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ON THE EFFACEABILITY OF CERTAIN δ-FUNCTORS

MATTHEW EMERTON AND VYTAUTAS PAŠKŪNAS

1. Introduction

Let F be a finite extension of Qp and let o be its ring of integers. Let G := GL2(F ),
let K := GL2(o), and let Z be the centre of G. Let A be a finite local Artinian
Zp-algebra with maximal ideal m and residue field k containing the residue
field of F . Recall that a representation V of G on an A-module is said to be
smooth if for all v ∈ V the stabilizer of v is an open subgroup of G. Let Modsm

G (A)
denote the category of smooth A-representations. Further recall that a smooth
A-representation V is admissible if for every open subgroup J of G the space V J

of J-invariants is finite dimensional. Let Modadm
G (A) denote the full subcategory of

Modsm
G (A) consisting of admissible representations. The categories Modsm

G (A) and
Modsm

G (A) are abelian. In practice, one is interested in admissible representations,
but Modsm

G (A) does not have enough injectives. The category Modsm
G (A) has enough

injectives, but it is too big. To remedy this the first author, in [2], [3], has introduced
an intermediate category of locally admissible representations Modl.adm

G (A). We
recall the definition: If V is a smooth A-representation of G, a vector v ∈ V is
called locally admissible if the A[G]-submodule of V generated by v is admissible; a
smooth representation V of G over A is then called locally admissible if every v ∈ V
is locally admissible. We let Modl.adm

G (A) denote the full subcategory of Modsm
G (A)

consisting of locally admissible representation. The category Modl.adm
G (A) is abelian

and has enough injectives [2, Prop. 2.2.15], [3, Prop. 2.1.1].

We introduce some variants of the preceding categories:

If ζ : Z → A× is a smooth character, then we denote by Modadm
G,ζ (A), Modl.adm

G,ζ (A),
and Modsm

G,ζ(A) the full subcategories of Modadm
G (A), Modl.adm

G (A), and Modsm
G (A)

respectively, consisting of representations admitting ζ as a central character. We
also let Modsm

K,ζ(A) denote the full subcategory of Modsm
K (A) consisting of K-

representations admitting ζ|Z∩K as a central character. The categories Modadm
G,ζ (A),

Modl.adm
G,ζ (A), Modsm

G,ζ(A), and Modsm
K,ζ(A) are abelian, and the last two have enough

injectives. (See Lemma 2.5 (1) below.)

Let $ be a uniformizer of F , and view $ as an element of Z via the isomorphism
Z ∼= F×. If u ∈ A×, then we let Modadm

G,$=u(A), Modl.adm
G,$=u(A), and Modsm

G,$=u(A)
denote the full subcategories of Modadm

G (A), Modl.adm
G (A), and Modsm

G (A) respec-
tively, consisting of representations on which $ acts via u. Again these categories
are abelian and the last two have enough injectives. (See Lemma 2.5 (2) below.)

In this note we show that the restriction to K of an injective object in Modl.adm
G,ζ (A)

(resp. Modl.adm
G,$=u(A) or Modl.adm

G (A)) is an injective object in Modsm
K,ζ(A) (resp.
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Modsm
K (A)). (Here Modsm

K,ζ(A) has the obvious meaning, namely it is the full sub-
category of Modsm

K (A) consisting of K-representations admitting ζ|Z∩K as a central
character.) This implies that certain δ-functors defined in [3] are effaceable, and
remain effaceable when restricted to Modsm

G,ζ(A) or Modsm
G,$=u(A). In particular, it

proves Conjecture 3.7.2 of [3] for GL2(F ).

Acknowledgments. The authors would like to thank Florian Herzig for useful com-
ments, which have improved the exposition.The second author’s work on this note
was undertaken while he was visiting Université Paris-Sud, supported by Deutsche
Forschungsgemeinschaft, and he would like to thank these institutions.

2. Injectives

We establish some simple results about injective objects in various contexts.

2.1. Lemma. If H is a compact p-adic analytic group, if V is an injective object of
Modsm

H (k), and if W is an injective envelope of V in Modsm
H (A), then the inclusion

V ↪→ W induces an isomorphism V
∼−→ W [m].

Proof. Certainly the inclusion V ↪→ W factors through an inclusion V ↪→ W [m].
Since the source is injective, this inclusion splits. If C denotes a complement to the
inclusion, then V ∩ C = 0, and thus C = 0 (as W is an essential extension of V ).
This proves the lemma. �

2.2. Lemma. Let H be a finite index open subgroup of G

(1) An object of Modsm
G (A) is admissible (resp. locally admissible) as a G-

representation if and only if it is so as an H-representation.
(2) If V is an object of Modsm

H (A), so that IndG
H V ( ∼−→ A[G] ⊗A[H] V ) is an

object of Modsm
G (A), then IndG

H V is admissible (resp. locally admissible) as
a G-representation if and only if V is admissible (resp. locally admissible)
as an H-representation.

Proof. The admissibility claim of part (1) is clear, since H contains a cofinal collec-
tion of open subgroups of G. Since H has finite index in G, the group ring A[G] is
finitely generated as an A[H]-module, and thus an A[G]-module is finitely generated
if and only if it is finitely generated as an A[H]-module. The local admissibility
claim of part (1) follows from this, together with the admissibility claim, since an
A[G]-module (resp. A[H]-module) is locally admissible if and only if every finitely
generated submodule is admissible.

To prove the if direction of claim (2), suppose first that V is an admissible H-
representation. If we write G as a union of finitely many left H-cosets, say G =⋃

i=1ngiH
, if H ′ is an open subgroup of H, and if we write H ′′ := H ′∩

⋂n
i=1 giHg−1

i ,
then

(IndG
H V )H′

⊂ (IndG
H V )H′′ ∼−→ (A[G]⊗A[H] V )H′′

∼−→ ⊕n
i=1(giV )H′′

= ⊕n
i=1giV

g−1
i H′′gi .

Since g−1
i H ′′gi is an open subgroup of H, each of the summands appearing on the

right-hand side is finite dimensional, and thus so is their direct sum. Thus IndG
H V
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is admissible as claimed. If we suppose that V instead is locally admissible, or
equivalently, is the inductive limit of its admissible subrepresentations, we see that
the same is true of IndG

H V , since IndG
H commutes with the formation of induction

limits (being naturally isomorphic to A[G]⊗A[H] –).

To prove the other direction of (2), note first that the inclusion A[H] ⊂ A[G] gives
rise to an H-equivariant embedding V ↪→ A[G]⊗A[H]V

∼−→ IndG
H V. Thus if IndG

H V
is (locally) admissible as a G-representation, and hence also (locally) admissible as
an H-representation, by part (1), the same is true of its H-subrepresentation V . �

2.3. Proposition. If H is an open subgroup of G of finite index, then an object V
of the category Modsm

G (A) (resp. Modadm
G (A), resp. Modl.adm

G (A)) is injective if and
only if IndG

H V is injective as an object of the same category.

Proof. Consider the sequence of adjunction isomorphisms

HomA[G](U, IndG
H V ) ∼−→ HomA[H](U, V ) ∼−→ HomA[G](IndG

H U, V ).

Since the composite of IndG
H (which is naturally equivalent to A[G]⊗A[H] –) and the

forgetful functor induces an exact functor from Modsm
G (A) (resp. Modadm

G (A), resp.
Modl.adm

G (A)) to itself (here we are taking into account Lemma 2.2), the proposition
follows. �

2.4. Definition. (1) If ζ : Z → A× is a smooth character and V is a represen-
tation of G (resp. K) over A, then we let

V Z=ζ := {v ∈ V | z · v = ζ(z)v for all z ∈ Z}

(resp. V Z∩K=ζ := {v ∈ V | z · v = ζ(z)v for all z ∈ Z ∩K}.)
(2) If u ∈ A× and V is a representation of G over A, then we let

V $=u := {v ∈ V |$ · v = uv}.

Since the subrepresentation of a smooth admissible (resp. smooth locally admissi-
ble, resp. smooth) representation is again smooth admissible (resp. smooth locally
admissible, resp. smooth), we see, in the context of the preceding definition, that
the construction V 7→ V Z=ζ induces a functor Modadm

G (A) → Modadm
G,ζ (A) (resp.

Modl.adm
G (A) → Modl.adm

G,ζ (A), resp. Modsm
G (A) → Modsm

G,ζ(A)) that is right adjoint
to the forgetful functor, that the construction V 7→ V Z∩K=ζ induces a functor
Modsm

K (A) → Modsm
K,ζ(A) that is right adjoint to the forgetful functor, and that

the construction V 7→ V $=u induces a functor Modadm
G (A) → Modadm

G,$=u(A) (resp.
Modl.adm

G (A) → Modl.adm
G,$=u(A), resp. Modsm

G (A) → Modsm
G,$=u(A)) that is right ad-

joint to the forgetful functor. In particular, the functors V 7→ V Z=ζ , V 7→ V Z∩K=ζ ,
and V 7→ V $=u all preserve injectives.

2.5. Lemma. (1) If ζ : Z → A× is a smooth character, then each of the cate-
gories Modadm

G,ζ (A), Modl.adm
G,ζ (A), Modsm

G,ζ(A), Modsm
K,ζ(A) are abelian, and

the last three have enough injectives.
(2) If u ∈ A×, then each of the categories Modadm

G,$=u(A), Modl.adm
G,$=u(A), and

Modsm
G,$=u(A) is abelian, and the last two have enough injectives.
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Proof. The abelianess claims are evident. To establish the claim of (1) regarding
injectives, let V be an object of Modl.adm

G,ζ (A) (resp. Modsm
G,ζ(A), resp. Modsm

K,ζ(A)),
and let V ↪→ W be an A[G]-linear embedding into an injective object in Modl.adm

G (A)
(resp. Modsm

G (A), resp. Modsm
K (A)). This embedding then factors through an em-

bedding V ↪→ WZ=ζ (resp. V ↪→ WZ∩K=ζ in the Modsm
K,ζ case), and the latter

object is injective in Modl.adm
G,ζ (A) (resp. Modsm

G,ζ(A), resp. Modsm
K,ζ(A)), as was

noted above. The claim of (2) regarding injective is proved analogously, utilizing
the functor V 7→ V $=u. �

3. Main result

We introduce notation for some subgroups of G that we will need to consider,
namely: we write G+ := {g ∈ G : valF (det g) ≡ 0 (mod 2)}, write I :=

(
o× o
$o o×

)
(an Iwahori subgroup of K), let NG(I) denote the normalizer in G of I, set G :=
NG(I)/$Z, and write N0 := ( 1 o

0 1 ) .

We recall the following result, proved by Christophe Breuil and the second author
in [1], which is the main input into the theorems of this note.

3.1. Theorem. Let V be an object in Modadm
G,$=1(k), and if p = 2 then assume

that V ∼= IndG
G+ V ′ for some representation V ′ of G+. Then there exists a smooth

admissible representation Ω of G in Modadm
G,$=1(k) and a G-equivariant injection

V ↪→ Ω such that V |K ↪→ Ω|K is an injective envelope of V |K in Modsm
K (k).

Proof. [1] Corollary 9.11. If p = 2 then [1] Proposition 9.2 implies that V satisfies
the conditions of [1] Corollary 9.11. �

The next two propositions will let us bootstrap the preceding theorem from the
case of coefficients in a field to the more general case of coefficients in an Artinian
ring.

3.2. Proposition. Suppose that p is odd. If V is an object of Modadm
G,$=1(A) with

the property that V [m] is injective as an object of Modsm
K (k), and if

(3.3) V ↪→ W

is an injective envelope of V in the category Modsm
K (A), then the K-action on

W may be extended to a G-action in such a way that W becomes an object of
Modadm

G,$=1(A), and the embedding (3.3) is G-equivariant.

Proof. We adapt the method of proof of [4, Thm. 6.1]. First, since V is an essential
extension of V [m] (even as an A-module), we see that W is equally well the K-
injective envelope of V [m]. It then follows from Lemma 2.1 that the embedding
V [m] ↪→ W [m] is an isomorphism. Thus W is an essential extension (even as
an A-module) of V [m], and since by [3, Prop. 2.1.2] it is injective as a smooth
I-representation, it is an I-injective envelope of V [m], and hence also of V .

Since I is open in K, it follows from [3, Prop. 2.1.2] that V [m] is injective as a
smooth I-representation over k. Since p is odd and G/I has order two, in fact V [m]
is injective as a smooth G-representation over k. Thus an analogous argument to
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that of the preceding paragraph shows that if V ↪→ W1 denotes an injective envelope
of V as an G-representation over A, then W1 is also an I-injective envelope.

Thus we may find an I-equivariant isomorphism W
∼−→ W1, respecting the given

embeddings of V into source and target. We use this isomorphism to transport
the G-action on W1 to a corresponding action on W . Since G is the amalgam
of KZ and NG(I) along IZ, we may then glue the K-action and G-action on W
to obtain a G-action on W with respect to which ( $ 0

0 $ ) acts trivially, which by
construction is compatible with the G-action on V . Finally, since V is admissible
as a G-representation (and so, equivalently, as a K-representation), [3, Prop. 2.1.9]
shows that W is admissible as a K-representation (and so, equivalently, as a G-
representation). This completes the proof of the proposition. �

3.4. Proposition. Suppose that p = 2. If V is an object of Modadm
G,$=1(A) with the

property that V [m] is injective as an object of Modsm
K (k), and if

(3.5) IndG
G+ V ↪→ W

is an injective envelope of IndG
G+ V in the category Modsm

K (A), then the K-action
on W may be extended to a G-action in such a way that W becomes an object of
Modadm

G,$=1(A), and the embedding (3.5) is G-equivariant.

Proof. Let V ↪→ W1 denote an injective envelope of V in the category Modsm
K (A).

Note that IndG
G+ V

∼−→ V ⊗A IndG
G+ 1 (where here 1 denotes the free rank one trivial

representation of G+ over A). Since IndG
G+ 1 is trivial when restricted to K, we find

that there is a corresponding A[K]-linear isomorphism W
∼−→ W1 ⊗A IndG

G+ 1.

There is a natural isomorphism G/I
∼−→ G/G+, and hence natural G-equivariant

isomorphisms IndG
G+ 1 ∼−→ IndGI 1 and IndG

G+ V
∼−→ IndGI V. Thus there is a com-

mutative diagram of isomorphism

IndG
G+ V

∼ //
� _

��

IndGI V� _

��
W

∼ // W1 ⊗A IndG
G+ 1

∼ // W1 ⊗A IndGI 1
∼ // IndGI W1,

in which the top horizontal arrow is G-equivariant, the left-hand vertical arrow is K-
equivariant, the right hand vertical arrow is G-equivariant, and the bottom three ar-
rows are, reading from left to right, K-equivariant, I-equivariant, and I-equivariant
respectively. We may use the bottom row of this diagram (whose composite is I-
equivariant) to transport the G-action on IndGI W1 to a corresponding action on W .
Since G is the amalgam of KZ and NG(I) along IZ, we see this action glues with
the K-action on W to induced a G-action on W with respect to which ( $ 0

0 $ ) acts
trivially. A consideration of the diagram shows that the embedding (3.5) is both
K-equivariant and G-equivariant, and hence is G-equivariant. Finally, since V is
admissible as a G-representation (and so, equivalently, as a K-representation), the
same is true of IndG

G+ V , by Lemma 2.2. Thus [3, Prop. 2.1.9] shows that W is
admissible as a K-representation (and so, equivalently, as a G-representation), and
the proof of the proposition is complete. �

We can now prove our first main result.
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3.6. Theorem. If u ∈ A×, then any injective object of Modl.adm
G,$=u(A) is injective

as a smooth K-representation over A.

Proof. We begin with a straightforward reduction to the case u = 1. Namely, let
B = A[x]/(x2−u); note that B ∼= A⊕A as an A-module. Thus if V is an injective
object of Modl.adm

G,$=u(A), then V is a direct summand of B ⊗A V when the latter is
regarded as an object of Modl.adm

G,$=u(A), and so it suffices to verify that the latter
is injective as a smooth K-representation over A. A consideration of the natural
isomorphism HomA[K](U,B ⊗A V ) ∼−→ HomB[K](B ⊗A U,B ⊗A V ), for objects U
of Modsm

K (A), shows in turn that it suffices to prove that B ⊗A V is injective as an
object of Modsm

K (B).

Now B is Gorenstein over A, i.e. there is an isomorphism of B-modules

B
∼−→ HomA(B,A),

and hence there is an isomorphism of B[G]-modules

B ⊗A V
∼−→ HomA(B, V ).

A consideration of the resulting isomorphism

HomB[G](W,B ⊗A V ) ∼−→ HomB[G]

(
W,HomA(B, V )

) ∼−→ HomA[G](W,V ),

for objects W of Modl.adm
G,$=u(B), shows that B ⊗A V is injective as an object of

Modl.adm
G (B). Thus the claim of the theorem for Modl.adm

G,$=u(A) follows from the
corresponding claim for Modl.adm

G,$=u(B).

If χu : F× → B× denotes the character defined by χu(a) = uvalF (a), then twist-
ing by χu ◦ det induces an equivalence of categories between Modl.adm

G,$=1(B) and
Modl.adm

G,$=u(B) (with an essential inverse given via twisting by χ−1
u ). Thus the

claim of the theorem for Modl.adm
G,$=u(B) follows from the corresponding claim for

Modl.adm
G,$=1(B). Altogether, we have reduced to a consideration of the case when

u = 1, and we assume that indeed u = 1 from now on.

In the remainder of the proof we treat the cases when p is odd and p = 2 separately.
Thus suppose first that p is odd, and let V be an injective object of Modl.adm

G,$=1(A).
If U is an admissible G-subrepresentation of V , then by Theorem 3.1 there is a
G-equivariant map U [m] ↪→ Ω, where Ω is an object of Modadm

G (k) which is also an
injective envelope of U [m] as a smooth K-representation over k. By the injectivity
of V , we may extend the inclusion U [m] ⊂ V to a G-equivariant map Ω → V .
Since Ω is an essential extension of U [m] (even as a K-representation) this latter
map must again be an embedding; we thus regard Ω as a G-subrepresentation of V
containing U [m].

If we write X = U + Ω ⊂ V , then X is an admissible G-subrepresentation of V
containing U , and X[m] = Ω is injective as a smooth K-representation over k.
Thus by Proposition 3.2, we may find a G-equivariant embedding X ↪→ W, where
W is an object of Modadm

G,$=1(A) which is an injective envelope of X as a smooth
K-representation over A. By the injectivity of V we may extend the inclusion
X ⊂ V to a G-equivariant map W → V, which must again be an inclusion, since
W is an essential extension of X (even as a K-representation). Thus we see that U
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is contained in an admissible G-subrepresentation W of V which is injective when
regarded as a smooth K-representation over A.

Since V is locally admissible, it is isomorphic to the inductive limit of its admissible
G-subrepresentations. The result of the preceding paragraph shows that it is in fact
the inductive limit of those of its admissible G-subrepresentations that are injective
as smooth K-representations over A. It follows from [3, Prop. 2.1.3] that V itself
is injective as an object of Modsm

K (A).

Suppose now that p = 2. In this case, the preceding argument breaks down, and we
must use the technique of passing from V to IndG

G+ V . (In fact, we apply it twice.)
To this end, we first note that since V is an injective object of Modl.adm

G (A), the same
is true of IndG

G+ V , by Proposition 2.3. Now the natural embedding V ↪→ IndG
G+ V

of injective objects in Modl.adm
G (A) must split, and thus V is a direct summand

of IndG
G+ V . Hence it suffices to verify that IndG

G+ V is injective as an object of
Modsm

K (A). Iterating this argument, it suffices in fact to show that IndG
G+ IndG

G+ V
is injective as an object of Modsm

K (A), and this is what we will do.

Let U be an admissible subrepresentation of V . By Theorem 3.1 there is a G-
equivariant map IndG

G+ U [m] ↪→ Ω, where Ω is an object of Modadm
G (k) which is also

an injective envelope of IndG
G+ U [m] as a smooth K-representation over k. By the

injectivity of IndG
G+ V , we may extend the inclusion IndG

G+ U [m] ⊂ IndG
G+ V to a

G-equivariant map Ω → IndG
G+ V . Since Ω is an essential extension of IndG

G+ U [m]
(even as a K-representation) this latter map must again be an embedding; we thus
regard Ω as a G-subrepresentation of IndG

G+ V containing IndG
G+ U [m].

Write X = IndG
G+ U + Ω ⊂ V , so that X is an admissible G-subrepresentation of

IndG
G+ V containing IndG

G+ U , with X[m] = Ω an injective smooth K-representation
over k. Since V is the inductive limit of its admissible subrepresentations U , the in-
duction IndG

G+ V is the inductive limit of its admissible subrepresentations IndG
G+ U,

and hence also is the inductive limit of its admissible subrepresentations X for which
X[m] is injective as an object of Modsm

K (k). The representation IndG
G+ IndG

G+ V is
thus the inductive limit of its corresponding subrepresentations IndG

G+ X.

Given such an X, by Proposition 3.4 we may find a G-equivariant embedding
IndG

G+ X ↪→ W, where W is an object of Modl.adm
G,$=1(A) which is an injective envelope

of IndG
G+ X in the category Modsm

K (A). Since IndG
G+ IndG

G+ V is injective as an object
of Modl.adm

G,$=1(A), we may extend the embedding

IndG
G+ X ↪→ IndG

G+ IndG
G+ V

to a G-equivariant map

W ↪→ IndG
G+ IndG

G+ V,

which must again be an embedding, since W is an essential extension of IndG
G+ X

(even as a K-representation). Thus IndG
G+ IndG

G+ V is in fact the inductive limit
of those of its admissible G-subrepresentations that are injective as objects of
Modsm

K (A). It follows from [3, Prop. 2.1.3] that IndG
G+ V IndG

G+ V is an injective
object of Modsm

K (A). As already observed, this suffices to complete the proof of the
theorem. �
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Our next result removes the hypothesis of having fixed action of $ from the pre-
ceding theorem.

3.7. Theorem. If V is an injective object of Modl.adm
G (A), then V is also injective

as an object of Modsm
K (A).

Proof. Let B = A[$±1] ∼−→ A[t±1]. If U is any locally admissible G-representation,
then U =

⊕
n Un, where n runs over the maximal ideals of B and Un denotes the

localization of U at n. Furthermore,

Un = U [n∞] :=
⋃
i≥1

U [ni],

where U [ni] denotes the subspace of U consisting of elements annihilated by ni.
Each maximal ideal n is of the form (m, f), where m is the maximal ideal of A,
and f ∈ A[t] is a monic polynomial. Since A is Artinian, so that m is a nilpotent
ideal, we see that the powers ni are cofinal with the sequence of principal ideals
(f i). Thus we may equally well write

Un =
⋃
i≥1

U [f i],

where of course U [f i] denotes the subspace of U consisting of elements annihilated
by f i.

Suppose now that V is an injective object of Modl.adm
G (A). Since, by the discus-

sion of the preceding paragraph, V is the inductive limit of the V [f i] (where f i

runs over the various powers of the various monic polynomials associated to the
various maximal ideals n of B), in order to show that V is injective as an object
of Modsm

K (A), it suffices, by [3, Prop. 2.1.3], to show that each V [f i] is an injective
object of Modsm

K (A).

If we write C := B/(f i), and if we let u denote the image of t in C, then V [f i]
is an object of Modl.adm

G,$=u(C). Since V is injective as an object of Modl.adm
G (A),

one immediately sees that V [f i] is injective as an object of Modl.adm
G,$=u(C). It then

follows from Theorem 3.6 that V [f i] is injective as an object of Modsm
K (C). Since

C is finite flat over A, we see that V [f i] is equally well injective as an object of
Modsm

K (A), as required. (The forgetful functor from Modsm
K (C) to Modsm

K (A) is
right adjoint to the exact functor C ⊗A –, and so preserves injectives.) �

Finally, we prove an analogue of the preceding results in the context of a fixed
central character.

3.8. Theorem. If ζ : Z → A× is a smooth character, and V is an injective object
in Modl.adm

G,ζ (A), then the restriction of V to K is an injective object in Modsm
K,ζ(A).

Proof. Write u = ζ($). If V ↪→ W is an A[G]-linear embedding of V into an
injective object W of Modl.adm

G,$=u(A), then it factors through V ↪→ WZ∩K=ζ . The
target of this embedding lies in Modl.adm

G,ζ (A), and so the injectivity of V implies
that this embedding is split; i.e. V is a direct summand of WZ∩K=ζ as an A[G]-
module. It thus suffices to note that WZ∩K=ζ is an injective object of Modsm

K,ζ(A),
since W is injective as an object of Modsm

K (A), by Theorem 3.6, and U 7→ UZ∩K=ζ

is right adjoint to the embedding of Modsm
K,ζ(A) into Modsm

K (A). �
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3.9. Corollary. If V is injective any of the categories Modl.adm
G,ζ (A) (for some

smooth character ζ : Z → A×), Modl.adm
G,$=u(A) (for some u ∈ A×), of Modl.adm

G (A),
then V |N0 is an injective object in Modsm

N0
(k).

Proof. In the latter two cases this follows from Theorems 3.6 and 3.7, together
with [3, Prop. 2.1.5]. In the case of Modl.adm

G,ζ (A), it suffices, by Theorem 3.8, to
show that an injective object of Modsm

K,ζ(A) is injective as an N0-representation.
To see this, note first that any injective object of Modsm

K,ζ(A) is the inductive limit
of injective modules that are direct summands of CS(K, A)r, for some r ≥ 0. By
a consideration of Lemma 2.1.10 and Proposition 2.1.11 of [3] we then see that if
suffices to show that CS(K, A)Z=ζ is injective as an N0-representation. If we write
K1 := K

⋂
SL2(F ), then clearly CS(K, A)Z=ζ ∼−→ CS(K1, A). The latter is injective

as an N0-representation, by [3, Prop. 2.2.11], and the corollary is proved. �

Let G be the group of Qp-valued points of a connected reductive linear algebraic
group over Qp. Let P be a parabolic subgroup of G with a Levy subgroup M and
let P be the parabolic subgroup of G opposite to P with respect to M . In [2], the
first author defined a left exact functor OrdP : Modl.adm

G (A) → Modl.adm
M (k) such

that for all U in Modl.adm
M ) and V in Modl.adm

G (A) one has

HomG(IndG
P

U, V ) ∼= HomM (U,OrdP (V )).

Further, for i ≥ 0 in [3] there are defined functors Hi OrdP : Modl.adm
G (A) →

Modl.adm
M (A) such that H0 OrdP = OrdP and {Hi OrdP : i ≥ 0} is a δ-functor.

It is conjectured there that for i ≥ 1 the functors Hi OrdP are effaceable, which
would imply that they are universal, and hence coincide with the derived functors
of OrdP .

3.10. Corollary. If G = GL2(F ) and V is an injective object in Modl.adm
G (A) (resp.

Modl.adm
G,ζ (A), resp. Modl.adm

G,$=u(A)), then Hi OrdP (I) = 0 for all i ≥ 1.

Proof. Since by Corollary 3.9, I|N0 is an injective object in Modsm
N0

(k) we have that
Hi(N0, I) = 0 for all i ≥ 1. The claim follows from the definition of Hi OrdP , see
[3, Def.3.3.1]. �

Since Modl.adm
G (A), Modl.adm

G,ζ (A), and Modl.adm
G,$=u(A) each have enough injectives,

we conclude that the Hi OrdP are effaceable for i ≥ 1 on any of these categories.
In particular, we have verified [3, Conj. 3.7.2] in the case G = GL2(F ).

3.11. Remark. The authors of this note strongly believe that an analogue The-
orem 3.1 holds for other groups than GL2(F ). If this is the case than our proof
should go through to establish [3, Conj. 3.7.2] for these groups.
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