

p

.
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7.7.17. Proposition. For any tame level Kp, the set of exponents

Exp
(
M(V )K

p

an

)
is non-empty if and only if V is a twist of a representation associated to a finite
slope overconvergent eigenform of tame level Kp defined over E.

Proof. If M(V )K
p

vanishes, there is nothing to prove. Thus we may as well assume
that this space is non-zero, and thus (by Lemma 7.7.5) that V is unramified outside
Σ(Kp). Write T := T(Σ(Kp)), and λ denote the system of Hecke eigenvalues
associated to V .

Suppose first that Jχ1⊗χ2
P(Qp)

(
M(V )K

p

an

)
6= 0 for some χ1 ⊗ χ2 ∈ T̂(E). This is

then a non-trivial finite dimensional E-vector space equipped with an action of T.
Lemma 7.7.2 (1) yields a GQ-equivariant T-linear injection

(74) V ⊗ Jχ1⊗χ2
P(Qp)

(
M(V )K

p

an

)
→ Jχ1⊗χ2

P(Qp)

(
Ĥ1(Kp)E

)
.

Since the source of (74) is non-trivial and finite dimensional, the Eichler-Shimura
relations show that it contains a T-eigenvector with system of eigenvalues λ. Con-
sequently, we find that Jχ1⊗χ2

P(Qp)

(
Ĥ1(Kp)λE

)
6= 0, and thus that the point (χ1⊗χ2, λ)

lies in
(
SpecA(Kp)

)
(E), and hence in D̃(Kp)(E) (by Theorem 7.5.8, since λ is

not Eisenstein). Thus V is a twist of a GQ-representation attached to a finite
slope overconvergent eigenform of tame level Kp defined over E. Conversely,
if V is such a twist, then Proposition 7.5.3 (or better, its proof) shows that
Exp(M(V )K

p

an ) 6= ∅. �

7.8. The local-global compatibility conjecture. If V is an irreducible contin-
uous representation of GQ over E, unramified outside of a finite number of primes,
then as in the preceding subsection we will let V denote the semi-simplification of
the reduction modulo $ of (some GQ-invariant lattice in) V .

We now restate Conjecture 1.1.1.

7.8.1. Conjecture. If V is an odd irreducible continuous representation of GQ
over E, unramified outside of a finite number of primes, then there is a GL2(Af )-
equivariant topological isomorphism

M(V ) ∼= Π(V )

(where Π(V ) is the admissible continuous GL2(Af )-representation associated to V
via Definition 7.1.1).

7.8.2. Remark. In light of Remark 7.7.10 and Conjecture 7.7.11, we have restricted
our attention to odd Galois representations and to the multiplicity space M(V ).

We also state the following conjecture, which is well-posed independent of any
assumption about the existence of a local p-adic correspondence defined on all GQp-
representations.

7.8.3. Conjecture. If V is an odd irreducible continuous representation of GQ
over E, then there is an admissible unitary GL2(Qp)-representation Πp(V ) such
that M(V ) ∼−→ Πp(V ) ⊗E πm, p(V ). Furthermore, the association of Πp(V ) to V
satisfies the following properties:

(1) If V and V ′ are two odd irreducible continuous two dimensional representa-
tions of GQ over E, then V |Dp

∼= V ′
|Dp

as GQp-representations if and only
if there is a GL2(Qp)-equivariant topological isomorphism Πp(V ) ∼= Πp(V ′).
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(2) The representation Πp(V ) has central character corresponding to the local
Galois character (detV )|GQp

ε via local class field theory.
(3) The representation Πp(V ) satisfies the hypothesis of Definition 3.2.2, and

Πp(V ) is associated to the semi-simplification of V |Dp
with respect to the

local mod $ Langlands correspondence of [10].
(4) If V |Dp

is irreducible then Πp(V ) is topologically irreducible.
(5) The representation V |Dp

is potentially semi-stable, with distinct Hodge-Tate
weights, if and only if the subspace Πp(V )lalg of locally algebraic vectors of
Πp(V ) is non-zero. Furthermore, if these conditions hold, then the sub-
space Πp(V )lalg coincides with the locally algebraic representation π̃p(V |Dp

)
attached to V |Dp

as defined in condition (7) of Conjecture 3.3.1.
(6) For any character η ⊗ ψ ∈ T̂(E) there is an equality of dimensions

dim Refη⊗ψ(V ) = dim Expη| |⊗ψε| |−1
(Πp(V )an).

(7) If V |Dp
is trianguline, then there is a GL2(Qp)-equivariant topological iso-

morphism Πp(V ) ∼= B(V |Dp
), where B(V |Dp

) is the admissible unitary
GL2(Qp)-representation attached to V |Dp

by the discussion of Section 6.12

7.8.4. Remark. Lemma 7.7.2 shows that the formation of Πp(V ) would necessarily
be compatible with twisting, and with change of scalars.

7.8.5. Remark. As follows from the discussion of the preceding sections, condi-
tion (7) is by no means independent of the preceding conditions. For example,
if V |Dp

is irreducible and trianguline, and is either not potentially semi-stable up
to a twist, or else is potentially crystalline and Frobenius semi-simple up to a
twist, then conditions (4) and (6) imply that Πp(V ) ∼= B(V |Dp

). Similarly, if V |Dp

is the direct sum of two characters, then conditions (3), (5), and (6) imply that
Πp(V ) ∼= B(V |Dp

).

7.8.6. Remark. If V = Vf for some classical newform f of weight k ≥ 2, then
Proposition 7.7.14 shows that Πp(V ), if it exists, must contain π̂p(V ). If further-
more V |Dp

is irreducible (equivalently, if f is not a twist of a form that is ordinary
at p), then condition (4) of the conjecture implies that Πp(V ) should equal π̂p(V ),
or equivalently, that M(V )lalg should be dense in M(V ).

The following result provides some evidence for Conjecture 7.8.3 at the primes
away from p.

7.8.7. Proposition. If V is not a twist of a representation of finite image, then
for any tame level Kp, the inclusion M(V )K

p ⊂ M(V ), together with the action
of GL2(AΣ(Kp)

f ) on M(V ), induces a natural GL2(AΣ(Kp)
f )-equivariant map

(75)
( ⊗ ′

` 6∈Σ(Kp)

πm
` (V )

)
⊗E M(V )K

p

→M(V )

(where GL2(AΣ(Kp)
f ) acts through its action on the first factor). If V is furthermore

absolutely irreducible, then (75) is an embedding.

12For those reducible indecomposable V |Dp
for which B(V |Dp

) has not yet been defined, we

understand this statement to mean just that Πp(V ) is an extension of the form conjectured in

Subsections 6.4 and 6.5 above.
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Proof. Write Σ := Σ(Kp). If M(V )K
p

vanishes then there is nothing to prove, so
we may assume that M(V )K

p 6= 0. Lemma 7.7.5 then shows that V is unramified
outside Σ. Thus, letting λ denote the system of Hecke eigenvalues attached to V ,
we have that

(76)
⊗

′

` 6∈Σ

πm
` (V ) ∼=

(
c− Ind

GL2(AΣ
f )

GL2(bZΣ)
1
)
sm,λ

.

(Here c− Ind denotes the compactly supported induction, and the subscript λ in-
dicates that we take the maximal quotient on which T(Σ) acts through λ.) The
induced representation appearing in (76) is universal for maps to unramified rep-
resentations of GL2(AΣ

f ) on which T(Σ) acts via λ; more precisely, for any smooth
GL2(AΣ

f )-representation W over E, there is a natural isomorphism

HomGL2(AΣ
f )

(
(c− Ind

GL2(AΣ
f )

GL2(bZΣ)
1)sm,λ,W

) ∼−→
(
WGL2(bZΣ)

)λ
.

We write Kp as the product of its ramified and unramified parts Kp
Σ×GL2(ẐΣ), and

then apply this isomorphism with W taken to be M(V )K
p
Σ . Since Proposition 7.7.7

shows that the Hecke algebra T(Σ) acts on the non-zero space M(V )K
p

through λ,
we obtain the map (75).

Suppose now that V is absolutely irreducible. For any fixed value of `, either
πm
` (V ) = π`(V ) is irreducible, or else πm

` (V ) is the non-split extension of a char-
acter of GL2(Q`) by an irreducible (special) representation. Thus if (75) is not
an injection, we find that M(V )K

p

contains a one dimensional GL2(Q`)-invariant
subspace for some ` 6∈ Σ. If we denote this one dimensional subspace by L, then
Lemma 7.7.2 (1) gives a GQ×GL2(Q`)-equivariant embedding V ⊗EL→ Ĥ1(Kp)E .
If we let L denote the reduction mod $ of L, then reducing this embedding mod $
(and taking into account Lemma 7.2.3) yields a GQ×GL2(Q`)-invariant embedding

(77) V ⊗F L→ lim
−→
Kp

H1(Y (KpK
p),F).

Thus for some sufficiently small compact open subgroup Kp of GL2(Qp) we see
that H1(Y (KpK

p),F) contains a copy of V which is invariant under GL2(Q`).
This contradicts Ihara’s lemma [39] (see also the proof of Theorem 4.1 in [46]).
(We require the hypothesis that V is absolutely irreducible because Ihara’s lemma
is a statement about the cohomology of closed modular curves.) �

7.9. Consequences of the local-global compatibility conjecture. The fol-
lowing result makes explicit some of the consequences of the preceding conjecture.
(The ? are to indicate that each assertion is dependent on Conjecture 7.8.3.)

7.9.1. Proposition. Conjecture 7.8.3 has the following consequences. (As usual we
let V denote an odd irreducible continuous two dimensional representation of GQ
over E.)

(1)? If N is the tame conductor of V , then V appears as a GQ-subrepresentation
of Ĥ1(Kp

1 (N))E. (Here K1
p(N) := {g ∈ GL2(Ẑp) | g ≡

(
∗ ∗
0 1

)
mod N}.)

(2)? V is pro-modular.
(3)? The representation V |Dp

of GQp is potentially semi-stable with distinct
Hodge-Tate weights if and only if V is a twist by a power of ε of the Galois
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representation attached to a classical cuspidal Hecke eigenform of weight
k ≥ 2.

(4)? The representation V |Dp
of GQp is trianguline if and only if V is a twist of

a Galois representation attached to a p-adic overconvergent cuspidal Hecke
eigenform of finite slope.

Proof. If V has tame conductor N , then πp(V )K
p
1 (N) 6= 0. Thus the conjecture

implies that M(V )K
p
1 (N) 6= 0, giving (1)?. If Σ denotes the set of primes dividing

Np, and if λ denotes the system of eigenvalues attached to V , then T(Σ) acts
on πm, p(V )K

p
1 (N) through λ. The conjecture thus implies that

(
M(V )K

p
1 (N)

)λ 6=
0, and so (2)? follows from Lemma 7.3.13. Part (3)? follows immediately from
condition (5) of the conjecture together with Proposition 7.7.14, while part (4)?
follows from condition (6) of the conjecture together with Proposition 7.7.17. �

7.9.2. Remark. Note that part (1)? of the preceding proposition provides a strong
converse to Lemma 7.7.5.

7.9.3. Remark. Part (2)? is in many cases a theorem of Böckle. Indeed, he has
shown in a large number of cases for which V is absolutely irreducible that the
modular points are Zariski dense in the deformation space of V , and thus that V
is necessarily promodular [11].

7.9.4. Remark. As we remarked in the introduction, part (3)? is a consequence
of the Fontaine-Mazur conjecture [37, Conj. 3c], while part (4)? is related to a
conjecture of Kisin [41, Conj. 11.8].

7.9.5. Remark. The converse to (2)? above seems quite plausible: namely, if one
assumes that V is promodular, it seems reasonable to expect that M(V ) 6= 0.
When combined with the results of Böckle mentioned in Remark 7.9.3, this provides
a strong source of motivation for Conjecture 7.8.3.

7.9.6. Remark. If we combine (1)? with the proof of (4)?, we obtain the following
result: if V is an irreducible GQ-representation attached to a finite slope overcon-
vergent eigenform of some tame level, and if N is the tame conductor of V , then V
is in fact attached to a finite slope overconvergent eigenform of tame level N (giving
a kind of theory of newforms for finite slope overconvergent eigenforms). Can one
prove this unconditionally? Note that in many cases when V is absolutely irre-
ducible, the work of Böckle mentioned in Remark 7.9.3 identifies the localization of
T(Kp

1 (N)) at the maximal ideal corresponding to V with the universal deformation
ring of V . Thus one can conclude in these cases that V is attached to a p-adic
modular form of tame level N , and the problem is to show that this p-adic modular
form can be taken to be overconvergent. If V |Dp

is reducible then one can do this,
since the ordinary part of T(Kp

1 (N)) becomes identified with the ordinary universal
deformation ring (under appropriate assumptions on V – see [17, §1] for example).

7.10. Some partial results. Recall from Theorem 7.6.1 that if V is a twist of the
Galois representation attached to an overconvergent cuspidal Hecke eigenform of
finite slope, then V |Dp

is trianguline, so that we may define B(V |Dp
) (at least for

most such V |Dp
) according to the discussion of Subsection 6.

The next two results are in the direction of part (7) of Conjecture 7.8.3. Note
though that they only apply to Galois representations V that are assumed to be
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attached to finite slope overconvergent eigenforms (up to a twist), and so do not
shed any light on part (4)? of Proposition 7.9.1.

The first theorem deals with the case when V actually arises (up to a twist)
from a classical newform (which by [41, Thm. 6.6] is essentially equivalent to as-
suming that V |Dp

is potentially semi-stable up to a twist). In the case of V satis-
fying condition (a) of the theorem, it strengthens a part of [13, Thm. 1.1.2] (this
strengthening being made possible by virtue of the results of [8, 26]). For V sat-
isfying condition (b), it is essentially a restatement of [14, Thm. 1.1.2 (i)]. (To
facilitate the comparison with Conjecture 7.8.3, we recall from Remark 7.1.2 that
πp(V ) = πm, p(V ) in the context of the theorem.)

7.10.1. Theorem. Let V be a twist of the Galois representation attached to a classi-
cal cuspidal Hecke eigenform of finite slope and weight k ≥ 2. Assume furthermore
that the following conditions hold:

(a) If V |Dp
is irreducible, then one (equivalently every) potentially semi-stable

twist of V |Dp
is Frobenius semi-simple.

(b) If V |Dp
is reducible, then it is indecomposable, and is potentially crystalline

up to a twist.

Then there is a GL2(Apf )-equivariant isomorphism

πp(V ) → HomGL2(Qp)

(
B(V |Dp

),M(V )
)
.

Furthermore, all the non-zero morphisms in the target of this isomorphism are
injective.

Proof. Replacing V by an appropriate twist, and appealing to Lemma 7.7.2 (2),
we see that it is no loss of generality to assume that V is attached to a classical
newform f of weight k ≥ 2, and that either V |Dp

is irreducible and Frobenius semi-
simple, or else is reducible, indecomposable, and potentially crystalline. Let π̂p(V )
denote the completion of π̃p(V |Dp

) attached to V by Proposition 7.7.14.
Suppose first that V |Dp

is irreducible. We will show that B(V |Dp
) ∼= π̂p(V ). The

claimed isomorphism will then follow from Proposition 7.7.14 (4).
If V |Dp

is potentially crystalline, then B(V |Dp
) is equal to the universal unitary

completion of π̃p(V |Dp
) (cf. Remark 6.1.4), and is topologically irreducible (The-

orem 5.1.6), and so we are done. If V |Dp
is not potentially crystalline, then the

main result of [13] gives a non-zero homomorphism B(1−w,L)⊗η → π̂p(V ), where
1− w is the weight of f , η is a character, and L is an (a priori unknown) element
of E. By construction the image of this map contains π̃p(V |Dp

), and so is dense
in π̂p(V ). Since B(1 − w,L) is admissible unitary and topologically irreducible
(Theorem 5.1.13) this map must be an isomorphism. In particular, π̂p(V ) is also
topologically irreducible. As Colmez explained to me, it then follows from [26] that
L must in fact equal the L-invariant of V |Dp

, and thus that B(V |Dp
) ∼= π̂p(V ).

Colmez’s argument is as follows: Let µ±f denote the Mazur-Tate-Teitelbaum
distributions defining the p-adic L-function attached to f . Essentially by definition
these distributions may be regarded as elements of the topological dual to the
universal unitary completion B of π̃p(V ). As is explained in [13, §5] (see also
[34, §5]) it follows from the construction of µ±f via modular symbols that they in
fact lie in the topological dual of the quotient π̂p(V ) of B. On the other hand,
Kato’s approach to defining p-adic L-functions, via the method of “Coleman power
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series” and explicit reciprocity laws, when reinterpreted in the language of (φ,Γ)-
modules (as in [25]) and combined with the main result of [26], shows that these
same distributions µ±f also lie in the topological dual of the quotient B(V |Dp

) of B.
Since both B(V |Dp

) and π̂p(V ) are topologically irreducible quotients of B, we see
that they must be quotients by the same closed subrepresentation, and thus that
π̂p(V ) ∼= B(V |Dp

).
Consider now the case when V |Dp

is reducible, but indecomposable. Recall from
Remark 7.7.15 that π̂p(V ) is a closed subrepresentation of B(V |Dp

). It follows from
[14, Thm. 1.1.2 (ii)] that any non-zero element of HomGL2(Qp)

(
B(V |Dp

),M(V )
)

must be injective, and thus that restricting homomorphisms yields an injection

(78) HomGL2(Qp)

(
B(V |Dp

),M(V )
)
→ HomGL2(Qp)

(
π̂p(V ),M(V )

) ∼−→ πp(V )

(the isomorphism being provided by Proposition 7.7.14 (4)). Since πp(V ) is an
irreducible GL2(Apf )-representation, and since [14, Thm. 1.1.2 (i)] shows that the
source is non-zero, we see that (78) is in fact an isomorphism. Thus in this case we
again obtain the desired isomorphism. �

7.10.2. Remark. Suppose in the context of the preceding theorem that V |Dp
is

the direct sum of two characters, say V |Dp
= η

⊕
ψ. Since V is associated to

a classical cuspform, all of the local factors of the representation of GL2(Af ) as-
sociated to V are generic [40, p. 354], and so in particular ηψ−1 6= ε±1. Thus
B(V |Dp

) :=
(
IndGL2(Qp)

P(Qp)
η⊗ψε

)
cont

⊕(
IndGL2(Qp)

P(Qp)
ψ⊗ ηε

)
cont

. If we label the sum-

mands η and ψ in such a way that ηψ−1 has Hodge-Tate weight k − 1, then the
first of these summands is the universal unitary completion of π̃p(V |Dp

). One thus
has isomorphisms of smooth GL2(Apf )-representations

(79) HomGL2(Qp)

(
(IndGL2(Qp)

P(Qp)
η ⊗ ψε)cont,M(V )

)
∼−→ HomGL2(Qp)

(
π̃p(V |Dp

),M(V )
) ∼−→ πp

(the first isomorphism following from the universal property of the universal unitary
completion, and the second from Theorem 7.4.2). Part (7) of Conjecture 7.8.3
implies that there should be a similar isomorphism of GL2(Apf )-representations

HomGL2(Qp)

(
(IndGL2(Qp)

P(Qp)
ψ ⊗ ηε)cont,M(V )

) ?
∼−→ πp.

It follows from [14, Thm. 1.1.2 (i)] that the source of this conjectural isomorphism
is non-zero (and in fact that it has a non-zero space of Kp-invariants, if Kp denotes
the tame level of the newform f giving rise to V ). However neither that result
nor its proof seems to extend in any immediate way to determine the structure of
HomGL2(Qp)

(
(IndGL2(Qp)

P(Qp)
ψ ⊗ ηε)cont,M(V )

)
as a GL2(Apf )-representation.

The next result deals with the case when V is attached to a non-classical finite
slope overconvergent eigenform.

7.10.3. Theorem. If V is a twist of a Galois representation attached to a non-
classical overconvergent eigenform of finite slope and tame level Kp, and if V |Dp

is
irreducible, then there is a GL2(Qp)-equivariant embedding B(V |Dp

) →M(V )K
p

.
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Proof. If R is a non-ultracritical refinement of V |Dp
, then Theorem 7.6.1 and Propo-

sition 7.5.3 together yield a map B(R) →M(V )K
p

. Since V |Dp
is irreducible, and

since the eigenform to which it is associated (up to a twist) is not classical, we infer
from [41, Thm. 6.6] that V |Dp

is not potentially semi-stable up to a twist. Thus
B(V |Dp

) := B(R), and the theorem follows. �

7.10.4. Remark. The various restrictions on the structure of V |Dp
in the state-

ments of the preceding two theorems are not actually so serious. For example, if
Conjecture 5.1.5 were to be proved in full generality, then we could eliminate con-
dition (a) from the statement of Theorem 7.10.1. In any case, it is conjectured that
V |Dp

is always Frobenius semi-simple when V is the Galois representation attached
to a classical newform.

Let us now consider the case when V |Dp
is reducible, but does not satisfy con-

dition (b) of Theorem 7.10.1. If V |Dp
is indecomposable, and if the conjectured

extensions of Subsections 6.4 and 6.5 were constructed, so that B(V |Dp
) could be

defined, then an argument analogous to that of [14, §5.6] would provide an em-
bedding B(V |Dp

) ⊂M(V ) (at least if V |Dp
is an extension of distinct characters).

(Note that in the case when V admits an L-invariant, one would build on the main
result of [13], which provides an embedding of the appropriate twist of B(2,L) into
M(V ).)

Suppose on the other hand that V |Dp
is split. If V is attached to a classical

form of weight k ≥ 2, then (as was implicitly recalled in Remark 7.10.2 above)
it follows from [14, Thm. 1.1.2 (i)] that the analogue of Theorem 7.10.3 holds
for V . If instead V is attached either to a form of weight 1 or to a non-classical
form, then the method of proof of [14, Thm. 1.1.2 (i)] will extend to establish an
analogue of Theorem 7.10.3 for V provided that one can prove the existence of
p-adic companion forms in these contexts. (Essentially, one is given an ordinary
eigenform corresponding to one equivalence class of ordinary refinements, and one
has to construct an ordinary eigenform that corresponds to the other equivalence
class of ordinary refinements.) The isomorphism between the ordinary deformation
ring and the ordinary Hecke ring attached to V provided by [17, §1] (for example)
will establish the existence of such a companion form, provided that V satisfies the
necessary hypotheses for that result to apply (and so Theorem 7.10.3 does extend
to cover these cases).

7.10.5. Remark. In contrast to the cases considered in Theorem 7.10.1, in The-
orem 7.10.3 we do not have any control over the multiplicity with which B(V |Dp

)
appears in M(V ). (As was noted in Remark 7.9.6, it seems that one doesn’t even
know for which tame levels Kp one has M(V )K

p 6= 0.)

7.10.6. Remark. The preceding results, combined with Proposition 7.7.14, show
that if V is the GQ-representation attached to a finite slope overconvergent eigen-
form for which V |Dp

is irreducible, and is not a twist of a potentially semi-stable
Frobenius non-semi-simple representation, then the representation B(V |Dp

) satisfies
condition (7) of Conjecture 3.3.1. It follows that B(V |Dp

) also satisfies condition (8)
of that conjecture (cf. Proposition 6.6.5, and note that Proposition 7.6.5 allows us
to replace the inequality in part (3) of that result by equality for the representations
under consideration).
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The final result of our paper gives a kind of converse to the preceding theorems.
It includes as a special case a part of [13, Thm. 1.1.2].

7.10.7. Theorem. Assume that V is not a twist of a representation having finite
image, and let W be a trianguline continuous two dimensional representation of
GQp for which B(W ) has been defined (i.e. W satisfies one of the three conditions
stated at the beginning of Subsection 6.6).

(1) If there exists a non-zero continuous GL2(Qp)-equivariant map B(W ) →
M(V ), then V is a twist of a representation attached to an overconvergent
eigenform of finite slope, and there is an isomorphism (V |Dp

)ss ∼= W ss.
(2) If V |Dp

is indecomposable, if W is not the direct sum of two copies of the
same character, and if the map of (1) is furthermore an embedding, then
V |Dp

∼= W .

Proof. Suppose that we are given a non-zero map B(W ) →M(V ). Our assumption
on V , together with Proposition 7.7.7, shows that T(Σ(Kp)) acts on M(V ) through
the system of eigenvalues λ associated to V . Thus there is induced a non-zero map

(80) B(W ) → Ĥ1(Kp)λE .

Suppose first that W is irreducible, and let R be a non-ultracritical refinement
of W . If we write σ(R) = (η, ψ), then Lemma 6.6.3 shows that

(81) J
η| |⊗ψε| |−1

P(Qp)

(
Ĥ1(Kp)λE,an

)
6= 0.

Thus (η | | ⊗ψε | |−1, λ) lies in
(
SpecA(Kp)

)
(E), and hence in D̃(Kp)(E) (by

Theorem 7.5.8, since λ is non-Eisenstein). In particular we see that V is attached
to a twist of a finite slope overconvergent eigenform. Theorem 7.6.1 (2) then shows
that there is a refinement R′ of V |Dp

such that σ(R′) = (η, ψ). Thus Theorem 4.5.4
implies that V |Dp

and W are isomorphic, unless ηψ−1ε−1 = zw for some w > 0,
in which case V |Dp

and W each admit an L-invariant. In this case we can apply
the argument of Colmez given in the proof of Theorem 7.10.1. Namely, after twist-
ing each of V and W , we may assume that V |Dp

is semi-stable, and thus (by [41,
Thm. 6.6]) that V is attached to a classical newform f . The Mazur-Tate-Teitelbaum
distributions µ±f , which are naturally distributions on B(R), are then seen to in-
duce distributions on both B(V |Dp

) and B(W ). Since these are both topologically
irreducible quotients of B(R), they must coincide, and so again V |Dp

∼= W . (If
the L-invariants of V |Dp

and W are finite, then we could instead appeal to [13,
Thm. 1.1.2].)

We summarize the case when W is reducible, leaving the reader to fill in the
details. As we observed in Subsection 6.6, the representation B(W ) satisfies condi-
tion (8) of Conjecture 3.3.1. Thus if the map (80) is injective, then condition (81)
holds for every refinement R of W , and hence (again applying Theorem 7.6.1 (2))
we find that Refσ(W ) 6= ∅ for some σ ∈ Homcont(Wp,T(E)) implies that also
Refσ(V |Dp

) 6= ∅. If we assume furthermore that V |Dp
is indecomposable, and that

W is not the direct sum of two copies of the same character, then, given our other
restrictions on W , and recalling Propositions 4.5.5 and 4.5.6 and Lemmas 4.4.1
and 4.4.3, we conclude that indeed V |Dp

∼= W .
Suppose now that (80) is not necessarily injective. Writing W as an extension

of ψ by η (and interchanging ψ and η if necessary in the case when W is split),
and taking into account the definition of B(W ), we may then assume that either
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(a) the map (80) induces an injection
(
IndGL2(Qp)

P(Qp) η ⊗ ψε
)
cont

→ M(V ), (b) the

map (80) induces an injection
(
IndGL2(Qp)

P(Qp) ψ ⊗ ηε
)
cont

→ M(V ), (c) ηψ−1 = ε,
and (80) induces an injection η ◦ det⊗B(2,∞) → M(V ), or (d) W = ηψ−1 = ε,
and (80) induces an injection η ◦ det =

(
η ◦ det⊗B(2,∞)

)
/
(
η ◦ det⊗Ŝt

)
→M(V ).

In cases (a) and (c) (resp. (b)), a consideration of Jacquet modules shows that V |Dp

admits a refinement R such that σ(R) = (η, ψ) (resp. σ(R) = (ψ, η)). This implies
that V is reducible, and that (V |Dp

)ss ∼= W ss. In case (d), M(V ) would contain
the one dimensional representation η ◦ det of GL2(Qp), which is impossible. (Such
a representation is locally algebraic up to a twist, but Theorem 7.4.2, together with
the fact that the local factors of the GL2(Af )-representation attached to a cuspidal
newform are generic [40, p. 354], shows that Ĥ1(Kp)E,lalg cannot contain a one
dimensional GL2(Qp)-representation.) Thus case (d) cannot occur. �
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[7] Berger L., Breuil C., Sur la réduction des représentations cristallines de dimension 2 en poids
moyens, preprint (2005), available at http://www.ihes.fr/~breuil/publications.html

[8] Berger L., Breuil C., Sur quelques représentations potentiellement cristallines de GL2(Qp),
preprint (2006), available at http://www.ihes.fr/~breuil/publications.html

[9] Berger L., Li H., Zhu H., Construction of some families of 2-dimensional crystalline repre-
sentations, Math. Ann. 329 (2004), 365–377.

[10] Breuil C., Sur quelques représentations modulaires et p-adiques de GL2(Q) II, J. Institut
Math. Jussieu 2 (2003), 23–58.

[11] Böckle, G., On the density of modular points in universal deformation spaces, Amer. J. Math.
123 (2001), 985–1007.
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