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1. Introduction

Let M be a compact, orientable, connected 3-manifold with fundamental group Γ. Let p be a
prime, let n ≥ 1 be a positive integer, and let φ : Γ → GLn(Zp) be a homomorphism. If we let G
denote the closure in GLn(Zp) of the image of Γ, then G is a p-adic analytic group, admitting a
normal exhaustive filtration

Gn := G ∩ ker
(
GLN (Zp) → GLN (Z/pnZ)

)
.

This filtration gives rise to a corresponding filtration {Γn} of Γ via the normal subgroups Γn :=
φ−1(Gn). This filtration may or may not be exhaustive (depending on whether or not φ is injective).

Associated to each of the finite index subgroups Γn of Γ is a finite connected cover Mn of M .
The main concern of this paper is to estimate the growth of H1(Mn,Fp) as a function of n, in terms
of the geometry of M and the dimension of the group G.

The methods of this paper are very similar to those of [4, 5]. The point of this note, however, is
to point out that no assumption on the arithmeticity (or even hyperbolicity) of M is required, and
that φ need not be a congruence homomorphism. Indeed, our conclusions do not depend at all on
the geometry of M , beyond the fact that it has dimension 3.

If H is any pro-p group, let δ(H) := dimFp H/Φ(H) where Φ(H) is the Frattini subgroup of H.
If δ(H) is finite, it is equal to the minimal number of topological generators of H. Recall that the
dimension d := dim(G) of a p-adic analytic group G is equal to δ(H) for any open uniform subgroup
H of G. The sequence of normal subgroups Gn ⊂ G constructed above is an exhaustive sequence
of subgroups, that is,

⋂
Gn = {1}. It follows that for any finite index open subgroup H ⊂ G, there

is an inclusion Gn ⊂ H for sufficiently large n. In particular, taking H to be uniform, we deduce
from Theorem 3.8 of [7] that δ(Gn) ≤ d for sufficiently large n.

The following result is the main theorem of this note.

Theorem 1.1. Let d = dim(G). Then either:

(1) dim H1(Mn,Fp) = λ · pdn + O(p(d−1)n) for some rational constant λ 6= 0,
(2) dim H1(Mn,Fp) = λ · p(d−1)n + O(p(d−2)n) for some rational constant λ 6= 0,
(3) d = 2, and dim H1(Mn,Fp) = O(1).
(4) d = 3, the boundary of M is a (possibly empty) union of spheres, dim H1(Mn,Fp) = δ(Gn),

and dim H1(Mn,Fp) ≤ 3 for sufficiently large n.
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If d > 3, then Theorem 1.1 implies that the rate of growth of mod-p homology comes in two
possible flavours. Since [G : Gn] is of order pdn, case (1) of Theorem 1.1 corresponds to “linear
growth” of mod-p homology. The question of linear mod-p homology growth is considered in recent
work of Lackenby [8, 9], where the existence of such growth in certain circumstances can be used
to deduce that some finite index subgroup of Γ is “large” (i.e., admits a surjection onto a free
group of rank ≥ 2). (We shall see in Example 5.1 that large subgroups give rise to examples where
case (1) applies.) Case (2) of Theorem 1.1, however, corresponds to “sub-linear growth” of mod-p
homology. Perhaps the most surprising aspect of our result is that whenever the growth of mod-p
homology in a p-adic analytic tower is sub-linear (and dim(G) > 3) the rate of growth is still quite
fast, and, moreover, is determined (up to a non-zero scalar) by the single invariant dim(G). A
natural question to consider is whether one should expect case (1) or (2) to hold. We conjecture
the following:

Conjecture 1.2. Suppose that M is a finite volume hyperbolic manifold and that φ is injective, or
equivalently, that

⋂
Γn = {1}. Then case 1 of Theorem 1.1 does not occur.

Although this conjecture is motivated by questions in the theory of automorphic forms (see, for
example, [5]), it reflects the general principle that fundamental groups of finite volume hyperbolic 3-
manifolds are a long way from being free, unlike the fundamental groups of surfaces. (For example,
the fundamental group of any closed 3-manifold admits a balanced presentation, i.e., one with an
equal number of generators and relations.)

In Section 5, we give examples illustrating our theorem. In particular, every possible case of
Theorem 1.1 does occur.

2. Iwasawa Theory

We maintain the notation of the introduction. We define the completed homology groups as
follows:

H̃i(Fp) = lim
←

Hi(Mn,Fp).

Example 2.1. Consider the case i = 0. Each Hi(Mn,Fp) is then canonically identified with Fp,
and the transition maps in the projective limit are just the identity map. Hence H̃0(Fp) = Fp.

Example 2.2. If M is not closed, then H3(Mn,Fp) = 0 for each n, and so certainly H̃3(Fp) = 0.
On the other hand, suppose that M is closed, so that H3(Mn,Fp) = Fp for each value of n,
generated by the fundamental class [Mn]. If the dimension d of G is at least 1, then for any n ≥ 1,
there is n′ > n such that the degree of the map Mn′ → Mn is divisible by p, and hence induces the
zero map on H3. Thus, when d ≥ 1, we see that H̃3(Fp) = 0 even when M is closed.

Each of the modules H̃i(Fp) carries a continuous action of G, and thus is a Λ := Fp[[G]]-module.
The modules H̃i(Fp) are, in fact, finitely generated as Λ-modules. One way to see this, which also
sheds light on the nature of the groups H̃i(Fp), is as follows: Fix a triangulation of M , and pull
this back to obtain a G/Gn-equivariant triangulation to Mn. We obtain a chain complex of free
Fp[G/Gn]-modules which compute Hi(Mn,Fp) together with the action of G/Gn. The rank of
these modules is bounded by the number of cells in the triangulation of M , and is hence bounded
independently of n. The projective limit of these complexes defines a chain complex of finite rank
free Λ = Fp[[G]]-modules

S• : S3 → S2 → S1 → S0,

whose homology equals H̃i(Fp).
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In particular, H̃1(Fp) can be thought of as an analogue of the Alexander invariant, where the
group G plays the role of the covering group Z of a knot complement in the theory of the Alexander
invariant, and the ring Λ plays the role of the ring Z[Z] = Z[t, t−1] in that theory.

A basic fact underlying the viewpoint of the paper is that the category of finitely generated
modules over Λ := Fp[[G]] has good properties whenever G is p-adic analytic; e.g., for any such G,
the ring Λ is (left and right) Noetherian [10], and if G is furthermore sufficiently small, then Λ is
Auslander regular [14]. For example, If G = ZN

p , then Λ ' Fp[[T1, . . . , TN ]] is a regular local ring
of dimension N .

The key technical ingredient that we employ is the notion of codimension for finitely generated
Λ-modules. A finitely generated Λ-module A is defined to have codimension c if Exti(A,Λ) = 0 for
all i < c and is non-zero for i = c. A non-zero finitely generated module has codimension ≤ d; we
define the codimension of the zero module to be ∞. The utility of this definition is the following
result (see [1, § 5]):

Theorem 2.3. Suppose that A is a finitely generated Λ-module of codimension c, and as usual,
write dim(G) = d. Then, letting {Gn} denote the filtration of G defined above, we have that

dim H0(Gn, A) = dim(the space of Gn-coinvariants of A) = λ · p(d−c)n + O(p(d−c−1)n)

for some non-zero rational number λ.

In order to connect this result to our main theorem, we note the following:

Lemma 2.4. There is an exact sequence:

H2(Gn,Fp) → H0(Gn, H̃1(Fp)) → H1(Mn,Fp) → H1(Gn,Fp) → 0.

Proof. This follows from a version of the Hochschild–Serre spectral sequence for completed homol-
ogy (where we have taken into account the fact that H̃0 = Fp, by Example 2.1). �

Note that dim H1(Gn,Fp) = δ(Gn) ≤ d = dim(G) for sufficiently large n, and that H2(Gn,Fp)
is bounded as a function of n (see [6]). The main theorem is thus automatically true for d ≤ 2.
Moreover, when d ≥ 3, it suffices to prove either that H̃1(Fp) has codimension ≤ 1, or else that the
boundary of M is a union of spheres, that d = 3, and that H̃1(Fp) = 0. (This equivalence uses the
fact that if H̃1(Fp) = 0, then H1(Mn,Fp) = H1(Gn,Fp) has dimension δ(Gn).)

3. The case of closed M

We shall assume in this section that ∂M = ∅. This case contains all the essential ideas of this
paper and is unencumbered by the technical modifications required when M has boundary.

Lemma 3.1. There is a spectral sequence

Exti(H̃j(Fp),Λ) ⇒ H̃3−i−j(Fp).

Proof. Apply Hom(–,Λ) to the chain complex S• described above. �

Remark. Note that Lemma 3.1 (and its proof) is essentially Poincaré duality “over Λ”, the only
difference being that Λ (unlike a field) is not cohomologically trivial, so that one obtains a spectral
sequence rather than a simple isomorphism between the Λ-dual of H̃i(Fp) and H̃3−i(Fp).
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Let us now study the spectral sequence. Note that Exti(Fp,Λ) = 0 unless i = d, in which case
it equals Fp. Thus the E2-page of the spectral sequence has the following form:

Hom(H̃2(Fp),Λ) Ext1(H̃2(Fp),Λ) . . .

Hom(H̃1(Fp),Λ) Ext1(H̃1(Fp),Λ) . . .

0 0 . . . Fp.

The (0, 0) term is stable, and hence, we recover the fact that H̃3(Fp) = 0 when d ≥ 1 (which we
already observed in Example 2.2 above).

As noted at the end of the preceding section, in order to prove our main theorem, we may assume
that d ≥ 3 and that H̃1(Fp) has codimension at least 2. We henceforth make these assumptions.
From the definition of codimension, we find that Hom(H̃1(Fp),Λ) = Ext1(H̃1(Fp),Λ) = 0. In
particular (since also d > 1) we deduce from the spectral sequence that H̃2(Fp) = 0. Then also
Hom(H̃2(Fp),Λ) = 0, which, together with the fact that Ext1(H̃1(Fp),Λ) = 0 and that d > 2,
allows us to deduce from the spectral sequence that H̃1(Fp) = 0. Thus, the E2-page of the spectral
sequence in fact contains only one non-zero term, namely the (d, 0) term Fp. We therefore conclude
that H̃i(Fp) = 0 unless i = 3− d, and that H̃3−d(Fp) = Fp. Since we know that H̃0(Fp) = Fp, we
deduce that d = 3. This completes the proof of Theorem 1.1 in the closed case.

4. The case when M has boundary

If M has boundary, then it is still of interest to consider the completed homology groups H̃i(Fp).
However, we also need to consider homology relative to the boundary, and the corresponding
completed homology groups:

H̃BM
i (Fp) = lim

←
Hi(Mn, ∂Mn;Fp).

(Here the superscript “BM” stands for Borel–Moore homology; the reason for using this notation
is that the relative homology Hi(Mn, ∂Mn;Fp) coincides with the Borel–Moore homology of the
complement of the boundary HBM

i (Mn \ ∂Mn,Fp).) Similarly, if we let ∂M denote the boundary
of M , then we may define

H̃i(∂,Fp) = lim
←

Hi(∂Mn,Fp).

Lemma 4.1. There are spectral sequences:
(1) Exti(H̃BM

j (Fp),Λ) ⇒ H̃3−i−j(Fp),
(2) Exti(H̃j(Fp),Λ) ⇒ H̃BM

3−i−j(Fp),
(3) Exti(H̃j(∂,Fp),Λ) ⇒ H̃2−i−j(∂,Fp).

Moreover, there is a long exact sequence:

. . . → H̃j(∂,Fp) → H̃j(Fp) → H̃BM
j (Fp) → H̃j−1(∂,Fp) → . . .

Proof. For the various spectral sequences we proceed as in the closed case. The long exact sequence
is obtained as the projective limit of the usual long exact sequences for the pairs (Mn, ∂Mn). �

Suppose that n′ ≥ n. Although ∂Mn′ is a finite cover of ∂Mn, typically neither is connected. We
will take a moment to discuss the structure of their component sets in terms of the map φ, the
group G, and so on.
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If Σ is a component of ∂Mn, then composing the natural map π1(Σ) → π1(Mn) = Γn with the
map φ|Γn

: Γn → Gn yields a map π1(Σ) → Gn. We let H denote the closure of the image of this
map. If n′ ≥ n, and if we let Σn′ denote the preimage of Σ in ∂Mn′ , then there is a bijection

π0(Σn′) ∼= Gn/Gn′H.

We say that the component Σ of ∂Mn splits completely up the tower if each component of Σn′

maps homeomorphically to Σ, for each n′ ≥ n, or equivalently, if Σn′ has [Gn : Gn′ ] connected
components, for each n′ ≥ n, or again equivalently (as one deduces from the preceding description
of π0(Σn′)), if H = {1}.

Lemma 4.2. The following are equivalent:
(1) For some value of n, the boundary ∂Mn contains a component which splits completely up

the tower;
(2) H̃0(∂,Fp) has codimension 0 as a Λ-module.

Furthermore, either these equivalent conditions hold, or else H̃2(∂,Fp) = 0.

Proof. Let ∂M = Σ1
∐
· · ·

∐
Σm be the decomposition of ∂M into a disjoint union of connected

components. For each n, let Σi
n denote the preimage of Σi under the covering map Mn → M. If we

define Ai := lim
←

H0(Σi
n,Fp), then H̃0(∂,Fp) = A1 ⊕ · · · ⊕Am, and so H̃0(∂,Fp) has codimension 0

if and only if at least one Ai does.
Now if we write H i to denote the closure of the image of the composite

π1(Σi) −→ π1(M) = Γ
φ−→ G,

then we see from the above discussion that π0(Σi
n) = G/GnH i, and thus that

Ai = lim
←

Fp[G/GnH i] = Fp[[G/H i]]

(with the Λ-module structure being induced by the left action of G on G/H i). From this description
of Ai, one easily verifies that the codimension of Ai is equal to the dimension of H i. Thus Ai has
codimension 0 if and only if H i has dimension 0, i.e. is finite. This in turn is equivalent to having
H i ∩ Gn = {1} for sufficiently large n, which is in turn equivalent to one (or equivalently, every)
component of Σi

n being completely split up the tower. This establishes the equivalence of (1)
and (2).

The final statement follows immediately from a consideration of the (0, 0)-term of the third
spectral sequence of Lemma 4.1. We may also prove it more directly: since each ∂Mn is a disjoint
union of closed surfaces, by arguing just as in the 3-manifold case considered in Example 2.2, we
find that H̃2(∂,Fp) = 0 unless, for some sufficiently large value of n, there is a component of ∂Mn

which splits completely up the tower. �

We now turn to proving Theorem 1.1. Since the 2-sphere is simply connected, any 2-sphere in
the boundary of M splits completely up the tower of Mn. Thus we may cap off all these 2-spheres
with 3-balls; note that this doesn’t change H1(Mn,Fp). Hence we may and do assume that every
component of ∂M , and hence every component of ∂Mn for each value of n, has positive genus.
As noted in the preceding section, the theorem is automatic if d ≤ 2, and so we may assume that
d ≥ 3. We have already proved the theorem in the closed case, and thus we may also assume that
M has a non-empty boundary (every component of which has positive genus). The theorem will
follow if we prove that H̃1(Fp) has codimension at most one. Thus we assume that H̃1(Fp) has
codimension at least 2, and argue by contradiction.
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Since M , and so each Mn, is not closed, we certainly have that H̃3(Fp) = 0, and an argument
like that given in the closed case in Example 2.2 shows that also H̃BM

3 (Fp) = 0. (Alternatively,
this follows from the second spectral sequence of Lemma 4.1.) Moreover, H̃BM

0 (Fp) = 0 (since each
Mn is not closed) and H̃0(Fp) = Fp.

We now collect various consequences of our assumptions:

(1) H̃BM
1 (Fp) = 0, as follows from the second spectral sequence of Lemma 4.1, the fact that

d > 1, and the fact that H̃1(Fp) has positive codimension.
(2) H̃2(∂,Fp) ∼= H̃2(Fp), as follows from the long exact sequence of Lemma 4.1 and the van-

ishing of H̃BM
3 (Fp) (noted above) and H̃BM

2 (Fp) (noted in the preceding point).
(3) H̃1(∂,Fp) has positive codimension, as follows from the fact that it embeds into H̃1(Fp)

(since H̃BM
2 (Fp) vanishes, by (1)), which has positive codimension by assumption.

We now deduce that ∂Mn has no completely split boundary component, for any value of n. Indeed,
suppose that Mn did have such a component for some n. By assumption, the genus g of this
component would be positive, and so we would find that H̃1(∂,Fp) has codimension 0, contradicting
point (3) above. Lemma 4.2 then implies that H̃2(∂,Fp) = 0, and so point (2) above implies that
H̃2(Fp) = 0.

A consideration of the second spectral sequence of Lemma 4.1, taking into account our assump-
tions that d ≥ 3 and that H̃1(Fp) has codimension ≥ 2, then shows that H̃BM

1 = 0. We have
already observed that H̃BM

i = 0 for i = 0, 2, 3, and so we conclude that the first spectral sequence
of Lemma 4.1 is identically zero. Consequently, H̃i(Fp) must vanish for every value of i. This
contradicts the fact that H̃0(Fp) = Fp. Thus in fact the codimension of H̃1(Fp) is at most one,
and the theorem is proved.

5. Examples

Example 5.1. Fix a p-adic Lie group G, let F be a free group of rank ≥ 2, and consider a map
F → G with Zariski dense image. If Fn denotes the preimage of Gn, then Fn will be free of rank
[G : Gn](rank(F )− 1) + 1. In particular, the Fp-homology of Fn will grow linearly in the degree.

Now suppose that M is a closed 3-manifold such that Γ = π1(M) admits a surjective map
Γ → F . If we define φ to be the composite φ : Γ → F → G, then we are in case (1) of Theorem 1.1.
This construction applies more generally: we may take F to be any group admitting a faithful
representation into a p-adic Lie group G such that the Fp-homology of any finite index subgroup
Fn has rank at least c · [F : Fn] for some constant c independent of n. For example, F could be
the fundamental group of a compact surface Σg of genus g ≥ 2. It seems a difficult problem to
characterize such groups F . If M is hyperbolic, one might wonder whether this is the only way in
which case (1) can occur.

Example 5.2. The prime 3 splits in Z[
√
−2], and so there is a surjection Z[

√
−2] → F3 × F3,

inducing a surjection SL2(Z[
√
−2] → SL2(F3)× SL2(F3). If Γ denotes the kernel of this map, then

Γ admits a map to SL2(Z2
3) ∼= SL2(Z3)2 with Zariski dense pro-3 image (induced by the embedding

Z[
√
−2] ↪→ Z2

3 given by forming the 3-adic completion of Z[
√
−2]). The dimension of the target

is d = 6 > 3. The computations of [12, §4.1] imply that, with respect to the corresponding pro-3
cover, case (2) of the main theorem occurs.

Example 5.3. Suppose that ∂M is the union of N tori. We obtain a map φ : Γ := π1(M) →
ZN ↪→ ZN

p =: G. Let M̃ be the cover of M with covering group ZN corresponding to the kernel
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of φ. The Z[ZN ]-module H1(M̃,Z) is the Alexander invariant of M . There is a natural map
Z[ZN ] → Fp[[ZN

p ]], and the completed homology H̃1(Fp) is obtained from the Alexander invariant
by base-change along this map:

H̃1(Fp) := Fp[[ZN
p ]⊗Z[ZN ] H1(M̃,Z).

Theorem 1.1 shows that H̃1(Fp), and hence the Alexander invariant, can be trivial only if N ≤ 2.

If M is a knot complement (in which case N = 1), then in fact H̃1(Fp) = 0, as we now show.

Lemma 5.4. If M is a knot complement in S3, then H̃1(Fp) = 0, and consequently H1(Mn,Fp) =
Fp for all n.

Proof. We give two proofs, one in the spirit of this note, and the other (which was explained to us
by Barry Mazur) using the classical theory of the Alexander polynomial.

First proof. We have G = Zp, and Gn = pnZp for each n. Then Λ = Fp[[T ]], and the exact
sequence of Lemma 2.4 simplifies to the following short exact sequence:

0 → H̃1(Fp)/T pn
H̃1(Fp) → H1(Mn,Fp) → Fp → 0.

Taking n = 1, and noting that H1(M,Fp) = Fp (since M is a knot complement), we find that
H̃1(Fp)/TH̃1(Fp) = 0. Since H̃1(Fp) is finitely generated over Fp[[T ]], Nakayama’s lemma implies
that H̃1(Fp) = 0.

Second proof. Write M = S3 \ K, where K is a tubular neighbourhood of the knot K. For
any integer e ≥ 1, let Xe denote the e-fold cover of S3 ramified along K. If ∆(t) denotes the
Alexander polynomial of M (note that the variables t and T are related via t = T + 1), then
#H1(Xe,Z) =

∏
ζe=1 ∆(ζ) if the right hand side is non-zero. (If the right hand side vanishes, then

H1(Xe,Z) has positive rank).
Recall that ∆(1) = 1. Thus, taking e = pn, we find that #H1(Xpn ,Z) ≡ 1 mod ζ − 1, where ζ is

a primitive pnth root of 1. Since ζ − 1 is a non-unit algebraic integer of norm p, while #H1(Xe,Z)
is an integer, we find that in fact #H1(Xpn ,Z) ≡ 1 mod p. In particular, H1(Xpn ,Z) is finite and
p-torsion free, and so by the universal coefficient theorem, H1(Xpn ,Fp) = 0. Now Mn is equal to the
complement in Xpn of a tubular neighbourhood of the preimage of K, and thus H1(Mn,Fp) = Fp,

generated by the class of a meridian in the preimage of K.
If n′ > n, then the map of meridians induced by the map Mn′ → Mn has degree pn′−n, and

hence the map H1(Mn′ ,Fp) → H1(Mn,Fp) is zero. Thus we also conclude that H̃1(Fp) = 0. �

Note that the argument in the second proof of the preceding lemma breaks down if e is divisible
by more than one prime, since if ζ is a primitive eth root of unity for such a value of e, then ζ−1 is
a unit in the ring of algebraic integers. And indeed, for such e, the cover Xe can have non-zero 1st
Betti number, or torsion in H1 of order that is not coprime to e. (For example, if K is the trefoil
knot and e = 6 then H1(X6,Z) is infinite [13, p. 150].)

If M is the complement of the Hopf link, then N = 2, and it is known that the Alexander
invariant, and hence H̃1(Fp), vanishes [13, p. 190]. This provides an example in which case (3) of
Theorem 1.1 occurs.

Example 5.5. In [3] and [2], a closed arithmetic manifold M is considered which has the property
that the 3-adic completion G of its fundamental group Γ is analytic. This implies, for the associated
map φ : Γ → G, that H̃1(Fp) = 0, and hence that we are in case (4) of Theorem 1.1 (with p = 3).
Another example is given (with p = 5) by a finite cover of the Weeks manifold (see [3, p. 321]).
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Example 5.6. If M is hyperbolic, then Γ can be realized as a torsion free discrete subgroup of
SL2(C) and M ' Γ\H3. If M has finite volume, then, by Mostow rigidity, we may assume (after
possibly conjugating Γ) that Γ ⊂ SL2(E) for some (minimal) number field E. Since Γ is finitely
generated, there exists a finite set of primes S in E such that Γ ⊂ SL2(OE,S), where OE,S denotes
the ring of S-integers in E. From this description of Γ, it follows that Γ is residually finite, and,
for all but finitely many primes p ∈ OE , admits an injective map φp : Γ → SL2(ÔE,p) (where ÔE,p

denotes the p-adic completion of the ring of integers of E). This construction provides a natural
source of homomorphisms φ of the type considered in this paper.

Note that these maps are of quite a different nature to those considered in Example 5.1 (when
the latter exist), since the latter cannot be injective. (A finite volume hyperbolic 3-manifold group
cannot be free.)

Example 5.7. Let M be any finite volume hyperbolic 3-manifold. Let φ be the direct sum of φp

for all primes p above p. The Zariski closure of the image is a group G of dimension at least 6.
It follows that M admits a sequence of covers with large mod-p homology growth. Moreover, we
see that any hyperbolic 3-manifold M admits a finite cover M ′ such that the fundamental group
Γ′ of M ′ admits a map to a pro-p analytic group G of dimension > 3. If the pro-p completion of
Γ′ were analytic and isomorphic to G, then H̃1(Fp) would vanish, contradicting Theorem 1.1. In
particular, we see that if Γ is arithmetic, it cannot satisfy the congruence subgroup property. This
was first proved for arithmetic lattices in SL2(C) by Lubotzky [11].

Remark 5.8. The assumption that M be orientable has been made primarily for simplicity of
exposition, and it should not be difficult to extend the proof of Theorem 1.1 to the non-orientable
case. Indeed, any manifold is orientable mod 2, while if p is odd, then we may pass to the orientation
double covers M̃n of the Mn, each of which is equipped with an orientation reversing involution
σ such that Mn = M̃n/σ, and work with the σ-fixed part of the Fp-homology of M̃n (which is
canonically isomorphic to the Fp-homology of Mn). The reader will easily verify that the arguments
of the paper remain valid after restricting to σ-invariants. (The key point is that H0(M̃n,Fp) is
fixed by σ.)

Acknowledgments. The authors would like to thank Barry Mazur for explaining the second proof
of Lemma 5.4 to them.
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