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Abstract. We develop the basic theory of formal algebraic stacks, closely

following the development of the theory of formal algebraic spaces in the Stacks

Project [Stacks].
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1. Introduction

Our goal in this paper is to introduce some basic definitions and results related
to the notion of a formal algebraic stack over a scheme S.

1.1. Overview. In the theory of formal schemes, one finds a tension between two
points of view. Firstly, a formal scheme admits an open cover by affine formal
schemes, and an affine formal scheme may be regarded as a geometric object (the
formal spectrum) associated to a certain kind of complete ring. In particular, we can
ultimately refer back to these complete rings for defining various local properties of
a formal scheme, or for making geometric constructions involving formal schemes.
As simple examples: the notion of a locally Noetherian formal scheme rests on
having such ring-based models for the local structure of formal schemes, as does
the notion of a p-adic formal scheme being flat over Zp, and the construction of the
flat part of a p-adic formal scheme which is not itself flat over Zp.

On the other hand, formal schemes are also often profitably regarded as certain
kinds of Ind-schemes, namely Ind-schemes with respect to transition morphisms
that are thickenings (in the sense that they induce isomorphisms on the underlying
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reduced subschemes). This point of view fits well into the functor-of-points per-
spective, and in practice, formal schemes often arise as Ind-schemes in this way.
However, certain properties of formal schemes are difficult to access from this view-
point: consider the difficulty of deciding whether or not a certain p-adic formal
scheme is flat over Zp, when it is given as a direct limit of schemes, on each of
which p is locally nilpotent! (Even less obvious is how to construct the Zp-flat part
of such a formal scheme, when it is described as an Ind-scheme in this way.)

In the Stacks Project [Stacks] (whose overall framework we follow) the theory
of formal schemes is incorporated into the more general theory of formal algebraic
spaces [Stacks, Tag 0AHW], and the latter theory is developed in a manner that
takes into account both of the viewpoints described above. Formal algebraic spaces
are always regarded as sheaves on the big fppf site of some base scheme S (so the
functor-of-points viewpoint is built in to the foundations), and affine formal alge-
braic spaces are defined as Ind-affine schemes [Stacks, Tag 0AI7] with thickenings
as transition morphisms (the inductive limit being formed in the category of fppf
sheaves), while general formal algebraic spaces are defined as sheaves that admit an
étale cover by a disjoint union of affine formal algebraic spaces [Stacks, Tag 0AIL].

However, under mild hypotheses (quasi-compactness and quasi-separatedness),
one can show that a formal algebraic space admits a description as an Ind-algebraic
space with thickenings as transition morphisms [Stacks, Tag 0AJE] (see also [Yas09,
Prop. 3.32], where this result is originally proved, although in a somewhat different
foundational set-up). Conversely, such an Ind-algebraic space is in fact a formal
algebraic space [Stacks, Tag 0AIU]. This latter result, while not difficult to prove
(the key input is the invariance of the étale site with respect to thickenings), is
crucial. It shows that the Ind-object under consideration may be described (étale
locally) in terms of certain complete rings, which, as already noted above, provides
a key input to many of the basic definitions and constructions in the theory of
formal schemes and formal algebraic spaces.

In this paper we develop the theory of formal algebraic stacks along similar lines
to the Stacks Project’s development of the theory of formal algebraic spaces. In
particular, while our definition of a formal algebraic stack in Section 5 will be in
terms of having local models that are affine formal algebraic spaces (local now in the
smooth topology), in Section 6 we show that (under the hypotheses of being quasi-
compact and quasi-separated) they admit a description as Ind-algebraic stacks, and
we also show that certain Ind-algebraic stacks are formal algebraic stacks. (The
main obstacle to be overcome in the context of stacks is that the smooth site is not
invariant under thickenings, so that the construction of smooth local affine formal
models for the Ind-algebraic stacks under consideration is more involved in general
than in the case of formal algebraic spaces.)

In Section 7 we define the notion of adic morphisms, which provides the relative
version of the notion of an adic formal algebraic stack. (For example, if A is a
Noetherian ring complete with respect to an ideal I, then an I-adic formal algebraic
stack consists of a formal algebraic stack equipped with an adic morphism to Spf A.)
In Section 8 we develop a general framework for defining various properties of formal
algebraic stacks in terms of properties of affine formal algebraic spaces, and then
apply it to define a number of such properties.

The remaining sections are somewhat more specialized to the applications that
we have in mind. In Section 9, we develop a framework for defining closed substacks

http://stacks.math.columbia.edu/tag/0AHW
http://stacks.math.columbia.edu/tag/0AI7
http://stacks.math.columbia.edu/tag/0AIL
http://stacks.math.columbia.edu/tag/0AJE
http://stacks.math.columbia.edu/tag/0AIU
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of formal algebraic stacks in a functorial manner. For example, this allows us to
define the flat part of a locally Noetherian formal algebraic stack over Spf Zp. In
Section 10, we prove a technical result which, in applications, will allow us to prove
that, in certain situations, the “scheme-theoretic image” of a p-adic formal algebraic
stack is again a p-adic formal algebraic stack. Finally, in Section 11, we provide
a criterion (phrased in terms of the existence of a certain obstruction theory) for
a formal algebraic stack over a locally Noetherian base scheme to itself be locally
Noetherian.

The earlier sections develop necessary preliminary material. Section 2 gives a
rapid development of the theory of colimits in 2-categories, which forms the tech-
nical basis for the theory of Ind-algebraic stacks. We follow the very concrete
view-point on 2-categories adopted in [Stacks], and also in [GR04]. We recom-
mend that the reader skip or at best skim this section, and rely instead on their
intuition regarding the formation of Ind-stacks. (We also note that in this draft,
some arguments in Section 2 are incomplete or missing. We hope to fill them in
eventually.)

Section 3 discusses several other stack-theoretic notions that will be required in
our later development. The emphasis is on extending various geometric properties
and constructions (properties of morphisms, underlying reduced substacks, topo-
logical invariance of the small étale site) from the context of algebraic stacks to
more general contexts, so that we may apply them when studying formal algebraic
stacks or Ind-algebraic stacks. Ind-algebraic stacks themselves are formally defined
in Section 4.

We anticipate that much of the material in this paper will ultimately be incorpo-
rated into the Stacks Project, and indeed, some of it already has been, sometimes
undergoing improvements in the process (e.g. Lemma 6.4 below).

1.2. Conventions. We will work in the overall framework of the Stacks Project
[Stacks], and so will work with stacks on the fppf site of S, although we could
equally well have worked with stacks on the étale site.

Throughout the paper, all stacks under consideration will be stacks in groupoids,
and so we usually write simply stack rather than the more cumbersome stack in
groupoids. (We make an exception in the foundational Section 2, where we will
write stacks in groupoids, just to make the context of our discussion clear.)

1.3. Acknowledgements. The writing of this paper was prompted by the require-
ments of the papers [Car+19] and [EG19a], and I would like to thank my coauthors
Ana Caraiani, Toby Gee, and David Savitt for a fruitful collaboration, as well as for
their helpful comments on the present paper. Toby Gee in particular has stewarded
the development of this paper since its inception, and I am indebted to him for his
encouragement, and for his careful reading of its many iterations.

I would also like to thank Bao V. Le Hung, whose suggestions led to my original
proof of Lemma 6.4, as well as Brian Conrad, who read an earlier version of the
manuscript closely and made many helpful suggestions for improvement. Finally,
I owe a special thanks to Johan de Jong, for his support and encouragement, and
for his work on incorporating the material of this paper into the Stacks Project.
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2. 2-categorical background

In this section, we recall and develop various 2-categorical notions that we will
require in the sequel. The most important of these is the notion of 2-colimits in
a 2-category, which we will use in Section 4 to define the notion of Ind-algebraic
stacks. We also recall the notion of a strict pseudo-functor between 2-categories,
which will be useful for describing the functorial properties of certain constructions
we make later on (such as underlying reduced substacks), as well as some related
notions.

The discussion that follows would perhaps be better expressed in a more flexible
higher categorical language. However, we follow the more concrete approach of the
stacks project [Stacks] (which is also the approach adopted in [GR04]) by working
explicitly with 2-categories in the sense defined there; this explicit approach also
accords well with our own mathematical limitations.

We first remind the reader that the notion of 2-category is defined in [Stacks,
Tag 003H] (the notion defined there is also sometimes referred to as a strict 2-
category), while the notion of pseudo-functor from a category to a 2-category is
defined in [Stacks, Tag 003N] (and see also Definition 2.1 below).

The main examples of 2-categories that we will consider are the 2-category of
all categories lying over some base category D, the 2-category of categories fibred
over D, the 2-category of categories fibred in groupoids over D, and (assuming that
D is equipped with the structure of a site) the 2-category of stacks in groupoids
over D.

As already remarked, our first goal is to define the notion of a 2-diagram in
a 2-category, and the related notion of 2-colimit. In fact, just as a diagram in a
category C indexed by a category I is simply a functor from I to C, a 2-diagram is
in a 2-category C indexed by a category I is simply a pseudo-functor from I to C.
We formalize this in the following definition (which may then be regarded simply
as a recollection of the notion of pseudo-functor).

Definition 2.1. If I is a category and C is a 2-category, then a 2-diagram in
C indexed by I is a pseudo-functor (ϕ, α) from I to C. Explicitly, then, such a
2-diagram consists of the following data:

(1) For each x ∈ I, an object ϕ(x) of C.
(2) For each morphism f : x→ y in I, a 1-morphism ϕ(f) : ϕ(x)→ ϕ(y) in C.
(3) For every object x of I, a 2-morphism αx : idϕ(x) → ϕ(idx) in C.
(4) For every composable pair of morphisms f : x → y, g : y → z in I, a

2-morphism αg,f : ϕ(g ◦ f)→ ϕ(g) ◦ ϕ(f) in C.
This data is required to satisfy the following conditions:

(4) The various 2-morphisms αx and αg,f are isomorphisms.
(5) For any morphism f : x→ y in I, we have

αidy,f = αy ? idϕ(f)

and

αf,idx
= idϕ(f) ?αx.

(6) For any composable triple f : w → x, g : x → y, h : y → z of morphisms
in I, we have

(idϕ(h) ?αg,f ) ◦ αh,g◦f = (αh,g ? idϕ(f)) ◦ αh◦g,f .

http://stacks.math.columbia.edu/tag/003H
http://stacks.math.columbia.edu/tag/003N
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Remark 2.2. In this section we typically denote a 2-diagram in C indexed by I by
the pair (ϕ, α); this is understood to be short-hand for the data described in the
preceding definition. In later sections (when we apply the general theory here in the
case of Ind-algebraic stacks), the indexing category I will typically be a partially
ordered set, the 2-category C will be the category of stacks in groupoids over some
site, and we will often denote a 2-diagram in this category simply by {Xi}, where
i runs over the elements of I. In the more precise notation introduced above, we
have Xi := ϕ(i), while the 2-morphisms α are left implicit (and are presumed to be
evident from a consideration of the situation at hand).

Remark 2.3. For the brave reader who attempts to compare our discussion with that
in [GR04], we note the the direction of the coherence constraint αg,f in Definition 2.1
(which follows the conventions of [Stacks]) is opposite to that of [GR04, Def. 2.1.14].
Since this coherence constraint is required to be an isomorphism, this doesn’t have
any affect on the subsequent development of the theory, but should be taken into
account when comparing formulas here or in [Stacks] to those of [GR04].

A key fact is that the 2-diagrams indexed by I with values in C may naturally
be regarded as the objects of a 2-category (see e.g. [GR04, Def. 2.2.12 (ii)]). The
next several definitions and remarks explicate this additional structure.

We begin by defining the notion of a 1-morphism between two 2-diagrams.

Definition 2.4. Let I be a category, let C be a 2-category, and let (ϕ1, α1) and
(ϕ2, α2) be 2-diagrams indexed by I with values in C.

A 1-morphism (F,ψ) from (ϕ1, α1) to (ϕ2, α2) consists of the following data:

(1) For each object x of I, a 1-morphism Fx : ϕ1(x)→ ϕ2(x) in C.
(2) For each morphism f : x → y in I, a 2-morphism ψf : ϕ2(f) ◦ Fx →

Fy ◦ ϕ1(f) in C.
This data is required to satisfy the following conditions:

(3) The various 2-morphisms ψf are isomorphisms.
(4) For any object x of I, the two 2-morphisms

idFx ?α1,x : Fx = Fx ◦ idϕ1(x) → Fx ◦ ϕ1(idx)

and

ψidx
◦ (α2,x ? idFx

) : Fx = idϕ2(x) ◦Fx → ϕ2(idx) ◦ Fx → Fx ◦ ϕ1(x)

coincide.
(5) For any pair f : x → y, g : y → z of composable morphisms in I, the

2-morphisms

(idFz
?α1,g,f ) ◦ ψg◦f : ϕ2(g ◦ f) ◦ Fx → Fz ◦ ϕ1(g ◦ f)→ Fz ◦ ϕ1(g) ◦ ϕ1(f)

and

(ψg ? idϕ1(f)) ◦ (idϕ2(g) ?ψf ) ◦ (α2,g,f ? idFx
) : ϕ2(g ◦ f) ◦ Fx → ϕ2(g) ◦ ϕ2(f) ◦ Fx

→ ϕ2(g) ◦ Fy ◦ ϕ1(f)→ Fz ◦ ϕ1(g) ◦ ϕ1(f)

coincide.

Remark 2.5. A 1-morphism from (ϕ1, α1) to (ϕ2, α2), as in Definition 2.4, is the
same as a pseudo-natural transformation (in the sense of [GR04, Def. 2.2.1]) between
the pseudo-functors (ϕ1, α) and (ϕ2, α2).
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Definition 2.6. Suppose that I is a category and C is a 2-category, that (ϕ1, α1),
(ϕ2, α2), and (ϕ3, α3) are 2-diagrams indexed by I with values in C, that (F1, ψ1) :
(ϕ1, α1) and (F2, ψ2) : (ϕ2, α2) → (ϕ3, α)3 are 1-morphisms of 2-diagrams, in the
sense of Definition 2.4. Then we define the composite 1-morphism

(F3, ψ3) := (F2, ψ2) ◦ (F1, ψ1) : (ϕ1, α1)→ (ϕ3, α3)

as follows:
For an object x of I, the 1-morphism F3,x is defined via

F3,x := F2,x ◦ F1,x : ϕ1(x)→ ϕ3(x),

while for a morphism f : x→ y of I, the 2-morphism ψ3,f is defined via

ψ3,f := (ψ2,f ? idF1,x
) ◦ (idF2,y

?ψ1,2) : ϕ3(x) ◦ F3,x = ϕ3(x) ◦ F2,x ◦ F1,x

→ F2,y ◦ ϕ2(f) ◦ F1,x → F2,y ◦ F1,y ◦ ϕ1(f) = F3,y ◦ ϕ1(f).

We leave it to the reader to check that, defined in this manner, the composite is
indeed a 1-morphism of 2-diagrams. (See also [GR04, Rem. 2.2.5 (iii)].)

We next define the notion of a 2-morphism between two 1-morphisms of 2-
diagrams.

Definition 2.7. If (ϕ1, α1) and (ϕ2, α2) are two 2-diagrams in the 2-category C
indexed by the category I, and if (F1, ψ1) and (F2, ψ2) are two 1-morphisms from
(ϕ1, α1) to (ϕ2, α2), then a 2-morphism ξ from (F1, ψ1) to (F2, ψ2) consists of a
2-morphism ξx : F1,x → F2,x for each object x of I, such that for each morphism
f : x→ y in I, we have

(ξy ? idϕ1(f)) ◦ ψ1,f = ψ2,f ◦ (idϕ2(f) ?ξx).

Remark 2.8. If we interpret 1-morphisms from (ϕ1, α1) to (ϕ2, α2) as pseudo-
natural transformations, as in Remark 2.5, then we may interpret 2-morphisms
between 1-morphisms as modifications between those pseudo-natural transforma-
tions, in the sense of [GR04, Def. 2.2.9].

We now define the various forms of composition for 2-morphisms between 1-
morphisms of diagrams.

Definition 2.9. (1) If (ϕ1, α1) and (ϕ2, α2) are two 2-diagrams in the 2-category C
indexed by the category I, if (F1, ψ1), (F2, ψ2), and (F3, ψ3) are three 1-morphisms
from (ϕ1, α1) to (ϕ2, α2), and if ξ1 and ξ2 are 2-morphisms from from (F1, ψ1) to
(F2, ψ2) and from (F2, ψ2) to (F3, ψ3) respectively, then we define the composite
ξ3 := ξ2 ◦ ξ1 from (F1, ψ1) to (F3, ψ3) via

ξ3,x := ξ2,x ◦ ξ1,x : F1,x → F2,x → F3,x,

for each object x of I. (The reader may easily check that ξ3 satisfies the require-
ments to be a 2-morphism.)

(2) If (ϕ1, α1), (ϕ2, α2), and (ϕ3, α3) are three 2-diagrams in the 2-category
C indexed by the category I, if (F1, ψ1) and (G1, η1) are two 1-morphisms from
(ϕ1, α1) to (ϕ2, α2), if (F2, ψ2) and (G2, η2) are two 1-morphisms from (ϕ2, α2) to
(ϕ3, α3), if ξ1 is a 2-morphism from (F1, ψ1) to (G1, η1), and if ξ2 is a 2-morphism
from (F2, ψ2) to (G2, η2), then we define ξ3 := ξ2 ? ξ1 to be the 2-morphism from
(F2, ψ2) ◦ (F1, ψ1) to (G2, η2) ◦ (G1, η1) defined via

ξ3,x := ξ2,x ? ξ1,x
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for each object x ∈ I.

We can now explain how the 2-diagrams indexed by the category I, with values
in the 2-category C, themselves form a 2-category.

Definition 2.10. Fix a category I and a 2-category C.
(1) If (ϕ1, α1) and (ϕ2, α2) are two 2-diagrams indexed by I with values in C,

then we let MorC
(
(ϕ1, α1), (ϕ2, α2)

)
denote the category whose objects are the 1-

morphisms from (ϕ1, α1) to (ϕ2, α2), and whose morphisms are the 2-morphisms
between 1-morphisms. The composition of morphisms is given by Definition 2.9 (1).
(The reader may easily verify that with composition defined in this manner, we do
indeed obtain a category.)

(2) If (ϕ1, α1), (ϕ2, α2), and (ϕ3, α3) are three 2-diagrams in the 2-category C
indexed by the category I, then we define the composition bifunctor

MorC
(
(ϕ1, α1), (ϕ2, α2)

)
×MorC

(
(ϕ2, α3), (ϕ3, α3)

)
→ MorC

(
(ϕ1, α1), (ϕ3, α3)

)
via Definition 2.6 (for objects) and Definition 2.9 (2) (for morphisms). (The reader
may verify that with these definitions we do obtain a bifunctor.)

(3) We let 2 - Diag(I, C) denote the 2-category whose objects are the 2-diagrams
indexed by I with values in C, whose morphisms categories are defined as in part (1),
and whose composition bifunctors are defined as in part (2). (The reader may verify
that with these definitions, we do indeed obtain a 2-category.)

Remark 2.11. The reader may immediately verify that in the context of Defini-
tion 2.10, if C is a (2, 1)-category, then the same is true of 2 - Diag(I, C).

Remark 2.12. The 2-category structure on 2 - Diag(I, C) is one aspect of the 3-
category structure on the collection of all 2-categories, which we don’t discuss here.
(See also [GR04, Rem. 2.2.5 (vi)].)

We wish to explain how the 2-categories of 2-diagrams behave with respect to a
change of indexing category. Since these are genuine 2-categories, we will require
an appropriate notion of pseudo-functor between 2-categories, neither of which a
1-category. The stacks project doesn’t discuss the general notion of a pseudo-
functor between 2-categories (the reader can consult [GR04] for a discussion of this
notion in the same spirit as that of the Stacks Project), and we won’t require this
notion either. However, we will require the following very special case of the general
definition. (See e.g. [GR04, Def. 2.1.14 (ii)].)

Definition 2.13. If C and C′ are both 2-categories, then a strict pseudo-functor
F : C → C′ consists of a function mapping the set of objects of C to the set of
objects of C′ (denoted X 7→ F (X )), and for each pair of objects X and Y of C, a
functor FX ,Y : MorC

(
X ,Y

)
→ MorC

(
F (X ), F (Y)

)
, which takes the unit object to

the unit object in the case X = Y, and such that these functors are compatible
with composition in C and C′.

Remark 2.14. The strictness in the preceding definition is the requirement that
the functor F respects unit objects and composition precisely, rather than up to
various 2-isomorphisms in C′. Again, we refer to [GR04] for the general definition
of a pseudo-functor (when the source as well as the target is allowed to be a general
2-category, rather than just a 1-category, so that [Stacks, Tag 003N] no longer
applies).

http://stacks.math.columbia.edu/tag/003N
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Example 2.15. The 2-fibre product provides an example of a pseudo-functor be-
tween two 2-categories that is not strict in general. More precisely, if C is a 2-
category that admits 2-fibre products, if Y is an object of C, and if Z → Y is
a 1-morphism in C, then the map which on objects is defined via X 7→ X ×Y Z
extends to a pseudo-functor C/Y → C/Z which is not strict in general (and hence
is outside the scope of our discussion). In Remark 3.25, however, we consider a
particular case in which the 2-fibre product can be constructed in such a way that
this pseudo-functor does become strict.

For later use, we also recall what it means for a strict pseudo-functor to be fully
faithful, or to be a 2-equivalence. (The definitions actually make sense for a general
pseudo-functor; see e.g. [GR04, Def. 2.4.9 (ii), (iv)].)

Definition 2.16. Let F : C → C′ be a strict pseudo-functor between a pair of two
categories.

(1) We say that F is fully faithful (resp. strongly faithful) if for each pair of objects
X ,Y ∈ C, the functor FX ,Y is an equivalence of categories (resp. an isomorphism
of categories).

(2) We say that F is a 2-equivalence (resp. a strong 2-equivalence) is F is fully
faithful (resp. strongly faithful) and if each object of C′ is equivalent (resp. 1-
isomorphic) to an object in the image of F .

Remark 2.17. One can define the notion of strict pseudo-natural transformation be-
tween strict pseudo-functors in a fairly evident sense (see e.g. [GR04, Def. 2.2.1 (ii)]),
and one may form a 2-category whose objects are all 2-categories,1 whose 1-morphisms
are the strict pseudo-functor, and whose 2-morphisms are the strict pseudo-natural
transformations. One can then show that a strict pseudo-functor F : C → C′ is a
strong 2-equivalence if and only if it is an equivalence in this 2-category; in partic-
ular, we may find a strict pseudo-functor G : C′ → C which is quasi-inverse to F in
a fairly evident sense. (The reader can see [GR04, Rem. 2.4.29] for more details.)

If a strict pseudo-functor F : C → C′ is a 2-equivalence, then it also admits
a certain kind of quasi-inverse pseudo-functor G; see [GR04, Cor. 2.4.30]. How-
ever, the pseudo-functor G will not be strict in general (and the expression of the
quasi-inverse property involves the notion of modification between pseudo-natural
transformations), and so we don’t discuss this point any further here.

The next definition makes precise the sense in which we can precompose a 2-
diagram with a functor between index categories.

Definition 2.18. Let C be a 2-category, and let G : Ĩ → I be a functor between
categories. We define a strict pseudo-functor (in the sense of Definition 2.13)

G∗ : 2 - Diag(I, C)→ 2 - Diag(Ĩ, C)
as follows:

(1) If (ϕ, α) is a 2-diagram with values in the 2-category C, indexed by the
category I, then we let G∗(ϕ, α) ◦G denote the 2-diagram (ϕ̃, α̃) with values in C,
indexed by Ĩ, whose values on objects x̃ of Ĩ are defined by ϕ̃(x̃) := ϕ

(
G(x̃)

)
, whose

values on morphisms f̃ : x̃ → ỹ in Ĩ are defined by ϕ̃(f̃) := ϕ
(
G(f̃)

)
, for which

the natural transformations α̃x̃, for an object x̃ of Ĩ, are defined by α̃x̃ := αG(x̃),

1We ignore set-theoretic issues here.
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and for which the natural transformations α̃f̃ ,g̃, for composable pairs of morphisms

(f̃ , g̃) in Ĩ, are defined by α̃g̃,f̃ := αG(g),G(g). One immediately verifies (using the

functorial properties of G) that (ϕ̃, α̃) is a 2-diagram.
(2) If (F,ψ) is a 1-morphism between the objects (ϕ1, α1) and (ϕ2, α2) of 2 - Diag(I, C),

then we let G∗(F,ψ) denote the 1-morphism (F̃ , ψ̃) from G∗(ϕ1, α1) to G∗(ϕ2, α2),

whose values on objects x̃ of Ĩ are defined by F̃x̃ = FG(x̃), and whose values on

morphisms f̃ : x̃ → ỹ in Ĩ are defined by ψ̃f̃ := ψG(f̃). One immediately verifies

(using the functorial properties of G) that (F̃ , ψ̃) is a 1-morphism.
(3) If (ϕ1, α1) and (ϕ2, α2) are objects of 2 - Diag(I, C), if (F1, ψ1) and (F2, ψ2)

are two 1-morphisms between these objects, and if ξ is a 2-morphism between
these 1-morphisms, then we define the 2-morphism G∗ξ between G∗(F1, ψ1) and

G∗(F2, ψ2) to be the 2-morphism ξ̃ whose values on objects x̃ of Ĩ are defined by

ξ̃x̃ := ξG(x̃). One immediately verifies (using the functorial properties of G) that ξ̃
is a 2-morphism.

The reader may similarly verify that the above definitions, taken together, define

a strict pseudo-functor G∗ : 2 - Diag(I, C)→ 2 - Diag(Ĩ, C).

Our aim, now, is to define the notion of a 2-colimit of a 2-diagram. In order to
do this, we have to define the notation of a constant 2-diagram. Before doing this,
we recall the notion of a sub-2-category of a 2-category, as well as some related
notions. (See e.g. [Stacks, Tag 02X7] and [GR04, Def. 2.4.9 (iii)].)

Definition 2.19. If C is a 2-category, then a sub-2-category C′ of C consists of a
subset of the set of objects of C, and for each pair of objects X and Y of C, a sub-
category MorC′(X ,Y) of MorC(X ,Y), which contains idX when X and Y coincide,
and such that composition of morphisms in C restricts to induce a composition of
morphisms in C′.

We say that C′ is a full sub-2-category if the inclusion MorC′(X ,Y) ↪→ MorC(X ,Y)
is an equivalence of categories, for each pair of objects X ,Y of C′. We say that C′ is
a strong sub-2-category of C if MorC′(X ,Y) = MorC(X ,Y) for each pair of objects
X ,Y of C′. (Thus, choosing a strong sub-2-category of C amounts to choosing a
subset of the set of objects of C.)

Remark 2.20. Evidently, if C is a (2, 1)-category, so is any full sub-2-category of C.

Example 2.21. The image of a fully faithful strict pseudo-functor is a full sub-2-
category of its target, while the image of a strongly faithful strict pseudo-functor
is a strong sub-2-category of its target.

We now explain how the 2-category C may be embedded as a sub-2-category of
2 - Diag(I, C) (for any index category I).

Definition 2.22. If C is a 2-category and I is an index category, then for any object
X of C, we define the constant 2-diagram ΦX indexed by I to be the object (ϕ, α)
of 2 - Diag(I, C) defined by setting ϕ(x) := X for every object x of I, ϕ(f) = idX
for every morphism f of I, and by defining all the 2-morphisms α to be ididX .

Remark 2.23. In the context of Definition 2.22, let Igp denote the groupoid comple-
tion of I, i.e. the localization of I at all its morphisms. The reader may easily verify
that if X and Y are two objects of C, then MorC(ΦX ,ΦY) is naturally isomorphic to
the functor category Fun

(
Igp,MorC(X ,Y)

)
(whose objects are functors from Igp

http://stacks.math.columbia.edu/tag/02X7
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to MorC(X ,Y), and whose morphisms are natural transformations between these
functors).

In particular, by mapping each object of MorC(X ,Y) to the corresponding con-
stant functor (and mapping morphisms to the corresponding natural transforma-
tion), we obtain an inclusion of categories MorC(X ,Y) ⊆ MorC(ΦX ,ΦY). In this
way we regard C as a sub-2-category of 2 - Diag(I, C).

If F : X → Y is a 1-morphism in C, we will let ΦF : ΦX → ΦY denote the
corresponding constant 1-morphism in 2 - Diag(I, C), and we will use analogous
notation for constant 2-morphisms, if necessary.

Because of its importance in the definition of 2-colimits, we spell out the notion
of 1-morphism of 2-diagrams in the particular case when the target is a constant
2-diagram.

Definition 2.24. If (ϕ, α) is a 2-diagram in the 2-category C, indexed by the
category I, and if X is an object of C, then a 1-morphism (F,ψ) from (ϕ, α) to the
constant 2-diagram ΦX consists of the the following data:

(1) For each object x of I, a 1-morphism Fx : ϕ(x)→ X in C.
(2) For each morphism f : x→ y in I, a 2-morphism ψf : Fx → Fy ◦ϕ(f) in C.

This data is required to satisfy the following conditions:

(3) The various 2-morphisms ψf are isomorphisms.
(4) For any object x of I, we have ψidx

= idFx
?αx.

(5) For any pair f : x→ y, g : y → z of composable morphisms in I, we have

(idFz ?αg,f ) ◦ ψg◦f = (ψg ? idϕ(f)) ◦ ψf .

We similarly spell out the definition of 2-morphisms between 1-morphisms in
this special case.

Definition 2.25. If (ϕ, α) is a 2-diagram in the 2-category C indexed by the cat-
egory I, if X is an object of C, and if (F1, ψ1) and (F2, ψ2) are two 1-morphisms
from (ϕ, α) to ΦX , then a 2-morphism ξ from (F1, ψ1) to (F2, ψ2) consists of a 2-
morphism ξx : F1,x → F2,x for each object x of I, and such that for each morphism
f : x→ y in I, we have

(ξy ? idϕ(f)) ◦ ψ1,f = ψ2,f ◦ ξx.

We may now define the notion of 2-colimit (see e.g. [GR04, Def. 2.5.1], but note
that they work in the more general context in which I is also allowed to be a
2-category). To do this, we note that if (ϕ, α) is an object of 2 - Diag(I, C), if X
and Y are two objects of C, and if (F,ψ) is an object of MorC

(
(ϕ, α),ΦX

)
, then by

evaluating the composition bifunctor

MorC
(
(ϕ, α),ΦX

)
×MorC(ΦX ,ΦY)→ MorC

(
(ϕ, α),Y

)
of 2 - Diag(I, C) on (F,ψ), we obtain a functor MorC(ΦX ,ΦY)→ MorC

(
(ϕ, α),ΦY),

which we may restrict to the constant subcategory MorC(X ,Y) of MorC(ΦX ,ΦY)
(see Remark 2.23) so as to obtain a functor

(2.26) MorC(X ,Y)→ MorC
(
(ϕ, α),Y

)
.

Definition 2.27. If (ϕ, α) is a 2-diagram in the 2-category C, then we say that a
1-morphism (F,ψ) : (ϕ, α)→ ΦX , for some object X of C, realizes X as a 2-colimit
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of the 2-diagram (ϕ, α), if for every object Y of C, the induced functor (2.26) is an
equivalence of categories.

If X is a 2-colimit of (ϕ, α), then we will use the notation

2 - colimI(ϕ, α)
∼−→ X .

(The notation on the arrow should be understood as indicating an equivalence, and
is justified by the following remark.)

Remark 2.28. Standard arguments show that if X0 and X1 are two objects of C,
equipped with 1-morphisms (F0, ψ0) : (ϕ, α) → ΦX0

and (F1, ψ1) : (ϕ, α) → ΦX1

realizing each of them as the 2-colimit of (ϕ, α) in C, then there is a 1-morphism
F : X0 → X1 which is an equivalence in C, and for which ΦF ◦(F0, ψ0) is isomorphic
to (F1, ψ1) (in the category MorC

(
(ϕ, α),ΦX1

)
).

Before making our next remark, we recall the notion of an initial object in a
2-category.

Definition 2.29. If C is a 2-category, an object of x of C is said to be an initial
object of C if for each object y of C, the category MorC(x, y) is a contractible
groupoid, or equivalently a connected setoid2, i.e. a category equivalent to the one-
point category.

Remark 2.30. As noted in [Stacks, Tag 003O], where the analogous definition of a
final object is given, it is perhaps best to restrict this definition to the situation in
which C is actually a (2, 1)-category, and indeed, this is the only case in which we
will apply it.

Remark 2.31. In the case when C is a (2, 1)-category, there is an alternate character-
ization of 2-colimits, as initial objects in a certain 2-category. Namely, if (ϕ, α) is a
2-diagram in the 2-category C, we define a new 2-category MorC

(
(ϕ, α)

)
as follows:

its set of objects is the disjoint union, indexed by the objects X of C, of the set of ob-
jects of MorC

(
(ϕ, α),X

)
; a 1-morphism in MorC

(
(ϕ, α)

)
between two 1-morphisms

(F,ψ) : (ϕ, α) → X and (G, η) : (ϕ, α) → Y consists of a 1-morphism H : X → Y
in C, together with a 2-morphism ξ in MorC

(
(ϕ, α),Y

)
between ΦH ◦ (F,ψ) and

(G, η); a 2-morphism in MorC
(
(ϕ, α)

)
between 1-morphisms (H, ξ) and (H ′, ξ′) con-

sists of a 2-morphism θ : H → H ′ in C such that ξ′x ◦ (θ ? idFx) = ξx for each object
x of the index category I. We leave it to the reader to deduce the definitions
of the various compositions in MorC

(
(ϕ, α)

)
. If C is a (2, 1)-category, then so is

MorC
(
(ϕ, α)

)
.

We furthermore leave it to the reader to then verify, in the case when C is a (2, 1)-
category, that a morphism (F,ψ) : (ϕ, α)→ X realizes the object X as the 2-colimit
of (ϕ, α) if and only if this morphism, thought of as an object of MorC

(
(ϕ, α)

)
, is

an initial object in this 2-category, in the sense of Definition 2.29. (The following
lemma, whose proof we leave to the reader, aids in this.)

Lemma 2.32. If F : A → B is a morphism of groupoids, then F is an equivalence if
and only if, for every object b of B, there exists an object a ∈ A and an isomorphism
ξ : F (a)

∼−→ b, and if, furthermore, for any other object a′ ∈ A endowed with an

2We follow the terminology of [Stacks], and refer to a groupoid, each of whose connected
components is contractible, as a setoid. Such a groupoid is equivalent to a discrete set, hence the

name.

http://stacks.math.columbia.edu/tag/003O
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isomorphism ξ′ : F (a′)
∼−→ b, there is a unique isomorphism θ : a

∼−→ a′ such that
ξ = ξ′ ◦ F (θ).

Remark 2.33. There is a completely analogous theory of 2-limits in a 2-category C,
which admit a characterization analogous to the characterization of 2-colimits given
in Definition 2.27, and also, when C is actually a (2, 1)-category, a characterization
in terms of final objects in a 2-category, as in Remark 2.31.

As one example, if the index category I is the partially ordered set

•

��

•

��
•

then forming the 2-limit in C of a diagram indexed by I amounts to forming the
2-fibre product of objects in C. (The treatment of 2-fibre products in [Stacks, Tag
003O] follows the “final object in a 2-category” approach.)

We next establish some basic functorial property of 2-colimits.

Lemma 2.34. Let (ϕ, α) be a 2-diagram indexed by the category I, with values in

the 2-category C, and let G : Ĩ → I be a functor between categories. Suppose that
(F,ψ) : (ϕ, α) → ΦX is a 1-morphism realizing the object X of C as a 2-colimit of

(ϕ, α), and that (F̃ , ψ̃) : G∗(ϕ, α) → Φ̃Y is a 1-morphism realizing the object Y as
a 2-colimit of G∗(ϕ, α). (Here we use Φ, with an appropriate subscript, to denote

a constant object indexed by I, and use Φ̃, with an appropriate subscript, to denote

a constant object indexed by Ĩ.) Then there is a 1-morphism H : Y → X in C for

which there exists a 2-isomorphism of 1-morphisms Φ̃H ◦ (F̃ , ψ̃)
∼−→ G∗(F,ψ).

Proof. The pull-back G∗(F,ψ) is a 1-morphism from G∗(ϕ, α) to Φ̃X , i.e. is an

object of the category MorC
(
G∗(ϕ, α), Φ̃X

)
. Since (F̃ , ψ̃) realizes Y as a 2-colimit

of (ϕ, α), composition with (F̃ , ψ̃) induces an equivalence of categories

MorC(Y,X )
∼−→ MorX

(
G∗(ϕ, α), Φ̃X

)
.

In particular, there is an object H of the domain of this equivalence, i.e. a 1-

morphism H : Y → X , such that Φ̃H ◦ (F̃ , ψ̃) (which is its image under the equiv-

alence) is isomorphic in MorX
(
G∗(ϕ, α), Φ̃X

)
to the object G∗(F,ψ) of the target.

This proves the lemma. �

In the particular case of the preceding lemma when G : Ĩ → I is cofinal (in the
sense of [Stacks, Tag 04E6]), we can say more.

Since we will need to apply it, we recall the definition of cofinality.

Definition 2.35. We say that a functor G : Ĩ → I is cofinal if the following
conditions hold:

(1) For any object x of I, there is an object x̃ of Ĩ and a morphism x→ G(x̃)
in I.

(2) For any object x of I, any pair of objects x̃, x̃′ of Ĩ, and any pair of mor-
phisms x→ G(x̃), x→ G(x̃′), there exists a sequence of morphisms

x̃ = x̃0 ← x̃1 → x̃2 ← x̃3 → · · · ← x̃2n−3 → x̃2n−2 ← x̃2n−1 → x̃2n = x̃′

http://stacks.math.columbia.edu/tag/003O
http://stacks.math.columbia.edu/tag/003O
http://stacks.math.columbia.edu/tag/04E6
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in Ĩ, and morphisms x → G(x̃i) for each i = 0, . . . , 2n, such that the
morphisms for i = 0 and 2n coincide with the given morphisms, and such
that each diagram

x

xx �� &&

G(x̃2i−2) G(x̃2i−1)oo // G(x̃2i)

commutes.

Lemma 2.36. If, in the context of Lemma 2.34, the functor G is cofinal, for any
object Z of C, the pull-back functor

(2.37) G∗ : MorC
(
(ϕ, α),ΦZ

)
→ MorC

(
G∗(ϕ, α), Φ̃Z

)
is an equivalence of categories. In particular, the 2-diagram (ϕ, α) admits a 2-
colimit if and only if G∗(ϕ, α) does, and furthermore, the 1-morphism H (given by
Lemma 2.34) between these 2-colimits is an equivalence.

Proof. The claim regarding 2-colimits follows directly from the definition, together
with the claimed equivalence of categories. Thus, for any object Z of C, we must
show that (2.37) is an equivalence. To do this, we will show in turn that G∗ is
faithful, full, and essentially surjective.

To begin with, suppose that (F1, ψ1) and (F2, ψ2) are two 1-morphisms from
(ϕ, α) to ΦX , that ξ1 and ξ2 are two 2-morphisms between them, and that G∗ξ1 =
G∗ξ2; by definition, this means that

(2.38) ξ1,G(x̃) = ξ2,G(tx)

for any object x̃ of Ĩ.

Now let x be an object of Ĩ, and choose (as we may) an object x̃ of Ĩ, and a
morphism f : x→ G(x̃). Then for each i = 1, 2, we have an equality

(2.39) (ξi,G(x̃) ? idϕ(f)) ◦ ψ1,f = ψ2,f ◦ ξi,x.

Since the 2-morphisms ψ1,f and ψ2,f are isomorphisms, we deduce from (2.38)
and (2.39) that ξ1,x = ξ2,x, as required.

Next, we suppose given a 2-morphism ξ̃ : G∗(F1, ψ1) → G∗(F2, ψ2); we must

show that ξ̃ = G∗ξ for some 2-morphism ξ : (F1, ψ1)→ (F2, ψ2). By definition, the

data of ξ̃ amounts to a 2-morphism ξ̃x̃ : F1,G(x̃) → F2,G(x̃), for each object x̃ of Ĩ.
These 2-morphisms satisfy the identity

(2.40) (ξ̃ỹ ? idϕ(G(f̃))) ◦ ψ1,G(f̃) = ψ2,G(f̃) ◦ ξ̃x̃

for any morphism f̃ : x̃→ ỹ in Ĩ.
By the assumption of cofinality, given any object x of I, we may find an object

x̃ of Ĩ, and a morphism f : x→ G(x̃). We now use (2.39) to define ξx, namely we
set

ξx := ψ−1
2,f ◦ (ξ̃x̃ ? idϕ(f)) ◦ ψ1,f .

Of course, we need to check that this is well-defined. A consideration of property (2)

in Definition 2.35 shows that it suffices to show that if f̃ : x̃→ ỹ is a morphism in Ĩ,
then the 2-morphism ξx obtained by using the preceding formula coincides with the
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2-morphism obtained by replacing x̃ with ỹ, and replacing f with the composite
x→ G(x̃)→ G(ỹ). In other words, we have to show that

ψ−1
2,f ◦ (ξ̃x̃ ? idϕ(f)) ◦ ψ1,f = ψ−1

2,G(f̃)◦f ◦ (ξ̃ỹ ? idϕ(G(f̃)◦f)) ◦ ψ1,G(f̃)◦f .

This follows from a consideration of the commutative diagram

F1,x

ψ1,G(f̃)◦f
//

ψ1,f

yy

F1,G(ỹ) ◦ ϕ
(
G(f̃) ◦ f

)

ξ̃ỹ?idϕ(G(f̃)◦f)

��

idF1,G(ỹ)
?αG(f̃),ftt

F1,G(x̃) ◦ ϕ(f)
ψ1,G(f̃)?idϕ(f)

//

ξ̃x̃?idϕ(f)

��

F1,G(ỹ) ◦ ϕ
(
G(f̃)

)
◦ ϕ(f)

ξ̃ỹ?idϕ(f̃)◦ϕ(f)

��

F2,x
ψ2,f◦G(f̃)

//

ψ2,f

yy

F2,G(ỹ) ◦ ϕ
(
G(f̃) ◦ f

)
idF2,G(ỹ)

?αG(f̃),ftt

F2,G(x̃) ◦ ϕ(f)
ψ2,G(f̃)?idϕ(f)

// F2,G(ỹ) ◦ ϕ
(
G(f̃)

)
◦ ϕ(f)

(The commutativity of the top and bottom faces follows from the fact that
(F1, ψ1) and (F2, ψ2) are 1-morphisms, the commutativity of the front face follows
from (2.40), and the commutativity of the remaining face is clear.) In carrying out
this verification, it is helpful to remember that all the 2-morphisms ψ and α are in
fact 2-isomorphisms.

Now that the 2-morphisms ξx are defined, we have to verify that they satisfy the
necessary conditions to define a 2-morphism between (F1, ψ1) and (F2, ψ2). This
is achieved by a consideration of various commutative diagrams similar to the one
appearing above. (Details will appear in a future draft.)

�

Lemma 2.41. Let I be a category, let C be a 2-category, and let (ϕ1, α1) and
(ϕ2, α2) be 2-diagrams with values in C, indexed by I. Suppose that (F1, ψ1) :
(ϕ1, α1) → ΦX1 and (F2, ψ2) : (ϕ2, α2) → ΦX2 are 1-morphisms realizing X1

(resp. X2) as the 2-colimit of (ϕ1, α1) (resp. (ϕ2, α2)). Then any 1-morphism of
2-diagrams (F,ψ) : (ϕ1, ψ1) → (ϕ2, ψ2) induces a 1-morphism H : X1 → X2 in C,
such that the 1-morphisms of 2-diagrams ΦH ◦ (F1, ψ1) and (F2, ψ2) ◦ (F,ψ) are
2-isomorphic.

Proof. Since (F2, ψ2) ◦ (F,ψ) is an object of MorC
(
(ϕ1, α1),ΦX2

)
, this follows from

the defining property of X1 as a 2-colimit of (ϕ1, α1). �

Example 2.42. If the index category I is filtered and admits a countable skeleton,
then we may find an equivalence N ∼−→ I. In this case any 2-colimit computed along
I can be replaced by an equivalent 2-colimit computed along N. Furthermore, any
2-diagram (ϕ, α) indexed by N may be replaced by a strictly commutative diagram
(ϕ̃, id): for each n ∈ N, we define ϕ̃(n) := ϕ(n), define ϕ̃n,n := id, and define
ϕ̃n,n+1 := ϕn,n+1. But in general, given any pair m < n, we define

ϕ̃m,n := ϕn−1,n ◦ ϕn−2,n−1 ◦ · · · ◦ ϕm+1,m+2 ◦ ϕm,m+1.

The data α may be used to construct an equivalence between (ϕ, α) and (ϕ̃, id).
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We turn to proving that 2-colimits exist in various situations, beginning with the
case of the (2, 1)-category of categories fibred in groupoids over some base category.
In order to do this, we will use the notion of relative groupoid completion.

Lemma 2.43. If X is a category fibred over the base category D, then there is
a category X gp fibred in groupoids over D, which we call the relative groupoid
completion of X over D, and a 1-morphism F : X → X gp of categories fibred over
D, with the property that for any category Y fibred in groupoids over D, the functor
F ∗ : FunD(X gp,Y)→ FunD(X ,Y) is an equivalence of categories.

Proof. Our construction of X gp, which is somewhat clumsy, proceeds by strictifica-
tion. Namely, we know from [Stacks, Tag 004A] that X is equivalent to a presheaf
of categories on D, and so we may assume that X is in fact a presheaf of cate-
gories. Now given any category, we may localize it at all its morphisms, to obtain
a groupoid which receives a functor from the given category, and is universal for
functors from the category to groupoids. (This is the usual groupoid completion.)
Applying this construction to the values of the given presheaf of categories, we
obtain a presheaf of groupoids, which then serves as a relative groupoid completion
of X over D. �

Lemma 2.44. If (ϕ, α) is a 2-diagram in the (2, 1)-category C of categories fibered
in groupoids over a base category D, then (ϕ, α) admits a 2-colimit in C.

Proof. We begin by constructing a category X fibred over D, which almost re-
ceives a morphism from (ϕ, α), More precisely, we will construct the data (F,ψ)
attached to such a morphism, but the various 2-morphisms ψf will not necessarily
be isomorphisms. Modulo this difficulty, and the fact that X will not be fibred in
groupoids, we will see that X satisfies the universal property to be a 2-colimit of
(ϕ, α). We will then pass to a groupoid completion X gp of C. Doing this will force
the 2-morphisms ψf to become isomorphisms, so that obtain a genuine morphism
from (ϕ, α) to X gp. The already-proved universal property of X , together with
the universal property of X gp, when taken together, will then show that X gp is a
2-colimit of (ϕ, α).

We give an explicit description of X , and of the functors Fx : ϕ(x) → X and
natural transformations ψf . We define the set of objects of X to be the disjoint
union of the set of objects of each of the categories ϕ(x), as x ranges over the
objects of the index category I. For any two objects x and y of I, if a is an object
of ϕ(x) and if b is an object of ϕ(y), then we also define MorX (a, b) as a disjoint
union:

MorX (a, b) :=
∐

f∈MorI(x,y)

Morϕ(y)

(
ϕ(f)(a), b

)
.

For notational purpose, we also write, for any f ∈ MorI(x, y),

MorX (a, b)[f ] := Modϕ(y)

(
ϕ(f)(a), b

)
,

so that we can rewrite the preceding disjoint union as

MorX (a, b) :=
∐

f∈MorI(x,y)

MorX (a, b)[f ];

and if l ∈ Morϕ(y)

(
ϕ(f)(a), b)

)
, then we write l[f ] to denote l when thought of an

an element of MorX (a, b)[f ] ⊆ MorX (a, b).

http://stacks.math.columbia.edu/tag/004A
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The composition of morphisms in X is defined as follows: for a pair of composable
morphisms f : x→ y and g : y → z, and objects a of ϕ(x), b of ϕ(y), and c of ϕ(z),
we define the pairing

pg,f : MorX (b, c)[g] ×MorX (a, b)[f ] → MorX (a, c)[gf ]

via

(m[g], l[f ]) 7→
(
m ◦ ϕ(g)(l) ◦ (αg,f )a

)[gf ]
;

the composition

MorX (b, c)×MorX (a, b)→ MorX (a, c)

is then defined as the disjoint union of the various pairings pg,f . We leave the
verification that X forms a category to the reader.

If x ∈ I, then we let πx denote the functor ϕ(x)→ D realizing ϕ(x) as a category
over D. We define a functor π : X → D as follows: on objects it is defined to be the
disjoint union of the given maps Ob

(
(ϕ(x)

)
→ Ob(D); on morphisms, it is defined

as follows: if f : x→ y is a morphism in I, if a and b are objects of ϕ(x) and ϕ(y)
respectively, and if l : ϕ(f)(a)→ b is a morphism in ϕ(y), thought of as a morphism
in X , then (noting that πx(a) = πy

(
ϕ(f)(a)

)
because ϕ(f) is a 1-morphism between

categories lying over D) we define π(l) : πx(a) = πy
(
ϕ(f)(a)

)
→ πy(b) to be the

morphism πy(l). Again, we leave to the reader the verification that π is in fact a
functor from X to D. (When making this verification, it helps to remember that,
by the definition of the 2-category of categories fibred over D [Stacks, Tag 02XP],
all the 2-morphisms in this category are required to project to identity morphisms
in D, so that if x is any object of I, then πx

(
(αx)a

)
= idπx(a) for all objects a of

ϕ(x); and similarly, if x
f−→ y

g−→ z are morphisms in I, then

πz
(
(αg,f )a

)
= idπx(a) = id

πz

(
(g◦f)(a)

)
for all objects a of ϕ(x).)

The functor π : X → D realizes X as a category fibred over D. To see this, we
have to show that for any object b ∈ X , and any morphism l : u → π(b) in D,

there is a morphism l̃ : a → b in X lying over l, and which is strongly Cartesian.
Suppose that b is an object of ϕ(x). Then π(b) = πx(b) by definition, and by the
assumption that ϕ(x) is fibred over D, there exists a morphism m : a→ b in ϕ(x)
such that πx(m) = l, and which is strongly Cartesian. Now define

l̃ := (m ◦ α−1
x,a)[idx] ∈ MorX (a, b)[idx] ⊆ MorX (a, b).

Using the fact that m is strongly Cartesian, the reader can verify that l̃ is strongly
Cartesian, as required.

We define what we might call a proto-morphism (F,ψ) : (ϕ, α)→ X . Namely, for
any x ∈ I, we define a morphism Fx : ϕ(x)→ X , which we take to be the obvious
inclusion on objects, while on morphisms, we define Fx as follows: if l : a→ b is a
morphism in ϕ(x), then we define Fx(l) to be the morphism l ◦ α−1

x,a : ϕ(idx)(a)→
b ∈ Morϕ(x)

(
ϕ(idx)(a), b

)
(interpreted as the subset MorX (a, b)[idx] of MorX (a, b)).

We leave the verification that Fx is a functor to the reader. Note, though, that
by construction (and recalling the point already remarked upon above, that 2-
morphisms in C project to identity morphisms in D), we have that π ◦ Fx = πx.
Also, the very construction of strongly Cartesian morphisms in X given above

http://stacks.math.columbia.edu/tag/02XP
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shows that Fx takes strongly Cartesian morphisms in ϕ(x) to strongly Cartesian
morphisms in X . Thus Fx is in fact a 1-morphism in C.

For a morphism f : x→ y in I, a natural transformation ψf : Fx
∼−→ Fy ◦ ϕ(f)

is defined as follows: for an object a of ϕ(x), the morphism (ψf )a : a→ ϕ(f)(a) is
defined to be the element

(idϕ(f)(a))
[f ] ∈ MorX

(
a, ϕ(f)(a)

)[f ] ⊆ ModX
(
a, ϕ(f)(a)

)
.

The natural transformations ψf project under π to identity natural transformations
in D, and thus are indeed 2-morphisms in C.

As the reader can verify, the couple (F,ψ) satisfies all the conditions of Defini-
tion 2.24 other than condition (3): in general, the natural transformations ψf will
not be isomorphisms.

Now suppose that Y is a category fibred in groupoids over D, and that Φ : X → Y
is a morphism of categories fibred over D. Composing (F,ψ) with Φ in the evi-
dent way, we obtain a genuine morphism Φ ◦ (F,ψ) : (ϕ, α) → Y, since all the
2-morphisms in Y are necessarily isomorphisms (so that condition (3) of Defini-
tion 2.24 is automatically satisfied, while the remaining conditions are evidently
satisfied, since they are satisfied by (F,ψ)). In this way we obtain a functor

(2.45) FunD(X ,Y)→ MorC
(
(ϕ, α),Y

)
whose source is the category of morphisms between X and Y (thought of as cat-
egories fibred over D) and whose target is the category of morphisms from (ϕ, α)
to Y. We will show that this functor is an isomorphism of categories.

To this end, we first re-express some of the preceding constructions in a simple
formula. Namely, if f : x → y is a morphism in I, if a is an object of ϕ(x), if b is
an object of ϕ(y), then we then have the formula

(2.46) l[f ] = Fy(l) ◦ (ψf )a.

Thus, if Φ : X → Y is a 1-morphism, and if we define (G, η) := Φ ◦ (F,ψ), then
we see from this formula that

(2.47) Φ(l[f ]) = Gy(l) ◦ (ηf )a,

for each morphism l[f ] ∈ MorX (a, b)[f ]. It is now straightforward to verify that,
conversely, if one is given a morphism (G, η) : (ϕ, α)→ Y to a category Y fibred in
groupoids over D, and if one defines the functor Φ : X → Y on objects via mapping
an object a ∈ ϕ(x) (thought of as an object of X ) to Gx(a), and on morphisms
via the formula (2.47), then Φ is indeed a 1-morphism from X to Y, and that the
functor (2.45) induces a bijection on objects. It is similarly verified to induce a
bijection on morphisms, and thus is indeed an isomorphism of categories.

Now let X → X gp be a groupoid completion of X . By the preceding discussion,
the proto-morphism (F,ψ) induces a genuine morphism (F gp, ψgp) : (ϕ, α)→ X gp.
Furthermore, for any category fibred in groupoids Y over D, the induced functor
FunD(X gp,Y) → FunD(X ,Y) is an equivalence of categories. We thus see that
(F gp, ψgp) realizes X gp as a 2-colimit of (ϕ, α). �

Lemma 2.48. If (ϕ, α) is a 2-diagram in the (2, 1)-category C of stacks in groupoids
over a site D, then (ϕ, α) admits a 2-colimit in C.

Proof. By Lemma 2.44, we may form a 2-colimit X of (ϕ, α) in the (2, 1)-category

of categories fibred in groupoids over D. If we let X̃ denote the stackification of X
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over D (in the sense, e.g., of [Stacks, Tag 02ZO]), then the 2-categorical universal

property of X̃ (see [Stacks, Tag 0436] and also [Stacks, Tag 04W9]) shows that X̃
forms a 2-colimit of (ϕ, α) in the (2, 1)-category of stacks in groupoids over D. �

Lemma 2.49. Let C be a (2, 1)-category of categories fibred in groupoids over the
base category D, let (ϕ, α) be a 2-diagram in C, indexed by the filtered category I,
and let (F,ψ) : (ϕ, α) → X be a 2-colimit of (ϕ, α). If each of the functors ϕ(f)
(as f runs over morphisms in I) is faithful (resp. fully faithful), then each of the
functors Fx : ϕ(x) → X (as x runs over the objects of I) is faithful (resp. fully
faithful).

Proof. The proof will appear in a subsequent draft. �

The following result concerning the values of a 2-colimit of stacks is often useful.

Lemma 2.50. If {Xi}i∈I is a 2-diagram in the (2, 1)-category of stacks in groupoids
over the site D, and if T is an object D, then there is a natural morphism of
groupoids 2− colimi Xi(T )→ (2− colimi Xi)(T ). If I is furthermore filtered, and if
T is quasi-compact then this morphism is fully faithful. Continuing to assume that
I is filtered, if in addition either T is quasi-separated or the transition morphisms
in the 2-diagram {Xi} are monomorphisms, then this morphism is an equivalence.

Proof. This is standard; a proof should appear in a future draft. �

We introduce one more 2-categorical notion, the 2-categorical analogue of the
usual categorical construction C/y (which for any object y of a category C, is the
category whose objects are C-morphisms f : x → y, with a morphism between
f : x → y and f ′ : x′ → y consisting of a C-morphism g : x → x′ such that
f = f ′ ◦ g).

Definition 2.51. If C is a 2-category, and Y is an object of C, then we let C/Y
denote the 2-category whose objects consist of 1-morphisms F : X → Y in C.
If F : X → Y and F ′ : X ′ → Y are two objects of C/Y, then the objects of
MorC/Y(F, F ′) (which are 1-morphisms from F to F ′ in C/Y) consist of pairs (G,α),
where G : X → X ′ is a 1-morphism and α : F → F ′ ◦ G is a 2-morphism, while
the morphisms (G,α)→ (H,β) (which are the 2-morphisms from (G,α) to (H,β)
in C/X ) consist of of 2-morphisms γ : G → H such that (idF ′ ?γ) ◦ α = β. (See
[GR04, Ex. 2.1.11 (ii)].)

3. Stack-theoretic background

In this section we introduce and study various stack-theoretic notions that will
be needed in our developing the theory of formal algebraic stacks. One key point
is that in this theory, one studies many stacks (in groupoids) that are not algebraic
stacks (e.g. formal algebraic stacks themselves, as well as Ind-algebraic stacks), and
so it is important to have a strong and flexible theory of the geometric properties
of morphisms between such stacks. We develop some of that theory here, with an
emphasis on so-called morphisms that are representable by algebraic stacks.

Another important construction in the context of formal algebraic stacks is the
formation of the underlying reduced algebraic stack. We develop a general version of
that theory in this section (after introducing our conventions related to substacks),
which is flexible enough to recover the existing theory for algebraic stacks, but
which also applies to formal algebraic stacks and Ind-algebraic stacks.

http://stacks.math.columbia.edu/tag/02ZO
http://stacks.math.columbia.edu/tag/0436
http://stacks.math.columbia.edu/tag/04W9
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Related to this, we also prove a form of topological invariance of the small étale
site which applies to not-necessarily-algebraic stacks.

Throughout this section, we fix a scheme S, and by a stack over S, we mean a
category fibred in groupoids over the category Sch /S,3 which is a stack with respect
to the fppf topology on Sch /S.

We begin by recalling the following definition, which generalizes the notion of a
morphism between stacks being representable by algebraic spaces.

Definition 3.1. (1) We say that a morphism X → Y of stacks over S is repre-
sentable by Deligne–Mumford stacks, or DM for short, if for any morphism of stacks
Z → Y whose source is a Deligne–Mumford stack, the fibre product X ×Y Z is also
a Deligne–Mumford stack.

(2) We say that a morphism X → Y of stacks over S is representable by algebraic
stacks, or algebraic,4 if for any morphism of stacks Z → Y whose source is an
algebraic stack, the fibre product X ×Y Z is again an algebraic stack.

We will be primarily interested in the second of these two definitions, but the first
is also useful. (In particular, it appears naturally in the context of étale morphisms
of algebraic stacks.)

Remark 3.2. It is easy to check, in the context of the preceding definition, that
in verifying either condition (1) or (2), it suffices to restrict to the case when Z
is actually a scheme. Indeed, suppose that condition (1) is satisfied in that case,
and then consider the case of a morphism Z → Y whose source is a Deligne–
Mumford stack. We may choose an étale surjection U → Z whose source is a
scheme (and which is representable by algebraic spaces, since Z is an algebraic
stack), and consider the base-changed morphism X ×Y U → X ×Y Z; this is again
representable by algebraic spaces, étale, and surjective. By assumption, the source
is a Deligne–Mumford stack, and thus we may find an étale surjection V → X ×Y U
whose source is a scheme (and which again is representable by algebraic spaces).
The composite V → X ×Y U → X ×Y Z is then a morphism that is representable
by algebraic spaces, étale, and surjective, from a scheme to the stack X ×YZ. Thus
this fibre product is itself a Deligne–Mumford stack (since it is an algebraic stack,
by [Stacks, Tag 05UL], which admits a surjective étale morphism from a scheme).

Similarly, if condition (2) is satisfied when Z is a scheme, then consider the case
of a morphism Z → Y whose source is an algebraic stack. We choose a smooth
surjection U → Z whose source is a scheme (and which is representable by algebraic
spaces, since Z is an algebraic stack), and consider the base-changed morphism
X ×Y U → X ×Y Z; this is again representable by algebraic spaces, smooth, and
surjective. By assumption, the source is an algebraic stack, and thus we may find
a smooth surjection V → X ×Y U whose source is a scheme (and which again is
representable by algebraic spaces). The composite V → X ×Y U → X ×Y Z is
then a morphism that is representable by algebraic spaces, smooth, and surjective,
from a scheme to the stack X ×Y Z. Thus this fibre product is itself an algebraic
stack [Stacks, Tag 05UL].

In particular (since schemes are DM algebraic stacks), we see that a DM mor-
phism is representable by algebraic stacks.

3We ignore all set-theoretic issues throughout this write-up. The concerned reader should add

their preferred flavour of foundations.
4This latter term is the one used in the Stacks Project [Stacks, Tag 06CF].

http://stacks.math.columbia.edu/tag/05UL
http://stacks.math.columbia.edu/tag/05UL
http://stacks.math.columbia.edu/tag/06CF
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Finally, we remark that since any scheme is locally affine, and since the property
of a stack over a base scheme T being algebraic, or Deligne–Mumford, may be
checked Zariski locally on T , we see that in order to verify either condition (1)
or (2), it even suffices to consider the case when Z is an affine scheme.

The following lemma is sometimes useful for verifying the representability prop-
erties of a morphism.

Lemma 3.3. If X → Y → Z are morphisms of stacks over S, then the first ar-
row is representable (i.e. representable by schemes, resp. representable by algebraic
spaces, resp. representable by Deligne–Mumford stacks, resp. representable by alge-
braic stacks) if and only if, for each morphism T → Z whose source is a scheme,
the induced morphism T ×Z X → T ×Z Y is representable (resp. representable by
algebraic spaces, resp. representable by Deligne–Mumford stacks, resp. representable
by algebraic stacks).

Proof. If we are given a morphism f : T → Y, whose source is a scheme, then we
can also consider the composite g : T → Y → Z, and the morphism f induces a
section s : T → T×g,ZY. The projection T×f,YX → T can then be obtained as the
pull-back under s of the morphism T ×g,Z X → T ×g,Z Y. If this latter morphism
has a given representability property, so does its pull-back under s. (Here we are
also taking into account Remark 3.2, of course.) �

Lemma 3.4. If f : X → Y is a morphism of stacks over S that is representable by
algebraic stacks, then the diagonal morphism ∆f : X → X ×Y X is representable by
algebraic spaces. In addition, the morphism f is DM (resp. representable by alge-
braic spaces) if and only if ∆f is furthermore unramified (resp. a monomorphism).

Proof. We apply the criterion of Lemma 3.3 to the sequence of morphisms X →
X ×Y X → Y. Let Z → Y be a morphism whose source is a scheme, and write
W := X ×Y Z. Then W is an algebraic stack over Z, and the morphism ∆f pulls-
back to the diagonal morphism ∆W/Z . This morphism is representable by algebraic
spaces, and so (since Z → Y was arbitrary) so is the morphism ∆f .

The morphism ∆f is furthermore unramified (resp. a monomorphism) if and
only if each of the base-changed morphisms ∆W/Z is unramified (resp. a monomor-
phism). Each of these morphism is unramified (resp. a monomorphism), in turn, if
and only if each of the algebraic stacksW is in fact a Deligne–Mumford stack [Stacks,
Tag 06N3] (resp. an algebraic space [Stacks, Tag 04SZ]). This completes the proof
of the lemma. �

Lemma 3.5. A morphism X → Y from a sheaf over S to a stack over S is
representable by algebraic stacks if and only if it is representable by algebraic spaces.

Proof. The if direction is clear. For the only if direction, suppose that X → Y is
representable by algebraic stacks, and consider a morphism T → Y whose source
is a scheme. Then the fibre product X ×Y T is an algebraic stack, by assumption,
but it is also a sheaf. Thus it is in fact an algebraic space [Stacks, Tag 04SZ]. �

The following lemmas give additional criteria for deducing that certain mor-
phisms of stacks are representable (in various senses).

Lemma 3.6. Suppose that X → Y → Z are morphisms of stacks over S, such
that the second morphism, and also the composite morphism, are both representable

http://stacks.math.columbia.edu/tag/06N3
http://stacks.math.columbia.edu/tag/04RSZ
http://stacks.math.columbia.edu/tag/04SZ
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(i.e. representable by schemes, resp. representable by algebraic spaces, resp. repre-
sentable by Deligne–Mumford stacks, resp. representable by algebraic stacks). Then
the morphism X → Y is representable (resp. representable by algebraic spaces, resp.
representable by Deligne–Mumford stacks, resp. representable by algebraic stacks).

Proof. We apply the criterion of Lemma 3.3, and so find that it suffices to show that
if T → Z is any morphism whose source is a scheme, the base-changed morphism
T ×Z X → T ×Z Y is representable in the appropriate way. This follows from the
fact that a morphism of schemes (resp. algebraic spaces, resp. Deligne–Mumford
stacks, resp. algebraic stacks) is representable by schemes (resp. algebraic spaces,
resp. Deligne–Mumford stacks, resp. algebraic stacks). �

Lemma 3.7. If X → Y and Y → Z are morphisms of stacks over S for which
the composite X → Y → Z is representable by algebraic spaces (resp. Deligne–
Mumford stacks, resp. algebraic stacks) and the diagonal morphism Y → Y×Z Y is
representable by algebraic spaces,5 then X → Y is representable by algebraic spaces
(resp. Deligne–Mumford stacks, resp. algebraic stacks).

Proof. This follows from the usual graph argument: we factor X → Y as the
composite of the graph X → X ×Z Y and the projection from X ×Z Y to Y. The
first morphism is representable by algebraic spaces (being a base-change of the
diagonal morphism Y → Y ×Z Y), and the second morphism is representable by
algebraic spaces (resp. Deligne–Mumford stacks, resp. algebraic stacks), being the
base-change of the morphism X → Z. Thus their composite is representable by
algebraic spaces (resp. Deligne–Mumford stacks, resp. algebraic stacks), as claimed.

�

Recall the following definition [Stacks, Tag 07Y8].

Definition 3.8. We say that a category fibred in groupoids X over a locally Noe-
therian scheme S satisfies the strong Rim–Schlessinger criterion, denoted (RS*), if,
given an affine open subset Spec Λ ⊆ S, and a fibre product diagram of Λ-algebras

B′ // B

A′ = A×B B′

OO

// A

OO

in which B′ → B surjective with square zero kernel, the induced functor on fibre
categories

XSpec(A′) −→ XSpec(A) ×XSpec(B)
XSpec(B′)

is an equivalence of categories.

We now show that the strong Rim–Schlessinger condition can be pulled back
along morphisms representable by algebraic stacks.

Lemma 3.9. If X → Y is a morphism of stacks over a locally Noetherian scheme S
which is representable by algebraic stacks, and if Y satisfies (RS*), then so does X .

5Such a diagonal morphism is always representable by sheaves, and hence if it representable
by algebraic stacks, it is in fact representable by algebraic spaces; this explains our apparently

restrictive hypothesis.

http://stacks.math.columbia.edu/tag/07Y8
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Proof. By [Stacks, Tag 06N7] (and [Stacks, Tag 042X]), we may (and do) replace
X by an isomorphic stack such that the morphism X → Y realizes X as a category
fibred in groupoids over Y. Let

X = SpecB //

��

X ′ = SpecB′

��

Y = SpecA // Y ′ = SpecA′

be a pushout diagram in the category of schemes obtained by taking Spec of a
Cartesian square of rings as in Definition 3.8. We must show that the natural
functor between groupoids

(3.10) X (Y ′)→ X (X ′)×X (X) X (Y )

is an equivalence. Since Y satisfies (RS*), the functor

Y(Y ′)→ Y(X ′)×Y(X) Y(Y )

is an equivalence, and so we may place the functor (3.10) into a 2-commutative
diagram of groupoids

X (Y ′) //

��

X (X ′)×X (X) X (Y )

ww

Y(Y ′)

Since X → Y realizes the source as being fibred in groupoids over the target, the
same is true of the vertical arrow in this diagram. Thus, in order to check that the
horizontal functor is an equivalence, it suffices to check that it induces an equiv-
alence on the fibre categories over each object in the base. (It is straightforward
to verify directly that this suffices. Alternatively, note that the diagonal arrow is
easily verified to also realize its source as a category fibred in groupoids over its
target, and then apply part (1) of [Stacks, Tag 003Z].)

This reduces our problem to verifying that the functor analogous to (3.10), ob-
tained by replacing X by X ×Y Y ′ for some given morphism Y ′ → Y, is an equiv-
alence. Since X → Y is representable by algebraic stacks, this fibre product is
an algebraic stack. We are therefore done, since algebraic stacks satisfy (RS*),
by [Stacks, Tag 0CXP]. �

Following [Stacks, Tag 03YK, Tag 04XB], we can define properties of morphisms
representable by algebraic stacks in the following way.

Definition 3.11. If P is a property of morphisms of algebraic stacks which is
fppf local on the target, and preserved by arbitrary base-change, then we say that
a morphism f : X → Y of stacks which is representable by algebraic stacks has
property P if and only if for every algebraic stack Z and morphism Z → Y, the
base-changed morphism of algebraic stacks Z ×Y X → Z has property P .

Remark 3.12. When applying Definition 3.11, it suffices to consider the case when
Z is actually a scheme, or even an affine scheme (since any algebraic stack admits a
smooth, and so in particular fppf, cover by a scheme, and hence even by a disjoint
union of affine schemes, and by assumption the property P may be tested for fppf
locally).

http://stacks.math.columbia.edu/tag/06N7
http://stacks.math.columbia.edu/tag/042X
http://stacks.math.columbia.edu/tag/003Z
http://stacks.math.columbia.edu/tag/0CXP
http://stacks.math.columbia.edu/tag/03YK
http://stacks.math.columbia.edu/tag/04XB
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Remark 3.13. Some of the properties to which we will apply Definition 3.11 are flat,
locally of finite presentation, locally of finite type, proper, smooth, and surjective.

Remark 3.14. We may also apply Definition 3.11 to the property of being étale.
Recall that a morphism X → Y of algebraic stacks is said to be étale if it is
unramified, flat, and locally of finite presentation, or equivalently, if it is a DM
morphism, with the property that for any morphism Z → Y whose source is a
scheme, the base-changed morphism X ×Y Z → Z (whose source is a Deligne–
Mumford stack, by assumption) is étale, in the sense that for some (or, equivalently,
any) surjective étale morphism U → X×YZ whose source is a scheme, the composite
morphism U → X ×Y Z → Z is étale.

We then find that a morphism X → Y of stacks over S which is representable by
algebraic stacks is étale (in the sense given by Definition 3.11 and the discussion of
the preceding paragraph) if and only if it is a DM morphism, with the additional
property that for any morphism Z → Y whose source is a scheme, the base-changed
morphism X ×Y Z → Z (whose source is a Deligne–Mumford stack, by assumption)
is an étale morphism in the sense described in the preceding paragraph.

Remark 3.15. If we apply Definition 3.11 to the property of being a monomorphism,
then we find that a morphism f : X → Y, which is representable by algebraic
stacks, is a monomorphism if and only if ∆f : X → X ×Y X is an isomorphism
(since this may be checked after pulling back over morphisms T → Y whose source
is a scheme), and thus if and only if f is fully faithful as a functor.

Furthermore, Lemma 3.4 then shows that if a morphism representable by al-
gebraic stacks is a monomorphism, then it is actually representable by algebraic
spaces (since if the associated diagonal morphism is an isomorphism, it is certainly
a monomorphism). It then follows from [Stacks, Tag 040X] that such a morphism
is also universally injective (where this latter property is again interpreted via Def-
inition 3.11).

Example 3.16. If Y is a stack whose diagonal is representable by algebraic spaces,
then any morphism X → Y whose source is an algebraic stack is representable
by algebraic stacks [EG19b, Lem. 2.3.1], and so Definition 3.11 applies in such
cases. Many such properties are discussed in detail in [EG19b, § 2.3]. (Note that
Definition 3.11 is compatible with [EG19b, Def. 2.3.4], although the latter definition
is more expansive than the former, in that it does not require that the property P
be fppf local on the target. In practice, all the example properties considered in
detail in [EG19b, § 2.3] are in fact fppf local on the target.)

It is sometimes useful to describe a given stack as a quotient stack, and we
state and prove a lemma that gives a general criterion for this, together with some
related results. We begin by establishing a general context in which to consider
such a result. To this end, suppose that X is a stack over S, and that U → X
is a morphism whose source is an fppf sheaf on Sch /S, and which is representable
by algebraic spaces and locally of finite presentation. We may then form the fibre
product R := U×X U which is again an fppf sheaf on Sch /S, having the structure of
a groupoid in sheaves over U . Suppose now that R′ is another groupoid in sheaves
over U , for which each of the projections R′ ⇒ U are representable by algebraic
spaces, flat, and locally of finite presentation, and that we are given a morphism
R′ → R of groupoids in sheaves over U .

http://stacks.math.columbia.edu/tag/040X
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Following the discussion of [Stacks, Tag 0440], we may form the quotient stack
X ′ := [U/R′]. (In the cited discussion, the quotient stack is defined when U and
R are in fact algebraic spaces, but the discussion there — and in particular, the
definition of the quotient stack given in [Stacks, Tag 044Q] — makes sense whenever
U is a sheaf and R′ is a groupoid in sheaves over U whose projections to U are
representable by algebraic spaces, flat, and locally of finite presentation.) Note

that, by construction, there is a canonical isomorphism R′
∼−→ U ×X ′ U.

In the preceding situation, we have the following lemma relating the various
objects involved.

Lemma 3.17. We put ourselves in the context of the preceding discussion.
(1) The morphism U → X factors (up to 2-isomorphism) through a morphism

X ′ → X , which is furthermore representable by algebraic stacks.
(2) There is a 2-Cartesian square

R′

��

// R

��

X ′
∆X′/X

// X ′ ×X X ′

in which the horizontal arrows are representable by algebraic spaces, and in which
the vertical arrows are representable by algebraic spaces, flat, locally of finite pre-
sentation, and surjective.

Proof. The stack [U/R′] is defined as the stackification of the presheaf in groupoids
over S whose objects are morphisms T → U , and whose morphisms are morphisms
T → R′ projecting to a given pair of morphisms T ⇒ U . The given morphism
R′ → R = U ×X U allows us construct a morphism from this presheaf to X , and
hence a morphism from its stackification X ′ to X .

Consider the composite U → X ′ → X (which by assumption is representable by
algebraic spaces). If we base-change this along a morphism T → X whose source
is a scheme, we obtain morphisms

T ×X U → T ×X X ′ → T.

The source of the first arrow is an algebraic space, and first arrow itself is rep-
resentable by algebraic spaces, flat, and surjective (since it a base-change of the
morphism U → X ′, which has these properties). Thus T ×X X ′ is indeed an alge-
braic stack [Stacks, Tag 05UL]; this proves (1).

It follows from (1) together with Lemma 3.4 that ∆X ′/X is representable by
algebraic spaces, proving the first claim of (2). Consider now the morphism R =
U ×X U → X ′ ×X X ′. Since U → X ′ is representable by algebraic spaces, flat,
locally of finite presentation, and surjective, the same is true of this morphism. It
provides the right-hand arrow of the diagram in (2). If we pull this map back along
∆X ′/X , we obtain the 2-Cartesian square

U ×X ′ U

��

// R

��

X ′
∆X′/X

// X ′ ×X X ′

Taking into account the isomorphism R′
∼−→ U ×X ′ U, we obtain the 2-Cartesian

square of (2). �

http://stacks.math.columbia.edu/tag/0440
http://stacks.math.columbia.edu/tag/044Q
http://stacks.math.columbia.edu/tag/05UL
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The preceding lemma has various applications, such as to the following criterion
for presenting a stack as a quotient.

Lemma 3.18. Suppose that X is a stack over S, and that U → X is a morphism
from a sheaf to X which is representable by algebraic spaces, flat, surjective, and
locally of finite presentation. Then, if we write R := U×X U, the morphism U → X
induces an isomorphism [U/R]

∼−→ X .

Proof. We apply Lemma 3.17, taking R′ = R (as the hypotheses of the present
lemma allow us to do). Since the upper right arrow in the diagram of part (2) of
that lemma is then an isomorphism, we conclude that ∆X ′/X is also an isomor-
phism (as the property of being an isomorphism may be checked fppf locally on the
target), and thus that X ′ → X is a monomorphism. Since an isomorphism is in
particular a monomorphism, and since X ′ → X is representable by algebraic stacks,
by Lemma 3.17 (1), it is in fact representable by algebraic spaces, by Lemma 3.4.

Consider the sequence of morphisms U → X ′ → X , each of which we know to
be representable by algebraic spaces. Both the first arrow and the composite are
furthermore flat, locally of finite presentation, and surjective. Since each of these
properties may be checked fppf locally on the source, we find that the second arrow
also has these properties. In conclusion, the morphism X ′ → X is representable by
algebraic spaces, a monomorphism, flat, locally of finite presentation, and surjective.
It is thus an isomorphism [Stacks, Tag 05W5]. �

We also have the following variant of the preceding result.

Lemma 3.19. Suppose that X is a stack over S, that U → X is a morphism from
a sheaf to X which is representable by algebraic spaces, and that the projections
R := U ×X U ⇒ U (which are again representable by algebraic spaces, being the
base-change of morphisms which are so representable) are flat and locally of finite
presentation. Then the morphism U → X induces a monomorphism [U/R]→ X .

Proof. As in the proof of Lemma 3.18, we may apply Lemma 3.17 (2), taking
R′ = R. We find that ∆X ′/X is an isomorphism, as required. �

Remark 3.20. In the particular case when X itself is an algebraic stack, results along
the lines of the preceding lemmas are presented in [Stacks, Tag 04T4] and [Stacks,
Tag 04T5].

If X is an algebraic stack and U = Spec k, and the morphism Spec k → X is
locally of finite presentation, then the projections R := U ×X U ⇒ U are automat-
ically flat, as well as being locally of finite presentation, and the preceding lemma
then gives a construction of the residual gerbe [Stacks, Tag 06ML] at the image
x ∈ |X | of Spec k.

In what follows, we will be given a stack X , and will want to talk about various
substacks of X . We briefly digress to explain our conventions regarding substacks.

At the least, a substack of X should be a full subcategory of X that is fibred
in groupoids over S, and satisfies an appropriate descent condition on objects (see
e.g. [Stacks, Tag 04TU]). However, in order to avoid complications with the pos-
sibility of two substacks Y and Z of X being isomorphic as substacks of X (i.e.
admitting an isomorphism of stacks, i.e. an equivalence of categories in groupoids

http://stacks.math.columbia.edu/tag/05W5
http://stacks.math.columbia.edu/tag/04T4
http://stacks.math.columbia.edu/tag/04T5
http://stacks.math.columbia.edu/tag/06ML
http://stacks.math.columbia.edu/tag/04TU
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fibred over S, in a way that the diagram

Y //

∼
��

X

Z

??

2-commutes; here the the horizontal and diagonal arrows are the inclusions of Y
and Z as subcategories of X ) without being actually equal, we adopt the following
convention. (Compare [Stacks, Tag 0AIN].)

Convention 3.21. If X is a stack (in groupoids, as always) over S, then a substack
of X consists of a strictly full subcategory of Y of X which also forms a stack in
groupoids over S.

Remark 3.22. This rigidification of the notion of substack is slightly unnatural from
a 2-categorical view-point, since it places an emphasis on equality and isomorphism,
rather than on equivalence. However, it will simplify some later constructions, by
enforcing a certain rigidity (which, for example, will ensure the strictness of various
pseudo-functors that we construct).

Remark 3.23. Any monomorphism Z → X of stacks over S factors uniquely as
Z → Y ↪→ X , where the first arrow is an isomorphism, and the second arrow is
the inclusion of a substack Y into X . (A monomorphism of stacks is just a fully
faithful functor of the underlying categories, compatible with their structure of
categories fibred over S. This factorization is then just the usual factorization of a
fully faithful functor into an equivalence onto its essential image, followed by the
inclusion of the essential image into the target category of the functor.)

Remark 3.24. If X is a stack over S, then we can speak of one substack of X
containing another; this holds provided the set of objects of one is contained in
the set of objects of the other. If {Y}i∈I is a collection of substacks of S, then⋂
i∈I Yi (the full subcategory of X whose set of objects is the intersection of the

set of objects of each of the Yi) is again a substack of X ; this substack is maximal
with respect to being contained in each of the Yi.

If C is a subcategory of X , then we it makes sense to talk of the substack of X
generated by C: it is the intersection

⋂
i∈I Yi, where Yi runs over all substacks of

X containing C.
In particular, if Y and Z are two substacks of X , then we may form the substack

Y ∩ Z, which realizes the 2-fibre product Y ×X Z as a substack of X .

Remark 3.25. Related to the final paragraph of the preceding remark, we make the
following observation: In general, if X → Y and Z → Y are morphisms of stacks,
then the fibre product (which of course means the 2-fibre product) X ×Y Z is only
defined up to isomorphism of stacks, i.e. up to equivalence of categories fibred in
groupoids over S. However, if Z → Y is the inclusion of a substack (which is in
particular a monomorphism of stacks, i.e. a fully faithful functor), then (following
the prescription of Remark 3.23), we may consider the essential image of the induced
monomorphism X ×Y Z → X , which is a substack of X . This substack then gives
a canonical choice of model of X ×Y Z; concretely, it is the full subcategory of X
that contains precisely those objects whose images in Y are objects of Z.

If we interpret X ×Y Z in this way, then X 7→ X ×Y Z becomes a strict pseudo-
functor (in the sense of Definition 2.13) from St/Y → St/Z. (Here we are denoting

http://stacks.math.columbia.edu/tag/0AIN
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by St the 2-category of stacks fibred in groupoids over Sch /S with the fppf topology,
and then following Definition 2.51 to define the 2-categories St/X and St/Y of stacks
lying over Y and Z respectively.) We apply this observation in various contexts
below.

Definition 3.26. If X is a stack over S, then we say that a substack Y of X is
open (resp. closed, resp. locally closed) if the inclusion Y ↪→ X is representable by
algebraic spaces, and induces an open (resp. closed, resp. locally closed) immersion
when pulled-back along any morphism T → X whose source is a scheme. (Note
that this inclusion is then in fact representable (by schemes), since a locally closed
sub-algebraic space of a scheme is in fact a scheme.)

We now turn to defining, and proving the basic properties of, the underlying
reduced substack of a stack over S. To this end, we let (Sch /S)red denote the full
subcategory of Sch /S consisting of reduced schemes.

Definition 3.27. Let X be a stack (fibered in groupoids, as always) over S, and
let F : X → Sch /S be the functor which realizes X as a stack over S. We then
let (Xred)′ denote the full subcategory of X whose set of objects consists of those
objects x of X for which F (x) is an object of (Sch /S)red, and let Xred denote the
substack of X generated by (Xred)′ (in the sense discussed in Remark 3.24). We
refer to Xred as the underlying reduced substack of X .

Remark 3.28. If Y → X is a morphism of stacks over S (i.e. a functor of categories
fibred in groupoids over S), then this morphism evidently restricts to a functor
(Yred)′ → (Xred)′ of categories over Sch /S, and hence also restricts to a functor
Yred → Xred of the corresponding reduced substacks. Thus the formation of Xred

is a strict pseudo-functor (in the sense of Definition (2.13)) from the 2-category of
stacks over S to itself.

Remark 3.29. If X is an algebraic stack, then Xred is precisely the underlying
reduced algebraic substack of X . (To see this, let Z denote the underlying reduced
algebraic substack of X , and first note that if T → X is a morphism whose source
is reduced, then this morphism factors through Z; thus (Xred)′ is contained in
the substack Z of X , and hence so is Xred. Conversely, choose a smooth surjective
morphism U → X whose source is a scheme, which then induces a smooth surjective
morphism Ured → Z. The composite morphism Ured → Z ↪→ X then gives an
object of (Xred)′, and hence of Xred. The stack property of Xred then shows that
the morphism Z ↪→ X factors through Xred.)

Remark 3.30. If X is a formal algebraic space over S, regarded as a stack in setoids
over S, then an argument essentially identical to that of Remark 3.29 shows that
the substack Xred, which corresponds to a subfunctor of X, is equal to Xred, the
underlying reduced algebraic space of X, as constructed in [Stacks, Tag 0AIN].

Remark 3.31. If X and Z are stacks over S, equipped with a morphism to the stack
Y over S, then the inclusions Xred ↪→ X and Zred ↪→ Z induce an isomorphism

(Xred ×Yred
Zred)red

∼−→ (X ×Y Z)red

(as one easily checks using the characterization of the various reduced substacks
involved; note also that we are using Remark 3.28 to see that the given morphisms
X ,Z → Y restrict to morphisms Xred,Zred → Yred).

http://stacks.math.columbia.edu/tag/0AIN
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We have the following more explicit description of the substack Xred of X .

Lemma 3.32. If X is a stack over S, then a morphism T → X whose source
is a scheme factors through the underlying reduced substack Xred if and only if
there exists a morphism of schemes T ′ → T which is surjective, flat, and locally of
finite presentation, such that the composite T ′ → T → X factors through a reduced
scheme.

Proof. Let Z denote the full subcategory of X whose objects consist of all mor-
phisms T → X satisfying the criterion of the lemma, i.e. for which there a morphism
of schemes that is surjective, flat, and locally of finite presentation, such that the
composite T ′ → X factors as T ′ → T ′′ → X , where T ′′ is reduced.

We first note that Z certainly contains (Xred)′ (which classifies the morphisms
T → X for which T itself is reduced). We next show that Z is contained in Xred.
Indeed, if T → X is a morphism which is an object of Z, and T ′ and T ′′ are above,
then certainly the morphism T ′′ → X lies in Xred (since it lies in (Xred)′), and thus
so does its pull-back T ′ → X (since Xred is a category fibred in groupoids over S).
The stack property of Xred then implies that the originally given morphism T → X
must be an object of Xred.

Finally, we show that Z is itself a substack of X . Since it contains (Xred)′ and
is contained in Xred, this will show that Z = Xred, and so prove the lemma.

Suppose, then, that T → X is an object of Z. If U → T is a morphism of
schemes, then the projection U ′ := T ′ ×T U is surjective, flat, and locally of finite
presentation, and the composite morphism U ′ → U → T → X admits the alternate
factorization U ′ → T ′ → T → X , and thus factors through a reduced scheme (since
T ′ → T → X does). Thus Z is a subcategory fibred in groupoids of X .

Lastly, suppose given a morphism T → X , and a morphism T ′ → T which is
surjective, flat, and locally of finite presentation, such that the composite T ′ →
T → X is an object of Z. By definition, then, there exists a morphism T ′′ → T ′

that is surjective, flat, and locally of finite presentation, such that the composite
T ′′ → T ′ → T → X factors through a reduced scheme. Since the composite
T ′′ → T ′ → T is surjective, flat, and locally of finite presentation, we see that in
fact the morphism T → X is an object of Z, and so Z is indeed a substack of X . �

We now prove some lemmas concerning underlying reduced substacks which hold
in the level of generality of Definition 3.27.

Lemma 3.33. If X is a stack over S, then (Xred)red = Xred.

Proof. This follows immediately from the explicit description of Xred given by
Lemma 3.32. �

Lemma 3.34. If Y → X is a morphism of stacks over S that is representable by
algebraic stacks, and for which the induced morphism Yred → Xred is also repre-
sentable by algebraic stacks, then Y → X is surjective if and only if Yred → Xred is
surjective.

Proof. Write Y ′ := Xred ×X Y, regarded as a substack as Y (following the pre-
scription of Remark 3.25); we then have the commutative diagram of morphisms of
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stacks

Yred

""

// Y ′ //

��

Y

��

Xred
// X

in which the horizontal arrows are inclusions of substacks, while the diagonal and
vertical arrows are representable by algebraic stacks. Passing to underlying reduced
substacks of the various stacks appearing in the top row, and taking into account
Lemma 3.33, we find that (Y ′)red = Yred.

Let T → X be a morphism whose source is a scheme, and let Tred → Xred be the
induced morphism. Since Tred ↪→ T is a thickening of schemes,

Tred ×Xred
Y ′ ∼−→ Tred ×X Y ↪→ T ×X Y

is a thickening of algebraic stacks, and so T ×X Y → T is surjective if and only
Tred ×Xred

Y ′ → Tred is surjective. Replacing X by Xred and Y by Y ′ (as noted
above, these latter two stacks have the same underlying reduced substack), we may
thus assume that X = Xred (so that also Y = Y ′), and it suffices to show that if T
is a scheme, then the projection

(3.35) T ×X Yred → T

is surjective if and only if the projection

(3.36) T ×X Y → T

is surjective.
Let V → T ×X Y be a surjective morphism whose source is a scheme (such a

morphism exists, since the target is an algebraic stack). Then the composite Vred →
V → T ×X Y → Y factors through Yred. Thus the composite Vred → V → T ×X Y
factors through a morphism Vred → T ×X Yred.

Since T ×X Yred ↪→ T ×X Y is a monomorphism of algebraic stacks (and thus
universally injective; this is a special case of Remark 3.15), while the composite

Vred → T ×X Yred ↪→ T ×X Y
is surjective, we conclude that the second arrow in this composite is in fact univer-
sally bijective. Thus either of the projections (3.35) or (3.36) is surjective if and
only if the other is. This completes the proof of the lemma. �

Lemma 3.37. If U → X is a morphism of stacks over S which is representable by
algebraic stacks and smooth, then the induced morphism Ured → U ×X Xred is an
isomorphism.

Proof. Following the prescription of Remark 3.25, we regard U×XXred as a substack
of U . As already observed in the statement of the lemma, the fact that the given
morphism U → X induces a morphism Ured → Xred shows that this substack
contains the substack Ured of U . To prove the lemma, we have to show the reverse
inclusion.

Thus suppose T → U is an object of the fibre product, which is to say that the
composite T → U → X factors through Xred. Lemma 3.32 shows that we may
find a morphism of schemes T ′ → T which is surjective, flat, and locally of finite
presentation, for which the composite T ′ → T → U → X factors as T ′ → T ′′ → X ,
with T ′′ is reduced. The morphisms T ′ → T ′′ and T ′ → T → U induce a morphism
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T ′ → T ′′ ×X U , whose target (by virtue of our assumptions on the morphism
U → X ) is an algebraic stack for which the projection to T ′′ is smooth. Since T ′′ is
reduced, so is the fibre product T ′′×X U , and so we may choose a surjective smooth
morphism V → T ′′ ×X U whose source is a reduced scheme.

Since the diagonal of the algebraic stack T ′′ ×X U is representable by algebraic
spaces, the fibre product T ′T ′′×XUV is an algebraic space, and so we may find
an étale surjective morphism V ′ → T ′T ′′×XUV whose source is a scheme. The
projection V ′ → T ′ is surjective and smooth, and thus the composite V ′ → T ′ → T
is surjective, flat, and locally of finite presentation. Furthermore, the composite
V ′ → T ′ → T → U admits the alternative factorization V ′ → V → T ′′ ×X U → U .
Since V is reduced, we find (again applying Lemma 3.32) that the original morphism
T → U is an object of Ured, as required. �

We next prove a general version of the topological invariance of the small Zariski
and étale sites. We begin by stating a general form of the infinitesimal lifting
property for an étale morphism of stacks.

Lemma 3.38. If U → X is a morphism of stacks which is DM and étale, if Z0 ↪→ Z
is a closed immersion of algebraic stacks that is a thickening, and if we are given
a morphism Z → X (which induces the composite morphism Z0 ↪→ Z → X ), then
the morphism of groupoids MorSt/X (Z,U)→ MorSt/X (Z0,U) is an equivalence.

Proof. We have canonical equivalences MorSt/X (Z0,U)
∼−→ MorSt/Z(Z0,U ×X Z)

and MorSt/X (Z,U)
∼−→ MorSt/Z(Z,U×XZ). Thus we may assume that Z equals X ,

and so in particular reduce to the case when U → X is an étale morphism of
algebraic stacks. Thus we suppose from now that we are in this situation (but we
don’t restrict to the case when Z equal X ).

We first suppose that Z = T is an affine scheme, so that T0 is a closed subscheme,
with T0 ↪→ T being a thickening. In this case the statement of the lemma follows
from the infinitesimal criterion as stated in [Ryd11, Cor. B.9].

Using the stack property of U to glue morphisms, one then extends successively
to the case when Z is an arbitrary scheme, to the case when when Z is an algebraic
space, and finally to the case when Z is an algebraic stack. (We leave the details
to the reader.) �

We next define the small étale and small Zariski 2-categories attached to a stack
X over S.

Definition 3.39. If X is a stack over S, and if St/X denotes the 2-category of
stacks lying over X (following the notation of Definition 2.51), then we let EtX
denote the strong subcategory (in the sense of Definition 2.19) of St/X whose
objects are the 1-morphisms U → X of stacks which are DM and étale.

We let ZarX denote the strong subcategory of St/X consisting of morphisms
U → X which are monomorphisms.

Remark 3.40. Recall that open immersions of schemes coincide with étale monomor-
phisms [Stacks, Tag 025G]. This statement generalizes to morphisms U → X of
stacks which are representable by algebraic stacks and étale — such a morphism is
an open immersion if and only if its a monomorphism. (The only direction is clear.
Conversely, if U → X is a monomorphism, then ∆U/X is an isomorphism, and
hence in particular a monomorphism, and so U → X is representable by algebraic

http://stacks.math.columbia.edu/tag/025G
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spaces. If T → X is a morphism from a scheme, then T ×X U → T is an étale
monomorphism from an algebraic space to a scheme, hence an étale monomorphism
from a scheme to a scheme [Stacks, Tag 0418], and hence an open immersion.) This
explains our choice of notation ZarX .

We can now prove our result on topological invariance.

Lemma 3.41. If X0 → X is the inclusion of a closed substack into a stack over S,
which is furthermore a thickening, then the strict pseudo-functor U 7→ U0 := U ×X
X0 (see Remark 3.25 for an explanation of the strictness) induces 2-equivalences (in
the sense of Definition 2.16 (2)) of 2-categories EtX → EtX0 and ZarX → ZarX0 .

Proof. We begin by proving that the strict pseudo-functor EtX → EtX0
is fully

faithful. If U → X and V → X are objects of EtX , then we must show that the
functor

MorX (U ,V)→ MorX (U0,V0)

is an equivalence of categories. The fact that X0 ↪→ X is a monomorphism, and
the descriptions of U0 and V0 as fibre products, taken together show that

MorX0(U0,V0)→ MorX (U0,V)

is an equivalence. Thus it suffices to show that the composite

MorX (U ,V)→ MorX (U0,V0)→ MorX (U0,V)

is an equivalence. This follows from Lemma 3.38.
To complete the proof that EtX → EtX0

is a 2-equivalence, it remains to show
that any object of EtX0

is equivalent to a morphism U0 → X0, for some object
U → X of EtX .

If T → X is a morphism with T a scheme, write T0 := T ×X X0, so that T0 is a
closed subscheme of T , with T0 ↪→ T being a thickening. Given U0 → X0 as above,
we then define, for any morphism of schemes T → S, a groupoid U(T ) via

U(T ) := X (T )×X0(T0) U0(T0).

In this manner we obtain a category fibred in groupoids U over S, which is in fact
a stack, since each of X , X0, and U0 is a stack. By construction, we also have
a morphism U → X , and a morphism U ×X X0 → U0, which one verifies is an
isomorphism. It remains to show that this morphism is DM and étale.

If we fix T → X , then we see that T ×X U is equivalent to the stack over
T which associates, to a morphism of schemes T ′ → T , the groupoid (T ×X0

U0)(T ′0). To simplify notation, then, we replace X by T , and thus assume given
a thickening T0 ↪→ T and a Deligne–Mumford stack U0 equipped with an étale
morphism U0 → T0; our goal is to show that U(T ′) := U0(T ′0) defines a Deligne–
Mumford stack which is étale over T . We may write U0 := [U0/R0] for some
scheme étale over T0, and some étale groupoid in algebraic spaces R0 over U0. The
topological invariance of the étale site for algebraic spaces [Stacks, Tag 05ZG] then
lifts U0 to an étale morphism U → T , and R0 to an étale groupoid in algebraic
spaces over U . The tautological morphism U0 → [U0/R0] := U0 induces a morphism
U → U (by definition of U), which is easily verified to induce an isomorphism

[U/R]
∼−→ U . Thus U is a Deligne–Mumford stack which is étale over T , as required.

The statement concerning Zariski topologies follows from the fact that, since
X0 ↪→ X is a thickening, an étale morphism U → X is a monomorphism if and only
if Ured → Xred is (by [Stacks, Tag 0CJC]). �

http://stacks.math.columbia.edu/tag/0418
http://stacks.math.columbia.edu/tag/05ZG
http://stacks.math.columbia.edu/tag/0CJC
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4. Ind-algebraic stacks

In this section, we use the theory of 2-colimits presented in Section 2 to define
Ind-algebraic stacks, and establish some simple results concerning them.

We first recall the notion of an Ind-algebraic space.

Definition 4.1. If S is a scheme, then a sheaf X on the fppf site of S is called
an Ind-algebraic space if there exists a directed system {Xi}i∈I of algebraic spaces
over S and an isomorphism lim−→i

Xi
∼= X, where the inductive limit is computed in

the category of sheaves on the fppf site of S. We say that X is an Ind-scheme if
the Xi can be taken to be schemes.

We wish to extend this notion so as to define a notion of Ind-algebraic stack. Out
of habit and old-fashioned convention, we will usually use the notation lim−→ rather
than 2− colim. We also frequently write “2-directed system” to mean a 2-diagram
with a filtered index category.

Definition 4.2. A stack in groupoids X on the fppf site of S is called an Ind-
algebraic stack if there exists a 2-directed system {Xi}i∈I of algebraic stacks over
S and an isomorphism of stacks lim−→i

Xi ∼= X , where the left-hand side denotes the

2-colimit computed in the 2-category of stacks in groupoids on the fppf site of S.

Example 4.3. We give an illustrative example of an Ind-algebraic stack. Fix a
base algebraic space B (lying over the base scheme S), and let {Xi}i∈I denote a
directed system of algebraic spaces that are of finite presentation and separated
over B. For each Xi, we have the stack CohXi/B of coherent sheaves on Xi whose
support is proper over B. This is an algebraic stack [Stacks, Tag 08WB]. If i ≤ i′,
then pushforward induces a morphism CohXi/B → CohXi′/B

[Stacks, Tag 08DS].
Since the pushforward along a composite is naturally isomorphic to the composite
of the corresponding pushforwards, in a manner that is compatible with triple
composites, we see that {CohXi/B}i∈I forms a 2-directed system of algebraic stacks.
We may thus form the 2-colimit lim−→i

CohXi/B . This is an Ind-algebraic stack, which

morally may be regarded as the stack of coherent sheaves on the Ind-algebraic space
X := lim−→i

Xi whose support is proper over B.

We now establish some simple results related to Ind-algebraic stacks and mor-
phisms between them.

Lemma 4.4. If X is an Ind-algebraic stack, and if lim−→i
Xi

∼−→ X is an iso-

morphism, where {Xi}i∈I is a 2-directed system of algebraic stacks, then there is
a natural morphism of groupoids 2− colimi Xi(T )→ X (T ). If T is quasi-compact,
then this morphism is fully faithful. If in addition either T is quasi-separated or
the transition morphisms in the 2-directed system {Xi} are monomorphisms, then
this morphism is an equivalence.

Proof. This follows from Lemma 2.50. �

Lemma 4.5. Let {Xi}i∈I be a 2-directed system of algebraic stacks, all of whose

transition morphisms are monomorphisms (i.e. fully faithful). If lim−→i
Xi

∼−→ X ,
then each of the induced morphisms

(4.6) Xi → X
is a monomorphism, and is representable by algebraic stacks.

http://stacks.math.columbia.edu/tag/08WB
http://stacks.math.columbia.edu/tag/08DS
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Furthermore, if P is a property of morphisms of algebraic stacks that is pre-
served under base-change and fppf local on the target, then each of the transition
morphisms in the 2-directed system {Xi} has property P if and only if each of the
induced morphisms (4.6) has property P (in the sense of Definition 3.11).

Proof. To show that the induced morphism (4.6) is a monomorphism, it suffices to
evaluate it on morphisms T → X , with T an affine (and hence quasi-compact and
quasi-separated) scheme. By Lemma 4.4, it then suffices to show that the natural
morphism Xi(T )→ 2−colimi Xi(T ) is fully faithful, given that each of the transition
morphisms in the 2-colimit is fully faithful. This follows from Lemma 2.49.

To prove that (4.6) is representable by algebraic spaces, we again consider mor-
phisms T → X with T being affine. As already noted, such a morphism factors
through Xi′ for some i′ ≥ i, and since (by the result of the preceding paragraph)
the morphism Xı′ → X is a monomorphism, the canonical morphism

T ×Xi′ Xi → T ×X Xi
is an isomorphism. The source of this morphism is an algebraic stack, since it is
the 2-fibre product of algebraic stacks. Thus the target is also an algebraic stack,
which (taking into account Remark 3.2) is what we had to show.

To prove the final claim of the lemma, suppose first that each transition mor-
phism has property P . From the argument of the preceding paragraph, we obtain
an isomorphism T ×Xi′ Xi

∼−→ T ×X Xi of algebraic stacks over T . By assump-
tion the projection of the source onto T has property P , and hence so does the
projection of the target onto T . Thus (taking into account Remark 3.12), we find
that (4.6) has property P , as required. Conversely, suppose that each of these latter
morphisms has property P , and let Xi → Xi′ be a transition morphism. Since (4.6)
is a monomorphism, in the 2-commutative diagram

Xi ×X Xi′

�� $$

Xi // Xi′

we find that vertical morphism is an isomorphism. The diagonal morphism has
property P , being the base-change to Xi′ of (4.6) (which has property P by as-
sumption), and thus so does the horizontal arrow. �

We refer to [Stacks, Tag 07XL], for the definition of a stack over S being limit
preserving.

Lemma 4.7. Suppose that {Xi}i∈I is a 2-directed system of algebraic stacks, each

locally of finite presentation over S. If X ∼−→ lim−→i
Xi, then X is limit preserving.

Proof. For each of the algebraic stacks Xi over S, being locally of finite presentation
is equivalent to being limit preserving [EG19b, Lem. 2.1.9]. Since the property of be-
ing limit preserving is tested on affine S-schemes (by definition), and affine schemes
are in particular quasi-compact, the present lemma follows from Lemma 4.4. �

Lemma 4.8. Suppose that we are given stacks X , Y, and Z over S, and morphisms
X → Y and Z → Y, latter being representable by algebraic stacks. Suppose further
that X is an Ind-algebraic stack, and let {Xi}i∈I be a 2-directed system of algebraic

http://stacks.math.columbia.edu/tag/07XL
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stacks for which there is an isomorphism lim−→i
Xi

∼−→ X . Then {Xi ×Y Z}i∈I again

forms a 2-directed system of algebraic stacks, and there is an isomorphism

lim−→
i

Xi ×Y Z
∼−→ X ×Y Z.

In particular, X ×Y Z is again an Ind-algebraic stack.

Proof. Since Z → Y is representable by algebraic stacks (by assumption), the 2-
fibre products Xi×Y Z are indeed algebraic stacks. Each of the morphisms Xi → X
induces a morphism Xi ×Y Z → X ×Y Z, which are compatible (in a 2-categorical
sense) as i varies. Thus we obtain a morphism lim−→i

Xi ×Y Z → X ×Y Z, which we

must show is an isomorphism of stacks. To check this, it suffices to show that it
induces an equivalence of groupoids after evaluating on any affine S-scheme. This
is easily verified using Lemma 2.50 �

Remark 4.9. A useful special case of the preceding lemma comes by setting X
equal to Y; namely, we see that if Z → Y is a morphism of stacks over S that is
representable by algebraic stacks, and if Y is an Ind-algebraic stack, then so is Z.
More precisely, if {Yi}i∈I is a 2-directed system of algebraic stacks for which there

is an isomorphism lim−→Yi
∼−→ Y, then each of 2-fibre products Zi := Yi ×Y Z is an

algebraic stack, which fit into a 2-directed system {Zi}, and there is an isomorphism

lim−→Zi
∼−→ Z.

We now state and prove a lemma that provides a supplement to the preceding
remark, but before doing so, we introduce some notation and conventions. Namely,
suppose that {Xi}i∈I and {Yi}i∈I are two 2-directed systems of algebraic stacks,
with the same indexing category I. We note that a 1-morphism between these
2-directed systems (in the sense of Definition 2.4) consists of giving a morphism of
stacks fi : Xi → Yi,for each object i of I, such that for each i′ ≥ i the square

(4.10) Xi //

fi

��

Xi′

fi′

��

Yi // Yi′

(the horizontal arrows being the transition morphisms in the respective 2-directed
systems) is 2-commutative. In fact, the 2-commutativity constraints of these dia-
grams are part of the data of the 1-morphism, and there is an additional condition
on the 2-commutativity constraints (conditions (4) and (5) of Definition 2.4); how-
ever, in practice we won’t introduce notation for these constraints, and will denote
the 1-morphism simply by {fi}i∈I .

Lemma 2.41 shows that the 1-morphism {fi} induces a limiting morphism

lim−→
i

fi : lim−→
i

Xi → lim−→
i

Yi.

Lemma 4.11. Suppose that {fi} : {Xi}i∈I → {Yi} is a 1-morphism between two
2-directed systems of algebraic stacks (with the same indexing category I). Let
f : X := lim−→i

Xi → lim−→i
Yi =: Y denote the induced morphism lim−→i

fi.

(1) If each of the morphisms fi is a monomorphism (i.e. fully faithful), then the
morphism f is a monomorphism.
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(2) If each of the squares (4.10) is 2-Cartesian, then the morphism f is rep-
resentable by algebraic stacks, and for any i ∈ I, the canonical morphism Xi →
X ×Y Yi is an isomorphism.

(3) Suppose that each of the squares (4.10) is 2-Cartesian, and let P be a property
of morphisms of algebraic stacks which is preserved by base-change and fppf local
on the target. Then f has property P (in the sense of Definition 3.11) if and only
if each fi has property P .

Proof. The claim of (1) may be verified by evaluating on affine schemes (which
are in particular quasi-compact and quasi-separated); its proof is then a routine
application of Lemma 4.4.

We turn to proving (2), and thus assume that each of the squares (4.10) is
2-Cartesian. Let

(4.12) T → X ×Y Yi

be a morphism whose source is an affine scheme. By Lemma 4.4, we may factor the
induced morphism T → X (up to 2-isomorphism) through a morphism T → Xi′ ,
for some i′ ≥ i. The induced morphism T → Y then factors (up to 2-isomorphism)
through a morphism T → Yi′ . Since the composites T → Yi′ → Y and T → Yi → Y
coincide (up to 2-isomorphism), we find, again by Lemma 4.4, that the composites
T → Yi → Yi′′ and T → Yi′ → Yi′′ are 2-isomorphic for some i′′ ≥ i. Thus the
given morphism (4.12) factors (up to 2-isomorphism) through the 2-fibre product
Xi′′×Yi′′ Yi. By assumption the canonical map Xi → Xi′′×Yi′′ Yi in an isomorphism,
which is to say, an equivalence of categories, and thus the given morphism factors
(up to 2-isomorphism) through Xi. Thus the canonical morphism of groupoids
Xi(T ) → (X ×Y Yi)(T ) is essentially surjective. Similar arguments show that it is
full and faithful, and hence an equivalence. This proves the claimed isomorphism
of (2).

Now suppose that T → Y is a morphism whose source is an affine scheme.
By Lemma 4.4, we may factor this morphism (up to 2-isomorphism) through a
morphism T → Yi for some i. We then find that

X ×Y T ∼= (X ×Y Yi)×Yi T
∼= Xi ×Yi T,

so that X ×Y T is an algebraic stack (being the 2-fibre product of algebraic stacks
over an algebraic stack). Taking into account Remark 3.2, this shows that the
morphism X → Y of (1) is representable by algebraic stacks, and completes the
proof of (2).

Finally, suppose given a property P as in (3). If f has property P , then, taking
into account (2), we find that each of the morphisms fi : Xi → Yi has property P .
Conversely, suppose that each fi does have property P . If T → Y is morphism
whose source is an affine scheme, then Lemma 4.4 again shows that this morphism
may be factored (up to 2-isomorphism) through Yi for some i ∈ I. Then we compute
that

X ×Y T ∼= (X ×Y Yi)×Yi T
∼= Xi ×Yi T,

the last isomorphism holding by (2). Since Xi → Yi has property P by assumption,
and since P is preserved by base-change, we see that X ×Y T also has property P ,
as required. (Here we are taking into account Remark 3.12 to restrict to affine
schemes T as test objects.) �
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The preceding lemma can be applied to deduce properties of the diagonal of an
Ind-algebraic stack in certain contexts.

Lemma 4.13. Let P be a property of morphisms of algebraic spaces which is pre-
served by base-change and fppf local on the target. Let {Xi}i∈I be a 2-directed
system of algebraic stacks, in which the transition morphisms are monomorphisms,
write lim−→i

Xi
∼−→ X , and suppose given a morphism X → Y, where Y is a stack over

S whose diagonal morphism Y → Y ×S Y is representable by algebraic spaces, and
for which each of the diagonal morphisms ∆Xi/Y : Xi → Xi×Y Xi have property P .
Then the diagonal morphism ∆X/Y : X → X ×Y X is representable by algebraic
spaces, and has property P .

Proof. Form the 2-directed system {Xi ×Y Xi}. If i ≤ i′, then since Xi → Xi′ is a
monomorphism, the diagram

Xi //

��

Xi′

��

Xi ×Y Xi // Xi′ ×Y Xi′

is 2-Cartesian. The present lemma thus follows from Lemma 4.11 (2) and (3). (Note
that the diagonal morphism ∆X/Y is always representable by sheaves, and hence is
representable by algebraic spaces if it is representable by algebraic stacks.) �

Remark 4.14. Taking Y = S in the preceding lemma, we find in particular that
if X is an Ind-algebraic stack obtained by taking the 2-colimit of a 2-directed
system of algebraic stacks whose transition morphisms are monomorphisms, then
X → X ×S X is representable by algebraic spaces.

Example 4.15. Some properties P to which the preceding lemma applies are that
of being a monomorphism, in which case the lemma shows that if each of the
morphisms Xi → Y is representable by algebraic spaces, then so is the morphism
X → Y, and that of being quasi-compact and quasi-separated, in which case the
lemma shows that if each of the morphisms Xi → Y is quasi-separated, then so is
the morphism X → Y.6

Lemma 4.16. Suppose that X is an Ind-algebraic stack, and write lim−→i
Xi

∼−→ X ,

for some 2-directed system {Xi}i∈I of algebraic stacks. The induced morphism
lim−→i

(Xi)red → Xred is then an isomorphism, and so in particular Xred is again an

Ind-algebraic stack.

Proof. Lemma 4.11 (2) shows that there is an induced monomorphism

lim−→
i

(Xi)red ↪→ lim−→
i

Xi
∼−→ X ,

whose essential image is then a substack of the target. We claim that this substack is
precisely Xred. Remark 3.28 shows that this substack is contained in Xred. To prove
the claim, then, it suffices to show that if T → X is a morphism from a reduced
affine scheme to X , then we may factor this morphism (up to a 2-isomorphism)
through (Xi)red, for some i. This follows from Lemma 4.4, which shows that the

6Note that the morphism X → Y need not be representable by algebraic stacks, but the lemma
shows that the diagonal X → X ×Y X is representable by algebraic spaces, so that the notion of

X → Y being quasi-separated makes sense.
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morphism T → X factors (up to a 2-isomorphism) through Xi, for some i, and thus
through (Xi)red, since T is reduced. �

Remark 4.17. In general, in the context of the preceding lemma, the monomor-
phism of Ind-algebraic stacks Xred ↪→ X need not be representable by algebraic
stacks/spaces.7 Indeed, this is already the case with Ind-schemes, as the following
example shows.

Example 4.18. Consider the Ind-scheme X := lim−→n
Xn, where

Xn := SpecC[x, y]
(
x(x− 1) · · · (x− n)y2

)
.

Applying Lemma 4.16, one finds that

Xred = lim−→
n

(Xn)red = lim−→
n

SpecC[x, y]/
(
x(x− 1) · · · (x− n)y

)
.

Applying Lemma 4.8, we then find that

X0 ×X Xred
∼−→ lim−→

n

(
X0 ×X (Xn)red

)
∼−→ lim−→

n

SpecC[x, y]/
(
xy2, x(x− 1) · · · (x− n)y

)
which is an affine formal algebraic space (in the sense of [Stacks, Tag 0AI7]; see
also Definition 5.1 below), but not an algebraic space.

There is one context, closely related to that of formal algebraic stacks (as we
will see in the discussion of Section 6) in which we can obtain more precise control
over the morphism Xred → X .

Lemma 4.19. Suppose that X is an Ind-algebraic stack, and that we can write
lim−→i
Xi

∼−→ X , for some 2-directed system {Xi}i∈I of algebraic stacks for which

the transition morphisms are thickenings. Then Xred is an algebraic stack, as well
as a closed substack of X , each of the induced morphisms (Xi)red → Xred is an
isomorphism, and the morphism Xred ↪→ X is a thickening.

Proof. Since the transition morphisms in the 2-directed system {Xi} are thicken-
ings, they induce isomorphisms on underlying reduced substacks, i.e. the transition
morphisms in the 2-directed system {(Xi)red} are isomorphisms. Taking into ac-
count Lemma 4.16, we find that indeed each of the morphisms (Xi)red → Xred is an
isomorphism, and in particular, that Xred is an algebraic stack.

If i′ ≥ i, then the transition morphism Xi → Xi′ is a thickening, and so in
particular is a monomorphism. It thus follows from Lemma 4.5 that each of the
morphisms Xi → X is a monomorphism. This explains why the second arrow in
the following sequence of morphisms is an isomorphism:

(Xi)red
∼−→ Xi ×Xi (Xi)red

∼−→ Xi ×X (Xi)red
∼−→ Xi ×X Xred.

Clearly the first arrow is also an isomorphism, and in the preceding paragraph we
showed that the third arrow is an isomorphism as well. Consequently, the composite
(Xi)red → Xi ×X Xred is an isomorphism, and thus the morphism

(4.20) Xi ×X Xred → Xi

7Recall that for monomorphism of stacks, being representable by algebraic stacks is equivalent
to being representable by algebraic spaces.

http://stacks.math.columbia.edu/tag/0AI7
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is a thickening.
Lemma 4.4 shows that if T → X is an morphism whose source is an affine

scheme, then this morphism factors (up to 2-isomorphism) through some Xi. Thus
the morphism T×X Xred → T is obtained (up to 2-isomorphism) as the base-change
of the morphism (4.20), and so is a thickening. This completes the proof of the
lemma. �

Lemma 4.21. (1) If X is an Ind-algebraic stack, and if U → X is an object of
EtX , then U is again an Ind-algebraic stack.

(2) Suppose furthermore that there is an isomorphism lim−→i
Xi

∼−→ X , where

{Xi}i∈I is a 2-directed system of algebraic stacks for which the transition morphisms
are thickenings. Then the strict pseudo-functor U 7→ Ured induces 2-equivalences
(in the sense of Definition 2.16 (2)) ZarX → ZarXred

and EtX → EtXred
.

Proof. If U → X is DM, then it is in particular representable by algebraic stacks.
Thus if X is an Ind-algebraic stack, then so is U , by Remark 4.9. This proves (1).

Suppose now that we are in the context of (2). Lemma 3.37 shows that Ured
∼−→

U ×X Xred, while Lemma 4.19 shows that Xred ↪→ X is a thickening. The claimed
2-equivalences thus follow from Lemma 3.41. �

Lemma 4.22. If X is an Ind-algebraic stack over a locally Noetherian scheme S,
then X satisfies the condition (RS*).

Proof. Since the diagram appearing in the definition of (RS*) (i.e. Definition 3.8)
involves only affine schemes, which are in particular quasi-separated, we see that
this follows from Lemma 4.4, together with [Stacks, Tag 0CXP], which shows that
algebraic stacks satisfy (RS*). �

5. Formal algebraic stacks

In this section, we begin by briefly recalling the definition of a formal algebraic
space from [Stacks], and then proceed to give the definition of, and establish some
basic results regarding, formal algebraic stacks.

We fix a base scheme S. The following definitions follow [Stacks, Tag 0AI7] (for
affine formal algebraic spaces) and [Stacks, Tag 0AIL] (for formal algebraic spaces
in general).

Definition 5.1. (1) An affine formal algebraic space over S is a sheaf X on the fppf

site of S which admits a description as an Ind-scheme X
∼−→ lim−→i

Xi, where the

Xi are affine schemes and the transition morphisms are thickenings (in the sense
of [Stacks, Tag 04EX]).

(2) A formal algebraic space over S is a sheaf X on the fppf site of S which
receives a morphism

∐
Ui → X which is representable (by schemes), étale, and

surjective, and whose source is a disjoint union of affine formal algebraic spaces Ui.

Remark 5.2. We remark that the notion of affine formal algebraic space used in
[Stacks], and recalled above, is more general than the notion of affine formal scheme
defined in [EGA1, §10] or other references. Similarly, the notion of formal algebraic
space used in [Stacks] is more general than the notion developed in e.g. Knutson’s
original treatment [Knu71, Ch. 5], where only the separated Noetherian case is
treated. (And in our intended applications, it is actually crucial that we work in a

http://stacks.math.columbia.edu/tag/0CXP
http://stacks.math.columbia.edu/tag/0AI7
http://stacks.math.columbia.edu/tag/0AIL
http://stacks.math.columbia.edu/tag/04EX
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framework that allows formal algebraic spaces and formal algebraic stacks that are
not a priori Noetherian.)

The following definition is the evident analogue of Definition 5.1 in the context
of stacks.

Definition 5.3. Let X be a stack in groupoids8 on the fppf site of a scheme S.
We say that X is a formal algebraic stack if there is a morphism U → X , whose
domain U is a formal algebraic space, and which is representable by algebraic spaces,
smooth and surjective.

Remark 5.4. This definition should be compared with the characterization of alge-
braic stacks as stacks which receive a morphism whose source is an algebraic space,
and which is representable, smooth, and surjective [Stacks, Tag 05UL].

Remark 5.5. If we take into account the definition of a formal algebraic space, we
find that we may equivalently define a formal algebraic stack to be a stack X which
receives a morphism

∐
Xi → X which is representable by algebraic spaces, smooth,

and surjective, and whose source is a disjoint union of affine formal algebraic spaces.

Remark 5.6. If, in Definition 5.3, we ask that the morphism U → X be étale,
rather than merely smooth, we obtain the notion of a formal Deligne–Mumford
stack. Since our interest is primarily in the case of formal algebraic stacks that are
not necessarily Deligne–Mumford, we won’t say much about this special case of the
definition in these notes.

Example 5.7. A formal algebraic space over S may be regarded as a formal algebraic
stack in a natural way, by reinterpreting the underlying sheaf as a category fibred
in setoidsover the fppf site of S. We will prove in Lemma 6.11 that, conversely,
if X is a formal algebraic stack which has trivial inertia stack (i.e. corresponds
to a category fibred in setoids, rather than just in groupoids), then X is in fact
(isomorphic to) a formal algebraic space. (In the same result, we also show that it
suffices to check the triviality of the inertia stack after pulling back to geometric
points.)

Example 5.8. Since any algebraic space is also a formal algebraic space, an algebraic
stack over S is also a formal algebraic stack over S.

Example 5.9. Suppose that X is an algebraic stack over S, and that T ⊆ |X | is a
locally closed subset of the topological space underlying X . We may then define

X̂|T , the completion of X along T , to be the substack of X defined as

X̂|T (U) := {f : U → X | f(|U |) ⊆ T}.
(For the analogous construction in the case of algebraic spaces, see [Stacks, Tag
0AIX].9)

To see that X̂|T is a formal algebraic stack, choose a smooth surjection V → X ,
where V is an algebraic space. If we let T ′ denote the preimage of T in |V |, then

8Since from now on we only consider stacks in groupoids, we will typically write “stack” rather

than “stack in groupoids”.
9In that discussion, the subset T is required to be closed. But note that if T is locally closed

in |X |, then there is an open substack U of X so that T is closed in |U|. One sees immediately

from the definition that the open immersion U → X induces an isomorphism Û|T
∼−→ X̂|T , and

so, after replacing X by U , we may reduce ourselves to the case when T is closed.

http://stacks.math.columbia.edu/tag/05UL
http://stacks.math.columbia.edu/tag/0AIX
http://stacks.math.columbia.edu/tag/0AIX
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the fibre product X̂|T ×X V is naturally isomorphic to V̂|T ′ , the completion of V

along T ′. Since V̂|T ′ is a formal algebraic space, by [Stacks, Tag 0AIZ], and since

the projection X̂|T ×X V → X̂|T is representable by algebraic spaces, smooth, and
surjective (being the base-change of a morphism with these properties), we see that

X̂|T is indeed a formal algebraic stack.

Remark 5.10. In some other treatments of formal algebraic spaces and stacks, such
as that of [Har05, App. A], these notions are defined by considering sheaves or
stacks on a site NilpX , where X is a formal scheme. However, in the framework
of the Stacks Project, a formal scheme X (over some base scheme S) is simply a
sheaf on the fppf site of S, and NilpX can then be thought of as the category of
S-morphisms T → X (with T an S-scheme). Giving a sheaf, or stack, on NilpX ,
is then equivalent to giving a sheaf, or stack, on the fppf site of S, equipped with
a morphism (of sheaves, or stacks) to X. In particular, giving a formal algebraic
space, or formal algebraic stack, on NilpX , say in the sense of [Har05, App. A], will
then amount to giving a formal algebraic space, in the sense of the Stacks Project,
or a formal algebraic stack, in the sense defined above, equipped with a morphism
to X; thus our approach to the subject, while differing in its foundational set-up
from that of [Har05, App. A], is nevertheless compatible with that approach. (See
e.g. [Stacks, Tag 00XZ] and [Stacks, Tag 04WV] for a discussion of the relevant sheaf
and stack-theoretic background, as well as [Stacks, Tag 03I3] for an explanation of
how it applies in the context of algebraic spaces, and [Stacks, Tag 04X4] for the
corresponding explanation in the context of algebraic stacks.)

(In fact, there are some other minor differences between our treatment and that
of [Har05, App. A], which we will briefly discuss. One is that, as already noted, we
work with the fppf topology, rather than the étale topology. This is harmless in
practice. Another is that the definition of a formal algebraic space in the Stacks
Project is more general than that of [Har05, App. A]: for example, non-quasi-
separated objects are allowed, and the underlying notion of formal scheme is also
more general than that of [EGA1, §10] or other references. This means that our
notion of formal algebraic stack is correspondingly more general.)

We begin our theoretical development by proving the representability by al-
gebraic spaces of the diagonal morphism of a formal algebraic stack. (The corre-
sponding result for formal algebraic spaces is [Stacks, Tag 0AIP].) Before giving the
proof, we recall a lemma which provides a general strategy for studying properties
of diagonal morphisms (which is useful in part for its notational convenience).

Lemma 5.11. If X is a category fibred in groupoids over the scheme S, and if P is
a property of morphisms of sheaves (on the fppf site of S) which is preserved under
arbitrary base-change, then the following are equivalent:

(1) If T → X ×S X is any morphism whose source is a scheme, then the base-
changed morphism

T ×X×SX X → T

has the property P .
(2) If T1 → X and T2 → X are arbitrary morphisms to X whose sources are

schemes, then the base-changed morphism

T1 ×X T2 → T1 ×S T2

has the property P .

http://stacks.math.columbia.edu/tag/0AIZ
http://stacks.math.columbia.edu/tag/00XZ
http://stacks.math.columbia.edu/tag/04WV
http://stacks.math.columbia.edu/tag/03I3
http://stacks.math.columbia.edu/tag/04X4
http://stacks.math.columbia.edu/tag/0AIP
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Proof. This is well-known, but we briefly recall the proof. The key point is that
we there is an isomorphism T1 ×X T2

∼−→ (T1 ×S T2)×X×SX X , which allows us to
rewrite the morphism of (2) in the form

(T1 ×S T2)×X×SX X → T1 ×S T2.

Taking this into account, we see that if (1) holds, then we may deduce (2) by
applying (1) to the morphism T := T1 ×S T2 → X ×S X . Conversely, if (2) holds,
and if we are in the context of (1), the given morphism T → X ×S X corresponds
to a pair of morphisms T ⇒ X . Applying (2) to the product of these morphisms,
which is a morphism T ×S T → X ×S X , we find that the base-changed morphism
(T ×S T ) ×X×SX X → T ×S T has the property P . Pulling back this morphism
along the diagonal morphism T → T ×S T shows that (1) holds. �

Lemma 5.12. The diagonal of a formal algebraic stack is representable by algebraic
spaces, and locally of finite type.

Proof. Taking into account Lemma 5.11 (and taking P to be the property of being
representable by algebraic spaces), we consider a pair of morphisms T1, T2 → X ,
each of whose source is an S-scheme. If we choose a morphism U → X as in the
definition of a formal algebraic stack (so U is a formal algebraic space, and the
morphism is representable by algebraic spaces, smooth, and surjective), then we
may pull back this morphism along the morphism of sheaves T1 ×X T2 → X to
obtain a morphism of sheaves

(T1 ×X U)×U (T2 ×X U)→ T1 ×X T2

which is representable by algebraic spaces, smooth, and surjective. Each fibre
product Ti ×X U is an algebraic space (since U → X is representable by algebraic
spaces), and so their fibre product over the formal algebraic space U is again an
algebraic space (since the diagonal of U is representable). Thus T1×X T2 is a sheaf
receiving a morphism whose source is an algebraic space, and which is representable,
smooth, and surjective. It follows that T1×X T2 is itself an algebraic space [Stacks,
Tag 04S6]. This shows that the diagonal of X is representable by algebraic spaces.

To see that the diagonal is furthermore locally of finite type, we must show that
the natural morphism T1 ×X T2 → T1 ×S T2 is locally of finite type. This may be
checked smooth locally on the source and target, and so it suffices to show that the
natural morphism

(T1 ×X U)×U (T2 ×X U)→ (T1 ×X U)×S (T2 ×X U)

is locally of finite type. This is a base-change of the diagonal morphism U → U×SU ,
which is indeed locally of finite type [Stacks, Tag 0AIP]. �

We recall another general result related to diagonals (see also [EG19b, Prop. 2.3.16,
2.3.18], where essentially the same result is proved).

Lemma 5.13. (1) If X is a category fibred in groupoids over S whose diagonal
∆ : X → X ×S X is representable by algebraic spaces, then the double diagonal
∆∆ : X → X ×X×X X is also representable by algebraic spaces. If the diagonal ∆
is furthermore locally of finite type, then the double diagonal ∆∆ is locally of finite
presentation.

(2) If f : X → Y is a morphism of categories fibred in groupoids over S which is
representable by algebraic spaces, and if the diagonal morphism ∆X : X → X ×S X

http://stacks.math.columbia.edu/tag/04S6
http://stacks.math.columbia.edu/tag/0AIP
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and the double diagonal morphism ∆∆Y : Y → Y ×Y×SY Y are each also repre-
sentable by algebraic spaces (by (1), the last hypothesis holds if ∆Y is representable
by algebraic spaces), then the diagonal morphism ∆f : X → X ×Y X is also rep-
resentable by algebraic spaces. If furthermore each of ∆X and ∆∆Y are locally of
finite type, then so is ∆f . (By (1), this hypothesis on ∆∆Y holds if ∆Y is locally of
finite type.)

Proof. We begin by proving (1). If T is an S-scheme, then the groupoid of T -valued
points of X ×X×SX X is equivalent to the groupoid classifying pairs (ξ ∈ X (T ), α ∈
Aut(ξ)), and given an object (ξ, α) of this groupoid, the groupoid (which is in fact a
setoid) of T ′-valued points of the corresponding fibre product T ×X ,∆∆

X ×X×SX X
is equivalent to the sheaf that classifies morphisms T ′ → T such that αT ′ = idξT ′ .
This sheaf can be described as the fibre product

T ×α×id,Aut(ξ)×T Aut(ξ),∆ Aut(ξ).

If ∆ is representable by algebraic spaces, then Aut(ξ) is an algebraic space, and
hence so is this fibre product. If ∆ is furthermore locally of finite type, then Aut(ξ)
is locally of finite type over T , and hence its diagonal is locally of finite presen-
tation [Stacks, Tag 084P]. Thus this fibre product is locally of finite presentation
over T .

Claim (2) follows by the usual graph argument: we factor the diagonal morphism
∆X as the composite

X ∆f−→ X ×Y X → X ×S X .
This composite is representable by algebraic spaces by assumption, and since the
second morphism is a base-change of the diagonal ∆Y of Y, its diagonal is repre-
sentable by algebraic spaces by assumption. Factoring ∆f as

X
Γ∆f−→ X ×X×SX (X ×Y X )→ X ×Y X ,

we see that it is a composite of morphisms that are representable by algebraic
spaces, and so is representable by algebraic spaces itself. The claim regarding ∆f

being locally of finite type (under the appropriate hypotheses) follows in the same
way. �

Lemma 5.14. (1) If X is a formal algebraic stack, then the double diagonal
∆∆ : X → XX×SXX is representable by algebraic spaces, and locally of finite pre-
sentation.

(2) If f : X → Y is a morphism of formal algebraic stacks, then ∆f : X →
X ×Y X is representable by algebraic spaces, and locally of finite type.

Proof. This follows immediately from Lemmas 5.12 and 5.13. �

Lemma 5.12 shows that the discussion of Example 3.16 applies to morphisms
from algebraic stacks to formal algebraic stacks. For example, it makes sense to
speak of a morphism from an algebraic stack to a formal algebraic stack being flat
and surjective, and so the statement of the following lemma makes sense. (The
lemma may be thought of as showing that the property of a formal algebraic stack
actually being an algebraic stack can be checked flat locally.)

Lemma 5.15. If X → Y is a morphism from an algebraic stack to a formal
algebraic stack which is flat and surjective (in the sense explained in Example 3.16),
then Y is itself an algebraic stack.

http://stacks.math.columbia.edu/tag/084P
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Proof. It suffices to show that if W → Y is a morphism from an affine formal alge-
braic space to Y which is representable by algebraic spaces, smooth, and surjective,
then W is actually an affine scheme. (Indeed, from this, and the assumption that
Y is a formal algebraic stack, it follows that Y admits a morphism

∐
Wi → Y

whose source is a disjoint union of affine schemes which is representable by alge-
braic spaces, smooth, and surjective, and thus — by Remark 5.4 — that Y is an
algebraic stack.) Given such a morphism, we find that X ×Y W → W is flat and
surjective, with its source being an algebraic stack. We may then find a morphism
U → X ×Y W whose source is a scheme, and which is smooth and surjective, and
the composite morphism U → W is then representable by algebraic stacks, flat,
and surjective. Since its source is a scheme and its target has a diagonal which
is representable (by schemes) [Stacks, Tag 0AIP]), it is in fact representable, flat,
and surjective. Since W is an affine formal algebraic space, we may find an affine
scheme U ′, and a morphism U ′ → U which is locally on the source an open im-
mersion, such that the composite U ′ → U → W is surjective. Replacing U by U ′,
we may thus assume that U and W are both affine. The morphism U → W then
factors as U → V ↪→ W, where V is an affine scheme and V ↪→ W is a thickening.
Thus if T → V is any morphism whose source is a scheme, we obtain morphisms

T ×W U → T ×W V → T,

with the composite being faithfully flat, and the second arrow being a thickening.
Since faithfully flat morphisms are scheme-theoretically dominant, we find that
the second arrow is necessarily an isomorphism, and thus that V → W is itself
an isomorphism (since T → W was arbitrary). Thus W is an affine scheme, as
claimed. �

We recall that in the Stacks Project, a formal algebraic space is defined to
be locally countably indexed, resp. locally adic*, if it admits an étale surjection
from a union of affine formal algebraic spaces that are countably indexed, resp.
adic* [Stacks, Tag 0AKY]. (An affine formal algebraic space is countably indexed
if it may be written as an inductive limit of a sequence of thickenings of affine
schemes [Stacks, Tag 0AII]; an affine formal algebraic space is adic* if it is of the
form Spf A for an adic* topological ring A, i.e. a topological ring which is com-
plete,10 and which admits a finitely generated ideal — called an ideal of definition
of A — whose powers are all open, and form a basis of open neighbourhoods of
zero [Stacks, Tag 0AID].) We now extend these notions to the context of formal
algebraic stacks.

Definition 5.16. We say that a formal algebraic stack X is countably indexed, resp.
locally adic*, if we may find a representable morphism U → X which is smooth
and surjective, and whose source is a countably indexed, resp. locally adic*, formal
algebraic space.

Remark 5.17. Note that it follows from [Stacks, Tag 0AKS], resp. [Stacks, Tag
0AKT], that if a formal algebraic space (thought of as a formal algebraic stack) is
locally countably indexed, resp. locally adic*, in the sense of this definition, then it
is in fact locally countably indexed, resp. locally adic*, in the sense already defined
in the Stacks Project.

10By convention, complete here means complete and separated.

http://stacks.math.columbia.edu/tag/0AIP
http://stacks.math.columbia.edu/tag/0AKR
http://stacks.math.columbia.edu/tag/0AII
http://stacks.math.columbia.edu/tag/0AID
http://stacks.math.columbia.edu/tag/0AKS
http://stacks.math.columbia.edu/tag/0AKT
http://stacks.math.columbia.edu/tag/0AKT
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Example 5.18. If X is an algebraic stack over S, and if T is a closed subset of |X |
for which the open immersion X \ T → X is quasi-compact, then the completion

X̂|T is locally adic*. To see this, we use a fact which was noted in the discussion
of Example 5.9, namely that if V → X is a smooth surjection whose source is

an algebraic space, and if T ′ denotes the preimage of T in |V |, then V̂|T ′ admits a

morphism to X̂|T which is representable by algebraic spaces, smooth, and surjective.
If X \T → X is quasi-compact, then so is the base-changed morphism V \T ′ → V ,

and so it follows from [Stacks, Tag 0AQ1] that V̂|T ′ is locally adic*.

We next discuss various base-change results in the context of formal algebraic
stacks.

Lemma 5.19. Let X → Y be a morphism of stacks over S which is representable
by algebraic spaces.

(1) If T → Y is a morphism from a formal algebraic space to Y, then X ×Y T
is again a formal algebraic space over S. If T is locally countably indexed,
resp. locally adic*, then so is X ×Y T .

(2) If Z → Y is a morphism from a formal algebraic stack to Y, then X ×Y Z
is again a formal algebraic stack over S. If Z is locally countably indexed,
resp. locally adic*, then so is X ×Y Z.

Proof. We begin with (1). By definition, we may find a family {Ti} of affine formal
algebraic spaces and a morphism

∐
Ti → T which is representable (by schemes),

étale and surjective. The base-changed morphism
∐
X ×Y Ti → X ×Y T is then

representable, étale and surjective. Thus it suffices to show that each of the products
X ×Y Ti is a formal algebraic space.

Since Ti is an affine formal algebraic space, we may write Ti ∼= lim−→λ
Ti,λ as

an inductive limit of schemes, with the transition morphisms being thickenings.
Lemma 4.8 shows that we then have an induced isomorphism

X ×Y Ti ∼= lim−→
λ

X ×Y Ti,λ,

expressing X ×Y Ti as an inductive limit of algebraic spaces, with the transition
morphisms being thickenings. It follows from [Stacks, Tag 0AIU] that X ×Y Ti is
indeed a formal algebraic space.

Now suppose that T is furthermore locally countably indexed, resp. locally adic*.
The projection X×Y T → T is a morphism representable by algebraic spaces, whose
source is a formal algebraic space (by what we have already proved). To simplify
notation, denote the source of this projection by X; we wish to show that X is
locally countably indexed, resp. locally adic*. Since T is locally countably indexed,
resp. locally adic*, we may find a morphism

∐
i Ti → T which is representable,

étale, and surjective, with each Ti being a countably indexed, resp. adic*, affine
formal algebraic space. Base-changing over X yields a morphism

∐
X ×T Ti → X

which is again representable, étale, and surjective.
In order to conclude that X is locally countably indexed, resp. locally adic*, it

suffices to prove that each of the fibre products X ×T Ti, which a priori is a formal
algebraic space, is furthermore locally countably indexed, resp. locally adic*. Let
U → X ×T Ti be an étale representable morphism whose source is an affine formal
algebraic space. Since the composite U → X ×T Ti → Ti is representable by

http://stacks.math.columbia.edu/tag/0AQ1
http://stacks.math.columbia.edu/tag/0AIU
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algebraic spaces and Ti is countably indexed, resp. adic*, it follows from [Stacks,
Tag 0AKQ] that U is countably indexed, resp. adic*, as required.

We now turn to proving (2). Choose a morphism T → Z which is representable
by algebraic spaces, smooth, and surjective, and whose source T is a formal algebraic
space; furthermore, choose T to be locally countably indexed or locally adic* if Z
is. Taking the fibre product of this morphism with X over Y yields a morphism
X ×Y T → X ×Y Z which is again representable by algebraic spaces, smooth, and
surjective. By (1), the source of this morphism is a formal algebraic space, which
is locally countably indexed or locally adic* if T is, and thus the target is indeed a
formal algebraic stack, which is locally countably index or locally adic* if T is, and
thus (by our choice of T ), if Z is. �

Remark 5.20. Let us note some particular consequences of the preceding result,
namely: if X → Y is a morphism of sheaves over S which is representable by
algebraic spaces, and if Y is furthermore a formal algebraic space (resp. a locally
countably indexed formal algebraic space, resp. a locally adic* formal algebraic
space), then the same is true of X (set T = Y = Y in (1)); and similarly, if X → Y
is a morphism of stacks over S which is representable by algebraic spaces, and if
Y is furthermore a formal algebraic stack (resp. a locally countably indexed formal
algebraic stack, resp. a locally adic* formal algebraic stack), then the same is true
of X (set Z = Y in (2)).

Lemma 5.21. If Y is a stack over S whose diagonal is representable by algebraic
spaces, and if U → Y and V → Y are morphisms each of whose domains is a formal
algebraic space, then U ×Y V is again a formal algebraic space.

Proof. If we interpret U ×Y V as the pull-back of U ×S V over the diagonal of Y,
then this follows from Lemma 5.19 (1). �

Lemma 5.22. If X → Y and Z → Y are morphism of stacks over S, with X
and Z being formal algebraic stacks, and Y having its diagonal being representable
by algebraic spaces (e.g., by Lemma 5.12, one could take Y itself to be a formal
algebraic stack), then X ×Y Z is again a formal algebraic stack.

Proof. Choose morphisms U → X and V → Z that are representable by algebraic
spaces, surjective, and smooth, whose domains are formal algebraic spaces. Then
U ×Y V → X ×Y Z is again representable by algebraic spaces, surjective and
smooth, and its source is again a formal algebraic space, by Lemma 5.21 (since
∆Y/S is representable by algebraic spaces by assumption). Thus X ×Y Z is indeed
a formal algebraic stack. �

We next establish an analogue of Lemma 5.19 for morphisms representable by
algebraic stacks. Because we don’t have a complete analogue of [Stacks, Tag 0AIU]
(to which we appealed in the proof of that lemma) in the context of formal algebraic
stacks, we are not able to prove a complete analogue of Lemma 5.19, but instead
make do with the following slightly weaker variant.

Lemma 5.23. Let X → Y be a morphism of stacks over S which is representable
by algebraic stacks, and consider a morphism Z → Y whose source is a formal
algebraic stack.

(1) If X → Y is DM, then X ×Y Z is a formal algebraic stack.

http://stacks.math.columbia.edu/tag/0AKQ
http://stacks.math.columbia.edu/tag/0AIU
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(2) If X is a formal algebraic stack, then the fibre product X ×Y Z is a formal
algebraic stack.

(3) If Z is locally countably indexed, resp. locally adic*, then X×YZ is a locally
countably indexed, resp. locally adic*, formal algebraic stack.

Proof. Choose (as we may) a morphism
∐
i Ti → Z which is representable by

algebraic spaces, smooth, and surjective, and whose source is the disjoint union of
affine formal algebraic spaces. The base-changed morphism

∐
i X ×Y Ti → X ×Y Z

is again representable by algebraic spaces, smooth, and surjective, and so if we can
show that each of the fibre products X ×Y Ti appearing in its source is a formal
algebraic stack, the same is true of its target. In summary, we are reduced to the
case when Z is in fact an affine formal algebraic space T (we omit the subscripts i
from now on, since they play no further role). If Z is furthermore locally countable
indexed, resp. locally adic*, then we may also choose T to be countably indexed,
resp. adic*.

We begin by proving (1). For this, we follow the proof of Lemma 5.19 (1).
Namely, since T is an affine formal algebraic space, we may write T ∼= lim−→λ

Tλ as

an inductive limit of schemes, with the transition morphisms being thickenings, and
so by Lemma 4.8 we have an induced isomorphism

X ×Y T ∼= lim−→
λ

X ×Y Tλ,

expressing X ×Y T as a 2-colimit limit of a 2-directed system of Deligne–Mumford
stacks, with the transition morphisms being thickenings. It follows from Lemma 6.1
below11 that X ×Y T is indeed a formal algebraic stack.

In the context of (2), we may additionally choose a formal algebraic space U
and a morphism U → X which is representable by algebraic spaces, smooth, and
surjective. The base-changed morphism U×Y T → X ×Y T is then representable by
algebraic spaces, smooth, and surjective, and so to prove that X ×Y T is a formal
algebraic stack, it suffices to prove that U ×Y T is a formal algebraic space. The
composite U → X → Y is representable by algebraic stacks, and so by Lemma 3.5 it
is in fact representable by algebraic spaces; thus Lemma 5.19 (1) shows that indeed
U ×Y T is a formal algebraic space.

Suppose now that we are in the context of (3). As we already noted above, since
Z is locally countably indexed, we may assume that T is countably indexed (and
even adic*, if Z is locally adic*). Thus we may write T ∼= lim−→Tn, where {Tn}
is a directed sequence of affine schemes related by thickenings. This induces an
isomorphism

X ×Y T ∼= lim−→
n

X ×Y Tn,

realizing X×YT as the 2-colimit of a directed sequence of algebraic stacks related by
thickenings. (Here we have used the fact that X → Y is representable by algebraic
stacks.) Lemma 6.3 below12 then shows that X ×Y T is a countably indexed formal
algebraic stack, as required.

11The reader will verify that the proof of this lemma doesn’t require any of the results from
the theory of formal algebraic stacks that are developed in this note; it is a direct consequence of
the topological invariance of the small étale site for Deligne–Mumford stacks. Thus although its

proof is postponed until the next section, there is no circularity in invoking it here.
12The reader can easily verify that the proof of that result is independent of present lemma.
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Choose a morphism U → X ×Y T which is representable by algebraic spaces,
smooth, and surjective. Arguing as in the proof of (2), we find that the composite
U → X ×Y T → T is representable by algebraic spaces, and thus Lemma 5.19 (1)
shows that U is locally countably indexed, resp. locally adic*, if T is. Thus, by
definition, the same is true of X ×Y T . �

Remark 5.24. As a useful consequence of the preceding lemma, we note that if
X → Y is a morphism of stacks over S which is representable by algebraic stacks,
with Y furthermore being a formal algebraic stack, then if either the morphism is
in fact DM, or if Y is locally countably (resp. locally adic*), then X is a formal
algebraic stack, which is locally countable (resp. locally adic*) if Y is. (To see this,
set Z = Y in (1) or (3), as appropriate).

It can be useful on occasion to view a formal algebraic stack as a quotient
stack. Suppose, then, that X is a formal algebraic stack over S, and that U → X
is a morphism whose source is a formal algebraic space, and which satisfies the
conditions of Definition 5.3. As in the discussion preceding Lemma 3.18, we may
then form the fibre product R := U ×X U which is a formal algebraic space (by
Lemmas 5.12 and 5.21) having the structure of a groupoid in sheaves over U , and
for which each of the projections are representable by algebraic spaces and smooth.

Lemma 5.25. In the context of the preceding discussion, the morphism U → X
induces an isomorphism of stacks [U/R]→ X .

Proof. This follows from Lemma 3.18. �

We now discuss the properties of the underlying reduced substack of a formal
algebraic stack (the definition of which is provided by Definition 3.27).

Lemma 5.26. If X is is a formal algebraic stack over S, then Xred is a closed
and reduced algebraic substack of X , and the inclusion Xred ↪→ X is a thickening
(in the sense that its base-change over any algebraic space induces a thickening of
algebraic spaces). Furthermore, any morphism Y → X with Y a reduced algebraic
stack factors through Xred.

Remark 5.27. Although the proof of this lemma that follows is slightly involved in
its details, it can be summarized as follows: we choose a morphism U → X whose
source is a formal algebraic space, and which is representable by algebraic spaces,
smooth, and surjective, and then, setting R := U ×X U , and using Lemma 5.25 to
write [U/R]

∼−→ X , we show that there is an induced isomorphism [Ured/Rred]
∼−→

Xred.

Proof of Lemma 5.26. Choose a morphism U → X whose source is a formal alge-
braic space, and which is representable by algebraic spaces, smooth, and surjective.
Let Ured denote the underlying reduced algebraic space of U , in the sense of [Stacks,
Tag 0AIN]. The natural morphism Ured ↪→ U is a thickening (in the sense that its
base-change over any morphism T → U , whose source is a scheme, is a thickening),
and thus so is its base-change

(5.28) Ured ×X Ured ↪→ Ured ×X U.
We first claim that this base-changed thickening is an isomorphism. First, we note
that source and target are algebraic spaces, since Ured is, and since U → X is
representable by algebraic spaces, as is the composite Ured → U → X . Secondly,

http://stacks.math.columbia.edu/tag/0AIN
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since U → X is smooth, so is the base-changed morphism of algebraic spaces
Ured ×X U → Ured. Since Ured is reduced, we deduce that Ured ×X U is also
reduced, and hence the projection onto U factors through Ured. Thus we obtain a
morphism

Ured ×X U → Ured ×X Ured,

which is easily verified to be an inverse to (5.28). Thus (5.28) is indeed an isomor-
phism.

We write Rred := Ured ×X Ured ⇒ Ured. (The motivation for this notation is
that, if we write R := U ×X U, then arguments similar to those of the preceding
paragraph show that Rred is the underlying reduced algebraic space of the formal
algebraic space R.) Identifying Rred with Ured ×X U (as the preceding paragraph
allows us to do), and then also with U ×X Ured (by symmetry), we find that each
of the projections Rred ⇒ Ured is a smooth morphism of algebraic spaces. Since
Rred is thus smooth over Ured (by either projection), we see that Rred ×Ured

Rred

(the fibre product being formed with respect to any of the projections to Ured) is
reduced, and hence is the underlying reduced algebraic space of R×U R. Thus the
groupoid structure on R over U (it is a groupoid in formal algebraic spaces over the
formal algebraic space U) induces a groupoid structure on Rred over Ured, realizing
it as a smooth groupoid in algebraic spaces over Ured. The definition of Rred as a
fibre product over X shows that the composite

Ured ↪→ U → X

induces a morphism

(5.29) [Ured/Rred]→ X .

We claim that this latter morphism is representable by algebraic spaces, and is a
thickening (and so in particular a monomorphism), whose essential image is equal to
Xred. Note that this description of Xred (namely that it is isomorphic to [Ured/Rred])
shows that Xred is a reduced algebraic stack.

Since the properties of being representable by algebraic spaces and a thicken-
ing can be checked smooth locally on the target, in order to show that (5.29) is
representable by algebraic spaces, and a thickening, it suffices to verify this after
pulling back along the morphism U → X . The morphisms Ured → [Ured/Rred] and
Ured ↪→ U induce a morphism

Ured → [Ured/Rred]×X U,

which is in fact an isomorphism: indeed, to check that this morphism is an iso-
morphism, we can do so after pulling back over the smooth surjective morphism
Ured ×X U → [Ured/Rred]×X U ; but the pulled back morphism is the morphism

Rred → Ured ×X U,

which we have already shown to be an isomorphism. We conclude that (5.29) is
indeed representable by algebraic spaces and a thickening, since Ured ↪→ U is.

The final claim of the lemma follows from Remarks 3.28 and 3.29, and so to
complete the proof of the lemma, it suffices to show that the essential image of (5.29)
is equal to Xred. Choose a scheme V equipped with a surjective étale morphism
V → Ured. (This is possible, since Ured is an algebraic space.) Since Ured is reduced,
so is V . Thus the morphism V → X is in fact an object of (Xred)′, and hence of
Xred. Since V → Ured → [Ured/Rred] is a smooth (and so fppf) cover of the target,
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we then find that the thickening (5.29) factors through Xred. To show that Xred is
equal to the essential image of this thickening, it suffices to show that any object of
(Xred)′ lies in the essential image of this thickening. This amounts to showing that
if T → X is a morphism whose source is a reduced scheme, then this morphism
factors through [Ured/Rred]. Since [Ured/Rred] is an fppf stack, it suffices to check
this fppf locally on T . We may thus replace T by T ×X U , a reduced algebraic
space admitting a smooth surjection onto T . The morphism of this algebraic space
to X then factors through U by construction, and hence through Ured, and hence
through [Ured/Rred], as required. �

Example 5.30. If X is an algebraic stack and T is a locally closed subset of |X |,
then the reduced algebraic stack underlying the completion X̂|T is the locally closed
substack of X obtained by equipping T with its reduced induced structure [Stacks,
Tag 050C].

We note the following lemma.

Lemma 5.31. If Y → X is a morphism of formal algebraic stacks that is repre-
sentable by algebraic stacks, then the induced morphism Yred → Xred is also repre-
sentable by algebraic spaces, and is surjective if and only if the original morphism
is.

Proof. The morphism Yred → Y is the inclusion of a closed substack, and hence even
representable by schemes, so that the composite Yred → Y → X is representable
by algebraic stacks. Since Xred → X is a monomorphism, we see that the same is
true of the induced morphism Yred → Xred. The second claim of the lemma follows
from the first, together with Lemma 3.34. �

We now prove a version of the topological invariance of the small Zariski and
étale sites for a formal algebraic stack. (We also state the case of algebraic stacks,
since the argument applies just as well in that case.)

Lemma 5.32. If X is an algebraic stack (resp. a formal algebraic stack), and if
U → X is an object of EtX , then U is again an algebraic stack (resp. a formal
algebraic stack). Furthermore, the strict pseudo-functor U 7→ Ured induces an iso-
morphism of categories ZarX → ZarXred

, as well as a 2-equivalence (in the sense of
Definition 2.16 (2)) of 2-categories EtX → EtXred

.

Proof. If U → X is DM, then it is in particular representable by algebraic stacks.
Thus if X is an algebraic stack, then U certainly is, while if X is a formal algebraic
stack, then so is U , by Lemma 5.23 (1).13 (See also Remark 5.24.) Lemma 3.37

shows that Ured
∼−→ U×XXred, while Lemma 5.26 shows that Xred ↪→ X is a thicken-

ing. The claimed equivalence and 2-equivalence thus follow from Lemma 3.41. �

We briefly develop the notion of quasi-compact (and also of quasi-separated)
formal algebraic stacks, and of quasi-compact morphisms of formal algebraic stacks.
We refer to [Stacks, Tag 0AJ8] for the corresponding definitions in the context of
formal algebraic spaces.

Lemma 5.33. If X is a formal algebraic stack, then the following are equivalent:

13The proof of this latter result relies on Lemma 6.1, whose proof in turn relies on the topo-
logical invariance of the small étale site for algebraic stacks. Since that case of the present lemma

does not involve any application of Lemmas 5.23 or 6.1, there is no circularity in the argument.

http://stacks.math.columbia.edu/tag/050C
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(1) Xred is a quasi-compact algebraic stack.
(2) There exists a quasi-compact formal algebraic space U and a morphism

U → X which is representable by algebraic spaces, smooth, and surjective.
(3) There exists an affine formal algebraic space U and a morphism U → X

which is representable by algebraic spaces, smooth, and surjective.

Proof. Clearly condition (3) implies condition (2). Conversely, condition (2) implies
condition (3), by [Stacks, Tag 0AJ9]. If U → X is a morphism as in condition (2),
then Ured → Xred (which Lemma 3.37 shows is obtained by pulling back the given
morphism U → X along the thickening Xred ↪→ X ) is a smooth surjective morphism
from an algebraic space to an algebraic stack whose source is quasi-compact; it
follows that the target is also quasi-compact, and so (2) implies (1).

Conversely, suppose that (1) holds, and choose a morphism U → X which is
representable by algebraic spaces, smooth, and surjective, and whose source is a
formal algebraic space. Invoking Lemma 3.37 again, we see that Ured := U ×X Xred

is the underlying reduced subspace of U , and that the morphism Ured → Xred is
smooth and surjective. Since Xred is quasi-compact by assumption, we may also
find a quasi-compact scheme V and a morphism V → Xred which is smooth and
surjective. If we form the fibre product Ured ×Xred

V, then its projection onto each
of Ured and V is smooth, and hence open, as well as surjective. Since V is quasi-
compact, we may then find a quasi-compact open subspace W of Ured ×Xred

V
which surjects onto V . The image W ′ of W under the projection to Ured is then
a quasi-compact open subspace subspace of Ured which surjects onto Xred. If we
let W ′′ denote the corresponding open subspace of U , then W ′′ is quasi-compact,
and W ′′ → X is representable by algebraic spaces, smooth, and surjective (this
last property following from Lemma 5.31 and the fact that W ′′red = W ′ → Xred is
surjective). Thus (2) holds. �

Definition 5.34. We say that a formal algebraic stack is quasi-compact if it satisfies
the equivalent conditions of Lemma 5.33.

We say that a formal algebraic stack is quasi-separated if its diagonal morphism
(which Lemma 5.12 shows is representable by algebraic spaces) is quasi-compact
and quasi-separated.

Lemma 5.35. For a morphism X → Y of formal algebraic stacks, the following
are equivalent.

(1) The induced morphism Xred → Yred is a quasi-compact morphism of alge-
braic stacks.

(2) For every morphism Z → Y whose source is a quasi-compact formal alge-
braic stack, the fibre product formal algebraic stack X×YZ is quasi-compact.

(2”) For every morphism Z → Y whose source is a quasi-compact formal alge-
braic space, the fibre product formal algebraic stack X×YZ is quasi-compact.

(2”) For every morphism Z → Y whose source is an affine formal algebraic
space, the fibre product formal algebraic stack X ×Y Z is quasi-compact.

(3) For every morphism Z → Y whose source is a quasi-compact algebraic
stack, the fibre product formal algebraic stack X ×Y Z is quasi-compact.

(3’) For every morphism Z → Y whose source is a quasi-compact scheme, the
fibre product formal algebraic stack X ×Y Z is quasi-compact.

(3”) For every morphism Z → Y whose source is an affine scheme, the fibre
product formal algebraic stack X ×Y Z is quasi-compact.

http://stacks.math.columbia.edu/tag/0AJ9
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(4) There exists a morphism
∐
Yi → Y whose source is a disjoint union of

affine formal algebraic spaces, and which is representable by algebraic spaces,
smooth, and surjective, such that each of the fibre product formal algebraic
stacks X ×Y Yi are quasi-compact.

Proof. The argument is routine, and we leave it to the reader. �

Definition 5.36. We say that a morphism of formal algebraic stacks is quasi-
compact if it satisfies the equivalent conditions of Lemma 5.35.

6. Ind-algebraic stacks and formal algebraic stacks

As recalled in Definition 5.1, an affine formal algebraic space X is, by defini-
tion [Stacks, Tag 0AI7], a sheaf on the fppf site of S that can be written as an
Ind-scheme

X ∼= lim−→
i

Xi,

where the Xi are affine schemes and the transition morphisms are thickenings.
More generally, if X is a formal algebraic space which is quasi-compact and quasi-
separated, then [Stacks, Tag 0AJE] shows that it may written as an Ind-algebraic
space

X ∼= lim−→
i

Xi,

where the Xi are algebraic spaces and the transition morphisms are thickenings.
Conversely, any Ind-algebraic space of this form is a formal algebraic space [Stacks,
Tag 0AIU]. The proof of this latter result depends on the topological invariance
of the étale site. Thus, it carries over directly to the context of Deligne–Mumford
stacks: any 2-colimit of a 2-directed system of Deligne–Mumford stacks with re-
spect to transition morphisms that are thickenings is necessarily a formal Deligne–
Mumford stack.

Here is a formal statement and proof of this result.

Lemma 6.1. If {Xi}i is a 2-directed system of Deligne–Mumford stacks, with each
of the transition morphisms being a thickening, then X := lim−→i

Xi is a formal

algebraic stack, and there is a morphism U → X whose source is a formal algebraic
space, and which is representable by algebraic spaces, étale, and surjective.

Proof. Fix an index i0, and choose an étale morphism Ui0 → Xi0 whose source
is a scheme. For each i ≥ i0, it follows from Lemma 3.41 that we may find an
étale morphism Ui → Xi which is a thickening of Ui0 → Xi0 . (We note that
Ui is indeed a scheme, as the notation suggests, by [Stacks, Tag 0BPW].) The
transition morphisms Xi → Xi′ induce compatible transition morphisms Ui → Ui′ ,
which make {Ui} into a directed system of schemes, whose transition morphisms are
thickenings. If we set U := lim−→i≥i0

Ui, then U is a formal algebraic space, by [Stacks,

Tag 0AIU].) By Lemma 2.34, the morphisms Ui → Xi induce a morphism

U → lim−→
i≥i0
Xi

∼−→ lim−→
i

Xi := X ,

which, by Lemma 4.11, is representable by algebraic spaces, étale, and surjective,
as required; note that the claimed isomorphism is provided by Lemma 2.36. �

http://stacks.math.columbia.edu/tag/0AI7
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In the general case of formal algebraic stacks that are not necessarily Deligne–
Mumford, less seems to be known about the possibility of relating them to 2-colimits
of thickenings. However, we do have the following results, the first of which is a
direct analogue for formal algebraic stacks of [Stacks, Tag 0AJE] (and whose proof
follows closely the proof of that result).

Lemma 6.2. If X is a quasi-compact and quasi-separated formal algebraic stack,
then X ∼= lim−→i

Xi for a 2-directed system {Xi}i∈I of algebraic stacks in which the

transition morphisms are thickenings. If X is furthermore locally countably indexed,
then we may choose the indexing category to be countable, and so write X ∼= lim−→n

Xn
as the 2-colimit of a directed sequence of algebraic stacks with respect to transition
morphisms that are thickenings.

Proof. Choose a morphism V → X which is representable by algebraic spaces,
smooth, and surjective, and whose source is an affine formal algebraic space (as we
may, since X is quasi-compact), and write V = lim−→i∈I Vi as the inductive limit of

affine schemes via thickenings.
If i ∈ I, then V ×X Vi is an algebraic space, which is quasi-compact, since Vi and

V are quasi-compact (being an affine scheme and a formal affine algebraic space,
respectively), and X is quasi-separated. Thus the projection V ×X Vi → V factors
through Vj , for some j ≥ i. If we let Zi denote the scheme-theoretic image in Vj
of this projection, then Zi (thought of as a closed subsheaf of V ) is independent of
the choice of j, and so we may regard it as being the scheme-theoretic image of the
morphism V ×X Vi → V. Since the projections V ×X Vi → V and Vi ×X V → V
are isomorphic, we may equally well regard Zi as the scheme-theoretic image of the
latter morphism.

We now compute that Zi×X V and V ×X Zi coincide as subsheaves of V ×X V ;
indeed, since the formation of scheme-theoretic images of quasi-compact morphisms
is compatible with flat base-change, the first may be described, using the first
description of Zi, as the scheme-theoretic image of the morphism V ×X Vi×X V →
V ×X V (projection onto the first and third factors), while the second may be
described, using the second description of Zi, as the scheme-theoretic image of the
morphism V ×X Vi ×X V → V ×X V (where the morphism is again projection
onto the first and third factors). Thus each of these fibre products also coincides
with Zi ×X Zi. We denote these three (equal) fibre products by Ri. The last
description of Ri gives it a natural structure of a groupoid in algebraic spaces over
Zi, while the first two descriptions show that it is a smooth groupoid (because the
projections Zi×X Zi ⇒ Zi are obtained by base-change from the smooth morphism
V → X ). Thus we may form the algebraic stack Xi := [Zi/Ri], and the composite
Zi → V → X factors through Xi, i.e. induces a morphism Xi → X . Essentially
by definition, the base-change of this morphism to V over X recovers the closed
immersion Zi → X , and thus this morphism itself is a closed immersion.

Since Zi contains Vi (when both are thought of as closed subsheaves of V ), we see
that lim−→i

Zi ∼= V. Thus the natural morphism lim−→i
Xi → X is also an isomorphism,

and we have proved the first statement of the lemma.
If X is furthermore locally countably indexed, then V is countably indexed, and

so the indexing category I can be taken to be countable. This proves the second
statement of the lemma. �

http://stacks.math.columbia.edu/tag/0AJE
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The next result gives a partial analogue of [Stacks, Tag 0AIU], or, in other words,
a partial converse to the preceding result.

Lemma 6.3. If X1 ↪→ X2 ↪→ · · · ↪→ Xn ↪→ · · · is a sequence of finite order
thickenings of algebraic stacks, then lim−→n

Xn is a locally countably indexed formal

algebraic stack.

Proof. Choose (as we may) a morphism
∐
U1,i → X1 which is smooth and surjec-

tive, and whose source is a disjoint union of affine schemes. Lemma 6.4 below allows
us to successively lift each of the morphisms U1,i → X1 to a morphism Un,i → Xn,
so that Un−1,i is identified with the fibre product Xn−1 ×Xn Un,i. If we write
Ui := lim−→n

Ui,n, then Ui is an inductive limit of a sequence of affine schemes with

respect to thickenings, and so is a countably indexed affine formal algebraic space.
Furthermore, there is an evident morphism Ui → lim−→n

Xn, which by construction is

representable by algebraic spaces and smooth. The induced morphism
∐
Ui → X

is furthermore surjective, and thus realizes X as a locally countably indexed formal
algebraic stack. �

Lemma 6.4. If X ↪→ X ′ is a finite order thickening of algebraic stacks, and if
U → X is a smooth morphism whose source is an affine scheme, then we may find
a smooth morphism U ′ → X ′ whose source is an affine scheme, and which fits into
a Cartesian diagram

U //

��

U ′

��

X // X ′

Proof. This is proved in the stated generality as [Stacks, Tag 0CKI].
Here we present our original argument, which requires the addition assumption

that each of X and X ′ has a quasi-compact diagonal.
An evident induction reduces us to the case when X ↪→ X ′ is a first order thick-

ening. In this case we argue using the deformation theoretic formalism developed
in [Ols06] (and we require the assumptions on the diagonals of X and X ′ that we
do because it is a running hypothesis in that paper). Namely, Theorem 1.4 of that
paper shows that the obstruction to deforming U → X to a flat morphism U ′ → X ′
is given by an element of Ext2

OU
(LU/X , I), where LU/X denotes the cotangent com-

plex of U over X , and I denotes the pull-back to U of the ideal sheaf on X ′ that
cuts out X . Since U → X is smooth, the cotangent complex LU/X is precisely the

space of differentials Ω1
U/X , which is a locally free sheaf of finite rank on U . (We

refer to [LMB00; Ols07] for the general theory of the cotangent complex on alge-
braic stacks, and to [LMB00, Lem. 17.5.8] for this particular fact. More precisely,
it is proved there that the cotangent complex of a morphism that is representable
by algebraic spaces and smooth collapses to the sheaf Ω1 supported in degree zero.
The formation of Ω1 is compatible with smooth base-change, and so is easily seen
to be locally free, by reduction to the case of a smooth morphism of schemes.) Thus
the Ext2 above may be rewritten as H2

(
U, I ⊗ (Ω1

U/X )∨
)
, which vanishes, since U

is affine.
Finally, the following lemma (Lemma 6.5) shows that the flat morphism U ′ → X ′

is in fact smooth, since the base-changed morphism U → X is. �

http://stacks.math.columbia.edu/tag/0AIU
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Lemma 6.5. Suppose that

X

��

// X ′

��

Y // Y ′

is a Cartesian diagram of morphisms of algebraic stacks, in which the horizontal
arrows are finite order thickenings, and the vertical arrows are flat.

(1) If the left-hand vertical arrow is locally of finite presentation, so is the
right-hand vertical arrow.

(2) If the left-hand vertical arrow is smooth, so is the right-hand vertical arrow.

Proof. The properties of being locally of finite presentation, or of being smooth,
may be checked smooth locally. Thus if we choose a smooth surjective morphism
V ′ → Y ′ whose source is a scheme and pull-back the diagram over V ′, we may
assume that Y = V is a scheme. If we then choose a smooth surjective morphism
U ′ → X ′, and write U = X ×X ′ U ′, then in order to prove the lemma, it suffices to
prove the corresponding statement for the Cartesian diagram

U //

��

U ′

��

V // V ′

in which all the objects appearing are schemes. Since the properties to be checked
are local on the source, we reduce to the case where all the schemes involved are
affine, in which the case the problem may be rephrased as follows: if A → A/I is
a surjection of rings with I a nilpotent ideal, if B is a flat A-algebra, and if B/IB
is of finite presentation (resp. smooth) over A/I, then B is of finite presentation
(resp. smooth) over A.

If f : A[x1, . . . , xn] → B is a morphism for which the induced morphism f :
(A/I)[x1, . . . , xn] → B/I is surjective, then Nakayama’s Lemma shows that the
morphism f itself is surjective. If J denotes its kernel, then since B is flat over A,
we see that J/IJ is identified with the kernel of f . Nakayama’s Lemma again shows
that if J/IJ is finitely generated over (A/I)[x1, . . . , xn], then J is finitely generated
over A[x1, . . . , xn]. Thus we have shown that if B/IB is finitely presented over A/I,
then B is finitely presented over A.

If furthermore B/IB is smooth over A/I, then we find that B is a finitely
presented A-algebra, for which the induced morphism SpecB → SpecA has smooth
fibres. The fibrewise criterion for smoothness [Stacks, Tag 00TF] then shows that
B is a smooth A-algebra, as required. �

We have the following corollary to Lemma 6.3.

Corollary 6.6. Suppose that X is an Ind-algebraic stack that can be written as
the 2-colimit X ∼−→ lim−→Xn of a directed sequence (Xn)n≥1 in which the Xn are
algebraic stacks, and the transition morphisms are closed immersions. If Xred is a
quasi-compact algebraic stack, then X is a locally countably indexed formal algebraic
stack.

Proof. By assumption, Xred is a quasi-compact algebraic stack, and Lemma 4.4
shows that the induced isomorphism Xred

∼−→ lim−→n
Yn,red (given by Lemma 4.16)

http://stacks.math.columbia.edu/tag/00TF
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necessarily factors through Yn,red for some sufficiently large value of n. This shows
that the sequence (Yn,red)n≥1 stabilizes when n becomes sufficiently large, and thus
that the sequence (Yn)n≥1 becomes a sequence of thickenings for sufficiently large
values of n. Thus Lemma 6.3 shows that X is indeed a locally countably indexed
formal algebraic stack. �

We now turn to establishing the characterization of formal algebraic spaces dis-
cussed in Example 5.7 above. Lemma 6.2 plays a crucial role in the argument.

Lemma 6.7. If X is a formal algebraic stack, then the following are equivalent:

(1) X is an affine formal algebraic space.
(2) Xred is an affine scheme.

Proof. That (1) implies (2) is clear, and we focus on proving the converse implica-
tion. Thus we assume that Xred is an affine scheme. Then Xred is quasi-compact
and quasi-separated, and hence the same is true of X . Lemma 6.2 allows us to
write X ∼= lim−→i

Xi as the 2-colimit of a 2-directed system of algebraic stacks having

thickenings for transition morphisms. Since Xred
∼= (Xi)red for each i, we conclude

from [Stacks, Tag 0BPW] that each Xi is an affine scheme. Thus X is indeed an
affine formal algebraic space. �

We can now show that formal algebraic spaces are precisely the formal algebraic
stacks that have trivial inertia stacks. This is the analogue, for formal algebraic
stacks, of [Stacks, Tag 04SZ], and we begin by recalling that statement, as well as
a useful variant statement [Con07, Thm. 2.5.1 (1)], which reduces one to checking
triviality of the inertia stack over field-valued, or even geometric, points. (Since
the paper [Con07] imposes they blanket hypothesis that algebraic stacks be quasi-
separated, in the sense of [LMB00], we give a proof here of its Thm. 2.2.5 (1) which
applies without any such assumption.)

Lemma 6.8. If X is an algebraic stack, then the following are equivalent:

(1) X is a stack in setoids.
(2) The canonical morphism IX → X is an equivalence (where IX denotes the

inertia stack of X ).
(3) X is an algebraic space.
(4) For any morphism x : Spec k → X with k a field, the automorphism group

algebraic space of x is trivial.
(5) For any morphism x : Spec k → X with k an algebraically closed field, the

automorphism group algebraic space of x is trivial.

Proof. The equivalence of (1), (2), and (3) is precisely the statement of [Stacks,
Tag 04SZ]. Clearly (4) implies (5), and since the formation of the automorphism
group algebraic space of an object of X is compatible with the formation of flat
base-change, we see that in fact (4) and (5) are equivalent, and are implied by (1).

Now (1) is equivalent to the statement that for any morphism T → X with
source a scheme, the automorphism group algebraic space of this T -valued point of
X is trivial. If we assume (5), then we find that the fibre of this group algebraic
space over each geometric point of T is trivial. It follows from Lemma 6.9 that this
group algebraic space itself is trivial (note that this group algebraic space admits
the identity section, so that all the hypotheses of that lemma are satisfied); thus (5)
implies (1). �

http://stacks.math.columbia.edu/tag/0BPW
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The lemma that follows isolates the key argument from the proof of [Con07,
Thm. 2.2.5 (1)].

Lemma 6.9. Let X → Y be a locally finite type morphism of algebraic spaces with
the property that, for any morphism Spec k → Y , with k being an algebraically
closed field, the base-changed morphism X ×Y Spec k → Spec k is an isomorphism.
If the morphism X → Y admits a section, then it itself is an isomorphism.

Proof. The property of being an isomorphism may be checked étale locally on the
target, and so, pulling back over an étale surjection V → Y with V a scheme, we
may assume that Y is a scheme.

We first claim that the morphism X → Y is unramified. This may be checked
étale locally on the source, and so composing with an étale surjection U → X
with U a scheme, we are reduced to showing that a morphism of schemes U → Y
which is locally of finite type, and which satisfies the additional property that for
each morphism Spec k → Y with k an algebraically closed field, the base-changed
morphism U ×Y Spec k → Spec k is étale, is unramified. Since the property of a
morphism being étale is fppf local on the target, we see that in fact Uy → Specκ(y)
is étale for each y ∈ Y . The fact that U → Y is unramified now follows from [Stacks,
Tag 02G8].

Since X → Y is unramified, the diagonal ∆X/Y is an open immersion [Stacks,
Tag 05W1]. Thus the section Y → X (which we assumed to exist) is an open
immersion. It is also surjective (by virtue of our assumption regarding geometric
points), and thus is an isomorphism. This completes the proof of the lemma. �

Remark 6.10. In the preceding lemma, the hypothesis that X → Y admits a section
is crucial. For example, if Z is a closed subscheme of the scheme X, and U := X\Z,
then the natural morphism ZqU → X satisfies the hypothesis on geometric points
from the lemma, but typically is not an isomorphism.

We now return to the context of formal algebraic stacks.

Lemma 6.11. Let X be a formal algebraic stack. The following are equivalent:

(1) X is a stack in setoids.
(2) The canonical morphism IX → X is an equivalence (where IX denotes the

inertia stack of X ).
(3) X is a formal algebraic space.
(4) Xred is an algebraic space.
(5) For any morphism x : Spec k → X with k a field, the automorphism group

of x is trivial.
(6) For any morphism x : Spec k → X with k an algebraically closed field, the

automorphism group of x is trivial.

Proof. The equivalence of (1) and (2) is a general fact about stacks; see e.g. [Stacks,
Tag 04ZM], and the fact that (3) implies (2) was observed in Example 5.7. Suppose
now that (1) holds. Since Xred is a substack of X , it is also a category fibred in
setoids (rather than just in groupoids), and so it follows from [Stacks, Tag 04SZ]
that Xred is an algebraic space, so (1) implies (4).

Since Spec k is reduced for any field k, the groupoid of morphisms from Spec k to
each of X and Xred coincide. Furthermore, if x : Spec k → Xred is such a morphism,
then because Xred → X is a monomorphism, the automorphisms of x, thought of
either as a Spec k-valued point of either Xred or of X , coincide [Stacks, Tag 06R5].

http://stacks.math.columbia.edu/tag/02G8
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Thus, conditions (5) and (6) are equivalent to the analogous conditions for Xred,
which in turn are equivalent to (4), by Lemma 6.8.

It remains to show that (4) implies (3). In fact, we first show that (4) implies (1)
and (2); equivalently, we show that if Xred is a formal algebraic space, then the
diagonal morphism X → X ×S X is a monomorphism. Since Xred → X is a
monomorphism, the diagram

Xred

��

// Xred ×S Xred

��

X // X ×S X

whose horizontal arrows are the evident diagonal morphisms, is 2-Cartesian. Its
horizontal arrows are representable by algebraic spaces, and locally of finite type
(Lemma 5.12), while its vertical arrows are representable by algebraic spaces, and
thickenings. Since Xred is an algebraic space, by assumption, the upper horizontal
arrow is furthermore a monomorphism. It follows from [Stacks, Tag 0BPJ] that the
lower horizontal arrow is also a monomorphism, as required.

Thus, assuming that Xred is an algebraic space, we have shown that X is a
stack in setoids. We now show that it is in fact a formal algebraic space. To this
end, choose (as we may) a morphism

∐
Ui,red → Xred which is representable by

algebraic spaces and étale, and whose source is a disjoint union of affine schemes
Ui,red. Lemmas 5.32 and 6.7 allow us to promote each Ui,red to an affine formal
algebraic space Ui, equipped with a morphism Ui → X which is representable by
algebraic spaces and étale. The induced morphism

∐
i Ui → X is then representable

by algebraic spaces, étale, and surjective, so realizes X as a formal algebraic space.
This completes the proof that (4) implies (3), and so also completes the proof of
the lemma. �

Remark 6.12. One can establish a characterization of formal Deligne–Mumford
stacks analogous to the characterization of formal algebraic spaces given by the
preceding lemma, using very similar arguments. Namely, a formal algebraic stack
X is formal Deligne–Mumford if and only if Xred is a Deligne–Mumford stack, if
and only if ∆X is unramified, if and only if the automorphism group schemes of
points of X are étale, if and only if this last condition holds for field-valued, or even
merely algebraically closed field-valued, points of X .

We may use the results developed in this section to define the notion of a scheme-
theoretically dominant morphism between formal algebraic stacks that are quasi-
compact and quasi-separated. Namely, suppose that X → Y is a morphism of
formal algebraic stacks, each of which is quasi-compact and quasi-separated. The
usual diagonal argument shows that X → Y is then also quasi-compact and quasi-
separated. Lemma 6.2 allows us to write X ∼= lim−→Xλ, with the transition morphisms
being thickenings of algebraic stacks. Similarly, we may write Y ∼= lim−→Yµ. For each

index λ, the composite morphism Xλ → X → Y factors through one of the Yµ (since
Xλ is quasi-compact and quasi-separated). The resulting morphism Xλ → Yµ is
quasi-compact, and so has a scheme-theoretic image (see e.g. [EG19b, §3.1], or
Example 9.9 below), which we denote by Zλ. One easily checks that Zλ, thought
of as a closed substack of Y, is independent of the particular choice of the index
µ used in its definition, and we may regard Zλ as the scheme-theoretic image of

http://stacks.math.columbia.edu/tag/0BPJ
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Xλ in Y. Evidently Zλ is a closed substack of Zλ′ if λ ≤ λ′, with the resulting
morphism Zλ ↪→ Zλ′ being a thickening. In particular, we may form the 2-colimit
lim−→Zλ, which is an Ind-algebraic stack.There is a natural morphism lim−→Zλ → Y.

Definition 6.13. A morphism X → Y of quasi-compact and quasi-separated for-
mal algebraic stacks is called scheme-theoretically dominant if, in the notation of
the preceding discussion, the morphism lim−→Zλ → Y is an isomorphism.

Remark 6.14. One easily verifies that the condition of the preceding definition is
independent of the particular representation of X as an inductive limit X ∼= lim−→Xλ.

The property of being scheme-theoretically dominant is preserved by a suitable
flat base-change.

Lemma 6.15. If X → Y is a scheme-theoretically dominant morphism between
quasi-compact and quasi-separated formal algebraic stacks, and if Y ′ → Y is a mor-
phism whose source is again a quasi-compact and quasi-separated algebraic stack,
and which is furthermore representable by algebraic stacks and flat, then the base-
changed morphism X ×Y Y ′ → Y ′ is scheme-theoretically dominant.

Proof. As in the discussion preceding Definition 6.13, write X ∼= lim−→Xλ; since X →
Y is scheme-theoretically dominant by assumption, we obtain the corresponding
description Y ∼= lim−→Yλ, where the composite Xλ → X → Y factors through a

scheme-theoretically dominant morphism Xλ → Yλ, for each index λ. Let X ′ :=
X ×Y Y ′. If we write X ′λ := Xλ×Y Y ′, then X ′λ is an algebraic stack, the morphism
X ′λ ↪→ X ′ is a closed immersion, the X ′λ form a 2-directed system of algebraic stacks
with thickenings as transition morphisms, and the natural morphism lim−→X

′
λ → X ′ is

an isomorphism. Similarly, if we write Y ′λ := Yλ×YY ′, then Y ′λ is an algebraic stack,
the morphism Y ′λ ↪→ Y ′ is a closed immersion, the Y ′λ form a 2-directed system
having thickenings as transition morphisms, and the natural morphism lim−→Y

′
λ → Y ′

is an isomorphism.
Since Xλ → Yλ is a scheme-theoretically dominant quasi-compact morphism of

algebraic stacks, since the formation of scheme-theoretic images of quasi-compact
morphisms is compatible with flat base-change, and since Yλ′ → Yλ is flat, we find
that X ′λ → Y ′λ is again scheme-theoretically dominant. Thus by definition X ′ → Y ′
is scheme-theoretically dominant, as claimed. �

7. Adic morphisms

We now discuss the concept of an adic morphism, beginning by recalling this
notion in the context of formal algebraic spaces.

Definition 7.1. If f : X → Y is a morphism of sheaves over S with Y being a
locally adic* formal algebraic space, then we say that f is adic if and only if it
representable by algebraic spaces.

Remark 7.2. This is the definition of [Stacks, Tag 0AQ3]. (Note that in that
definition, it is required that additionally X be a locally adic* formal algebraic
space; however, Remark 5.20 shows that this holds automatically if the morphism
is representable by algebraic spaces.)

We extend this definition to the context of formal algebraic stacks as follows.

http://stacks.math.columbia.edu/tag/0AQ3
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Definition 7.3. We say that a morphism X → Y of stacks over S, whose target
Y is a locally adic* formal algebraic stack, is adic if and only if it is representable
by algebraic stacks.

Remark 7.4. In the context of Definition 7.3, Remark 5.24 shows that the source
X of an adic morphism is necessarily a locally adic* formal algebraic stack.

Remark 7.5. It follows from Lemma 3.5 that a morphism of sheaves whose target
is a locally adic* algebraic space, thought of as a morphism of stacks, is adic in the
sense of Definition 7.3 if and only if it is adic in the sense of Definition 7.1.

Suppose now that A is an adic* topological ring. with finitely generated ideal of
definition I. As usual, write Spf A := lim−→n

SpecA/In; then the natural morphism

Spf A → SpecA is a monomorphism. In particular, a stack over SpecA admits at
most one morphism to Spf A.

Definition 7.6. We say that a formal algebraic stack X over SpecA is an I-adic
formal algebraic stack if it admits a morphism X → Spf A which is furthermore
adic.

Example 7.7. If X is an algebraic stack over SpecA, then the I-adic completion X̂
of X gives an example of an I-adic formal algebraic stack. We may define the I-adic
completion in two ways: as the fibre product Spf A×SpecA X , or as the completion
of X along its closed substack SpecA/I ×SpecA X . (The first definition makes it

clear that X̂ is I-adic, since its structure morphism to Spf A is the base-change of
the morphism X → SpecA, which is representable by algebraic stacks since X itself
is an algebraic stack.)

Example 7.8. Suppose that {Xn}n≥1 is a directed sequence of algebraic stacks over
SpecA, for which each Xn in fact lies over SpecA/In, such that each of the induced
morphisms Xn → SpecA/In ×SpecA/In+1 Xn+1 is an isomorphism. We may then
form the Ind-algebraic stack X := lim−→n

Xn, and the obvious morphism X → Spf A

is representable by algebraic stacks, or, equivalently, adic, so that X is an I-adic
formal algebraic stack.

We have the following simple lemmas.

Lemma 7.9. If A is an adic* topological ring, with finitely generated ideal of
definition I, if X → Y is a morphism of stacks over SpecA which is representable
by algebraic stacks, and if Y is furthermore an I-adic formal algebraic stack, then
X is also an I-adic formal algebraic stack.

Proof. Remark 7.4 shows that X is again a formal algebraic stack over SpecA. The
fact that it is I-adic follows from the fact that a composite of morphisms that are
representable by algebraic stacks is again representable by algebraic stacks. �

Lemma 7.10. If A is an adic* topological ring, with finitely generated ideal of
definition I, then any morphism X → Y between I-adic formal algebraic stacks is
necessarily adic.

Proof. Since Spf A → SpecA is a monomorphism, we have that Y ×Spf A Y ∼=
Y×SpecAY, and hence Lemma 5.12 shows that the diagonal morphism Y → Y×Spf A

Y is representable by algebraic spaces. The claim of the lemma then follows from
Lemma 3.7. �
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8. Properties of formal algebraic stacks

We fix a base-scheme S, and throughout, we work with objects (schemes, sheaves,
stacks, etc.) over S. We will define certain properties of formal algebraic stacks
(over S)14 in terms of properties of formal algebraic spaces that are of a sufficiently
local nature.

Definition 8.1. We say that a property P of formal algebraic spaces is smooth
local (resp. fppf local) if it satisfies the following three conditions:

(1) If X → Y is a morphism of formal algebraic spaces which is representable
by algebraic spaces and smooth (resp. flat and locally of finite presentation),
and if Y satisfies P , then so does X.

(2) If X → Y is a morphism of formal algebraic spaces which is representable
by algebraic spaces, smooth (resp. flat and locally of finite presentation),
and surjective, and if X satisfies P , then so does Y .

(3) If {Xi}i∈I is a collection of formal algebraic spaces, each of which satisfies P ,
then the disjoint union

∐
iXi also satisfies P .

Remark 8.2. Since smooth morphisms are in particular flat and locally of finite
presentation, we see that an fppf local property is in particular smooth local.

Lemma 8.3. If X is a formal algebraic stack over S, and if P is a property of
formal algebraic spaces that is smooth local (resp. fppf local) then the following are
equivalent:

(1) For every morphism U → X whose domain is a formal algebraic space, and
which is representable by algebraic spaces and smooth (resp. flat and locally
of finite presentation), the formal algebraic space U has property P .

(2) For every morphism U → X whose domain is an affine formal algebraic
space, and which is representable by algebraic spaces and smooth (resp. flat
and locally of finite presentation), the affine formal algebraic space U has
property P .

(3) There exists a formal algebraic space V having the property P , and a mor-
phism V → X which is representable by algebraic spaces, smooth (resp. flat
and locally of finite presentation), and surjective.

(4) There exists a family {Ui} of affine formal algebraic spaces, each having the
property P , and a morphism

∐
Ui → X which is representable by algebraic

spaces, smooth (resp. flat and locally of finite presentation), and surjective.

Proof. Clearly condition (1) implies condition (2), and almost as clearly, condi-
tion (4) implies condition (3) (take the formal algebraic space V of (3) to be the
disjoint union of the affine formal algebraic spaces Ui of (4)). Since X is a formal
algebraic stack, there exists a morphism

∐
Ui → X , whose source is a disjoint

union of affine formal algebraic spaces, which is representable by algebraic spaces,
smooth, and surjective. Since smooth morphisms are in particular flat and locally
of finite presentation, we see that condition (2) implies condition (4).

Finally, suppose that (3) holds, and choose a morphism V → X as in the state-
ment of (3). Now consider a morphism U → X as in the statement of (1). The
projection U×X V → U is then representable by algebraic spaces, smooth (resp. flat

14As already indicated, we will work with formal algebraic spaces over S throughout, and so
we won’t continue to emphasize that all our objects and morphisms are over S.
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and locally of finite presentation), and surjective, while the projection U×X V → V
is representable by algebraic spaces, and smooth (resp. flat and locally of finite pre-
sentation). Since V has property P , by assumption, we conclude first that the fibre
product U ×X V has property P , and then that U has property P , as required. �

Definition 8.4. If P is a smooth local property of formal algebraic spaces, then
we say that a formal algebraic stack X is P if X satisfies the equivalent conditions
of Lemma 8.3.

Remark 8.5. Since fppf local properties are in particular smooth local, this definition
applies to such properties. Also, note that since formal algebraic spaces are partic-
ular types of formal algebraic stacks, this definition encompasses formal algebraic
spaces. Similarly, algebraic stacks are particular types of formal algebraic stacks,
and so this definition also encompasses algebraic stacks. In this case it coincides
with the notion of an algebraic stack being P in the sense of [Stacks, Tag 04YG]
(provided that the property P , as understood for formal algebraic spaces, coincides
with the property P for schemes, when the latter are thought of as particular cases
of the former).

Having made this definition, Lemma 8.3 admits the following extension.

Lemma 8.6. If X is a formal algebraic stack over S, and if P is a property of
formal algebraic spaces that is smooth local (resp. fppf local) then the following are
equivalent:

(1) X has property P .
(2) For every morphism U → X whose domain is a formal algebraic stack, and

which is representable by algebraic stacks and smooth (resp. flat and locally
of finite presentation), the formal algebraic stack U has property P .

(3) There exists a formal algebraic stack U that has property P , and a morphism
U → X which is representable by algebraic stacks, smooth (resp. flat and
locally of finite presentation), and surjective.

Proof. Clearly (2) implies (1), while (1) implies (3).
We next show that (1) implies (2). To this end, suppose that X has property P ,

and that we are given a morphism U → X as in (2). Since U is a formal algebraic
stack, we may find a disjoint union

∐
Ui of formal algebraic spaces, and a morphism∐

Ui → U which is representable by algebraic spaces, smooth, and surjective. The
composite

∐
Ui → U → X is then representable by algebraic spaces (here we are

applying Lemma 3.5) and smooth (resp. flat and locally of finite presentation), and
(by definition of X satisfying P and Lemma 8.3) Ui satisfies P . Thus U satisfies P
(again by definition), as required.

Finally, we show that (3) implies (1). Thus, we suppose now that X satisfies (3),
and let U → X be a morphism as in the statement of (3). As in the preceding
paragraph, we may find a disjoint union

∐
Ui of affine formal algebraic spaces, and

a morphism
∐
Ui → U which is representable by algebraic spaces, smooth, and

surjective. Since U furthermore satisfies P , each Ui satisfies P . The composite∐
Ui → U → X is then representable by algebraic spaces (here we are applying

Lemma 3.5), smooth (resp. flat and locally of finite presentation), and surjective,
and (by definition of X satisfying P , and Lemma 8.3) we see that X satisfies P , as
claimed. �

http://stacks.math.columbia.edu/tag/04YG
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Remark 8.7. It is shown in [Stacks, Tag 0AKS], resp. [Stacks, Tag 0AKT], that
the property of being countably indexed, resp. adic*, is an fppf local property
of affine formal algebraic spaces. It follows immediately that the property of a
formal algebraic space being locally countably indexed or locally adic* (in the sense
of [Stacks, Tag 0AKY]) is again fppf local. If we apply the preceding framework
to the property P of being locally countably indexed, resp. locally adic*, then
we recover the notion of a locally countably indexed, resp. locally adic*, formal
algebraic stack which we introduced above.

The following notion provides another instance of the preceding framework.

Definition 8.8. We say that a formal algebraic stack X is residually Jacobson ifMaybe there is better
terminology, or established
terminology, for this
notion?

Xred is a Jacobson algebraic stack, in the sense of [Stacks, Tag 04YH].

Remark 8.9. Since the property of a scheme being Jacobson depends only on its
underlying topological space, and hence only on its underlying reduced subscheme,
and since this property is also local for the fppf topology on schemes [Stacks, Tag
0368], we see that the property of an affine formal algebraic space being residually
Jacobson (in the sense of Definition 8.8) is fppf local. Thus we may apply the
preceding framework to the property P of being residually Jacobson, and we recover
the notion of Definition 8.8.

Remark 8.10. An affine formal algebraic space is defined to be Noetherian if it is of
the form Spf A, where A is a Noetherian adic topological ring [Stacks, Tag 0AID].
It is shown in [Stacks, Tag 0AKW] that the property of being Noetherian is fppf
local. It follows immediately that the property of an algebraic space being locally
Noetherian (in the sense of [Stacks, Tag 0AKY]) is again fppf local. Thus the above
framework allows us to define the notion of a locally Noetherian formal algebraic
stack. This definition is sufficiently important that we record it separately (and also
take the opportunity to define the notion of Noetherian formal algebraic stacks).

Definition 8.11. Let X be a formal algebraic stack.

(1) We say that X is locally Noetherian if it so in the sense of Definition 8.4
(taking P to be the property of a formal algebraic space being locally
Noetherian).

(2) We say that X is Noetherian if it is locally Noetherian, quasi-compact, and
quasi-separated.

Remark 8.12. The definition of Noetherian formal algebraic stacks as being lo-
cally Noetherian algebraic stacks that are furthermore quasi-compact and quasi-
separated is modelled on the analogous definition for algebraic stacks [Stacks, Tag
0510] (and coincides with that definition when applied to an algebraic stack, thought
of as a formal algebraic stack).

When we apply Definition 8.11 (1) to formal algebraic spaces (thought of as par-
ticular types of formal algebraic stacks), we recover the notion of locally Noetherian
formal algebraic spaces, as defined in [Stacks, Tag 0AKY]. A consideration of the
definitions also shows that a formal algebraic stack X is locally Noetherian if and
only if it admits a morphism U → X which is representable by algebraic spaces,
smooth, and surjective, and whose source is a locally Noetherian formal algebraic
space.

http://stacks.math.columbia.edu/tag/0AKS
http://stacks.math.columbia.edu/tag/0AKT
http://stacks.math.columbia.edu/tag/0AKY
http://stacks.math.columbia.edu/tag/04YH
http://stacks.math.columbia.edu/tag/0368
http://stacks.math.columbia.edu/tag/0368
http://stacks.math.columbia.edu/tag/0AID
http://stacks.math.columbia.edu/tag/0AKW
http://stacks.math.columbia.edu/tag/0AKY
http://stacks.math.columbia.edu/tag/0510
http://stacks.math.columbia.edu/tag/0510
http://stacks.math.columbia.edu/tag/0AKY
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Lemma 8.13. If Y is a locally Noetherian formal algebraic stack, and if X → Y is
a morphism of formal algebraic stacks that is representable by algebraic stacks and
locally of finite type, then X is also locally Noetherian.

Proof. If V → Y is representable by algebraic spaces, smooth, and surjective, with
V being a locally Noetherian algebraic space, then the fibre product X ×Y V is
a formal algebraic stack, by Lemma 5.22, and the projection X ×Y V → X is
again representable by algebraic spaces, smooth, and surjective. Thus it suffices
to show that X ×Y V is locally Noetherian. The projection X ×Y V → V is
representable by algebraic stacks and locally of finite type. If we let U → X×Y V be
a morphism that is representable by algebraic spaces, smooth, and surjective, then
the composite U → X ×Y V → V is representable by algebraic spaces (here we have
used Lemma 3.5) and locally of finite type. Thus its source is locally Noetherian,
since its target is [Stacks, Tag 0AQ7]. Thus X ×Y V is locally Noetherian, and
hence so is X , as claimed. �

Recall that a Noetherian ring is said to be Cohen–Macaulay if its localization
at each prime ideal is a Cohen–Macaulay local ring [Stacks, Tag 00NC]. It in
fact suffices to check this property for the localizations at maximal ideals [Stacks,
Tag 00NB], and it is equivalent to ask that the completions at maximal ideals are
Cohen–Macaulay [Stacks, Tag 07NX].

Similarly, a Noetherian ring is said to be regular if its localization at each prime
ideal is a regular local ring [Stacks, Tag 00OD]. It in fact suffices to check this prop-
erty for the localizations at maximal ideals [Stacks, Tag 0AFS], and it is equivalent
to ask that the completions at maximal ideals are regular [Stacks, Tag 07NY].

A ring is said to be normal if its localization at each prime ideal is a normal
local domain [Stacks, Tag 00GV]. It in fact suffices to check this property for
the localizations at maximal ideals [Stacks, Tag 030B]. Unfortunately (and as
is well-known), even in the Noetherian case, it is not equivalent to require that
the completions at maximal ideals are normal domains; this latter condition is a
stronger condition in general.

The property of being reduced behaves similarly to that of being normal. Namely,
a ring is reduced if and only if all its localizations are reduced if and only if all its
localizations at maximal ideals are reduced. In the Noetherian case, since comple-
tions are then faithfully flat, we also see that it suffices for the completion at every
maximal ideal to be reduced. However, in general this last condition is stronger
than that of being reduced.

The preceding discussion of normality and reducedness prompts us to make the
following definition.

Is this terminology
standard, or in conflict
with some other standard
notion? Note that
analytically unramified is
used in the Stacks Project,
but only for local rings (as
far as I could tell).

Definition 8.13.1. A Noetherian ring A is defined to be analytically unramified if
the completion of A at each maximal ideal of A is reduced, and to be analytically
normal if the completion of A at each maximal ideal of A is a normal local domain.

As remarked on above, we have the following lemma.

Lemma 8.14. If A is an analytically unramified (resp. analytically normal) Noe-
therian ring, then A is reduced (resp. normal).

Proof. As noted above, it suffices to show that the localization Am of A at each
of its maximal ideals m is reduced (resp. a normal domain). This follows from the

fact that the morphism Am → Âm from this local ring to its completion is faithfully

http://stacks.math.columbia.edu/tag/0AQ7
http://stacks.math.columbia.edu/tag/00NC
http://stacks.math.columbia.edu/tag/00NB
http://stacks.math.columbia.edu/tag/07NX
http://stacks.math.columbia.edu/tag/00OD
http://stacks.math.columbia.edu/tag/0AFS
http://stacks.math.columbia.edu/tag/07NY
http://stacks.math.columbia.edu/tag/00GV
http://stacks.math.columbia.edu/tag/030B
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flat (as A is Noetherian), and the assumption that Âm is reduced (resp. normal).
(See [Stacks, Tag 033F, Tag 033G].) �

The following technical lemma will be useful below.

Lemma 8.15. If A → C is a smooth morphism of Noetherian rings, if n is a

maximal ideal of C lying over a maximal ideal m of A, and if Âm is reduced (resp.

normal), then the same is true of Ĉn.

Proof. If we write C ′ := Âm ⊗A C, then the base-changed morphism Âm → C ′ is
again smooth, and the maximal ideal n of C corresponds to a maximal ideal n′ of

C ′ for which there is an isomorphism Ĉn
∼= Ĉ ′n′ . Thus we may assume that A is a

reduced (resp. normal) complete Noetherian local ring, and in particular that A is
excellent [Stacks, Tag 07QW].

Since C is smooth over the reduced (resp. normal) and excellent ring A, it is
again reduced (resp. normal) and excellent, as is its localization Cn. (See [Stacks,
Tag 033C] and [Stacks, Tag 07QU].) An excellent reduced (resp. normal) local ring
is analytically unramified (resp. analytically normal), as required (see e.g. [Stacks,
Tag 0C21, Tag 0C22]). �

The next lemma records the fact that the properties of being analytically normal,
Cohen–Macaulay, or regular are preserved under completion.

Lemma 8.16. Let A be a Noetherian ring, and let I be an ideal of A. If A is
analytically normal, analytically unramified, Cohen–Macaulay, or regular, then so

is the I-adic completion Â of A.

Proof. By definition in the analytically normal and analytically unramified cases,
and as discussed above in the case of Cohen–Macaulayness or regularity, it suffices

to show that the completion of Â at any of its maximal ideals is normal, reduced,
Cohen–Macaulay, or regular, as the case may be. This follows from the fact that

the maximal ideals of Â necessarily contain IÂ, and so are in bijection with the
maximal ideals of A containing I, and that if m is such a maximal ideal, then Am

and (Â)m have naturally isomorphic completions. �

Definition 8.17. We say that a Noetherian affine formal algebraic space is analyt-
ically normal, analytically unramified, Cohen–Macaulay, or regular, if, writing it in
the form Spf A for a Noetherian adic topological ring A, the ring A is analytically
normal, Cohen–Macaulay, or regular.

We would like to apply the framework of Definition 8.4 to the properties of
Definition 8.17, which would require showing that they are smooth local properties
of affine formal algebraic spaces. We are able to do this in the case of Cohen–
Macaulayness and regularity. In the case of analytically normal and analytically
unramified rings, we are able to do this after imposing the additional hypothesis of
being residually Jacobson.

We begin by recalling that if Spf B → Spf A is a morphism of Noetherian affine
formal algebraic spaces, then there is a corresponding morphism A → B inducing
the given morphism on formal spectra [Stacks, Tag 0AN0]. If this morphism is
representable by algebraic spaces (or, equivalently, adic), and if I is an ideal of
definition of A, then the topology on B is again the I-adic topology (which is the

http://stacks.math.columbia.edu/tag/033F
http://stacks.math.columbia.edu/tag/033G
http://stacks.math.columbia.edu/tag/07QW
http://stacks.math.columbia.edu/tag/033C
http://stacks.math.columbia.edu/tag/07QU
http://stacks.math.columbia.edu/tag/0C21
http://stacks.math.columbia.edu/tag/0C22
http://stacks.math.columbia.edu/tag/0AN0


FORMAL ALGEBRAIC STACKS 65

reason for introducing the terminology adic to describe this type of morphism);
see [Stacks, Tag 0AN5] and [Stacks, Tag 0APU].

We next note the following lemma.

Lemma 8.18. A morphism of Noetherian affine formal algebraic spaces Spf B →
Spf A which is representable by algebraic spaces is (faithfully) flat if and only if the
corresponding morphism A→ B is (faithfully) flat.

Proof. If A is equipped with I-adic topology, then the condition that Spf B →
Spf A be representable by algebraic spaces is equivalent to the condition that B be
equipped with the IB-adic topology. The condition that this morphism furthermore
be (faithfully) flat is equivalent to the condition that the morphism A/Ii → B/Ii

be (faithfully) flat for each i ≥ 0. If A→ B is (faithfully) flat, then certainly each
of these morphisms is (faithfully) flat, and so the if the direction of the lemma
follows.

Suppose, conversely, that each of the morphisms A/Ii → B/Ii is flat. Let J → A
be an inclusion of an ideal into A. Write Ji := J ∩ Ii; the Artin–Rees lemma
shows that the filtration {Ji} of J is cofinal with the I-adic filtration. Since B is
Noetherian, the Artin–Rees lemma also shows that J ⊗A B is I-adically complete,
and so the morphism J ⊗A B → lim←−(J/Ji) ⊗A/Ii B/Ii is an isomorphism. Since

B/Ii is flat over A/Ii, and since each of the morphisms J/Ji → A/Ii is injective,
we see that (J/Ji)⊗A/Ii B/Ii → B/Ii is injective, and so, passing to the projective
limit, we find that J ⊗A B → B is injective. As J was arbitrary, we conclude that
A→ B is flat, as claimed.

Suppose in addition that A/I → B/I is faithfully flat, and let M be a non-zero
finitely generated A-module. Artin–Rees implies that M is I-adically complete,
and hence that M/IM 6= 0. Thus (M/IM) ⊗A/I B/I 6= 0, and so in particular
M ⊗A B 6= 0. Thus in this case A→ B is faithfully flat. �

Lemma 8.19. Suppose that X → Y is a morphism of Noetherian affine formal
algebraic spaces which is representable by algebraic spaces, flat, and surjective. If
X is furthermore analytically normal, analytically unramified, Cohen–Macaulay, or
regular, then the same is true of Y .

Proof. If we write X = Spf B and Y = Spf A, then Lemma 8.18 shows that A→ B
is faithfully flat, and so the Cohen–Macaulayness or regularity of B implies that
of A [Stacks, Tag 0352, Tag 0353 ].

Suppose then that B is analytically normal (resp. analytically unramified). Since
A is I-adically complete, any maximal ideal m of A contains I. Since the morphism
A/IA → B/IB is faithfully flat, we may then find a maximal ideal n of B which

pulls back to m. The morphism Âm → B̂n is flat and local, and hence faithfully flat.
Since the target is normal (resp. reduced), so is the source [Stacks, Tag 033G, Tag
033F]. Thus A is analytically normal (resp. analytically unramified), as claimed.

�

Lemma 8.20. If X → Y is a morphism of affine formal algebraic spaces which
is representable by algeraic spaces and smooth, and if Y is Noetherian and either
residually Jacobson and analytically normal, residually Jacobson and analytically
unramified, Cohen–Macaulay, or regular, then the same is true of X.

Proof. Recall Remark 8.9, which shows that the property of being residually Ja-
cobson is fppf local. Write X = Spf B and Y = Spf A; Lemma 8.18 shows that the

http://stacks.math.columbia.edu/tag/0AN5
http://stacks.math.columbia.edu/tag/0APU
http://stacks.math.columbia.edu/tag/0352
http://stacks.math.columbia.edu/tag/0353
http://stacks.math.columbia.edu/tag/033G
http://stacks.math.columbia.edu/tag/033F
http://stacks.math.columbia.edu/tag/033F
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morphism A → B is flat. Since A is I-adically complete, a collection of elements
f1, . . . , fr ∈ A generates the unit ideal in A if and only if it generates the unit ideal
in A/Ii for each i > 0. If these equivalent conditions hold, then each SpecA/Ii

is the union of the affine open subsets Spec(A/Ii)fj , and Spf A/Ii is the union of

the open formal subspaces Spf Âfj (where Âfj denotes the I-adic completion of the
localization Afj ). Similarly, we may write Spf B as the union of the open formal

subspaces Spf B̂fj .
If A satisfies one of the properties under consideration, then so does each of its

localizations Afj , and hence so does each of the completions Âfj (by Lemma 8.16).

If we can show that B̂fj satisfies the same property, then by applying Lemma 8.19

to the morphism
∐

Spf B̂fj → Spf B, we find that Spf B also satisfies this property.
Thus, we are free to prove the lemma after localizing on Spf A, in the above sense.

By assumption the morphism SpecB/I → SpecA/I is smooth. Thus we may
find a cover by distinguished affine opens SpecA/I =

⋃
Spec(A/I)gj so that each

of the morphisms Spec(B/I)gj → Spec(A/I)gj is in fact standard smooth, in the

sense of [Stacks, Tag 00T6]. (See [Stacks, Tag 00TA].) Thus, replacing A by Âgj
and B by B̂gj , we may assume that B/I admits a presentation as an (A/I)-algebra
of the form

B/I = (A/I)[x1, . . . , xn]/(f1, . . . , f c),

with the determinant ∆ := det
(∂f i
∂xj

)
1≤i,j≤c being invertible. If we choose lifts of

the f j to elements fj ∈ A[x1, . . . , xn], and write C := A[x1, . . . , xn]/(f1, . . . , fc)

and ∆ := det
( ∂fi
∂xj

)
1≤i,j≤c, then C[1/∆] is a smooth A-algebra. Since ∆ is invert-

ible in C/I, we note that C/Ii = C[1/∆]/Ii for each i, and thus that the I-adic
completions of C and of C[1/∆] coincide; we denote this common I-adic comple-

tion by Ĉ. Repeated application of the infinitesimal lifting property for smooth
morphisms gives a morphism of A-algebras C[1/∆]→ B, inducing an isomorphism
C/I ∼= B/I, and hence a surjection C/Ii → B/Ii for each i. Let Ji denote the
kernel of this surjection. Since B/Ii is flat over A/Ii, we find that Ji/IJi ∼= J1 = 0,

and thus that Ji = IJi = · · · = IiJi = 0. Thus we obtain an isomorphism Ĉ ∼= B.
Since C[1/∆] is smooth over A, it inherits Cohen–Macaulayness or regularity

from A (see [Stacks, Tag 0339] and [Stacks, Tag 033A]). Thus, by Lemma 8.16, so

does its I-adic completion Ĉ.
It remains to consider the case when A is residually Jacobson and either an-

alytically normal or analytically unramified. If n is a maximal ideal of Ĉ then
it contains I, and so corresponds to a maximal ideal of C/IC. The morphism
A/IA → C/IC is then a finite type morphism of Jacobson rings, and so we see

that n lies over a maximal ideal m of A. By assumption Âm is either normal or
reduced. Since C[1/∆] is smooth over A, we may apply Lemma 8.15 to find that̂̂
Cn (which is naturally isomorphic to the completion of C at n∩C) is either normal

or reduced. Thus Ĉ is analytically normal, or analytically unramified, as required.
(We have already noted that it is residually Jacobson.) �

Lemma 8.21. If X is a formal algebraic space, then the following properties are
equivalent:

http://stacks.math.columbia.edu/tag/00T6
http://stacks.math.columbia.edu/tag/00TA
http://stacks.math.columbia.edu/tag/0339
http://stacks.math.columbia.edu/tag/033A


FORMAL ALGEBRAIC STACKS 67

(1) If U → X is a morphism whose source is an affine formal algebraic space
and which is representable by algebraic spaces and smooth, then U is Noe-
therian and furthermore is residually Jacobson and analytically normal
(resp. residually Jacobonson and analytically unramified, resp. Cohen–Macaulay,
resp. regular).

(2) There exists a morphism
∐
i Ui → X, which is representable by algebraic

spaces and smooth, with each Ui being an affine formal algebraic space which
is Noetherian and is residually Jacobson and analytically normal (resp.
residually Jacobonson and analytically unramified, resp. Cohen–Macaulay,
resp. regular).

Proof. This follows from Lemmas 8.19 and 8.20 by standard manipulations. �

Definition 8.22. We say that a formal algebraic space is residually Jacobson
and analytically normal, residually Jacobson and analytically unramified, Cohen–
Macaulay, or regular, if it satisfies the equivalent conditions of Lemma 8.21 for
whichever of these four conditions is under consideration.

Remark 8.23. Lemma 8.21 allows us to follow the prescription of Definition 8.4
and then define the notion of a formal algebraic stack being residually Jacobson
and analytically normal, residually Jacobson and analytically unramified, Cohen–
Macaulay, or regular.

We recall the following theorem of Gabber [RL14, Thm. 9.2].

Theorem 8.24. If A is a quasi-excellent Noetherian ring, then the completion of
A at any ideal is again quasi-excellent.

Corollary 8.25. Suppose that A is a quasi-excellent Noetherian ring which is I-
adically complete for some ideal I. If Spf B → Spf A is a finite type adic morphism
of affine formal algebraic spaces, then B is reduced if and only if B is analytically
unramified.

Proof. Since Spf B → Spf A is adic, the topology on B is the I-adic topology, and
so Spf B := lim−→ SpecB/IiB. Since Spf B is furthermore of finite type over Spf A,

we see that B/I is of finite type over A/I. Choose a surjection A[x1, . . . , xn] →
B/I (for some sufficiently large value of n). We may lift this to a morphism
A[x1, . . . , xn] → B. If C denotes the I-adic completion of the domain of this
morphism, then there is an induced morphism C → B. The image of this mor-
phism is I-adically dense in B, and also I-adically complete. Thus this morphism
is surjective, and so B is a quotient of C. Theorem 8.24 shows that C is quasi-
excellent, and thus so is its quotient B. We have already observed that analytically
unramified implies reduced in general; on the other hand, since B is quasi-excellent,
it is analytically unramified if it is reduced. �

We now discuss a slightly different class of examples of smooth local properties.

Definition 8.26. If P is a property of S-algebraic stacks that is inherited by closed
substacks, then we say that a formal algebraic stack X is Ind-P if we may write
X ∼−→ lim−→i

Xi as an inductive limit of algebraic spaces having property P with

respect to transition morphisms that are thickenings.

Lemma 8.27. If P is a property of S-algebraic stacks that is inherited by closed
substacks, if X is an Ind-P formal algebraic stack, and if Y ↪→ X is a closed
immersion, then Y is also Ind-P .
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Proof. If we write X ∼−→ lim−→Xi as in Definition 8.26, thesn taking the fibre product

with Y over X yields an isomorphism Y ∼−→ lim−→Xi ×X Y. Each morphism Yi :=
Xi ×X Y → Xi is a closed immersion, and since Xi has property P by assumption,
we find that the same is true of Yi. Thus Y also satisfies the requirement of
Definition 8.26, and hence is Ind-P . �

Lemma 8.28. If P is a property of S-algebraic stacks that is inherited by closed
substacks, and if X is an Ind-P formal algebraic stack, then Xred is an algebraic
stack satisfying P .

Proof. If X ∼−→ lim−→Xi as in Definition 8.26, then Xred
∼−→ (Xi)red for any choice

of i. Since (Xi)red is a closed substack of Xi, which satisfies P by assumption, our
hypothesis on P implies that (Xi)red, and hence also Xred, satisfies P . �

Lemma 8.29. If X is a quasi-compact and quasi-separated formal algebraic stack,
then the following are equivalent:

(1) X is Ind-P ;

(1’) We may write X ∼−→ lim−→i
Xi as an inductive limit of algebraic stacks having

property P with respect to transition morphisms that are closed immersions;
(2) If Z ↪→ X is a closed immersion whose source is an algebraic stack then Z

satisfies P ;
(3) Any morphism T → X , whose source is an affine scheme, may be factored

as T → Z ↪→ X , where Z is an algebraic stack satisfying P and the second arrow
is a closed immersion;

(3’) Any morphism T → X , whose source is a quasi-compact algebraic stack,
may be factored as T → Z ↪→ X , where Z is an algebraic stack satisfying P , and
the second arrow is a closed immersion.

Proof. It is clear that (3’) implies (3). Suppose that (3) holds, and consider a
closed immersion Z ↪→ X whose source is an algebraic stack. Since X is quasi-
compact, so is Z, and so we may find a morphism T → Z whose source is an affine
scheme, and which is smooth and surjective. By assumption this morphism factors
as T → Z ′ ↪→ X , with the second morphism being a closed immersion whose source
Z ′ is an algebraic stack satisying P . Thus we find that Z is a closed substack of Z ′,
and so our assumption on P implies that Z also satisfies P . Hence (3) implies (2).

Suppose now that (2) holds. By Lemma 6.2 we may write lim−→i
Xi

∼−→ X for

some directed system of algebraic spaces {Xi}, with the transition morphisms being
thickenings. Applying (2) to each of the various closed embedding Xi ↪→ X shows
that each Xi then satisfies P , so that (1) holds.

Obviously (1) implies (1’). Finally, suppose that (1’) holds, and write X ∼=
lim−→Xi with the Xi satisfying P , and the morphisms being closed immersions. Any

morphism T → X as in (3’) then factors through one of the Xi and so (3’) holds,
as claimed. �

Lemma 8.30. If P is a property of S-algebraic stacks that is inherited by closed
substacks, and if X is a quasi-compact and quasi-separated algebraic stack that is
Ind-P when regarded as a formal algebraic stack, then X satisfies P .

Proof. This follows by applying condition (2) of Lemma 8.29 (which by that lemma

follows from the fact that X is Ind-P ) to the identity morphism X ∼−→ X . �
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Lemma 8.31. Let P be a property of S-algebraic stacks that is inherited by closed
subschemes, and which is also smooth local (respectively fppf local). If X → Y is a
morphism of formal algebraic stacks over S that is representable by algebraic spaces
and smooth (respectively fppf), and if Y is Ind-P , then X is Ind-P . If the given
morphism is furthermore surjective, and if Y is quasi-compact and quasi-separated,
then the converse also holds: namely, if X is Ind-P then so is Y.

Proof. If Z ↪→ Y is a closed immersion whose source is an algebraic stack, then X×Y
Z ↪→ X is a closed immersion whose source is an algebraic space, and X ×Y Z → Z
is smooth (respectively flat and locally of finite presentation), and is furthermore

surjective if X → Y is surjective. Thus if Y is Ind-P , and if we write lim−→i
Yi

∼−→ Y,

where each Yi is an algebraic stack satisfying P and the transition morphisms are
thickenings, then we obtain an isomorphism lim−→i

X ×Y Yi
∼−→ X . Since P is smooth

(respectively fppf) local, we find that each X ×Y Yi satisfies P , and thus that X is
Ind-P .

Conversely, if X is Ind-P — so that it satisfies condition (2) of 8.29 — and if
X → Y is surjective, then we find that Y also satisfies condition (2) of Lemma 8.29,
and thus is Ind-P , provided that it is also quasi-compact and quasi-separated (so
that that lemma applies to Y). �

Lemma 8.32. Let P be a property of S-algebraic stacks that is inherited by closed
substacks, and which is also smooth local (respectively fppf local).

If X is a formal algebraic stack over S, then the following properties are equiv-
alent:

(1) If U is a quasi-compact and quasi-separated formal algebraic stack equipped
with a morphism U → X which is representable by algebraic spaces and
smooth (respectively fppf), then U is Ind-P .

(2) We may find a morphism
∐
Ui → X which is representable by algebraic

spaces, smooth (respectively fppf), and surjective, with each Ui being a for-
mal affine algebraic space which is Ind-P .

(3) We may find a morphism
∐
Ui → X which is representable by algebraic

spaces, smooth (respectively fppf), and surjective, with each Ui being a for-
mal algebraic stack which is Ind-P .

Proof. Since X is a formal algebraic space, by definition we may find a morphism∐
Ui → X which is representable by algebraic spaces, smooth, and surjective. Thus

if (1) holds, each of the Ui is Ind-P , and so (2) holds as well. Clearly (2) implies (3).
Suppose then that condition (3) holds, and fix a morphism

∐
Ui → X as in

its statement. Let U → X be a morphism as in (1). Then
∐
U ×X Ui → U is

representable by algebraic spaces, smooth (respectively fppf), and surjective. Each
fibre product U ×X Ui is again a formal algebraic stack, and so we may find a
morphism

∐
Vi,j → U ×X Ui which is representable by algebraic spaces, smooth,

and surjective, with each Vi,j an affine formal algebraic space. Then the composite

(8.33)
∐
i,j

Vi,j →
∐
i

U ×X Ui → U

is representable by algebraic spaces, smooth (respectively fppf), and surjective.
Lemma 8.31, applied first to the various morphisms Vi,j → Ui, and then to the

morphism (8.33) (taking into account that U is quasi-compact and quasi-separated
by assumption), implies that U is Ind-P . �
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Definition 8.34. Let P be a property of S-algebraic stacks that is inherited by
closed substacks, and which is also smooth local. We say that a formal algebraic
stack X over S is locally Ind-P if it satisfies the equivalent conditions of Lemma 8.32.
It is evident from this lemma that this property that the property of being locally
Ind-P , when restricted to formal algebraic spaces, is smooth local in the sense of
Definition 8.1, so that we may also regard ourselves as being in the context of
Definition 8.4.

Lemma 8.35. Let P be a property of S-algebraic stacks that is inherited by closed
substacks, and which is also smooth local (so that Definition 8.34 applies), and let
X be a locally Ind-P formal algebraic stack. If Z → X is a morphism whose source
Z is an algebraic stack and which is unramified,15 then Z satisfies P .

Proof. By condition (2) of Lemma 8.32, we may choose a morphism
∐
Ui → X

whose source is a disjoint union of affine formal algebraic spaces, and which is
representable by algebraic spaces, smooth, and surjective, for which each Ui is Ind-
P . Pulling-back over Z, we obtain a morphism

∐
Ui ×X Z → Z, which is again

representable by algebraic spaces, smooth, and surjective. Thus, to conclude that
Z satisfies P , it suffices to show (by Lemma 8.6) that each of the fibre products
Ui ×X Z is an algebraic stack satisfying P .

Since Z is an algebraic stack, and since Ui ×X Z → Z is representable by
algebraic spaces, we see that the fibre product Ui ×X Z is itself an algebraic stack.
The morphism Ui×XZ → Ui is furthermore unramified, being the base-change of an
unramified morphism. In order to show that Ui×X Z satisfies P , it suffices to show
that for any smooth morphism V → Ui×X Z whose source is an affine scheme, the
affine scheme V satisfies P , and this is equivalent to showing the image of V under
this morphism, which is an open substack V of Ui ×X Z, satisfies P . Consider
such a morphism; since Ui is Ind-P by assumption, the composite V → Ui ×X
Z → Ui factors through a closed affine subscheme Ti of Ui which satisfies P (by
Lemma 8.29). Also, the morphism V → Ti is unramified (since the composite V →
Ti → Ui is, being the composite of an unramified morphism and an open immersion,
and since the diagonal of Ui is also unramified, being a monomorphism that is locally
of finite type [Stacks, Tag 0AIP]). Thus it has étale, and hence unramified, diagonal,
and so is a DM morphism [Stacks, Tag 04YW]. As is explained in that reference,
since Ti is a scheme, the algebraic stack V is in fact a Deligne–Mumford stack, and
so we may find a surjective étale morphism V ′ → V with V ′ a scheme. Consequently
V ′ → V → Ti is unramified, and thus, taking into account our assumptions on P
and the étale local structure of unramified morphisms [Stacks, Tag 04HH], we find
that each affine open subset of V ′ satisfies P . Thus V ′ satisfies P , and hence so
does V. This completes the proof. �

Lemma 8.36. Let P be a property of S-algebraic stacks that is inherited by closed
substacks, and which is also smooth local. If X is a locally Ind-P formal algebraic
stack, then Xred is an algebraic stack satisfying P .

Proof. This follows from Lemma 8.35, applied to the closed immersion Xred ↪→ X .
�

15The notion of a morphism Z → X being unramified is defined, thanks to Lemma 5.12,
Definition 3.11 and Example 3.16.

http://stacks.math.columbia.edu/tag/0AIP
http://stacks.math.columbia.edu/tag/04YW
http://stacks.math.columbia.edu/tag/04HH
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Lemma 8.37. Let P be a property of S-algebraic stacks that is inherited by closed
substacks, and which is also smooth local. If X is an algebraic stack which is locally
Ind-P when regarded as an algebraic stack, then X in fact satisfies P .

Proof. This follows from Lemma 8.35, applied to the identity morphism X ∼−→ X .
�

The following lemma shows that being locally Ind-P is not so far from being
Ind-P itself.

Lemma 8.38. Let P be a property of S-algebraic stacks that is inherited by closed
substacks, and which is also smooth local. If X is a formal algebraic stack that
is Ind-P , then X is locally Ind-P . Conversely, if X is locally Ind-P and is also
quasi-compact and quasi-separated, then X is Ind-P .

Proof. If X is Ind-P , then the identity morphism X → X satisfies condition (3)
of Lemma 8.32, showing that X is locally Ind-P . Conversely, suppose that X is
locally Ind-P and also quasi-compact and quasi-separated. If Z ↪→ X is a closed
immersion whose source is an algebraic stack, then Lemma 8.35 implies that Z
satisfies P . Thus X satisfies condition (2) of Lemma 8.29, and so X is Ind-P by
that same lemma. �

Remark 8.39. Two examples of a property P to which we may apply Definitions 8.26
and 8.34 are being locally of finite type over S, and being locally Noetherian. When
S is locally Noetherian, the former condition implies the latter, so we see that
a formal algebraic stack that is (locally) Ind-locally of finite type over a locally
Noetherian scheme S is in particular (locally) Ind-locally Noetherian.

We also emphasize that while any (locally) Noetherian formal algebraic stack is
(locally) Ind-locally Noetherian, the condition of being (locally) Ind-locally Noe-
therian is considerably weaker.

Example 8.40. A typical example of an Ind-locally Noetherian formal algebraic
space X which is not Noetherian is as follows: for each n ≥ 0, set

An := C[x, y]/(x(x− 1) · · · (x− n)y, y2),

and set X := lim−→ SpecAn, with respect to the evident transition morphisms.

In Section 11 below, we will give a criterion for a locally Ind-locally of finite
type formal algebraic stack over a locally Noetherian base scheme S to be locally
Noetherian.

We close this section by mentioning that it would be natural, and desirable, to
develop a framework for defining properties of morphisms between formal algebraic
stacks, analogous to the corresponding framework for morphisms between formal
algebraic spaces that is developed in [Stacks, Tag 0ANA]; namely, based on proper-
ties of continuous ring maps. In particular, this is a natural framework for defining
properties of morphisms that are not representable by algebraic spaces. We don’t
do this in general here, but give one example, as an illustration. As in [Stacks, Tag
0ANA], it will be necessary to restrict the class of formal algebraic stacks for which
we make the definition, ultimately because the theory of continuous ring maps is not
terribly robust, and often requires auxiliary hypotheses to yield reasonable results.

Lemma 8.41. If f : X → Y is a morphism between locally Noetherian formal
algebraic stacks, then the following properties are equivalent:

http://stacks.math.columbia.edu/tag/0ANA
http://stacks.math.columbia.edu/tag/0ANA
http://stacks.math.columbia.edu/tag/0ANA
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(1) For every commutative diagram of morphisms

U //

��

V

��

X
f
// Y

in which U ∼= Spf A and V ∼= Spf B are affine formal algebraic spaces and in which
the vertical arrows are representable by algebraic spaces and flat (so that U and
V are necessarily Noetherian affine formal algebraic spaces, by Remark 8.10 and
Lemma 8.3), the ring morphism B → A induced by the upper horizontal arrow is
flat.

(2) There exists a morphism
∐
j Vj → Y, where each Vj ∼= Spf Bj is an affine

formal algebraic space and which is representable by algebraic spaces, flat, and sur-
jective, and for each j a morphism

∐
i Uj,i → X ×Y Vj, where each Uj,i ∼= Spf Aj,i

is an affine formal algebraic space and which is representable by algebraic spaces,
flat, and surjective, such that each of the induced morphisms Bj → Ai,j is flat. (In
order to make sense of this induced morphism, we again note that each Uj,i and
Vj is necessarily a Noetherian affine formal algebraic space, by Remark 8.10 and
Lemma 8.3).

(3) There exists a morphism
∐
i Ui → X , where each Ui ∼= Spf Ai is an affine

formal algebraic space which is representable by algebraic spaces, flat, and surjective,
and a factorization of the induced morphism Ui → Y as Ui → Vi → Y, where
Vi ∼= Spf Bi is an affine formal algebraic space, such that the morphism Vi → Y is
representable by algebraic spaces and flat, and such the induced morphism Bi → Ai
is flat. (Again, in order to make sense of this induced morphism, we note that each
Uj,i and Vj is necessarily a Noetherian affine formal algebraic space, by Remark 8.10
and Lemma 8.3).

If f : X → Y is furthermore adic, i.e. representable by algebraic stacks, then
these conditions are equivalent to f being flat in the sense of Definition 3.11.

Proof. It is clear that (1) implies (2), and that (2) implies (3). By standard manip-
ulations (see e.g. the proof of [Stacks, Tag 0ANG], on which the present argument
is modelled), to see that (3) implies (1), it suffices to show the following: if

U ′ ∼= Spf A′ //

��

V ′ ∼= Spf B′

��

U ∼= Spf B // V ∼= Spf A

is a commutative diagram of morphisms of Noetherian affine formal algebraic
spaces, in which the vertical arrows are representable by algebraic spaces and flat,
with the left-hand arrow being furthermore surjective, and if the upper horizontal
arrow induces a flat morphism B′ → A′, then the lower horizontal morphism in-
duces a flat morphism B → A. To see this, consider the corresponding diagram of
induced ring morphisms

B′ // A′

A

OO

// B

OO

http://stacks.math.columbia.edu/tag/0ANG
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The left and right-hand arrows are flat, with the right-hand arrow even being
faithfully flat, by Lemma 8.18. The upper horizontal arrow is flat by assumption.
Since the composite of flat morphisms are flat, we find that the morphism B → A
becomes flat after composition with the faithfully flat morphism A′ → A′. It follows
that B → A is itself flat, as required.

It remains to be shown that if X → Y is representable by algebraic stacks, then
conditions (1), (2), and (3) are equivalent to X → Y being flat in the previously
defined sense, namely that for any morphism Z → Y whose source is an algebraic
stack, or even simply a scheme, that the induced morphism X ×Y Z → Z is flat.

We begin with some preliminary constructions. Namely, we choose (as we may)
a morphism

∐
Vj → Y whose source is a disjoint union of Noetherian affine formal

algebraic spaces, which is representable by algebraic spaces, smooth, and surjective.
Then we obtain a base-changed morphism

∐
X ×Y Vj → X , whose source is a

disjoint union of formal algebraic stacks (by Lemma 5.22) Lemma 8.13), which is
representable by algebraic spaces, smooth, and surjective, and such that each of
the projections X ×Y Vj → Vj is representable by algebraic stacks. Lemma 8.13
shows that each of the fibre products X ×Y Vj is furthermore locally Noetherian,
and so we may (and do) choose, for each of them, a morphism

∐
Uj,i → X ×Y Vj

whose source is a disjoint union of Noetherian affine formal algebraic stacks, which
is representable by algebraic spaces, smooth, and surjective. Each of the composite
morphisms Uj,i → X ×Y Vj → Vj is then representable by algebraic stacks, and
hence by algebraic spaces (by Lemma 3.5).

Now suppose that X → Y is flat, in the sense of Definition 3.11. Then each of the
composite morphism

∐
Uj,i → X ×Y Vj → Vj is a composite of morphisms that are

representable by algebraic stacks and flat in this sense, and hence this morphism
(which we have seen is representable by algebraic spaces) is flat. Lemma 8.18
then implies that each of these morphisms is induced by a flat morphism of the
corresponding topological rings. Thus (2) holds (and hence so do (1) and (3)).

Suppose instead now that condition (1) holds. Then we find that each of the
morphisms Uj,i → Vj is induced by a flat morphism of topological rings, and hence
by Lemma 8.18, is flat (when regarded as a morphism representable by algebraic
spaces). Since

∐
Uj,i → X are

∐
Vj → Y are each morphisms representable by

algebraic spaces, smooth, and surjective, standard arguments then show that X →
Y is flat in the sense of Definition 3.11. �

Definition 8.42. We say that a morphism X → Y of locally Noetherian formal
algebraic stacks is flat if it satisfies the equivalent conditions (1), (2), and (3) of
Lemma 8.41. (The final statement of the lemma ensures that this definition is
compatible with the existing definition in the case of adic morphisms.)

Our final result proves that the regularity properties discussed in Remark 8.23
are flat local in the sense of Definition 8.42.

Lemma 8.43. If X → Y is a flat and surjective morphism of locally Noetherian
formal algebraic stacks, and if X satisfies any of the conditions of Remark 8.23,
then the same is true of Y.

Proof. This amounts to showing that if A → B is a faithfully flat morphism of
adically complete Noetherian local rings, and if B is residually Jacobson and ana-
lytically normal, residually Jacobson and analytically unramified, Cohen-Macaulay,
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or regular, then the same is true of A. This follows by an argument analogous to
that used to prove Lemma 8.19. �

9. Functorial closed substacks of formal algebraic stacks

In this section we explain how to extend various constructions of closed substacks
from the context of affine formal algebraic spaces to the context of formal algebraic
stacks. In order to maximize the flexibility of our construction, we put ourselves in
the following situation: we fix a base formal algebraic stack S, we let D denote the
2-category of formal algebraic stacks lying over S, and then we fix a strong sub-2-
category (in the sense of Definition 2.19) C of D, which we assume has the following
property: if U → X is a morphism that is representable by algebraic spaces and
smooth, and if we are given a morphism X → S making X an object of C, then U
(equipped with the composite morphism U → X → S) is also an object of C.

We let AffC denote the full subcategory of C whose objects are the affine formal
algebraic spaces belonging to C. (We note that since any object X of C receives
a morphism U → X which is representable by algebraic spaces, smooth, and sur-
jective, and whose source is a disjoint union of affine formal algebraic spaces, AffC
contains plenty of objects. We note also that AffC is (equivalent to) a usual cate-
gory (i.e. a 1-category), because its objects are formal algebraic spaces rather than
more general formal algebraic stacks.) Let i : AffC → D denote the inclusion, and
suppose that we are given a functor F : AffC → D, equipped with a natural trans-
formation F ↪→ i which is a closed immersion, in the sense that for any object U of
AffC , the corresponding morphism F (U) ↪→ U is representable by algebraic spaces,
and a closed immersion (and so is in fact representable by schemes).

We assume that F satisfies the following axiom:

Axiom 9.1. If U → V is a morphism in AffC which is representable by algebraic
spaces and smooth, then the natural morphism F (U)→ U ×V F (V ) is an isomor-
phism.

Lemma 9.2. Let X be an object of C, and let T → X be a morphism whose source
is a scheme. The following properties are equivalent:

(1) For some morphism
∐
Vi → X whose source is a disjoint union of affine

formal algebraic spaces, and which is representable by algebraic spaces, smooth, and
surjective, each of the induced morphisms T ×X Vi → Vi factors through F (Vi).

(2) For any morphism U → X which is representable by algebraic spaces and
smooth, and whose source is an affine formal algebraic space, the base-changed
morphism T ×X U → U factors through F (U).

Furthermore, there is a closed substack Z ↪→ X , characterized by the property
that a morphism T → X , whose source is a scheme, factors through Z if and only
if it satisfies the preceding two equivalent conditions.

Proof. Let T → X be a morphism whose source is a scheme. Since X is a formal
algebraic stack, we may choose a morphism V → X which is representable by
algebraic spaces, smooth, and surjective, and whose source may be written as a
disjoint union V =

∐
Vi of affine formal algebraic schemes. It is clear that if (1)

holds, then (2) holds for any such choice. Suppose conversely that (2) holds for
some such choice; we will show that (1) holds, i.e. that T×X U → U factors through
F (U) for every U → X as in the statement of (1).
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Consider the base-changed morphism
∐
U ×X Vi → U ; its source is a formal

algebraic space, its target is the affine formal algebraic space U , and it is repre-
sentable by algebraic spaces, smooth, and surjective. Since U is quasi-compact, we
may find a finite sequence W1, . . . ,Wn of affine algebraic spaces, such that each Wj

is equipped with a morphism Wj → U ×X Vi(j) (where the index i(j) depends on j)
which is representable by algebraic spaces and étale, and such that the composite

n∐
j=1

Wj →
n∐
j=1

U ×X Vi(j) → U

is (representable by algebraic spaces, smooth, and) surjective.
We are assuming that T ×X Vi → Vi factors through F (Vi) for each index i. In

particular, for each value of j, we have that T ×X Vi(j) → Vi(j) factors through
F (Vi(j)). Since, for each value of j, the composite Wj → U ×X Vi(j) → Vi(j) is
representable by algebraic spaces and smooth, we find by Axiom 9.1 that

T ×X Wj →Wj

factors through F (Wj) for each value of j.
We want to show that T ×X U → U factors through F (U). Since

∐
Wj → U

is surjective, it suffices to show that T ×X Wj factors through F (U) ×U Wj for
each value of j. Taking into account Axiom 9.1, this is equivalent to showing that
T ×X Wj factors through F (Wj) for each value of j, which condition has already
been shown to hold. Thus (1) does indeed hold.

We now show that the condition that T ×X Vi → Vi factors through F (Vi) cuts
out a closed substack Z of X . Since the property of a morphism factoring through
a closed subscheme of the target can be checked after passing to a faithfully flat
cover of the source, we see that Z is indeed a substack of X . By descent for closed
subschemes, it suffices to show that the base-changed morphism Z ×X Vi → Vi
is a closed immersion for each index i. Now Z ×X Vi classifies morphisms T →
Vi for which T ×Vi (Vi ×X Vj) → Vj factors through F (Vj) for each index j, or
equivalently, for which T ×Vi

(Vi ×X Vj) → Vi ×X Vj factors through Vi ×X F (Vj)
for each index j. We claim that F (Vi) ×X Vj and Vi ×X F (Vj) coincide, as closed
subsheaves of Vi ×X Vj . Given this, we see that Z ×X Vi classifies T → Vi for
which T ×Vi (Vi ×X Vj)→ Vi ×X Vj factors through F (Vi)×X Vj for each j. Since∐
j Vi ×X Vj → Vi is representable by algebraic spaces, smooth, and surjective, we

see that Z ×X Vi in fact classifies T → Vi for which T factors through F (Vi). In
other words, the base-changed morphism Z ×X Vi → Vi coincides with the closed
immersion F (Vi)→ Vi; thus Z → X is a closed substack, as claimed.

It remains to show that F (Vi)×X Vj and Vi ×X F (Vj) coincide as subsheaves of
Vi×X Vj . To this end, note that Vi×X Vj is a formal algebraic space, and so we may
find a collection of morphisms W → Vi×X Vj which are representable and étale, and
whose coproduct surjects onto Vi ×X Vj . It suffices to check that F (Vi)×X Vj and
Vi ×X Vj pull back to the same subsheaf of W , for each such W . To see this, note
that since each of the composites W → Vi ×X Vj → Vi and W → Vi ×X Vj → Vj is
representable by algebraic spaces and smooth, Axiom 9.1 shows that both of these
pull-backs coincide with the subsheaf F (W ) of W . �

Definition 9.3. If X is an object of C, then we define F̃ (X ) to be the closed
substack of X constructed in Lemma 9.2
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Lemma 9.4. If f : X → Y is a morphism in C (so, more concretely, X → Y is
a functor of categories fibred in groupoids over S), then f restricts to a morphism

F̃ (X )→ F̃ (Y).

Proof. Let T → F̃ (X ) be a morphism whose source is a scheme, and let V →
Y be a morphism whose source is an affine formal algebraic space, and which is
representable by algebraic spaces and smooth; we must show that the base-changed
morphism

(9.5) T ×Y V → V

factors through F (V ).
The morphism X×YV → V is representable by algebraic spaces and smooth, and

Lemma 5.22 shows that its source is a formal algebraic stack. Thus we may find a
morphism

∐
Ui → X×YV whose source is a disjoint union of affine formal algebraic

spaces, and which is representable by algebraic spaces, smooth, and surjective. The
induced morphism ∐

T ×X Ui → T ×X (X ×Y V )
∼−→ T ×Y V

is then also representable by algebraic spaces, smooth, and surjective, and so to
show that (9.5) factors through F (V ), it suffices to show that the same is true of
each of the induced morphisms

(9.6) T ×X Ui → V.

But by assumption, the morphism T → X factors through F̃ (X ), and hence the
projection T ×X Ui → Ui factors through F (Ui). Since the morphism Ui → V
restricts to a morphism F (Ui)→ F (V ) by assumption, we see that indeed each of
the morphisms (9.6) factors through F (V ), as required. �

Proposition 9.7. Let j : C → D denote the inclusion. Then F̃ induces a strict

functor (in the sense of Definition 2.13) F̃ : C → D, equipped with a natural trans-

formation F̃ ↪→ j, together with a natural isomorphism F
∼−→ F̃|AffC , which satisfies

the following conditions:

(1) For each object X of C, the morphism F̃ (X ) ↪→ X is representable by al-
gebraic spaces and a closed immersion (and thus is also representable by
schemes).

(2) If X → Y is a morphism in C which is representable by algebraic stacks

and smooth, then the natural transformation F̃ (X ) ↪→ X ×Y F̃ (Y) is an
isomorphism.

Proof. By construction F̃ (X ) is a full subcategory fibred in groupoids of X , and

Lemma 9.4 shows that any morphism X → Y in C restricts to morphism F̃ (X )→
F̃ (Y). Thus F̃ indeed induces a strict pseudo-functor C → D. The natural trans-

formation F̃ (X ) ↪→ X is then given simply by the inclusion Z ↪→ X , while if U is

an object of AffC , the natural isomorphism F (U)
∼−→ F̃ (U) is given by the isomor-

phism which identifies F (U) with its image (thought of as a subsheaf of U) under
the given natural transformation F (U) ↪→ U .

Condition (1) is now satisfied by construction, and we turn to verifying condi-

tion (2). Lemma 9.4 shows that there is an inclusion of closed substacks F̃ (X ) →
X ×Y F̃ (Y), which we must show is an isomorphism, i.e. we must show that (the
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essential image in X of) the 2-fibre product X ×Y F̃ (Y) is contained in F̃ (X ). That
is, we need to prove the following: (a) if T → X is any morphism whose source is
a scheme, and if for every morphism U → X which is representable by algebraic
spaces and smooth, and whose source is an affine formal stack, the base-changed
morphism T ×X U → U factors through F (U), then it factors through this fibre

product. Applying the corresponding characterization of F̃ (Y), what we know is:

(b) the morphism T → X factors through the fibre product X ×Y F̃ (Y) if and
only if, for any morphism V → Y which is representable by algebraic spaces and
smooth, and whose source is an affine formal algebraic stack, the base-changed
morphism T ×Y V → V factors through F (V ). If we rewrite this last fibre product
as T ×X (X ×Y V ), then we see that this is equivalent to asking that the projection
T ×X (X ×Y V )→ X ×Y V factor through X ×Y F (V ). Our goal is to deduce (a)
from (b).

In the context of (b), the fibre product X ×Y V is a formal algebraic stack
(Lemma 5.23), and so we may find a morphism

∐
Ui → X ×Y V which is repre-

sentable by algebraic spaces, smooth, and surjective, with each Ui being an affine
formal algebraic space. Since the property of factoring through a closed substack
can be checked smooth locally, we find that T ×X (X ×Y V ) → X ×Y V factors
through X ×Y F (V ) if and only if T ×X Ui → Ui factors through Ui ×V F (V ),
or equivalently (by Axiom 9.1; note that Lemma 3.5 ensures that the morphism
Ui → V , which a priori is representable by algebraic stacks, is in fact repre-
sentable by algebraic spaces), through F (Ui). Thus we are indeed able to deduce (a)
from (b). �

Lemma 9.8. Suppose that F is compatible with flat base-change, in the sense that
if U → V is a morphism in AffC which is representable by algebraic spaces and flat,
then the natural morphism F (U)→ U ×V F (V ) is an isomorphism. Then the same

is true of F̃ : i.e. if X → Y is a morphism in C representable by algebraic stacks,

then the natural morphism F̃ (X )→ X ×Y F̃ (Y) is an isomorphism.

Proof. The proof is identical to the proof of part (2) of Proposition 9.7, using the
hypothesis on F in place of Axiom 9.1. �

We now present various applications of the preceding framework.

Example 9.9. We may use the preceding framework as a foundation for the theory
of scheme-theoretic images for quasi-compact morphisms of algebraic stacks. (See
e.g. [EG19b, §3.1] for a more ad hoc development of this theory.)

Suppose that T → S is a quasi-compact morphism of algebraic stacks, and take
C to be the category of algebraic stacks lying over S. The full subcategory AffC
then consists of the category of affine schemes equipped with a morphism to S.
If SpecA → S is an object of AffC , define F (SpecA) to be the scheme-theoretic
image in A of the base-changed morphism SpecA ×S T → SpecA (defined in
an obvious way: consider a smooth surjection U → SpecA ×S T whose source
is an affine scheme — which is possible, since SpecA ×S T is quasi-compact —
and define F (SpecA) to the be the scheme-theoretic image of the composite U →
SpecA ×S T → SpecA; well-definendness, i.e. independence of the choice of U ,
is easily checked). Axiom 9.1 is easily verified in this context, using the known
base-change properties of scheme-theoretic images of quasi-compact morphisms of

schemes [Stacks, Tag 081I], and thus F extends to a functor F̃ . For any morphism

http://stacks.math.columbia.edu/tag/081I
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of algebraic stacks X → S, we declare F̃ (X ) to be the scheme-theoretic image of the

base-changed morphism T ×S X → X . In particular, F̃ (S) is the scheme-theoretic
image of the morphism T → S itself.

Example 9.10. Suppose that A is a quasi-excellent Noetherian ring which is I-
adically complete with respect to an ideal I of A. Let C denote the category of
formal algebraic stacks equipped with a morphism X → Spf A which is adic and
locally of finite type. The full subcategory AffC then consists of affine formal
algebraic spaces Spf B, endowed with a morphism Spf B → Spf A which is adic
and of finite type. This morphism in turn corresponds to a morphism A → B,
with B being I-adically complete and B/I being finite type over A/I. Consider the
reduced quotient Bred of B. Since B is Noetherian (by [Stacks, Tag 0AKP]; note
that [Stacks, Tag 0AKN] ensures that for a morphism of affine formal algebraic
spaces, being representable by algebraic spaces is equivalent to being representable
by schemes), the A-algebra Bred is again I-adically complete, and Bred/I is also of
finite type over A/I; thus Spf Bred again lies in C. We define F (Spf B) := Spf Bred,
equipped with the morphism Spf Bred ↪→ Spf B.

Corollary 8.25 shows that for any quotient of B, being reduced is equivalent to
being analytically unramified. When combined with Lemma 8.20, this shows that

the functor F satisfies Axiom 9.1. Thus we may extend F to a functor F̃ on C,
which associates to any I-adic formal algebraic stack, locally of finite type over
Spf A, its associated reduced formal algebraic substack.16

Example 9.11. Suppose that A is a complete DVR, with maximal ideal I. Let C
denote the category of locally Noetherian formal algebraic stacks equipped with a
morphism X → Spf A. The full subcategory AffC then consists of Noetherian affine
formal algebraic spaces Spf B endowed with a morphism Spf B → Spf A, which in
turn corresponds to a morphism A → B, with B being a Noetherian A-algebra,
complete with respect to an ideal J that contains IB. Let Bfl denote the maximal
A-flat quotient of B, i.e. the quotient of B by its ideal of I-power torsion elements.
Since B is Noetherian, the quotient Bfl is again J-adically complete, and we define
F (Spf B) := Spf Bfl, equipped with its canonical morphism Spf Bfl ↪→ Spf B.

Since smooth morphisms are in particular flat, it follows easily from Lemma 8.18

that the functor F satisfies Axiom 9.1, and so F extends to a functor F̃ on C, which
associates to any locally Noetherian formal algebraic stack X lying over Spf A its
flat part Xfl. By construction, the morphism Xfl → Spf A is flat, in the sense of
Definition 8.42, and it is easily seen to be the maximal substack of X with respect
to this property, in that if Y → X is a morphism of locally Noetherian formal
algebraic stacks for which the composite Y → Spf A is flat, then Y → X factors
through Xfl.

The preceding construction applies in particular to X which are I-adic and locally
of finite type over Spf A (since such formal algebraic stacks are in particular locally
Noetherian). In this case, the morphism Xfl → Spf A is again adic and locally of
finite type (being the composite of such a morphism with a closed immersion).

Remark 9.12. Lemma 9.8 ensures that the constructions described in Examples 9.9
and 9.11 are compatible with base-change under morphisms in their respective
categories C that are representable by algebraic spaces and flat. (In the case of

16We use this terminology to distinguish this construction from that of the underlying reduced
algebraic substack of Lemma 5.26.

http://stacks.math.columbia.edu/tag/0AKP
http://stacks.math.columbia.edu/tag/0AKN
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Example 9.9, the compatibility of the formation of scheme-theoretic images of quasi-
compact morphisms with respect to flat base-change [Stacks, Tag 081I] shows that
the hypothesis of Lemma 9.8 is satisfied. In the case of Example 9.11, the hypothesis
of Lemma 9.8 is easily verified, using Lemma 8.18.)

10. Morphisms to affine formal algebraic spaces

Recall that if X is an algebraic stack, then we have a structure sheaf OX on X .
(We refer to [Stacks, Tag 06TF] for the foundations of sheaves on stacks; see [Stacks,
Tag 06TU] in particular for a discussion of the structure sheaf.) If B = Γ(X ,OX ),
then there is a canonical morphism X → SpecB, which is initial in the category
of morphisms from X to affine schemes. We now explain how to extend this con-
struction to the context of (certain) formal algebraic stacks.

To this end let X be a quasi-compact and quasi-separated formal algebraic stack,
which is furthermore locally countably indexed. By Lemma 6.2 we may write

X ∼= lim−→
n≥1

Xn,

where each Xn is an algebraic stack, and the transition morphisms Xn ↪→ Xn+1

are thickenings. For each n ≥ 1, write B′n := Γ(Xn,OXn). Each of the natural
morphisms B′n+1 → B′n has locally nilpotent kernel. We may form the projective
limit B := lim←−nB

′
n; if we equip each B′n with its discrete topology, and equip B with

the projective limit topology, then B is a complete topological ring, which is easily
seen to be independent (up to canonical isomorphism) of the choice of description
of X as a 2-colimit. If we let Jn denote the kernel of the surjection B → B′n, then
Jn is open in B. If Bn denotes the image of B in B′n (so that Bn ∼= B/Jn), then
the transition morphisms Bn+1 → Bn are surjective with locally nilpotent kernels
(so that the corresponding morphisms SpecBn → SpecBn+1 are thickenings), and

we have an induced isomorphism of topological rings B
∼−→ lim←−nBn. Each of the

ideals Jn is a weak ideal of definition in B, realizing B as a weakly admissible
complete topological ring (in the sense of [Stacks, Tag 0AMV]).

Definition 10.1. If X is a quasi-compact, quasi-separated, locally countably in-
dexed formal algebraic stack, then we write Γ(X ,OX ) := B, where B is the weakly
admissible linearly topologized ring attached to X as in the preceding discussion.

Lemma 10.2. If X is a quasi-compact, quasi-separated, locally countably indexed
formal algebraic stack, then there is a natural morphism of formal algebraic stacks
X → Spf Γ(X ,OX ), which is initial in the category of morphisms from X to weakly
admissible affine formal algebraic spaces.

Proof. Let Y be a weakly admissible affine formal algebraic space, and write Y ∼=
lim−→I

SpecA/I, where A is a weakly admissible topological ring and I runs over

the weak ideals of definition of A. If X → Y is a morphism, then the composite
Xn → X → Y factors through SpecA/I for some I. Since SpecA/I is affine, we
obtain a further factorization of the form

Xn → SpecB′n → SpecA/I → Spf A.

(Here we are using the notation introduced in the discussion preceding Defini-
tion 10.1.) The induced morphism A → B′n (which is continuous when B′n is

http://stacks.math.columbia.edu/tag/081I
http://stacks.math.columbia.edu/tag/06TF
http://stacks.math.columbia.edu/tag/06TU
http://stacks.math.columbia.edu/tag/0AMV
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given its discrete topology) is independent of the particular weak ideal of defi-
nition I considered in this factorization, and we obtain a continuous morphism
A→ lim←−nB

′
n = B, inducing the desired morphism Spf B → Spf A ∼= Y . �

Suppose now that R is a Noetherian ring, complete with respect to a principal
ideal I = tR. We regard R as a topological ring by equipping it with the I-adic, or
equivalently t-adic, topology. We will refer to an I-adic formal algebraic stack (in
the sense of Definition 7.6) as a t-adic formal algebraic stack. By definition, to give
a formal algebraic stack X the structure of a t-adic formal algebraic stack structure
is to equip it with a morphism X → Spf R which is representable by algebraic
spaces. We then say that X is a t-adic formal algebraic stack of finite presentation
if this morphism is of finite presentation.

If X is a t-adic formal algebraic stack of finite presentation, then it is both
quasi-compact and quasi-separated, as well as being locally countably indexed.
Thus Definition 10.1 applies, and allows us to define the weakly admissible linearly
topologized ring Γ(X ,OX ). Lemma 10.2 then shows that the structure morphism
X → Spf R induces a natural morphism Spf Γ(X ,OX )→ Spf R, which corresponds
in turn to a continuous ring morphism R→ Γ(X ,OX ).

Lemma 10.3. If X is a t-adic formal algebraic stack of finite presentation, then
the natural topology on Γ(X ,OX ) coincides with the t-adic topology; equivalently,
the morphism R→ Γ(X ,OX ) is taut.

Remark 10.4. The notion of a taut morphism of linearly topologized rings is defined
in [Stacks, Tag 0AMX]. The equivalence claimed in the statement of the lemma
follows from [Stacks, Tag 0APU].

Proof of Lemma 10.3. Since X is quasi-compact, we may choose a morphism U →
X whose source is an affine formal algebraic space, and which is representable by
algebraic spaces, smooth, and surjective. Since X is furthermore quasi-separated,
the fibre product U ×X U is again quasi-compact, and so we may similarly find a
morphism V → U×X U whose source is an affine formal algebraic space, and which
is representable by algebraic spaces, smooth, and surjective.

Write Xn := SpecR/tn ×Spf R X , and similarly write Un := SpecR/tn ×Spf R U
and Vn := SpecR/tn ×Spf R V . We then have exact sequences of R-modules

0→ Γ(Xn,OXn
)→ Γ(Un,OUn

)→ Γ(Vn,OVn
)

(the first arrow being given by pull-back, and the second by the difference of the
two pull-back maps), and (passing to the projective limit in n)

0→ Γ(X ,OX )→ Γ(U,OU )→ Γ(V,OV ).

We also have isomorphisms

Γ(U,OU )/tnΓ(U,OU ) ∼= Γ(Un,OUn
)

and
Γ(V,OV )/tnΓ(V,OV ) ∼= Γ(Vn,OVn).

We let Jn ⊆ Γ(X ,OX ) denote the kernel of the morphism Γ(X ,OX )→ Γ(Xn,OXn
);

since Γ(Xn,OXn
) embeds into Γ(Un,OUn

), we see that

Jn = tnΓ(U,OU ) ∩ Γ(Xn,OXn).

Since each of the morphisms U → Spf R and V → Spf R is representable by alge-
braic spaces and of finite type, each of U and V is Noetherian [Stacks, Tag 0AQ7].

http://stacks.math.columbia.edu/tag/0AMX
http://stacks.math.columbia.edu/tag/0APU
http://stacks.math.columbia.edu/tag/0AQ7
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In particular, the ideal in Γ(V,OV ) consisting of the t-power torsion elements is
finitely generated, and hence is annihilated by some uniformly bounded power of t,
say tN . It follows that

tnΓ(X ,OX ) ⊆ Jn = tnΓ(U,OU ) ∩ Γ(X ,OX ) ⊆ tn−NΓ(X ,OX )

if n ≥ N. Thus the topology on Γ(X ,OX ) induced by the ideals Jn, which is its
natural topology, coincides with its t-adic topology, as claimed. �

We give an application of the preceding construction and results which will be
used in [Car+19] and [EG19a]. We continue to assume that R is a Noetherian ring,
complete with respect to the t-adic topology, for some element t ∈ R. We further-
more assume given quasi-compact and quasi-separated formal algebraic stacks X
and Y, and a commutative diagram

X //

""

Y

��

Spf R

in which the diagonal arrow makes X into a t-adic formal algebraic stack of finite
presentation. The usual graph argument shows that the horizontal morphism X →
Y is necessarily quasi-compact, quasi-separated, and representable by algebraic
stacks. Suppose in addition that this morphism is proper, and scheme-theoretically
dominant (in the sense of Definition 6.13). Finally, suppose that Y is Ind-locally of
finite type over SpecR (in the sense of Remark 8.39).

Proposition 10.5. In the preceding situation, and under the preceding hypotheses,
the morphism Y → Spf R is adic, and hence realizes Y as a t-adic formal algebraic
stack of finite presentation.

Proof. Since Y is quasi-compact and quasi-separated by assumption, it suffices to
show that it is a t-adic formal algebraic stack that is locally of finite presentation
in the evident sense. Since R is Noetherian, this is equivalent to being locally of
finite type, and it is this latter property that we will establish.

Since Y is quasi-compact, we may find a morphism V → Y whose source is
an affine formal algebraic space, and which is representable by algebraic spaces,
smooth, and surjective. In order to show that Y → Spf R is adic (i.e. is repre-
sentable by algebraic stacks) and (locally) of finite type, it suffices to show that the
composite V → Y → Spf R is representable by algebraic stacks and of finite type, or
equivalently (by Lemma 3.5), representable by algebraic spaces and of finite type,
or equivalently (by definition), adic and of finite type.

If we let Xn := SpecR/tn ×Spf R X , then X ∼= lim−→Xn. Since X → Y is scheme-
theoretically dominant, we may write Y ∼= lim−→Yn as the 2-colimit of a directed
sequence of algebraic stacks with thickenings as transition morphisms, such that the
morphism X → Y induces a scheme-theoretically dominant morphism of algebraic
stacks Xn → Yn for each n. If we write Vn := Yn×Y V , then each Vn is an algebraic
space admitting a closed immersion Vn ↪→ V , and hence is in fact an affine scheme,
say Vn ∼= SpecAn. The natural morphism lim−→Vn → V is an isomorphism, and
so we have V ∼= Spf A, where A ∼= lim←−An. Our goal, then, is to show that the
projective limit topology on A coincides with the t-adic topology on A.
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Since Y is Ind-locally of finite type over Spf R, as well as being quasi-compact
and quasi-separated, each of the closed algebraic substacks Yn is locally of finite
type over SpecR/tn (by Lemma 8.29 (2)). Since Y is quasi-compact and quasi-
separated, so is its closed substack Yn; thus in fact each Yn is of finite type over
SpecR/tn, and so Vn is also of finite type over SpecR/tn. Equivalently, the ring
An is of finite type over R/tn.

Write B := Γ(X ×Y V,OX×YV ), and let Bn denote the image of the natural
morphism B → Γ(Xn ×Y V,OXn×YV ). Lemma 10.2 shows that the morphism
X ×Y V → Spf A induces a morphism A → B. As in the proof of Lemma 6.15,
we find that each of induced morphisms Xn ×Y V → Vn is scheme-theoretically
dominant, which implies (indeed, is equivalent to) the fact that each An is equal
to the image of the composite morphism A → B → Bn. Since Xn ×Y V → Vn is
furthermore proper, we see thatBn is a finiteAn-algebra for each n. (See e.g. [Ols05]
for a proof of this finiteness statement for proper morphisms in the stacky context.)
As already noted, we have an isomorphism of topological rings A ∼= lim←−nAn, as

well as an isomorphism of topological rings B ∼= lim←−nBn. Since An embeds into Bn
for each n, we see that the injection A ↪→ B is a topological embedding.

Since A is complete, and since the t-adic topology on A is finer than its given
topology, we see that A is t-adically complete. Thus, if we fix a value of n, then
since An if of finite type over R/tn, we may find a morphism from R{x1, . . . , xr}
(restricted power series over R in some number of variables x1, . . . , xr) to A whose
composite with the surjection A→ An is again surjective. Since Bn is finite over An,
it is thus also finite over R{x1, . . . , xr}.

Lemma 10.3 shows that the topology on B induced by writing it as the projective
limit B ∼= lim←−nBn coincides with the t-adic topology. Thus B/tB is a quotient of

Bn for some sufficiently large value of n, and so, applying the construction of
the preceding paragraph with this value of n, we find that B/tB is finite as an
R{x1, . . . , xr}-algebra. The topological version of Nakayama’s Lemma then shows
that B is finite as an R{x1, . . . , xr}-algebra.

Now R{x1, . . . , xn} is Noetherian, and so the Artin–Rees Lemma shows that the
t-adic topology on B induces the t-adic topology on its R{x1, . . . , xr}-submodule A.
Taking into account Lemma 10.3 again, as well as the fact (noted above) that the
given topology on B induces the given topology on A, we find that the given
topology on A is the t-adic topology, as required. To see that Spf A→ Spf R is of
finite type, note that A/tmA is now known to be a discrete quotient of A, for any
value of m, so that we have a closed immersion SpecA/tmA ↪→ SpecAn for some
sufficiently large value of n. Since the target of this closed immersion is of finite
type over R/tn, so is the source. �

11. A criterion for a formal algebraic stack to be locally
Noetherian

Our main objective in this section is to provide a criterion for a locally Ind-locally
of finite type formal algebraic stack X (in the sense discussed in Remark 8.39) lying
over a locally Noetherian scheme S to in fact be locally Noetherian. Our argument,
which can be thought of as a generalization of the proof that a pro-representing
object for a formal deformation problem whose tangent space is finite dimensional
is necessarily a complete Noetherian local ring, will be based on the existence
of an obstruction theory satisfying certain properties, similar to those considered
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in [Stacks, Tag 07YV]. Before introducing the relevant notions, though, we first
establish some simple criteria for affine formal algebraic spaces to be Noetherian.

Lemma 11.1. Let Spf A = lim−→n
SpecAn be a countably indexed affine formal al-

gebraic space of Ind-locally finite type over a Noetherian ring Λ; so each An is
a finite type Λ-algebra, and the transition morphisms SpecAn ↪→ SpecAn+1 are
thickenings of Λ-schemes. Let In denote the nilradical of An, and suppose further
that for each N ≥ 1, the limit lim−→n

SpecAn/I
N
n eventually stabilizes, i.e. that the

morphism SpecAn/I
N
n → SpecAn+1/I

N
n+1 is an isomorphism for each fixed value

of N and for sufficiently large values of n. Then the topological ring A = lim←−nAn
is a Noetherian Λ-algebra, endowed with the I-adic topology, for some ideal I ⊆ A
with respect to which A is complete.

Proof. For each value of N ≥ 0, choose n(N) large enough that each of the tran-

sition morphisms Am/I
N+1
m → An(N)/I

N+1
n(N) is an isomorphism if m ≥ n(N), and

write BN := An(N)/I
N+1
n(N). We may, and do, choose n(N) so that it is a mono-

tone increasing function of n, in which case there are natural transition morphisms
BN+1 → BN , which are thickenings. Also, since each An is Noetherian, each of
the ideals In is nilpotent, and so if N is chosen so large that IN+1

n = 0, then there
is a natural surjection BN → An/I

N+1
n = An. Thus {BN} is an inverse system of

thickenings that is cofinal with the sequence {An}, and hence gives rise to the same
affine formal algebraic space. Replacing the sequence {An} by the sequence {BN},
we may then assume that In+1

n = 0 for each n (so in particular, A0 is reduced),

and that An/I
n
n
∼−→ An−1.

Since A0 is a finite type Λ-algebra, we may choose a surjection Λ[x1, . . . , xr]→
A0, and lift this morphism to a morphism of Λ-algebras Λ[x1, . . . , xr] → A. Also,

if n ≥ 1, then In/I
2
n
∼−→ I1/I

2
1 is a finitely generated A0-module, and thus we may

choose compatible surjections of Λ[x1, . . . , xr]-modules

(11.2) Λ[x1, . . . , xr]
s → In/I

2
n

for some value of s.
Since each In is a nilpotent ideal in An, the morphisms (11.2) can be used to

induce a compatible sequence of surjections Λ[x1, . . . , xr][[y1, . . . , ys]]→ An, which
in turn give rise to a morphism

Λ[x1, . . . , xr][[y1, . . . , ys]]→ A.

If we equip the source with its (y1, . . . , ys)-adic topology, then this morphism is
taut (in the sense of from [Stacks, Tag 0AMX]) with dense image, and so it follows
from [Stacks, Tag 0APT] that this morphism is itself surjective and open, so that
A is Noetherian and adic. �

Lemma 11.3. If X is a countably indexed affine formal algebraic space of Ind-
locally finite type over a Noetherian ring Λ, then the following conditions are equiv-
alent:

(1) X is Noetherian.
(2) Let Spf A := lim−→n

SpecAn be any countably indexed affine formal algebraic

space of Ind-locally finite type over Λ (so {An} is an inverse system of finite type
Λ-algebras with the transition morphisms SpecAn ↪→ SpecAn+1 being thickenings),
let In denote the nilradical of An, and suppose that there exists some N ≥ 0 such
that INn = 0 for all n. Then any morphism x̂ : Spf A→ X of affine formal algebraic

http://stacks.math.columbia.edu/tag/07YV
http://stacks.math.columbia.edu/tag/0AMX
http://stacks.math.columbia.edu/tag/0APT
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spaces (or equivalently, any compatible family of morphisms xn : SpecAn → X) is
effective, i.e. there exists a morphism x : SpecA→ X inducing x̂ (or equivalently,
inducing each of the xn).

(3) Let A be any finite type Λ-algebra, and let {A′n} be an inverse system of
square-zero thickenings 0→ Jn → A′n → A→ 0, with the property that each Jn is a
finite type A-module that is furthermore annihilated by the nil-radical of A. Then,
if A′ := lim−→n

SpecA′n, any morphism x̂ : Spf A′ → X is effective.

Proof. Suppose first that X is Noetherian, so that we may find an isomorphism
X ∼= Spf B, where B is a Noetherian ring, endowed with its J-adic topology for
some ideal J with respect to which B is complete. Let x̂ : Spf A → Spf B be
a morphism as in (2). Then the induced morphism B → An maps J into In,
and hence contains JN in its kernel. Thus we may pass to the inverse limit and
obtain a morphism B → B/JN → A, which in turn induces the desired morphism
x : SpecA→ Spf B. Thus (1) implies (2).

Conversely, suppose that condition (2) holds. Choose an isomorphism Spf B ∼= X,
where B = lim←−nBn is an inverse limit of finite type Λ-algebras Bn with respect to

transition maps that are thickenings, and let Jn be the nil-radical of Bn. Choose
N ≥ 0, and for each value of n, let An := Bn/J

N
n . By assumption the morphism

lim−→n
SpecAn → Spf B is effective, and thus factors through SpecBn for some suf-

ficiently large value of n. This implies that the inverse system Bn/J
N
n eventually

stabilizes, and it follows from Lemma 11.1 that X is Noetherian, i.e. that (1) holds.
Condition (3) is a special case of condition (2). Indeed, the assumptions imply

that each A′n is of finite type over Λ. Let I denote the nilradical of A, and choose
N so that IN = 0. Then, if I ′n denotes the nilradical of A′n, we see that (I ′n)N ⊆ Jn,
and thus that (I ′n)N+1 = 0.

Suppose now that (3) holds, and let x̂ : Spf A → X be a morphism as in the
setting of (2). We will prove that x̂ is effective by induction on N . Consider the
inverse system of short exact sequences (indexed by n)

(11.4) 0→ IN−1
n → An → An/I

N−1
n → 0.

By induction, the morphism lim−→n
SpecAn/I

N−1
n → X is effective. Since X is Ind-

locally of finite type, it factors through a morphism y : SpecC → X, where C
is of finite type over Λ. Pulling back each of the short exact sequences (11.4) by
the corresponding morphism C → An/I

N−1
n , we obtain an inverse system of short

exact sequences

(11.5) 0→ IN−1
n → A′n → C → 0.

We are now in the situation of (3), and thus the morphism Spf A′ := lim−→ SpecA′n →
X is effective. The natural morphism A′ → A induces a corresponding morphism
SpecA→ SpecA′, which, composed with the just-constructed morphism SpecA′ →
X, yields the desired morphism x : SpecA→ X. �

We now introduce the obstruction theoretic notion that will be applied in our
criterion for Noetherianness. We begin by recalling some material from [Stacks,
Tag 07Y6].

Let X be a category fibred in groupoids over a locally Noetherian scheme S which
satisfies the condition (RS*) of Definition 3.8. If x : SpecA→ X is a morphism for
which the composite morphism SpecA → S factors through an affine open subset
of S, then in [Stacks, Tag 07Y9] there is defined a functor Tx from the category

http://stacks.math.columbia.edu/tag/07Y6
http://stacks.math.columbia.edu/tag/07Y9
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of A-module to itself, whose formation is also functorial in the pair (x,A) [Stacks,
Tag 07YA], and such that for any A-module M , there is a natural identification of
Tx(M) with the set of lifts of x to morphisms x′ : SpecA[M ] → X (where A[M ]
denotes the square zero extension of A by M).

We now make the following key definition.

Definition 11.6. Let X be a category fibred in groupoids over a locally Noetherian
scheme S, which satisfies (RS*). We say that X admits a nice obstruction theory
if, for each finite type S-algebra A which lies over an affine open subscheme of S,
equipped with a morphism x : SpecA → X , there exists a complex of A-modules
K•(x,A), as well as an auxiliary A-module C(x,A), such that the following conditions

are satisfied:

(1) The complex K•(x,A) is bounded above and has finitely generated cohomol-

ogy modules (or, equivalently, is isomorphic in the derived category to a
bounded above complex of finitely generated A-modules), while C(x,A) is
finitely generated and locally free.

(2) The formation of K•(x,A) is compatible (in the derived category) with pull-

back, as is the formation of C(x,A). More precisely, if f : SpecB → SpecA,
inducing the morphism y : SpecB → SpecA → X , then there is a natural
isomorphism in the derived category f∗K•(x,A)

∼−→ K•(y,B), as well as a

natural isomorphism f∗C(x,A)
∼−→ C(y,B).

(3) For any pair (x,A) as above, and for any A-module M , we have a short
exact sequence

0→ C(x,A) ⊗M → Tx(M)→ H1(K•(x,A)⊗
LM)→ 0

whose formation is functorial in M , as well as in the pair (x,A), in the sense
that if we have a homomorphism A→ B, and let y denote the composite

SpecB → SpecA
x−→ X ,

and if N is a B-module (regarded also as an A-module via the given mor-
phism A→ B), then the diagram

0 // C(x,A) ⊗N //

��

Tx(N) //

��

H1(K•(x,A)⊗
LN) //

��

0

0 // C(y,B) ⊗N // Ty(N) // H1(K•(y,B)⊗
LN) // 0

commutes; here the left-most and right-most vertical arrows are induced by
the pull-back isomorphisms of condition (2) above, while the middle vertical
arrow is the natural map arising from the functoriality of T , as discussed
in [Stacks, Tag 07YA].

(4) For any pair (x,A) as above, and for any A-module M , the cohomology
module H2(K•(x,A)⊗

LM) serves as an obstruction module, so that for any

deformation situation (x,A′ → A), we have a functorial obstruction element
ox(A′) ∈ H2(K•(x,A)⊗

L I) (where I denotes the square-zero kernel of the

surjection A′ → A).

Remark 11.7. In Definition 11.6, it might be more natural to dispense with the
modules C(x,A), and in condition (3), to simply require the existence of a natural

http://stacks.math.columbia.edu/tag/07YA
http://stacks.math.columbia.edu/tag/07YA
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isomorphism between Tx(M) and H1(K•(x,A)⊗
LM). However the slightly more

relaxed condition that we have imposed gives technical flexibility; for example, it
makes it easy to prove Lemma 11.12 below.

Remark 11.8. We give an alternative formulation of condition (3) of Definition 11.6.
Namely, suppose given a natural surjection Tx(M) → H1(K•(x,A)⊗

LM), and let

Kx(M) denote the kernel; the formation of Kx(M) is then functorial in M , and in
the pair (A, x).

Recall that a functor on A-modules is of the form N ⊗ – if and only if it is
A-linear, right exact, and commutes with inductive limits. The functor Kx(–) is
certainly A-linear (since Tx(–) is [Stacks, Tag 07Y9], as is H1(K•(x,A)⊗

L –)). Thus

asking for a natural isomorphism Kx(M)
∼−→ C(x,A) ⊗ M , with C(x,A) finitely

generated and locally free, is equivalent to asking that Kx(–) be exact and commute
with inductive limits, and that Kx(A) be finitely generated.

Remark 11.9. We suppose given a nice obstruction theory in the sense of Defini-
tion 11.6. Let A be a finite type S-algebra that lies over an affine open subscheme
of S, and let x : SpecA → X be a morphism. If M is an A-module, then there is
a natural isomorphism lim−→i

Mi
∼−→ M, where Mi runs over the finitely generated

submodules of M , inducing natural isomorphisms

lim−→
i

H•(K•(x,A)⊗
LMi)

∼−→ H•(K•(x,A)⊗
LM).

Since S is locally Noetherian, the finite type S-algebra A is Noetherian. If
0→ I → A′ → A→ 0 is a square zero thickening, then we may write lim−→i

A′i
∼−→ A′,

where A′i runs over the finite type S-subalgebras of A′ that surject onto A. If we
set Ii := A′i ∩ I, then Ii is a finite A-module, and there is a natural isomorphism

lim−→i
Ii
∼−→ I, and so a corresponding natural isomorphism

(11.10) lim−→
i

H•(K•(x,A)⊗
L Ii)

∼−→ H•(K•(x,A)⊗
L I).

Since the formation of obstruction elements is functorial, we find that ox(A′) (which
lies in the target of this isomorphism), may be identified with the image of ox(A′i)
(for any choice of i; the images for the various different choices of i coincide) under
this isomorphism. The isomorphism (11.10) then shows that ox(A′) = 0 if and only
if ox(A′i) = 0 for some value (and hence for all sufficiently large values) of i.

If X is limit preserving, then there is an equivalence of groupoids

lim−→
i

X (Ai)
∼−→ X (A)

(the left-hand side being the 2-colimit). Using this, we find that the morphism x
lifts to A′ if and only if it lifts to A′i for some value of i. Similarly, we see that the
formation of Tx(M) is compatible with the formation of inductive limits.

In conclusion, we find that if X is limit preserving, then, in order to construct
a nice obstruction theory, it suffices to consider the case of finitely generated A-
modules M , and square zero extensions

0→ I → A′ → A→ 0

for which A′ is of finite type over S (or, equivalently, for which I is a finite A-
module).

http://stacks.math.columbia.edu/tag/07Y9
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Remark 11.11. For later reference, we briefly discuss a certain construction related
to obstruction theory computations.

Suppose that

0→ I → A′ → A→ 0

is a square zero thickening, and that ϕ : I → J is a morphism of A-modules. We
may pushforward the extension by ϕ to obtain a morphism of short exact sequences

0 // J // ϕ∗A
′ // A // 0

0 // I //

OO

A′ //

OO

A // 0

We note that ϕ∗A
′ admits a natural ring structure, so that the preceding diagram

becomes a morphism of square zero extensions. Namely, we may construct ϕ∗A
′

as the quotient of the product A′ × J by an anti-diagonally embedded copy of I.
If we regard A′ × J as the trivial square zero extension A′[J ], then the diagonally
embedded copy of I is an ideal, and so the quotient ϕ∗A

′ becomes a square zero
extension of A by J , and the above diagram becomes a morphism of square zero
thickenings.

If we are now given a morphism x : SpecA→ X as in Definition 11.6, the functo-
riality of the formation of obstruction elements shows that ox(ϕ∗A

′) ∈ H2(K•(x,A)⊗
L J)

is the image of ox(A′) ∈ H2(K•(x,A)⊗
L I) under the morphism induced by ϕ.

Lemma 11.12. If U → X is a morphism of categories fibred in groupoids over a
locally Noetherian scheme S that is representable by algebraic spaces and smooth,
and if X satisfies (RS*) and admits a nice obstruction theory (in the sense of
Definition 11.6), then the same is true of U .

Proof. It follows from Lemma 3.9 that U satisfies (RS*).
Suppose given a morphism u : SpecA → U , where A is a finite type S-algebra

lying over an affine open subscheme of S, and let x : SpecA → X denote the
composite of f with the given morphism U → X . We define K•(u,A) := K•(x,A).

The infinitesimal lifting criterion for smooth morphisms (see e.g. [Ryd11, Ap-
pendix B]) shows that the natural morphism Tu(M) → Tx(M) is surjective. The
composite

Tu(M)→ Tx(M)→ H1(K•(x,A)⊗
LM)

(the latter map being the surjection provided by the good obstruction theory for X ,
which is assumed to exist) is then also surjective; we next compute its kernel. To this
end, write U := SpecA×X U ; then U is an algebraic space smooth over SpecA, and
the morphism u corresponds to a section of U over SpecA. The conormal bundle
of this section to U is then a finitely generated locally free sheaf on SpecA, whose
global sections form a finitely generated locally free A-module P , and we have a
natural short exact sequence

0→ P ⊗M → Tu(M)→ Tx(M)→ 0.

The kernel Ku(M) of the surjection Tu(M) → H1(K•(x,A)⊗
LM) then sits in a

short exact sequence

0→ P ⊗M → Ku(M)→ C(x,A) ⊗M → 0,
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whose formation is functorial in M . The five-lemma then shows that Ku(M) is an
exact functor of M , and evidently Ku(A) is finitely generated (being an extension
of finitely generated A-modules). Remark 11.8 then shows that there is a natural

isomorphism Ku(M)
∼−→ C(u,A) ⊗M , for some finitely generated and locally free

A-module C(u,A).
Suppose now that 0 → I → A′ → A → 0 is a square-zero thickening. We claim

that if we define

ou(A′) := ox(A′) ∈ H2(K•(x,A)⊗
L I),

then we obtain functorial obstruction elements for extending morphism into U over
square-zero thickenings.

Certainly if u extends to a morphism u′ : SpecA′ → U , then the composite
x′ : SpecA′ → U → X is an extension of x. Conversely, if such an extension
x′ of x exists, then the infinitesimal lifting criterion shows that we may lift x′ to
a morphism u′ : SpecA′ → U which extends x. This verifies the final condition
for K•(u,A) to give a good obstruction theory, and so completes the proof of the

lemma. �

Theorem 11.13. If X is a locally countably indexed and locally Ind-locally of finite
type formal algebraic stack over the locally Noetherian scheme S which admits a nice
obstruction theory, then X is locally Noetherian.

Remark 11.14. Recall that, by Lemma 4.22, the Ind-algebraic stack X satisfies
(RS*), so that it makes sense to speak of it admitting a nice obstruction theory.

Proof of Theorem 11.13. We may find a morphism
∐
i Ui → X whose source is

a disjoint union of affine formal algebraic spaces, and which is representable by
algebraic spaces, smooth, and surjective. We may furthermore assume that for
each i, the composite morphism Ui → X → S factors through an open affine subset
of S.

By assumption, each Ui is locally countably indexed and of Ind-locally finite
type over S, and in order to prove the theorem, we must show that each Ui is in
fact a Noetherian affine formal algebraic space. Lemma 11.12 shows that each Ui
admits a nice obstruction theory, and thus, replacing X by Ui, and replacing S
by an appropriately chosen affine open subscheme Spec Λ, it suffices to prove the
theorem in the case when X = X is a countably indexed affine formal algebraic
space of Ind-locally finite type over Spec Λ for a Noetherian ring Λ.

We need to show that X is Noetherian; to do this, it is enough, by Lemma 11.3,
to show that X satisfies condition (3) of that lemma. Thus we suppose given a
sequence of square-zero thickenings

(11.15) 0→ Jn → A′n → A→ 0,

where A is a finite type Λ-algebra, and Jn is a finite type Ared-module, as well as
a morphism x̂ : Spf A′ → X , where

0→ J → A′ → A→ 0

is the inverse limit of the thickenings (11.15). We must show that x̂ is effective; to
do this, we argue by induction on the dimension of SpecAred.

Let y : SpecA→ X be the morphism induced by x̂, and let yred : SpecAred → X
denote the morphism induced by y. Each of the Ared-modules Hi(K•(yred,Ared)) is

finitely generated, and furthermore vanishes if i is sufficiently large. Thus we may
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find an element f ∈ A such that SpecA[1/f ] is a dense open subset of SpecA (or,
equivalently, such that SpecAred[1/f ] is a dense open subset of SpecAred), and
such that each of the localizations Hi(K•(yred,Ared))[1/f ] is locally free for i ≥ 1.

We recall two standard spectral sequences that we will require, namely

(11.16) Ep,q2 := Tor−pAred

(
Hq(K•(yred,Ared)),M) =⇒ Hp+q(K•(yred,Ared)⊗

LM)

(for any Ared-module M), and

(11.17) Ep,q2 := Rp lim←−
n

Hq(K•(yred,Ared)⊗
L Jn) =⇒ Hp+q(K•(yred,Ared)⊗

L J).

From the first of these spectral sequences, we obtain morphisms

(11.18) H1(K•(yred,Ared))⊗ Jn → H1(K•(yred,Ared)⊗
L Jn).

If we let Cn denote the cokernels of these morphisms, then Lemma 11.22 below
shows that each Cn is annihilated by some power of f which is bounded inde-
pendently of n. Replacing f by this power, we may and do assume that these
cokernels are in fact annihilated by f . Since the transition morphisms Jn+1 → Jn
are surjective, the same is true of the transition morphisms

H1(K•(yred,Ared))⊗ Jn+1 → H1(K•(yred,Ared))⊗ Jn,

so that R1 lim←−nH
1(K•(yred,Ared))⊗Jn = 0. If we let Mn denote the image of (11.18),

then the right exactness of R1 lim←−n shows that also R1 lim←−nMn = 0 (alternatively,

we could note that the transition morphisms Mn+1 → Mn are again surjective),
and hence that

R1 lim←−
n

H1(K•(yred,Ared)⊗
L Jn)

∼−→ R1 lim←−
n

Cn

is annihilated by f . A consideration of (11.17) then shows that there is a surjection

(11.19) H2(K•(yred,Ared)⊗
L J)→ lim←−

n

H2(K•(yred,Ared)⊗
L Jn),

whose kernel is annihilated by f .
We are now ready to apply our obstruction theory. Note that since each of

the A-modules Jn, as well as their inverse limit J , is in fact an Ared-module, and
since the formation of the complex K• is compatible with base-change, we have
isomorphisms

Hi(K•(y,A)⊗
LM) ∼= Hi(K•(yred,Ared)⊗

LM)

when M is equal to one of the Jn or to J . In particular, we may view the ob-
struction classes oy(A′n) as elements of H2(K•(yred,Ared)⊗

L Jn), and similarly, we

may view the obstruction class oy(A′) as an element of H2(K•(yred,Ared)⊗
L J). Since

the formation of obstruction classes is functorial, we see that the obstruction class
oy(A′) maps to the compatible sequence of obstruction classes oy(A′n) under the
surjection (11.19). However, the existence of the morphisms SpecA′n → X shows
that each of the obstruction classes oy(A′n) vanishes, and hence that oy(A′) lies in
the kernel of (11.19). Thus this class is annihilated by f .

If A′′ denotes the push-out of A′ along the morphism J → J given by multiplica-
tion by f , then we see that oy(A′′) = 0. (See Remark 11.11 for a general discussion
of pushouts and of the corresponding obstruction elements.) Thus there exists a
morphism x′′ : SpecA′′ → X prolonging y. If we let A′′n denote the pushout of A′n
along the morphism Jn → Jn given by multiplication by f (so that A′′

∼−→ lim←−nA
′′
n),
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then the morphism x′′n : SpecA′′n → X obtained by restricting x′′ may not coincide
with the composite

(11.20) SpecA′′n → SpecA′n
xn−→ X,

but differs from this composite by an element tn ∈ Tyred
(Jn). Since the morphisms

xn are compatible as n varies, so are the elements tn. The morphism

H1(K•(yred,Ared), J)→ lim←−
n

H1(K•(yred,Ared), Jn)

is surjective (as follows from a consideration of the spectral sequence (11.17)), and
the morphism

C(yred,Ared) ⊗ J → lim←−
n

C(yred,Ared) ⊗ Jn

is even an isomorphism (since C(yred,Ared) is finitely generated and locally free).
Thus the morphism

Tyred
(J)→ lim←−

n

Tyred
(Jn)

is also surjective, and hence we can find an element t ∈ Tyred
(J) which maps

to the element (tn) ∈ lim←−n Tyred
(Jn). Modifying x′′ by t, we obtain a morphism

(which we continue to denote by x′′) whose restriction x′′n to each SpecA′′n coincides
with (11.20).

Let us take a moment to take stock of our situation. If we write X
∼−→ SpecB,

then the morphism x̂ : Spf A′ → X corresponds to a continuous morphism B → A′.
The fact that the composite Spf A′′ → Spf A → X is induced by a morphism
SpecA′′ → X is equivalent to the fact that the kernel of the composite

(11.21) B → A′ → A′′

is an open ideal in B. The kernel of the morphism A′ → A′′ is the ideal J [f ]
(the ideal of f -torsion elements in J), and the morphism A′ → A′′ factors as the
surjection A′ → A′/J [f ] followed by an embedding A′/J [f ] ↪→ A′′. Thus the
kernel of the composite (11.21) and the kernel of the composite B → A′ → A′/J [f ]
coincide, and hence the composite

Spf(A′/J [f ])→ Spf A′ → X

is effective, arising from a morphism z : Spec(A′/J [f ])→ X.
We now consider the square zero thickening

0→ J [f ]→ A′ → A′/J [f ]→ 0,

which may be written as an inverse limit of square zero thickenings

0→ Jn[f ]→ Bn → A′/J [f ]→ 0.

This latter square zero thickening is obtained as the pull-back, via the morphism
A′/J [f ]→ A′n/Jn[f ], of the square zero thickening

0→ Jn[f ]→ A′n → A′n/Jn[f ]→ 0.

Since X satisfies (RS*), by Lemma 4.22, the compatible morphisms xn : SpecA′n →
X and z : Spec(A′/J [f ]) → X (compatible in the sense that they coincide when
restricted to SpecA′n/Jn[f ]) may then be glued to yield a morphism

un : SpecBn → X.
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These morphisms are compatible as n varies, and induce the given morphism x̂ :
A′ → X.

Since X is Ind-locally of finite type over Λ, we may find a finite type Λ-subalgebra
C of A′/J [f ], such that the morphism z : Spec(A′/J [f ]) → X factors through
SpecC. Since A is of finite type over Λ, we may enlarge C if necessary so that
C → A is surjective; we then let g denote an element of C which maps to the given
element f of A. Since (A′/J [f ])red

∼−→ Ared, the inclusion of C into A′/J [f ] then

induces an isomorphism of finite type Λ-algebras Cred
∼−→ Ared, mapping the image

of g to the image of f . In particular, the Krull dimension of Cred/g Cred is less than
the Krull dimension of Ared.

If we pull-back the square zero thickening A′ of A′/J [f ] over C, we obtain a
square zero thickening

0→ J [f ]→ C ′ → C → 0,

which is the inverse limit of square zero thickenings

0→ Jn[f ]→ C ′n → C → 0

obtained by pulling back each of the thickenings Bn. Each of the morphisms un :
SpecBn → X induces a morphism vn : SpecC ′n → X. These morphisms are of
course compatible as n varies, and so give rise to a morphism v̂ : Spf C ′ → X. Since
the morphism x̂ : Spf A′ → X factors as the composite

Spf A′ → Spf C ′
v̂−→ X

by construction, we see that the effectivity of x̂ would follow from the effectivity
of v̂. It is this latter effectivity that we now prove.

Since C is of finite type over Λ, it is Noetherian, and so its ideal of g-power
torsion elements is annihilated by some fixed power of g, say gN . It follows that
each of the sequences

0→ Jn[f ]→ C ′n/g
N+1C ′n → C/gN+1C → 0

is short exact, as is the sequence

0→ J [f ]→ C ′/gN+1C ′ → C/gN+1C → 0

obtained as their inverse limit. Our inductive hypothesis then implies that the
morphism Spf C ′/gN+1C ′ → X obtained by restricting v̂ is effective. Since C ′ can
be obtained as the fibre product

C ′
∼−→ (C ′/gN+1C ′)×C/gN+1C C,

another application of (RS*) yields a morphism v : SpecC → X, making v̂ effective,
and so completing the proof of the theorem. �

The following result is presumably well-known, but for lack of a reference, we
include a proof.

Lemma 11.22. Let A be a Noetherian ring, let C• be a bounded above complex
of A-modules all of whose cohomology modules are finitely generated, let f ∈ A,
and suppose that the cohomology modules of C•[1/f ] are furthermore locally free
A[1/f ]-modules. Then for each index i, there is a power fn of f such that the
kernel and cokernel of the natural morphism

(11.23) Hi(C•)⊗N → Hi(C•⊗LN)
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are annihilated by fn, for every A-module N (the power fn being independent of
the module N).

Proof. Consider the spectral sequence

Ep,q2 = TorA−p
(
Hq(C•), N) =⇒ Hp+q(C•⊗LN),

the edge map of which induces the morphism (11.23) in the statement of the lemma.
Since C• is bounded above, for a fixed value of i (and an arbitrary A-module N),
only finitely many terms of this spectral sequence contribute to the computation
of the kernel and cokernel of (11.23). Thus, to prove the lemma, it suffices to
show that if M is a finitely generated A-module for which M [1/f ] is locally free
over A[1/f ], then for each positive degree i, there is a power fn of f such that

TorAi (M,N) is annihilated by fn (the power fn being independent of the choice
of N).

Let P• → M be a resolution of M by finitely generated projective A-modules.
Since M [1/f ] is locally free, the complex

. . .→ Pi+1[1/f ]→ Pi[1/f ]→ . . . P1[1/f ]→ P0[1/f ]→M [1/f ]→ 0

is chain homotopic to zero. Write P−1 := M, and let s̃j : Pj [1/f ]→ Pj+1[1/f ] (for
j ≥ −1) denote this chain homotopy, so that

∂j+1 ◦ s̃j − s̃j−1∂j = idPj [1/f ] .

If we fix i > 0 and choose n large enough, we may then find morphisms sj : Pj →
Pj+1, for j = i and i− 1, such that sj [1/f ] = fnsj , and such that

∂i+1 ◦ si − si−1∂i = fn idPi
.

If we tj (for j = i and i − 1) denote the morphism Pj ⊗ N → Pj+1 ⊗ N induced
by sj , then we find that

∂i+1 ◦ ti − ti−1∂i = fn idPi⊗N .

The existence of such morphisms tj satisfying this identity evidently implies that

TorAi (M,N) := Hi(P• ⊗N) is annihilated by fn, as required. �
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