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1. introduction

Let p ≥ 5 be prime. Hida has developed an extensive theory of so-called ordinary
p-adic modular forms. One of the basic results of his theory is that the projective
limit of the ordinary parts of the homology modules of the Riemann surfaces Y1(pr)

Word := lim
←−
r

H1(Y1(pr),Zp)
ord

is a free Λ-module of finite rank with the property

Word ⊗Λ Zp[Γ/Γr] = H1(Y1(pr),Zp)
ord

for all r > 0. (Here Γ denotes the group of units in Zp congruent to one modulo p,
Γr denotes the kernel of the reduction of Γ modulo pr, and Λ denotes the completed
group ring Zp[[Γ]] = lim←−

r
Zp[Γ/Γr].)

Hida proves this through a series of group cohomological calculations combined
with his theory of the ordinary part of the p-adic Hecke algebra. In this note
we present a simple proof of the same result (Theorem 5.3 below) using only the
elementary algebraic topology of the Riemann surfaces Y1(pr). As with Hida, we
also consider the case of auxiliary Γ1(N)-level structure, for some N prime to p.

2. the tower of modular curves

Let p be an odd prime, and N a natural number coprime to p, such that Γ1(Np) is
torsion free. The subject of Hida’s theory is the tower of modular curves

...
↓

Y1(Npr)
↓
...
↓

Y1(Np)

corresponding to the chain of congruence subgroups

· · · ⊂ Γ1(Npr) ⊂ · · · ⊂ Γ1(Np).
1
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If we take the homology (with coefficients in Z) of the tower of modular curves, we
get a tower of finitely generated free abelian groups, which is the abelianization of
the above chain of subgroups:

· · · → Γ1(Npr)ab → · · · → Γ1(Np)ab.

The inclusions become morphisms which need no longer be injective (abelianization
is not an exact functor). To better understand this chain of morphisms, we follow
Hida and introduce intermediate congruence subgroups

Φ1
r = Γ1(Np) ∩ Γ0(pr).

The inclusion Γ1(Npr) ⊂ Γ1(Np) factors as

Γ1(Npr) ⊂ Φ1
r ⊂ Γ1(Np),

and Γ1(Npr) is a normal subgroup of Φ1
r (in fact Φ1

r is the normalizer of Γ1(Npr)
in Γ1(Np)).

Denote by Γ the principal units in Zp, defined by the short exact sequence

1 → Γ → Z×p → (Zp/p)× → 1.

We let Γr denote the (unique since p is odd) subgroup of index pr−1 contained in
Γ defined by the short exact sequence

1 → Γr → Z×p → (Zp/pr)× → 1.

We define a morphism of groups

Φ1
r → Γ/Γr

via the formula (
a b
c d

)
→ d mod pr.

This is a surjective morphism with kernel equal to Γ1(Npr)which yields the short
exact sequence

1 → Γ1(Npr) → Φ1
r → Γ/Γr → 1.

The action of Φ1
r on Γ1(Npr) by conjugation induces an action of the quotient

Φ1
r/Γ1(Npr) = Γ/Γr on the abelianization of Γ1(Npr). Thus Γ acts naturally on

Γ1(Npr)ab through its quotient Γ/Γr. (The automorphisms induced by elements of
Γ are sometimes referred to as the ‘diamond operators’. Alternatively, one might
call this action of Γ the ‘nebentypus’ action.) The morphisms in the chain

· · · → Γ1(Npr)ab → · · · → Γ1(Np)ab

are clearly Γ-equivariant.
If r ≥ s > 0, we denote by Φs

r the subgroup of Φ1
r containing Γ1(Npr) whose

quotient by Γ1(Npr) equals Γs/Γr. In other words,

Φs
r = Γ1(Nps) ∩ Γ0(pr).



A NEW PROOF OF A THEOREM OF HIDA 3

If we abelianize the short exact sequence

1 → Γ1(Npr) → Φs
r → Γs/Γr → 1

we obtain the (no longer short) exact sequence

Γ1(Npr)ab → Φs
r
ab → Γs/Γr → 1.

We let as denote the augmentation ideal in the group ring Z[Γs]. Then by definition

asΓ1(Npr)ab = [Φs
r,Γ1(Npr)]/[Γ1(Npr),Γ1(Npr)] ⊂ Γ1(Npr)ab.

The extension

1 → Γ1(Npr)/[Φs
r,Γ1(Npr)] → Φs

r/[Φs
r,Γ1(Npr)] → Γs/Γr → 1

is a central extension of a cyclic group, thus abelian, implying that

[Φs
r,Γ1(Npr)] = [Φs

r,Φ
s
r].

Thus we we may rewrite this extension as the short exact sequence

1 → Γ1(Npr)ab/as → Φs
r
ab → Γs/Γr → 1.

Summarizing this discussion, we see that a typical map

Γ1(Npr)ab → Γ(Nps)ab

in the chain of homology groups arising from the tower of modular curves may be
factored as the composition of the surjection

Γ1(Npr)ab → Γ1(Npr)ab/as,

the injection
Γ1(Npr)ab/as → Φs

r
ab

and the morphism
Φs

r
ab → Γ1(Nps)ab.

Hida observed that if one applies a certain projection operator arising from the
Atkin U -operator to all these modules (tensored with Zp) then the second and
third morphisms of this factorization become isomorphisms.

3. hecke operators

In this section we give a group-theoretic discussion of Hecke operators, sufficient
for the purposes of this paper. For a more thorough treatment one should consult
[2, §4] or [4, Chapter 3].

Suppose that T is a group which contains subgroups G and H and that t is an
element of T such that t−1Ht ∩ G has finite index in G. Then one has a transfer
morphism

V : Gab → (t−1Ht ∩G)
ab

.



4 MATTHEW EMERTON

Conjugation by t induces an isomorphism

(t−1Ht ∩G)
ab ∼= (H ∩ tGt−1)

ab
.

Inclusion of this last group in H induces a morphism

(H ∩ tGt−1)
ab → Hab.

Taking the composition of all these we obtain a morphism

[t] : Gab → Hab,

the ‘Hecke operator’ corresponding to t.
In the case when T = GL2(Q), G = H =a congruence subgroup of SL(2,Z) of

level divisible by p and t :=
(

1 0
0 p

)
, we denote the corresponding Hecke operator

by U . It is called the ‘Atkin U -operator’ (for the prime p).
Suppose that G is one of the Φs

r of the previous Section. A calculation shows
that

t−1Φs
rt ∩ Φs

r = Φs
r ∩ Γ0(p), Φs

r ∩ tΦs
rt
−1 = Φs

r+1.

(Here Γ0(p) denotes the subgroup of SL(2,Z) consisting of matrices which are

congruent to
(
∗ 0
∗ ∗

)
modulo p.) Thus the Atkin U -operator is by definition the

composition

Φs
r
ab V// (Φs

r ∩ Γ0(p))ab
t(−)t−1

// Φs
r+1

ab // Φs
r
ab.

(The final morphism is just that induced by the inclusion of groups Φs
r+1 ⊂ Φs

r.)
Define U ′ to be the composition of just the first two of these morphisms:

U ′ : Φs
r
ab V→ (Φs

r ∩ Γ0(p))
ab t(−)t−1

−→ Φs
r+1

ab.

Lemma 3.1. Suppose that r ≥ s > 0, r′ ≥ s′ > 0, r ≥ r′, s ≥ s′, so that Φs
r ⊂ Φs′

r′ .
Then the following diagram commutes:

Φs
r
ab //

U ′

��

Φs′

r′
ab

U ′

��

Φs
r+1

ab // Φs′

r′+1

ab
.

(The horizontal morphisms are those induced by inclusion.) Consequently the fol-
lowing diagram also commutes (by definition of U ′ and U):

Φs
r
ab //

U

��

Φs′

r′
ab

U

��

Φs
r
ab // Φs′

r′
ab

.
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Proof. The diagram whose commutativity is asserted by the Lemma factorizes into
the composition of two diagrams:

Φs
r
ab //

V

��

Φs′

r′
ab

V

��

(Φs
r ∩ Γ0(p))ab //

t(−)t−1

��

(Φs′

r′ ∩ Γ0(p))
ab

t(−)t−1

��

Φs+1
r+1

ab // Φs′+1
r′+1

ab
.

The lower portion of this diagram clearly commutes. To see that the upper half
commutes is a calculation: Φs

r ∩ Γ0(p) has index p in Φs
r, and we can can take as

the coset representatives the p matrices(
1 i
0 1

)
,

(0 ≤ i ≤ p− 1). Since these coset representatives are independent of the particular
values of r and s, the transfer

Φs
r
ab V→ (Φs

r ∩ Γ0(p))
ab

is given by a formula independent of the values of r and s, so the upper portion of
the diagram commutes. Thus the Lemma is proved. �

A particular case of the Lemma which is of interest is the case r′ = r − 1,
s′ = s ≤ r − 1. If we write π for the morphism

π : Φs
r
ab → Φs

r−1
ab

and π′ for the morphism
π′ : Φs

r+1
ab → Φs

r
ab

then the Lemma yields the following formula:

U ′ ◦ π = π′ ◦ U ′ = U ∈ EndZ(Φs
r
ab), (3.2)

the second equality following from the definition of U and U ′. The same definition
yields the formula

π ◦ U ′ = U ∈ EndZ(Φs
r−1

ab). (3.3)

More generally, Lemma 3.1 shows that each Φs
r
ab is made a Z[U ]-module via the

action of the Atkin U -operator and the morphisms between these modules arising
from the inclusion relations between the Φs

r for varying r and s are morphisms of
Z[U ]-modules.

Consider in particular the morphism Γ1(Npr)ab → Φs
r
ab. Since this is a mor-

phism of Z[U ]-modules its cokernel is naturally a Z[U ]-module. We saw in the
preceding section that this cokernel is the abelian group Γs/Γr.
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Lemma 3.4. The operator U acts on Γs/Γr as multiplication by p.

Proof. This is easily proved by direct calculation, using the coset representatives
for Φs

r ∩ Γ0(p) in Φs
r listed above. �

Lemma 3.5. If r ≥ s > 0, the action of U on Φs
r
ab commutes with the nebentypus

action of Γ on Φs
r
ab.

Proof. Let α ∈ Φ1
r+1 ∩ Γ0(p). Then the following diagram certainly commutes:

Φs
r
ab

α(−)α−1

//

V

��

Φs
r
ab

V

��
(Φs

r ∩ Γ0(p))ab
α(−)α−1

//

t(−)t−1

��

(α(Φs
r ∩ Γ0(p))α−1)ab = (Φs

r ∩ Γ0(p))ab

αtα−1(−)αt−1α−1

��
Φs

r+1
ab α(−)α−1

//

��

(αΦs
r+1α

−1)ab = Φs
r+1

ab

��
Φs

r
ab

α(−)α−1

// αΦs
rα
−1ab = Φs

r
ab.

Also, if g ∈ Φs
r ∩ Γ0(p), then

αtα−1gαt−1α−1 = (αtα−1t−1)tgt−1(αtα−1t−1)−1.

Now a calculation shows that αtα−1t−1 ∈ Γ1(Npr+1), and thus conjugation by
this element induces the identity on Φs

r+1
ab. Hence the following diagram also

commutes:

Φs
r
ab

α(−)α−1

//

V

��

Φs
r
ab

V

��
(Φs

r ∩ Γ0(p))ab

t(−)t−1

��

(Φs
r ∩ Γ0(p))ab

t(−)t−1

��
Φs

r+1
ab

��

Φs
r+1

ab

��
Φs

r
ab

α(−)α−1

// Φs
r
ab.

Recall that the composition of the vertical morphisms on either side of this diagram
is, by definition, the operator U . Thus U commutes with the automorphism of
Φs

r
ab induced by conjugation by α. Since the nebentypus action may be realized

by conjugation by such elements α, the proposition is proved. (If d ∈ Γ/Γs, we

may certainly find an element α =
(

a b
c d

)
of SL(2,Z) such that pr+1|c and

p|b. Then the nebentypus action of d on Φs
r
ab is given by conjugation by α, and

α ∈ Φ1
r+1 ∩ Γ0(p), as is required in the preceding discussion.) �
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4. ordinary parts

Let U be an indeterminate, and consider the full subcategory of the category of
Zp[U ]-modules consisting of those modules which are finitely generated as Zp-
modules. This is an abelian category.

Let M be any module in this category. Then we have a morphism of Zp-modules

Zp[U ] → EndZp(M).

The endomorphism ring EndZp
(M) of M is a finite Zp-algebra, since M is finitely

generated as a Zp-module. Thus the image of Zp[U ] in EndZp
(M) is also a finite

Zp-algebra; call it A. Any finite Zp-algebra factors as a product of local rings; in
particular A so factors. The projection of U onto some of the local factors of A
will be contained in the corresponding maximal ideal, while its projection onto the
others will be a unit. We let Aord denote the product of all those local factors of
A in which the image of U is a unit, and Anil its complementary factor, so that
A = Aord ×Anil. Each of these is a flat A-algebra, and a subalgebra of EndZp

(M).
We define

Mord := M ⊗A Aord

and call this the ordinary part of M . It is now easily seen that taking ordinary
parts is an exact functor on our abelian category.

If we now consider U to be Atkin’s U -operator corresponding to the prime p, we
may consider the ordinary part of the Zp homology of the curve Y1(Npr), i.e. the

module (Γ1(Npr)ab ⊗ Zp)
ord

. This is a Γ-module, since Lemma 3.4 shows that the
Γ action commutes with U . We have the following fundamental Theorem, proved
in [2]:

Theorem 4.1 [Hida]. If r ≥ s > 0 then the morphism of abelian groups

(Γ1(Npr)ab ⊗ Zp)
ord

/as → (Γ1(Nps)ab ⊗ Zp)
ord

is an isomorphism.

Proof. The proof of this Theorem rests on the two facts referred to at the end of
Section 2: that

(Γ1(Npr)ab ⊗ Zp)
ord

/as → (Φs
r
ab ⊗ Zp)

ord

is an isomorphism and that

(Φs
r
ab ⊗ Zp)

ord
→ (Γ1(Nps)ab)

ord

is an isomorphism.
The second of these isomorphisms is well known, and goes back (in a slightly

different guise) to the paper [1] of Atkin and Lehner which introduced the operator
U . The general principle is that when we apply U to any ‘modular object’ with a
greater power of p in the level then in the conductor of the nebentypus character,
we remove a power of p from the level.

To be more precise: in the previous Section we constructed a Hecke operator

U ′ : Φs
r−1

ab → Φs
r
ab
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which satisfies equations (3.3) and (3.4): if

π : Φs
r
ab → Φs

r−1
ab

is the morphism induced by the inclusion of groups Φs
r ⊂ Φs

r−1 then

U ′ ◦ π = U ∈ End(Φs
r
ab), π ◦ U ′ = U ∈ End(Φs

r−1
ab).

The existence of U ′ implies that upon tensoring over Zp and taking the ordinary
parts π induces an isomorphism

(Φs
r
ab ⊗ Zp)

ord
= (Φs

r−1
ab ⊗ Zp)

ord
;

U−1 ◦ U ′ provides an inverse to π. By descending induction on r we obtain the
required isomorphism:

(Φs
r
ab ⊗ Zp)

ord
= (Φs

s
ab ⊗ Zp)

ord
= (Γ1(Nps)ab ⊗ Zp)

ord
.

To prove the first isomorphism consider the short exact sequence

1 → Γ1(Npr)ab/as → Φs
r
ab → Γs/Γr → 1.

Tensor this with Zp and take ordinary parts to obtain the short exact sequence

1 → (Γ1(Npr)ab ⊗ Zp)
ord

/as → (Φs
r
ab ⊗ Zp)

ord
→ (Γs/Γr)

ord → 1.

(The group Γs/Γr is p-torsion, and so is unaffected by tensoring with Zp. Recall
also that U is Γ-equivariant, so that the taking of Γs-coinvariants and the taking
of ordinary parts are commuting functors.) The isomorphism will follow if we can
show that (Γs/Γr)

ord is trivial.
By Lemma 3.4 The operator U acts on the group Γs/Γr as multiplication by p

and so is a nilpotent operator (since Γs/Γr is p-torsion). Thus Γs/Γr has trivial
ordinary part and the Theorem follows. �

5. iwasawa modules

We may take the projective limit of the chain of Zp-modules

· · · → Γ1(Npr)ab ⊗ Zp → · · · → Γ1(Np)ab ⊗ Zp

to obtain a limiting module which we denote by

W := lim
←−
r

Γ1(Npr)ab ⊗ Zp.

The profinite group Γ acts on the Zp-module Γ1(Npr)ab ⊗ Zp through its finite
quotient Γ/Γr. Thus the limiting module W not only has a Γ-action, but is a
module over the completed group algebra

Λ := lim
←−
r

Zp[Γ/Γr].
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The Zp- algebra Λ is called the ‘Iwasawa algebra’ and W is said to be an ‘Iwasawa
module’.

The Iwasawa module W is difficult to understand in its entirety, because we do
not have a good characterization of the image of the morphism

Γ1(Npr)ab → Γ1(Nps)ab

(r ≥ s > 0) in general, and so we cannot get a good description of the projective
limit. However, Theorem 1 allows us to understand the ordinary part of W very
well.

It will be convenient to abstract the situation slightly. Thus suppose that Mr is
a projective system of Λ-modules indexed by positive integers r with the property
that each Mr invariant under Γr. Then for any r ≥ s the given morphism

Mr → Ms

factors as
Mr → Mr/as → Ms.

Define M = lim←−
r

Mr. Then for any s the natural morphism

M → Ms

factors as
M → M/as → Ms.

Proposition 5.1. Suppose in the situation of the preceding paragraph that each
Mr is p-adically complete and that the morphisms Mr/as → Ms are isomorphisms
for any r ≥ s. Then for any s the morphism M/as → Ms is an isomorphism.

Proof. First note that the hypotheses imply in particular that all the morphisms
Mr → Ms for r ≥ s are surjective. Thus if ms is any element of Ms we may
construct an element (mr) of M whose projection to Ms is the given element ms.

For any s the group Γs is procyclic. If γs denotes a topological generator then
the augmentation ideal as is a principal ideal of Λ generated by the element γs− 1.

If i > 0 then Γs+i is generated by γpi

s and so as+i is principal with generator γpi

s −1.

One easily computes that
γpi

s − 1
γs − 1

is an element of the ideal (γs − 1, p)i.

Let m = (a1, p) denote the maximal ideal of Λ. Then (γs−1, p)i ⊂ mi. Note that
each Mr is m-adically complete, being both fixed by Γr and p-adically complete.

Now let us fix some s and suppose that (mr) is an element of the projective
limit M whose projection ms to Ms vanishes; we must construct an element (m′

r)
of M such that (mr) = (γs − 1)(m′

r). By assumption we may construct an element
m1,s+1 of Ms+1 such that ms+1 = (γs − 1)m1,s+1. Let (m1,r) denote an element
of M projecting to m1,s+1. Then the element (mr)− (γs − 1)(m1,r) has vanishing
projection to Ms+1. Proceeding inductively, we construct for any i > 0 an element
(mi,r) of M such that

(mr)−
i∑

j=1

(γpj−1

s − 1)(mj,r) = (mr)− (γs − 1)
i∑

j=1

(
γpj−1

s − 1
γs − 1

)
(mj,r)
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has vanishing projection to Ms+i.
Since each Mr is m-adically complete, we see that the infinite series

(m′
r) :=

∞∑
j=1

(
γpj−1

s − 1
γs − 1

)
(mj,r)

yields a well-defined element of M with the property that

(mr) = (γs − 1)(m′
r).

This proves the Proposition. �

Corollary 5.2. For any r > 0 we have

(Γ1(Npr)ab ⊗ Zp)
ord

= (Word)/ar

is the Γr-coinvariants of Word.

Proof. This follows from Proposition 5.1 (by taking r to be s in the statement of
that Proposition) together with Theorem 4.1. �

Let us remark that the analogous statement to Corollary 5.2 is not true for W.
Each module Γ1(Npr)ab ⊗ Zp is free of finite rank over Zp, and so is compact

in its p-adic topology. Thus if we give the limiting module W the topology which
is the projective limit of the p-adic topology on each module Γ1(Npr)ab ⊗ Zp it
becomes a compact Λ-module. Furthermore, Λ acts continuously on W, since Γ
acts on each of the modules Γ1(Npr)ab⊗Zp through a finite quotient. Since Word is
a direct factor of W the same remarks hold true for Word. Furthermore, Corollary
5.2 implies that the projective limit topology on Word coincides with its m-adic
topology (where m = (a1, p) ⊂ Λ denotes the maximal ideal of Λ), because the
kernels of the projection

Λ → Zp/pr[Γ/Γr]

are cofinal with the sequence of ideals mr in Λ.
Thus Word is a Λ-module, compact in its m-adic topology, such that

Word/m = Word/(a1, p) = (Γ1(Np)ab ⊗ Zp/p)
ord

is a finite dimensional Zp/p-module, of dimension d (say). This implies that Word

is a finitely generated Λ-module, with a minimal generating set of order equal to d.
Of course d is equal to the Zp-rank of the free Zp-module (Γ1(Np)ab ⊗ Zp)

ord
.

The following Theorem is one of the key results of [2], and its proof is the object
of this note:

Theorem 5.3 [Hida]. The Λ-module Word is free of finite rank equal to d.

Before we explain the proof of this Theorem (which is the subject of the next
three Sections) let us elucidate its meaning. Suppose that x1, . . . , xd is a basis for
the free Λ-module Word. The projections of x1, . . . , xd in

(Γ1(Npr)ab ⊗ Zp)
ord

= Word/ar
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will generate this module, and in fact will realize it as a free module over the group
algebra Zp[Γ/Γr].

We may think of the projections of the xi as being certain (homology classes
of) cycles on Y1(Npr) with Zp coefficients. The diamond operators Γ/Γr are a
certain group of automorphisms of the curve Y1(Npr) (the covering transformations
of Y1(Npr) over Y (Φ1

r)) which induce the nebentypus action on Γ1(Npr)ab via
functoriality of homology. Since the xi are a free basis for the Zp[Γ/Γr]-module

(Γ1(Npr)ab ⊗ Zp)
ord

, the collection of all translates by the diamond operators of the
cycles x1, . . . , xd is a linearly independent set of cycles on Y1(Npr) which generates
the ordinary part of its homology. The fact that we may choose such cycles on
Y1(Npr), coherently as r approaches infinity (in particular keeping d constant), is
one way of interpreting Theorem 5.3.

In fact, it is easy to see that Theorem 5.3 would follow if we knew that each
ordinary homology module (Γ1(Npr)ab ⊗ Zp)

ord
was free as a Zp[Γ/Γr]-module.

For suppose this was known. Then Theorem 1 would show that the rank of the
free Zp[Γ/Γr]-module (Γ1(Npr)ab ⊗ Zp)

ord
would be a constant independent of r,

and it is not hard to see that we could make coherent choices of Zp[Γ/Γr]-bases for
these modules which would in the limit realize Word as a free Λ-module.

It is difficult to characterize free modules over the group rings Zp[Γ/Γr]. How-
ever, the completed group ring Λ is a regular local ring of dimension two, and
so any reflexive Λ-module is free [3]. We will prove Theorem 5.3 by considering

the duality theory of the modules (Γ1(Npr)ab ⊗ Zp)
ord

, showing that they are re-
flexive as Zp[Γ/Γr]-modules, and taking the limit to infer that Word is a reflexive
Λ-module. The following Section proves the necessary results on dual modules over
group rings of finite groups and Section 7 contains the details involved in taking
the limit. In order to complete the argument of Section 7 we must show that a
certain pushforward morphism of cohomology modules is an isomorphism. This is
the subject of Section 8.

6. modules over group rings

Suppose that R is a commutative ring, G a finite group and M a left R[G]-module.
Let N be any R-module. Then HomR(M,N) becomes a right R[G]-module, via
composition with the action of G on M . The ring R[G] is naturally a bimodule
over itself, via ring multiplication on the left and right. Thus R[G] ⊗R N is an
R[G]-bimodule, making HomR[G](M,R[G] ⊗R N) a right R[G]-module (the Hom
being taken in the category of left R[G]-modules).

Lemma 6.1. There is a canonical isomorphism of right R[G]-modules

HomR(M,N) = HomR[G](M,R[G]⊗R N).

Proof. If X is any set, and R[X] denotes the free R-module based on X, we may
think of R[X] as the R-module of finitely supported R-valued measures on X. If
we think of R[G] in this way then its ring structure arises from convolution of
measures. Since G is finite the multiplication map

G×G → G
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has finite fibers, so pushforward of functions (‘integration along the fibers’) yields
a pullback of measures

R[G] → R[G×G] = R[G]⊗R R[G].

This is a morphism of R[G]-modules which gives rise to a morphism of R[G]-modules
for any left R[G]-module M :

M = R[G]⊗R[G] M −→ (R[G]⊗R R[G])⊗R[G] M

= R[G]⊗R (R[G]⊗R[G] M) = R[G]⊗R M.

This in turn gives rise to a morphism

HomR[G](R[G]⊗R M,R[G]⊗R N) → HomR[G](M,R[G]⊗R N)

which when composed with the natural morphism

HomR(M,N) → HomR[G](R[G]⊗R M,R[G]⊗R N)

yields the isomorphism of the Lemma. �

Here is an explicit description of the isomorphism of Lemma 6.1: for any element
φ of HomR(M,N) the image of φ in HomR[G](M,R[G]⊗R N) acts via the following
formula:

m 7→
∑
g∈G

g ⊗ φ(g−1m).

Now consider the case in which N = R. Write M∗ = HomR(M,R); this is
the R-dual of M . Applying Lemma 6.1, we see that M∗ and HomR[G](M,R[G])
are canonically isomorphic as right R[G]-modules. The analogue of Lemma 6.1
for right R[G]-modules is obviously also true, and applying it to M∗ we see that
HomR(M∗, R) and HomR[G](M∗, R[G]) are canonically isomorphic as left R[G]-
modules. By definition of M∗ there is a natural morphism of R-modules

M → HomR(M∗, R)

which one checks is a morphism of left R[G]-modules. Suppose that this morphism
is in fact an isomorphism, i.e. that M is a reflexive R-module. Then we have the
isomorphisms of left R[G]-modules:

M = HomR(M∗, N) = HomR[G](M∗, R[G]).

Thus we have proved the following Lemma:

Lemma 6.2. If M is a left R[G]-module which is reflexive as an R-module then
M is reflexive as an R[G]-module.
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7. limits of cohomology modules

Cohomology is the dual of homology:

H1(Y1(Npr),Zp) := HomZ(Γ1(Npr)ab,Zp) = HomZp
(Γ1(Npr)ab ⊗ Zp,Zp).

The ring Λ acts on Γ1(Npr)ab ⊗ Zp through its quotient

Λr := Λ/ar = Zp[Γ/Γr].

Lemma 6.1 yields an isomorphism of Λr-modules

HomZp
(Γ1(Npr)ab ⊗ Zp,Zp) = HomΛr

(Γ1(Npr)ab ⊗ Zp,Λr).

If r ≥ s > 0 then the ring Λs is the quotient of the ring Λr by the augmentation
ideal as:

Λr → Λr/as = Λs.

Thus we get the following sequence of morphisms of Λr-modules

HomΛr (Γ1(Npr)ab ⊗ Zp,Λr) −→ HomΛr (Γ1(Npr)ab ⊗ Zp,Λr)/as

−→ HomΛr
(Γ1(Npr)ab ⊗ Zp,Λs) = HomΛs

(Γ1(Npr)ab ⊗ Zp/as,Λs).

Before we continue let us interpose a remark relating ordinary parts and duality:
If M is any Zp[U ]-module which is finitely generated as a Zp-module then the Zp-
dual M∗ := HomZp

(M,Zp) of M is also finitely generated as a Zp-module, and
becomes a Zp[U ]-module via the dual action of U . Clearly

(M∗)ord = (Mord)∗,

that is, taking ordinary parts commutes with taking duals.
Thus we may take ordinary parts of the above diagram of homomorphisms to

obtain a diagram

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord
,Λr) −→ HomΛr

((Γ1(Npr)ab ⊗ Zp)
ord

,Λr)/as

−→ HomΛs((Γ1(Npr)ab ⊗ Zp)
ord

/as,Λs).

Combining this with the isomorphism

(Γ1(Npr)ab ⊗ Zp)
ord

/as = (Γ1(Nps)ab ⊗ Zp)
ord

of Theorem 4.1 yields the diagram

HomΛr ((Γ1(Npr)ab ⊗ Zp)
ord

,Λr) −→ HomΛr ((Γ1(Npr)ab ⊗ Zp)
ord

,Λr)/as

→ HomΛs
((Γ1(Nps)ab ⊗ Zp

ord
,Λs).
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Lemma 7.1. The morphism

HomΛr ((Γ1(Npr)ab ⊗ Zp)
ord

,Λr)/as → HomΛs((Γ1(Nps)ab ⊗ Zp

ord
,Λs)

is an isomorphism.

Proof. The proof of this Lemma is postponed to the next section. �

Consider the chain of Λ-modules

· · · → HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord
,Λr) → · · · → HomZp

((Γ1(Np)ab ⊗ Zp)
ord

,Zp).

Lemma 7.2. There is a canonical isomorphism

HomΛ(Word,Λ) = lim
←−
r

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord
,Λr).

Proof. We have the following series of canonical isomorphisms:

HomΛ(Word,Λ) = lim
←−
r

HomΛ(Word,Λr) = lim
←−
r

HomΛr
(Word/ar,Λr)

= lim
←−
r

HomΛr ((Γ1(Npr)ab ⊗ Zp)
ord

,Λr),

where the last isomorphism follows from Corollary 5.2. This proves the Lemma. �

Lemma 7.3. For any r > 0 there is a canonical isomorphism

HomΛ(W ord,Λ)/ar = HomΛr ((Γ1(Npr)ab ⊗ Zp)
ord

,Λr).

Proof. This follows from the previous two Lemmas, together with Proposition
5.1. �

Lemmas 5 and 8 imply Theorem 5.3: since any finitely generated reflexive Λ-
module is free [3], it suffices to show that Word is a reflexive Λ-module. This follows
from the following series of canonical isomorphisms:

HomΛ(HomΛ(Word,Λ),Λ) = lim
←−
r

HomΛ(HomΛ(Word,Λ),Λr)

= lim
←−
r

HomΛr
(HomΛ(Word,Λ)/ar,Λr)

(1)
= lim
←−
r

HomΛr
(HomΛr

((Γ1(Npr)ab ⊗ Zp)
ord

,Λr),Λr)

(2)
= lim
←−
r

(Γ1(Npr)ab ⊗ Zp)
ord (3)

= Word.

(Equality (1) follows from Lemma 7.3. Equality (2) follows from Lemma 6.2, since

(Γ1(Npr)ab ⊗ Zp)
ord

is a free Zp-module and so is certainly a reflexive Zp-module.
Equality (3) is the definition of Word.)
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8. proof of Lemma 7.1

The aim of this Section is to prove Lemma 7.1, that is, to show that

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord
,Λr)/as → HomΛs

((Γ1(Nps)ab ⊗ Zp)
ord

,Λs)

is an isomorphism.
We begin by observing that the inclusion of groups

Γ1(Npr) → Φs
r

gives rise to the transfer
Φs

r
ab V→ Γ1(Npr)ab

(corresponding to pullback of cycles if one thinks of these abelianizations as homol-
ogy modules).

Lemma 8.1. The transfer morphism V : Φs
r
ab → Γ1(Npr)ab commutes with the

action of U on its source and target.

Proof. It suffices to show that the following diagram (in which V is used ubiqui-
tously to denote transfer between various abelianizations, and t denotes the matrix(

1 0
0 p

)
) commutes:

Φs
r
ab V //

V

��

Γ1(Npr)ab

V

��
(Φs

r ∩ Γ0(p))ab
V //

t(−)t−1

��

(Γ1(Npr) ∩ Γ0(p))ab

t(−)t−1

��
Φs

r
ab V // Γ1(Npr)ab.

The commutativity of the top square follows from the functoriality of transfer. The
commutativity of the second diagram is an easy calculation: one can find coset

representatives for Γ1(Npr) ∩ Γ0(p) in Φs
r ∩ Γ0(p) of the form σd =

(
a b
c d

)
, with

d ranging through coset representatives of Γr in Γs. Then one computes that the

conjugates tσdt
−1 =

(
a b/p
pc d

)
form a set of coset representatives of Γ1(Npr) in

Φs
r. �

By virtue of Lemma 8.1 we may restrict V to the ordinary parts of its source
and target to obtain a morphism which we continue to denote by V

(Φs
r
ab ⊗ Zp)

ord V→ (Γ1(Npr)ab ⊗ Zp)
ord

.

There is a dual morphism

HomZp
((Γ1(Npr)ab ⊗ Zp)

ord
,Zp)

V ∗−→ HomZp
((Φs

r
ab ⊗ Zp)

ord
,Zp)
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which sits in the first column of the following commutative diagram:

HomZp((Γ1(Npr)ab ⊗ Zp)
ord

),Zp)
∼ //

V ∗

��

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord
,Λr)

��

HomZp
((Φs

r
ab ⊗ Zp)

ord
,Zp) HomΛr

((Γ1(Npr)ab ⊗ Zp)
ord

,Λr)/as

��

HomΛs((Γ1(Npr)ab ⊗ Zp)
ord

/as,Λs)

HomZp((Γ1(Nps)ab ⊗ Zp)
ord

,Zp)
∼ // HomΛs

((Γ1(Nps)ab ⊗ Zp)
ord

,Λs)

in which the two horizontal isomorphisms are those provided by Lemma 6.1, and the
two vertical equalities follow from Theorem 4.1 and its proof. (The commutativity
of the diagram follows from a direct calculation, using the explicit formula for the
isomorphism of Lemma 6.1 together with the formula for the transfer in terms of
coset representatives.) Thus to prove Lemma 7.1 it suffices to prove that

HomZp((Γ1(Npr)ab ⊗ Zp)
ord

),Zp)
V ∗→ HomZp((Φs

r
ab ⊗ Zp)

ord
,Zp)

is surjective with kernel equal to as HomZp
((Γ1(Npr)ab ⊗ Zp)

ord
),Zp).

Since V commutes with U and taking ordinary parts commutes with taking
Zp-duals,

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord
,Λr)

V ∗→ HomZp
((Φs

r
ab ⊗ Zp)

ord
,Zp)

is the ordinary part of the morphism

HomZp
(Γ1(Npr)ab ⊗ Zp,Zp)

V ∗→ HomZp
(Φs

r
ab ⊗ Zp,Zp).

Taking ordinary parts is also exact and commutes with the action of Γ; thus to
prove Lemma 7.1 it suffices to show that

HomZp
(Γ1(Npr)ab ⊗ Zp,Zp)

V ∗→ HomZp
(Φs

r
ab ⊗ Zp,Zp)

is surjective with kernel equal to as HomZp(Γ1(Npr)ab⊗Zp,Zp). This we now prove.
If G is any torsion-free congruence subgroup of SL(2,Z) then (letting H denote

the Poincaré upper half-plane)

HomZp(Gab ⊗ Zp,Zp) = HomZ(Gab,Zp) = H1(Y (G),Zp)

is the one-dimensional cohomology module of the open Riemann surface

Y (G) := G \ H
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with coefficients in Zp. This curve can be completed to a compact Riemann surface
X(G) by the addition of finitely many points (known as the ‘cusps’). Intersection
of cycles yields a canonical isomorphism

H1(Y (G),Zp) = H1(X(G), cusps,Zp).

(The right-hand module is homology of the compact Riemann surface X(G) with
coefficients in Zp, taken relative to the set of cusps of X(G).) It is well-known that
the cusps correspond to the points of the orbit space G \P1(Q) and that there is
a canonical isomorphism

H1(X(G), cusps,Zp) = (Divo(P1(Q))⊗ Zp)/aG,

where aG is the augmentation ideal of the group ring Z[G] and Divo(P1(Q)) is
made a Z[G]-module via the action of G on P1(Q). If H is contained in G then the
Riemann surfaces Y (G) and X(G) are respectively quotients of Y (H) and X(H).
As above we have the transfer

V : Gab → Hab

and the dual morphism

V ∗ : HomZp
(Hab ⊗ Zp,Zp) → HomZp

(Gab ⊗ Zp,Zp).

This situation gives rise to the following commutative diagram:

HomZp
(Hab ⊗ Zp,Zp)

V ∗ // HomZp
(Gab ⊗ Zp,Zp)

H1(Y (H),Zp) // H1(Y (G),Zp)

H1(X(H), cusps,Zp) // H1(X(G), cusps,Zp)

(Divo(P1(Q))⊗ Zp)/aH
// (Divo(P1(Q))⊗ Zp)/aG

in which the vertical arrows are (in order) the dual of the transfer, pushforward on
cohomology, pushforward on homology, and the natural quotient morphism. Thus
we see that V ∗ is surjective, with kernel equal to aG HomZp

(Hab ⊗ Zp,Zp). In
particular, if we take H = Γ1(Npr) and G = Φs

r, we find that Lemma 7.1 is proved.
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