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1. Introduction

The idea that there could be a p-adic version of the local Langlands correspondence
was originally proposed by C. Breuil, in the case of the group GL2(Qp), in his
papers [11, 12, 13]. In [13], he also proposed a local-global compatibility between
this (at the time conjectural) correspondence and p-adically completed cohomology
of modular curves. Since then, the theory of p-adic Langlands has been extensively
developed in the case of the group GL2 over Q; see e.g. [6, 29, 50, 30, 32, 46, 52].
Since excellent expositions of much of this material already exist [5, 14, 15], we
have decided here to describe some aspects of the p-adic Langlands program that
make sense for arbitrary groups. This has led us to focus on completed cohomology,
since this is a construction that makes sense for arbitrary groups, and about which
it is possible to establish some general results, and make some general conjectures.

Many of these conjectures are very much motivated by the conjectural relation-
ship with Galois representations, and we have also tried to outline our expectations
regarding this relationship, while trying not get bogged down in the myriad tech-
nical details that would necessarily attend a more careful discussion of this topic.
Finally, we have tried to indicate how completed cohomology may be related, by
the principle of local-global compatibility, to a still largely conjectural p-adic lo-
cal Langlands correspondence for groups other than GL2(Qp). Our focus is on
drawing inferences about the possible structure of the local correspondence by in-
terpolating from our expectations regarding completed cohomology. In this regard
we mention also the paper [27], which somewhat literally interpolates p-adically
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completed cohomology (via the Taylor–Wiles–Kisin method) in order to construct
a candidate for the p-adic local Langlands correspondence for GLn of an arbitrary
p-adic field.

We close this introduction by simply listing a number of additional important
papers [17, 18, 19, 20] which also have the goal of extending the p-adic local Lang-
lands correspondence, and local-global compatibility, beyond the case of GL2(Qp).
Unfortunately, lack of space prevents us from saying more about them here.

1.1. Notation. Throughout, we fix a prime p. We also fix a finite extension
L of Qp, contained inside some given algebraic closure Qp. We let O denote the
ring of integers of L, and let $ denote a uniformizer of O. The ring O, and field L,
will serve as our coefficients.

As usual, A denotes the ring of adèles over Q, Af denotes the ring of finite
adèles, and Ap

f denotes the ring of prime-to-p finite adéles. For a given algebraic
group G over Q, we will consistently write G∞ := G(R), and G := G(Qp). Addi-
tional notation will be introduced as necessary.

1.2. Acknowledgements. The ideas expressed here owe much to the many
discussions with my colleagues and collaborators that I’ve enjoyed over the years,
and I would like to thank them, especially Ana Caraiani, Pierre Colmez, David
Geraghty, Michael Harris, David Helm, Florian Herzig, Mark Kisin, David Savitt,
and Sug Woo Shin. I am particularly indebted to Christophe Breuil, whose ideas
regarding the p-adic Langlands program have been so influential and inspiring.
Special thanks are owed to Frank Calegari, Toby Gee, and Vytas Paškūnas; many
of the ideas described here were worked out in collaboration with them.

I am also grateful to Frank Calegari, Tianqi Fan, Toby Gee, Michael Harris,
Daniel Le, David Savitt, and the Imperial College Study Group (Rebecca Bellovin,
Kevin Buzzard, Toby Gee, David Helm, Judith Ludwig, James Newton, and Jack
Shotton) for their careful reading of various preliminary versions of this note.

2. Completed cohomology

Ideally, in the p-adic Langlands program, we would like to define spaces of p-adic
automorphic forms, to serve as p-adic analogues of spaces of classical automorphic
forms in the usual Langlands program. Unfortunately, for general reductive groups,
no such definition is currently available. For groups that are compact at infinity,
we can make such a definition (see (2.2.4) below), while for groups giving rise
to Shimura varieties, we can use algebro-geometric methods to define spaces of
p-adic automorphic forms, which however seem less representation-theoretic in
nature than classical automorphic forms. Since one of our main goals is to employ
representation-theoretic methods, we are thus led to find an alternative approach.

The approach we take here is to work with p-adically completed cohomology.
This has the advantages of being definable for arbitrary groups, and of being
of a representation-theoretic nature. For our purposes, it will thus serve as a
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suitable surrogate for a space of p-adic automorphic forms. For groups that are
compact at infinity, it does recover the usual notion of p-adic automorphic forms
that was already mentioned. (Its relationship to algebro-geometric notions of p-
adic automorphic forms in the Shimura variety context is less clear; P. Scholze’s
paper [53] makes fundamental progress in this — and many other! — directions,
but we won’t attempt to discuss this here.) We therefore begin our discussion
of global p-adic Langlands by recalling the basic definitions and facts related to
completed cohomology, referring to [24] and [31] for more details.

2.1. Definitions and basic properties. Let us suppose that G is a
reductive linear algebraic group over Q. We write G∞ := G(R) for the group of
real-valued points of R; this is a reductive Lie group. We let A∞ denote the R-
points of the maximal Q-split torus in the centre of G, and let K∞ denote a choice
of maximal compact subgroup of G∞. For any Lie group H, we let H◦ denote the
subgroup consisting of the connected component of the identity.

The quotient G∞/A◦∞K◦
∞ is a symmetric space on which G∞ acts. We denote

its dimension by d. We also write l0 := rank of G∞ − rank of A∞K∞, and
q0 := (d − l0)/2. If G∞ is semisimple (so that in particular A∞ is trivial) then
these quantities coincide with the quantities denoted by the same symbols in [10]
(which is why we notate them as we do). We note that q0 is in fact an integer.
(For the role played by these two quantities in our discussion, see (2.1.6), as well
as Conjectures 3.1 and 3.2, below.)

If Kf ⊂ G(Af ) is a compact open subgroup, then we write

Y (Kf ) := G(Q)\G(A)/A◦∞K◦
∞Kf .

The double quotient Y (Kf ) is a finite union of quotients of the symmetric space
G◦∞/A◦∞K◦

∞ by cofinite volume discrete subgroups of G∞.

2.1.1. Definitions. We fix a tame level, i.e. a compact open subgroup Kp
f ⊂

G(Ap
f ). If Kp ⊂ G := G(Qp) is a compact open subgroup, then of course KpK

p
f is

a compact open subgroup of G(Af ), and so we may form the space Y (KpK
p
f ). We

define the completed (co)homology at the tame level Kp
f as follows [24]:

H̃i := lim←−
s

lim−→
Kp

Hi
(
Y (KpK

p
f ),O/$s

)
and H̃i := lim←−

Kp

Hi

(
Y (KpK

p
f ),O

)
, (1)

where in both limits Kp ranges over all compact open subgroups of G(Qp).
We equip each of H̃i and H̃i with its evident inverse limit topology. In the

case of H̃i, each of the O/$s-modules lim−→Kp
Hi

(
Y (KpK

p
f ),O/$s

)
appearing in

the projective limit is equipped with its discrete topology, and the projective limit
topology on H̃i coincides with its $-adic topology; H̃i is complete with respect
to this topology. In the case of H̃i, each of the terms Hi

(
Y (KpK

p
f ),O

)
(which is

a finitely generated O-module) appearing in the projective limit is equipped with
its $-adic topology. The topology on H̃i is then a pro-finite topology, and so in
particular H̃i is compact.
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The completed cohomology and homology are related to one another in the
usual way by duality over O [24]. In particular, if we ignore O-torsion, then H̃i

is the O-dual of H̃i (equipped with its weak topology), and H̃i is the continuous
O-dual of H̃i.

We can also form the limit

Hi := lim−→
Kp

lim←−
s

Hi
(
Y (KpK

p
f ),O/$s

) ∼= lim−→
Kp

Hi
(
Y (KpK

p
f ),O

)
. (2)

There is a natural morphism
Hi → H̃i, (3)

which induces an embedding
Ĥi ↪→ H̃i, (4)

whose source is the $-adic completion of Hi. Note that the morphism (3) need
not be injective: although each of the terms Hi

(
Y (KpK

p
f ),O

)
in the direct limit

defining Hi is a finitely generated O-module, the limit Hi is merely countably
generated as an O-module, and hence may contain divisible elements. These then
become zero after we pass to the $-adic completion to obtain the embedding (4).
(We give an example of this in (2.2.3) below.)

We furthermore remark that the transition maps in the direct limits (1) and (2)
need not be injective. (This is also illustrated by the example of (2.2.3).) However,
if K ′

p ⊂ Kp, then a trace argument shows that the restriction map

Hi
(
Y (KpK

p
f ),O)→ Hi

(
Y (K ′

pK
p
f ),O)

becomes injective after tensoring with L. Thus the kernel of the natural map
Hi

(
Y (KpK

p
f ),O)→ Hi consists of torsion classes.

On the other hand, the kernel of the natural map

Hi
(
Y (KpK

p
f ),O)→ H̃i (5)

need not consist only of torsion classes; it is possible for non-torsion classes to have
infinitely divisible image in Hi, and hence have vanishing image in Ĥi (and so also
have vanishing image in H̃i). (Again, we refer to (2.2.3) for an example of this.).

The morphism (4), although injective, need not be surjective. Its cokernel is
naturally identified with TpH

i+1 := lim←−s
Hi+1[$s]; in other words we have a short

exact sequence
0→ Ĥi → H̃i → TpH

i+1 → 0. (6)

(Here we have written Hi+1[$s] to denote the submodule of $s-torsion elements
in Hi+1, and the projective limit is taken with respect to the multiplication-by-$
map from Hi+1[$s+1] to Hi+1[$s]. The notation “Tp” is for Tate module.) In
particular, if all the cohomology modules Hi+1

(
Y (KpK

p
f ),O

)
are torsion free, so

that Hi+1 is torsion free, then the morphism (4) is an isomorphism.
Although the restriction maps (5) can have non-trivial kernels, one can recover

the cohomology at the various finite levels KpK
p
f via the Hochschild–Serre spectral
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sequence discussed in (2.1.3) below. The precise manner in which the cohomology
at finite levels gets encoded in the completed cohomology is somewhat complicated
in general. For instance, infinitely divisible torsion elements in Hi give rise to
elements of TpH

i, which by the discussion of the previous paragraph is naturally
a quotient of H̃i−1. However, infinitely divisible non-torsion elements of Hi have
no obvious incarnation as elements of completed cohomology, and the manner in
which they are recovered by the Hochschild–Serre spectral sequence can be subtle.

2.1.2. Group actions. There is a natural continuous action of G := G(Qp) on
each of H̃i and H̃i, whose key property is encapsulated in the following result.

Theorem 2.1. [24, 31] The G-action on H̃i makes it a $-adically admissible
representation of G; i.e. it is $-adically complete as an O-module, and each quo-
tient H̃i/$s (which is a smooth representation of G over O/$s) is admissible
in the usual sense (for each compact open subgroup Kp ⊂ G, the submodule of
Kp-invariants is finitely generated over O).

If Kp ⊂ G is compact open, then we write O[[Kp]] := lim←−K′
p

O[Kp/K ′
p], where

the projective limit is taken over all open normal subgroups K ′
p ⊂ Kp. Since G

acts continuously on H̃i and H̃i, it follows that for any such Kp, the Kp-action on
each of these modules may be promoted to an action of O[[Kp]]. One then has the
following reformulation of the admissibility of the G-action on H̃i.

Theorem 2.2. Each of the O[[Kp]]-modules H̃i is finitely generated.

(We remark that if this finite generation statement holds for one choice of Kp

then it holds for any such choice.)

2.1.3. Cohomology of local systems and the Hochschild–Serre spectral
sequence. If W is a finitely generated O-module equipped with a continuous
representation of an open subgroup Kp ⊂ G, and Kp is sufficiently small, so
that G(Q) acts with trivial stabilizers on G(A)/A◦∞K◦

∞KpK
p
f , then, for each open

subgroup K ′
p ⊂ Kp, the representation W determines a local system W of O-

modules on Y (KpK
p
f ), defined via W := G(Q)\

((
G(Af )/A◦∞K◦

∞Kp
f

)
×W

)
/K ′

p.

Suppose that W is furthermore torsion-free as an O-module, and let W∨ denote the
O-dual of W , endowed with the contragredient Kp-action. There is then [24, 31]
a Hochschild–Serre spectral sequence

Ei,j
2 = Exti

O[[Kp]](W
∨, H̃j) =⇒ Hi+j

(
Y (KpK

p
f ),W

)
.

This gives a precise sense to the idea that p-adically completed cohomology cap-
tures all the cohomology (with arbitrary coefficients) at finite levels. It is the
realization, in the context of completed cohomology, of the general philosophy
(brought out especially in Hida’s work, e.g. [44]) that when working with p-adic
automorphic forms, by passing to infinite p-power level one automatically encom-
passes automorphic forms of all possible weights. (For the precise relationship with
classical automorphic forms, see (2.1.6) below.)
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In particular, if we take W = O (with the trivial Kp-action), we obtain a
spectral sequence Ei,j

2 = Hi
(
Kp, H̃

j
)

=⇒ Hi+j
(
Y (KpK

p
f ),O

)
(where Hi denotes

continuous cohomology), which recovers the cohomology at the finite level KpK
p
f

from the completed cohomology. If we take a direct limit over all Kp, we obtain a
spectral sequence Ei,j

2 = lim−→Kp
Hi

(
Kp, H̃

j
)

=⇒ Hi+j , which recovers the limits

Hi+j of the cohomology at finite levels. The edge map Hi → lim−→Kp
(H̃i)Kp is

induced by the morphism (3). As already noted, the relationship between this
spectral sequence, the morphism (3), and the exact sequence (6) is subtle. (See
the example of (2.2.3) below.)

More generally, if we write Hi(W) := lim−→K′
p

Hi
(
Y (K ′

pK
p
f ),W

)
(where K ′

p runs

over all open subgroups of the fixed Kp, of which W is a representation), then we
have an edge map Hi(W)→ lim−→K′

p

HomK′
p
(W∨, H̃i

)
which relates the cohomology

at finite levels with coefficients inW to the W∨-isotypic parts (for open subgroups
K ′

p of Kp) of H̃i.

2.1.4. Hecke actions. There is a finite set of primes Σ0 (containing p) such that
for ` 6∈ Σ0, we may factor Kp

f = Kp,`
f K` where Kp,`

f is compact open in G(Ap,`
f ),

and K` is a hyperspecial maximal compact subgroup of G(Q`). (In particular, G is
unramified at such a prime `, so that it admits a hyperspecial maximal compact
subgroup.) We may then consider the spherical Hecke algebra (i.e. the double
coset algebra) H` := H

(
G(Q`)//K`,O

)
with coefficients in O. This algebra is

commutative [41, 42], and acts naturally (by continuous operators) on any of the
cohomology groups Hi

(
Y (KpK

p
f ),W) considered in (2.1.3).

If we let i range over all cohomological degrees, let Kp range over all compact
open subgroups of G, and let W range over all representations of Kp on finitely
generated torsion O-modules, then

∏
i

∏
Kp

∏
W EndHi

(
Y (KpK

p
f ),W) is a profi-

nite ring. We fix a set of primes Σ containing Σ0, and we define the global Hecke
algebra TΣ to be the closure in this profinite ring of the O-subalgebra generated by
the image of H` for all ` 6∈ Σ. (The reasons for allowing the possibility of Σ being
larger than Σ0 are essentially technical; it is not misleading to simply imagine that
Σ is equal to Σ0 and is fixed once and for all, e.g. by being taken to be as small
as possible, given our fixed choice of tame level Kp

f .) By construction, TΣ acts
on each of the cohomology groups Hi

(
Y (KpK

p
f ),W) considered in (2.1.3) (this is

obvious if W is torsion, and follows in general by writing W as a projective limit
W ∼= lim←−s

W/$s), and also on H̃i and H̃i. (In the case of H̃i this follows from its
definition in terms of limits of cohomology groups Hi

(
Y (KpK

p
f ),O/$s

)
. It then

follows for H̃i by duality; more precisely, we can write H̃i as the projective limit
over s and Kp of Hi

(
Y (KpK

p
f ),O/$s

)
, and this latter module is the O/$s-dual

of Hi
(
Y (KpK

p
f ),O/$s

)
.)

These Hecke actions on H̃i and H̃i commute with the action of G. Thus
there is an action of Hecke on the E2-terms, as well the E∞-terms, of the various
Hochschild–Serre spectral sequences considered in (2.1.3), and these are in fact
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spectral sequences of TΣ-modules.
The O-algebra TΣ is a complete semi-local ring, i.e. it is a product of finitely

many factors Tm, each of which is a complete local ring. (This finiteness statement
is proved via the methods of [3].) The topology on TΣ is the product of the m-adic
topologies on each of the complete local rings Tm.

2.1.5. Variants in the non-compact case, and Poincaré duality. There
are some variants of completed (co)homology which are useful in the case when
the quotients Y (Kf ) are non-compact. (We recall that the quotients Y (Kf ) are
compact precisely when the semisimple part of the group G is anisotropic, i.e.
contains no torus that is split over Q.)

Namely, replacing cohomology by cohomology with compact supports, we can
define G-representations H̃i

c, Hi
c, Ĥi

c, and TpH
i
c, and we have Hochschild–Serre

spectral sequences for compactly supported cohomology. Similarly, we can define
completed Borel–Moore homology H̃BM

i , which is related to H̃i
c by duality over O.

There is a more subtle duality over O[[Kp]] (for a compact open subgroup
Kp ⊂ G) which relates the usual and compactly supported variants of completed
cohomology. It is most easily expressed on the homology side, where it takes the
form of the Poincaré duality spectral sequence

Ei,j
2 := Exti

O[[Kp]](H̃j ,O[[Kp]]) =⇒ H̃BM
d−(i+j). (7)

Of course, when the quotients Y (Kf ) are compact, compactly supported and
usual cohomology coincide, as do usual and Borel–Moore homology. In general,
we can relate them by considering the Borel–Serre compactifications Y (Kf ). If we
let ∂(Kf ) denote the boundary of Y (Kf ), then we may compute the compactly
supported cohomology of Y (Kf ) as the relative cohomology

Hi
c

(
Y (Kf ),O/$s

)
= Hi

(
Y (Kf ), ∂(Kf );O/$s

)
(and similarly we may compute Borel–Moore homology as relative homology),
and so we obtain the long exact sequence of the pair relating the cohomology of
Y (Kf ), the compactly supported cohomology of Y (Kf ), and the cohomology of
∂(Kf ). Passing to the various limits, we obtain a long exact sequence

· · · → H̃i
c → H̃i → H̃i(∂) := lim←−

s

lim−→
Kp

Hi
(
∂(KpK

p
f ),O/$s

)
→ H̃i+1

c → · · · .

The completed cohomology of the boundary H̃i(∂) can be computed in terms of
completed cohomology of the various Levi subgroups of G; see [24] for more details.

We also mention that there is a TΣ-action on each of the objects introduced
here, and that the various spectral sequences and long exact sequences considered
here are all compatible with these actions.

2.1.6. The relationship to automorphic forms. We fix an isomorphism ı :
Qp
∼= C. Since L ⊂ Qp, we obtain induced embeddings O ⊂ L ↪→ C.
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Suppose that V is an algebraic representation of G defined over L, and suppose
further that W is a Kp-invariant O-lattice in V, for some compact open subgroup
Kp of G := G(Qp) ⊂ G(L). Write VC := C⊗L V = C⊗O W (the tensor products
being taken with respect to the embeddings induced by ı). If, for any compact
open subgroup K ′

p of Kp, we let VC denote the local system of C-vector spaces on
Y (K ′

pK
p
f ) associated to VC, then we obtain a natural isomorphism

C⊗O Hi(W) ∼= lim−→
K′

p

Hi
(
Y (K ′

pK
p
f ),VC

)
=: Hi(VC).

We may compute this cohomology using the space of automorphic forms on G [39].
Precisely, write A(Kf ) for the space of automorphic forms on G(Q)\G(A)/Kf ,

for any compact open subgroup Kf ⊂ G(Af ), and write A(Kp
f ) = lim−→Kp

A(KpK
p
f ),

where the direct limit is taken (as usual) over the compact open subgroups Kp ⊂
G := G(Qp). For simplicity, suppose that A◦∞ acts on VC through some character
χ (this will certainly hold if V is absolutely irreducible), and let A(Kp

f )χ−1 denote
the subspace of A(Kp

f ) on which A◦∞ acts through the character χ−1. Let G̃∞
denote the group of real points of the intersection of the kernels of all the rational
characters of G, and let g̃ and k denote the Lie algebras of G̃∞ and K∞ respectively.
Then it is proved by J. Franke in [39] that there is a natural isomorphism

Hi(VC) ∼= Hi
(
g̃, k;A(Kp

f )χ−1 ⊗ VC
)
. (8)

(In the case when the the quotients Y (Kf ) are compact, this result is known as
Matsushima’s formula [49]. In the case when G = GL2 and i = 1, it is known
as the Eichler–Shimura isomorphism [54].) The action of TΣ on Hi(W) induces
an action of TΣ on Hi(VC), and the resulting systems of Hecke eigenvalues that
appear in Hi(VC) (which we may think of as being simultaneously C-valued and
Qp-valued, by employing the isomorphism ı) are automorphic, i.e. arise as systems
of Hecke eigenvalues on the space of automorphic forms A(Kp

f ).
Thus, to first approximation, we may regard the Hecke algebra TΣ (or, more

precisely, the Qp-valued points of its Spec) as being obtained by $-adically interpo-
lating the automorphic systems of Hecke eigenvalues that occur in Hi. However, as
we already noted, the map from Hi to Ĥi can have a non-trivial kernel. More signif-
icantly (given that the Hochschild–Serre spectral sequence shows that, despite this
possibility, the systems of Hecke eigenvalues appearing in Hi can be recovered from
the completed cohomology), the inclusion Ĥi ↪→ H̃i can have a non-trivial cokernel
TpH

i+1, which arises from infinitely divisible torsion in Hi+1. Thus Spec TΣ sees
not only the systems of eigenvalues arising from classical automorphic forms (and
their $-adic interpolations), but also systems of Hecke eigenvalues arising from
torsion cohomology classes (and their $-adic interpolations). We will discuss this
point further in (3.1.3) below.

It will be helpful to say a little more about how one can use (8) to analyze
cohomology. To this end, we decompose the space of automorphic forms A(Kp

f )χ−1

as the direct sum

A(Kp
f )χ−1 = Acusp(Kp

f )χ−1 ⊕AEis(K
p
f )χ−1 (9)
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of the cuspforms and the forms which are orthogonal to the cuspforms (in A(Kp
f )χ)

under the Petersson inner product (i.e. the L2 inner product of functions on
G(Q)\G(A)/A◦∞Kp

f )). We label this complement to the space of cuspforms with
the subscript Eis for Eisenstein, although its precise relationship with the space of
Eisenstein series can be complicated; see e.g. [47], [39], and [40]. Note that if the
quotients Y (Kf ) are compact, then A(Kp

f )χ−1 = Acusp(Kp
f )χ−1 .

The decomposition (9) is a direct sum of G∞ × G-representations, and so the
cohomology Hi

(
g̃, k;Acusp(Kp

f )χ−1 ⊗ VC
)

is a G-invariant direct summand of the
cohomology Hi

(
g̃, k;A(Kp

f )χ−1 ⊗ VC
)
, which via the isomorphism (8) we identify

with a G-invariant direct summand Hi
cusp(VC) of Hi(VC). It is also TΣ-invariant.

We may choose an everywhere positive element of A(Kp
f ) on which G(A) acts

via a character extending χ2, multiplication by which induces an isomorphism be-
tween Acusp(Kp

f )χ−1 and Acusp(Kp
f )χ. The Petersson (i.e. the L2) inner product

between Acusp(Kp
f )χ−1 and Acusp(Kp

f )χ, taken together with this isomorphism,
thus induces a pre-Hilbert space structure on Acusp(Kp

f )χ−1 , with respect to which
the G∞ × G-action is unitary up to a character. In particular, we find that
Acusp(Kp

f )χ−1 is semisimple as a G∞ × G-representation, and so decomposes as
a direct sum Acusp(Kp

f )χ−1 =
⊕

π∞⊗πp
π∞ ⊗ πp ⊗M(π∞ ⊗ πp), where the direct

sum is taken over (a set of isomorphism class representatives of) all the irreducible
admissible representations of G∞ ⊗ G over C on which A◦∞ acts via χ−1 (which
factor as the tensor product π∞ ⊗ πp of an irreducible admissible representation
π∞ of G∞ on which A◦∞ acts via χ−1, and an irreducible admissible smooth repre-
sentation πp of G), and M(π∞⊗πp) := HomG∞×G

(
π∞⊗πp,Acusp(Kp

f )χ−1

)
is the

(finite-dimensional) multiplicity space of π∞ ⊗ πp in Acusp(Kp
f )χ−1 . Consequently,

we obtain a direct sum decomposition

Hi
cusp(VC) ∼= Hi

(
g̃, k;Acusp(Kp

f )χ−1 ⊗ VC
)

∼=
⊕

π∞⊗πp

Hi(g̃, k;π∞ ⊗ VC)⊗ πp ⊗M(π∞ ⊗ πp) (10)

(the point here being that the (g̃, k)-cohomology depends only on the structure of
π∞ ⊗ πp as a G∞-representation, which is to say, only on π∞).

In this way, we can speak of the contribution of each of the irreducible sum-
mands π∞ ⊗ πp of Acusp(Kp

f )χ−1 to the cohomology Hi
cusp(VC). In the case when

Hi(g̃, k;π∞⊗VC) is non-zero, so that π∞⊗πp actually does contribute to cohomol-
ogy, the multiplicity space M(π∞ ⊗ πp) is naturally a TΣ-module, and the direct
sum decomposition (10) is compatible with the actions of G and TΣ (where G-acts
on πp, and TΣ acts on M(π∞ ⊗ πp)).

We can now explain the significance of the quantities l0 and q0 introduced
above. Namely, q0 is the lowest degree in which tempered π∞ can admit non-
trivial (g̃, k)-cohomology. Furthermore, among the tempered representations of
G∞, it is precisely the fundamental tempered representations (i.e. those which are
induced from discrete series representations of the Levi subgroup of a fundamental
parabolic subgroup of G∞) which can admit non-zero cohomology at all, and they
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do so precisely in degrees between q0 and q0 + l0 [10, Ch. III, Thm. 5.1]. (This is a
range of degrees of length l0 + 1 symmetric about d/2 — which is one-half of the
dimension of the quotients Y (Kf ).) A fundamental theorem of Harish-Chandra
states that, when G is semisimple, the group G∞ admits discrete series represen-
tations precisely if l0 = 0; in this case q0 is equal to d/2, and the fundamental
tempered representations are precisely the discrete series representations. Key ex-
amples for which l0 = 0 are given by groups G for which G∞ is compact, and (the
semisimple parts of) groups giving rise to Shimura varieties.

One representation of G∞ × G that always appears in A(Kp
f ) is the trivial

representation 1. Thus there are induced morphisms

Hi(g̃, k;1)→ Hi
(
g̃, k;A(Kp

f )1
) ∼= C⊗O Hi, (11)

whose sources are naturally identified with the cohomology spaces of the compact
dual to the symmetric space G◦∞/A◦∞K◦

∞. If the Y (Kf ) are not compact, then 1 lies
in AEis(K

p
f )1, but it is typically not a direct summand, and so the morphisms (11)

are typically not injective. Nevertheless, when i is small they will be injective,
and indeed (if e.g. G is split, semisimple, and simply connected) an isomorphism,
and these isomorphisms play a key role in the theory of homological stability [9].
We discuss the interaction of these isomorphisms with the theory of completed
cohomology (in the case when G = SLN ) in (2.2.3) below.

2.1.7. Dimension theory. For any compact open subgroup Kp ⊂ G, the com-
pleted group ring O[[Kp]] is (left and right) Noetherian, and of finite injective
dimension as a module over itself; more precisely, its injective dimension is equal
to dim G+1. This allows us to consider a (derived) duality theory for finitely gen-
erated O[[Kp]]-modules: to any such module M we associate the Ext-modules
Ei(M) := Exti

O[[Kp]](M,O[[Kp]]), for i ≥ 0 (which necessarily vanish if i >
dim G + 1); these are again naturally O[[Kp]]-modules. (We use the left O[[Kp]]-
module structure on O[[Kp]] to compute the Ei, and then use the right O[[Kp]]-
module structure on O[[Kp]], converted to a left module structure by the usual
device of applying the anti-involution k 7→ k−1 on Kp, to give the Ei an O[[Kp]]-
module structure.)

An important point is that Ei(M) is canonically independent of the choice of Kp

(in the sense that we may regard M as an O[[K ′
p]]-module, for any open subgroup

K ′
p of Kp, but Ei(M) is canonically independent of which choice of K ′

p we make to
define it). This has the consequence that if the Kp-representation on M extends
to a G-representation, then the Ei(M) are also naturally G-representations.

The Poincaré duality spectral sequence (7) may thus be rewritten as

Ei,j
2 = Ei(H̃j) =⇒ H̃BM

d−(i+j).

All the objects appearing in it are G-representations, and it is G-equivariant.
If Kp is p-torsion free (which will be true provided Kp is sufficiently small) then

the ring O[[Kp]] is in fact Auslander regular [55]. If Kp is furthermore pro-p, then
the ring O[[Kp]] is an integral domain (in the sense that it contains no non-trivial
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left or right zero divisors). This has various implications for the theory of finitely
generated O[[Kp]]-modules. For example, it is reasonable to define such a module
to be torsion if every element has a non-zero annihilator in O[[Kp]] (where Kp is
chosen small enough to be pro-p and p-torsion free). More generally, we may make
the following definition.

Definition 2.3. If M is a finitely generated O[[Kp]]-module, then the codimension
cd(M) of M is defined to be the least value of i for which Ei(M) 6= 0; the dimension
dim M of M is defined to be dim G + 1− cd(M).

If G is a torus, so that Kp is commutative, then dim M is precisely the dimen-
sion of the support of the localization of M over SpecO[[Kp]]. In general O[[Kp]]
is non-commutative, and hence doesn’t have a Spec over which we can localize
a finitely generated module M . Nevertheless, the quantity dim M behaves as if
it were the dimension of the support of M in the (non-existent) Spec of O[[Kp]].
(See e.g. [55, Prop. 3.5].) As one example, we note that M is torsion (in the sense
defined above) if and only if cd(M) ≥ 1. As another, we note that cdEi(M) ≥ i,
with equality when i = cdM . Also, we note that cdM = ∞ (so, morally, the
support of M is empty) precisely when M = 0.

By Theorem 2.2, completed homology is finitely generated over O[[Kp]], and so
these dimension-theoretic notions apply to it. Information about the (co)dimension
of H̃i can be obtained by analyzing the Poincaré duality spectral sequence, since the
functors Ei appear explicitly in it, and there is a tension in this spectral sequence
between the top degree for the duality of O[[Kp]]-modules (which is dim G + 1)
and the top degree for usual Poincaré duality (which is d), which can sometimes be
exploited. (See e.g. (2.2.2) below.) In making any such analysis, it helps to have
some a priori information about the (co)dimensions of the H̃i. This is provided
by the following result.

Theorem 2.4. [23] Suppose that G is semisimple. Then H̃i is torsion (i.e. its
codimension is positive) unless l0 = 0 and i = q0, in which case cd H̃i = 0.

We make a much more precise conjecture about the codimensions of the H̃i in
Conjecture 3.2 below.

2.2. Examples. We illustrate the preceding discussion with some examples.

2.2.1. GL2 of Q. If G = GL2, then the quotients Y (Kf ) are classical modular
curves. In particular, they have non-vanishing cohomology only in degrees 0 and 1,
and so we consider completed cohomology in degrees 0 and 1. Since the cohomology
of a curve is torsion free, we have H̃0 = Ĥ0 ∼= C

(
∆×Z×p ,O

)
, the space of continuous

O-valued functions on the product ∆×Z×p , where ∆ is a finite group that depends
on the choice of tame level, and so H̃0 (which is simply the O-dual of Ĥ0) is
isomorphic to O[[∆ × Z×p ]], which is of dimension two as a module over O[[Kp]]
(for any compact open Kp ⊂ GL2(Qp)). We also have H̃1 = Ĥ1. Again, H̃1 is the
O-dual of H̃1, and Theorem 2.4 shows that cd H̃1 = 0. (Strictly speaking, we have



12 Matthew Emerton

to apply the theorem to SL2 rather than GL2, but it is then easy to deduce the
corresponding result for GL2, by considering the cup-product action of H0 on H1.)

2.2.2. SL2 of an imaginary quadratic field. Suppose that G = ResF/Q SL2,
where F is an imaginary quadratic extension of Q. The quotients Y (Kf ) are then
connected, non-compact three-manifolds. The relevant (co)homological degrees
are thus i = 0, 1, and 2. Since the Y (Kf ) are connected we see that H̃0 = H̃0 = O.
Theorem 2.4 implies that H̃1 has positive codimension. A consideration of the
Poincaré duality spectral sequence then shows that H̃2 = 0, and that H̃1 is of
codimension 1. This computation exploits both the fact that H̃0 6= 0, and the gap
between 3 (the dimension of the Y (Kf )) and 6 (the dimension of G).

Since H1 with coefficients in O of any space is $-torsion free, we see that H̃1 is
$ torsion-free, and coincides with the O-dual of H̃1, while H̃2 is $-torsion, and is
naturally identified with the Pontrjagin dual of the O-torsion submodule of H̃1 [24,
Thm. 1.1]. We conjecture that in fact H̃1 is $-torsion free (see Conjecture 3.2),
and thus that H̃2 = 0.

2.2.3. SLN of Q in low degrees. We first discuss H̃0 and H̃1, before turning
to a discussion of higher degree cohomology from the point of view of homological
stability.

The quotients Y (Kf ) are connected, and so H̃0 = O. If N ≥ 3, then SLN

satisfies the congruence subgroup property. Furthermore, the groups SLN (Z`)
are perfect for all values of `. Combining these two facts, we see that if Γ(pr)
denotes the usual congruence subgroup of level pr (i.e. the kernel of the surjection
SLN (Z)→ SLN (Z/pr)), then H1

(
Γ(pr),O) = O⊗Zp Γ(pr)ab ∼= O⊗Zp Γ(pr)/Γ(p2r).

Thus, if we take the tame level to be trivial (i.e. “level one”), then we see that the
transition maps in the projective system defining H̃1 are eventually zero, implying
that H̃1 = 0. Similarly, we see that H1 = H̃1 = 0. (If we allowed a more general
tame level, then H̃1 could be non-zero, but would be finite. Since H1 and H̃1 are
always torsion free, they would continue to vanish.)

We now consider cohomology in higher degree, but in the stable range, in the
sense that we now explain. (The tame level can now be taken to be arbitrary.)
Borel’s result [9] on homological stability for SLN shows that when i is sufficiently
small (compared to N), the cohomology L ⊗O Hi is independent of N ; indeed,
it consists precisely of the contributions to cohomology arising from the trivial
automorphic representation, in the sense discussed in (2.1.6). If we define Hi

stab

to be the stable value of Hi, then Borel shows that
⊕

Hi
stab (as an algebra under

cup product) is isomorphic to an exterior algebra generated by a single element in
each degree i = 0, 5, 9, 13, . . . .

In fact, stability also holds for completed cohomology.

Theorem 2.5. [25] If i is sufficiently small compared to N , then H̃i is independent
of N , is finitely generated as an O-module, and affords the trivial representation
of G.

We write H̃i
stab to denote the stable value of H̃i. F. Calegari has succeeded
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in computing H̃i
stab modulo torsion, contingent on a natural non-vanishing conjec-

ture for certain special values of the p-adic ζ-function (a conjecture which holds
automatically if p is a regular prime).

Theorem 2.6. [22, Thm. 2.3] Suppose either that p is a regular prime, or that
appropriate special values of the p-adic zeta function are non-zero. Then there
is an isomorphism of graded vector spaces

⊕
i≥0 L ⊗O H̃i

stab
∼= L[x2, x6, x10, . . .]

(where L[x2, x6, x10, . . .] denotes the graded ring generated by the indicated sequence
of polynomial variables xi, i ≡ 2 mod 4, with xi placed in degree i).

Note in particular that
⊕

i L ⊗O H̃i
stab vanishes in all odd degrees, while⊕

i L ⊗O Hi
stab is generated by classes in odd degrees. Thus, when G = SLN ,

the map (3) is identically zero (modulo torsion) when i lies in the stable range!
Assuming the hypothesis of the theorem, we conclude that the Borel classes

(i.e. the non-zero elements of L ⊗O Hi
stab) become infinitely divisible when we

pull them back up the p-power level tower. It is interesting to consider how they
reappear in the Hochschild–Serre spectral sequence. If we again ignore torsion,
then Hi

(
SLN (Zp), L

)
coincides with the Lie algebra cohomology of slN [48], which

is (stably in N) an exterior algebra on generators in degrees 3, 5, 7, . . . . Since
all of the non-zero H̃i

stab have trivial G-action, we see that we obtain non-trivial
Ext terms in odd degrees in the Hochschild–Serre spectral sequence, and the Borel
classes are recovered from these.

If we consider the short exact sequence (6) for non-zero even degrees, we see
(continuing to assume the hypothesis of the theorem) that Ĥi vanishes (modulo
torsion), while H̃i is non-zero. Thus the term TpH

i+1 must be non-zero; this
provides a rather compelling illustration of the manner in which torsion classes
can accumulate as we pass to the limit of the p-power level tower.

2.2.4. Groups that are compact at infinity. If G∞ (or, more generally, the
quotient G∞/A∞) is compact, then A◦∞K◦

∞ equals G◦∞, and so the quotients
Y (Kf ) are simply finite sets. Thus the only interesting degree of cohomology
is i = 0. In this case the inverse limit Y (Kp

f ) := lim←−Kp
Y (KpK

p
f ) is a pro-finite

set, which is in fact a compact p-adic analytic manifold, equipped with an analytic
action of G. If Kp is taken sufficiently small (small enough that the G(Q)-action
on G(A)/G◦∞KpK

p
f is fixed-point free), then Kp acts with trivial stabilizers on

Y (KpK
p
f ), and Y (KpK

p
f ) is the disjoint union of finitely many (say n) principal

homogeneous spaces over Kp.
One immediately verifies that H̃0 ∼= C

(
Y (Kp

f ),O
)
, the space of continuous

O-valued functions on Y (Kp
f ), while H̃0

∼= O[[Y (Kp
f )]], the space of O-valued

measures on Y (Kp
f ) (which is the O-dual of C

(
Y (Kp

f ),O
)
). In particular, if Kp is

sufficiently small, then we see that H̃0 is free of rank n over O[[Kp]].
It is natural (e.g. in light of Gross’s definition of algebraic modular forms in this

context [42]) to define C
(
Y (Kp

f ),O
)

to be the space of p-adic automorphic forms
on G(A) of tame level Kp

f , and so in this case we see that completed cohomology
does indeed coincide with the natural notion of p-adic automorphic forms.
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3. p-adic Langlands

We describe the manner in which we expect completed cohomology, and the Hecke
algebra acting on it, to be related to deformation rings of global Galois represen-
tations. This conjectural relationship suggests various further conjectures, as we
explain, as well as a relationship to a hypothetical p-adic local Langlands corre-
spondence.

3.1. The connection between completed cohomology and Ga-
lois representations. If π is an automorphic representation of G(A) for
which Hi(g̃, k;π∞ ⊗ VC) 6= 0 for some algebraic representation V of G and some
degree i, then π is C-algebraic [21, Lemma 7.2.2]. Thus, we expect that associated
to π there should be a continuous representation of GQ into the Qp-valued points of
the C-group of G [21, Conj. 5.3.4]. In light of the isomorphism (8), we thus expect
that the systems of Hecke eigenvalues that occur in Hi(V) should have associated
representations of GQ into the C-group of G. For systems of Hecke eigenvalues
occurring on torsion classes in cohomology, conjectures of Ash [2] again suggest
that there should be associated Galois representations.

These expectations have been proved correct in many cases; for example if G is
the restriction of scalars to Q of GLn over a totally real or a CM number field. (See
[45] in the case of characteristic zero systems of eigenvalues, and [53] in the case
of torsion systems of eigenvalues. See also [43] for an overview of these results.)

Returning for a moment to the general case, one further expects that the Galois
representations obtained should be odd, in the sense that complex conjugation in
GQ maps to a certain prescribed conjugacy class in the C-group of G. (See [7,
Prop. 6.1] for a description of the analogous conjugacy class in the L-group of G.)

Let m denote a maximal ideal in TΣ, write F := TΣ/m, and let F denote a chosen
algebraic closure of F. Then, by the above discussion, we believe that associated
to m there should be a continuous representation of GQ into the F-valued points
of the C-group of G. Assuming that this representation exists, we will denote it
by ρm.

To be a little more precise: the representation ρm should have the property that
it is unramified at the primes outside Σ, and that for any ` 6∈ Σ, the semisimple
part of ρm(Frob`) should be associated to the local-at-` part of the system of
Hecke eigenvalues by a suitable form of the Satake isomorphism (see [21] and [42]).
In general, this condition may not serve to determine ρm uniquely; even in the
case G = GLn, it determines ρm only up to semisimplification; for other choices
of G, in addition to this issue, one can have the additional phenomenon that even
a representation which doesn’t factor through any parabolic subgroup of the C-
group is not determined by its pointwise conjugacy classes (“local conjugacy does
not determine global conjugacy”). We do not attempt to deal with this issue in
general here; rather we simply ignore it, and continue our discussion as if ρm were
unambiguously defined.

As we observed above, we may regard Tm (or its Spec) as interpolating systems
of Hecke eigenvalues associated to classical C-algebraic automorphic forms, and/or
to torsion classes in cohomology. Since the deformations of ρm can be interpolated
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into a formal deformation space, it is then reasonable to imagine that we may
deform ρm to a representation of GQ into the Tm-valued points of the C-group
of G. Here again there are many caveats: firstly, if ρm is “reducible” (i.e. factors
through a proper parabolic of the C-group), then we would have to work with some
form of pseudo-character or determinant, as in [28] and [53]; also, there is a question
of rationality, or “Schur index” — it may be that if we want our deformation of
ρm to be defined over F, then we may have to extend our scalars, or else replace
the C-group by an inner twist. Again, we don’t attempt to address these issues
here.

Rather, we begin with some general conjectures about dimension and vanishing
that are motivated by the preceding discussion, and then continue by discussing
the relationships between completed cohomology and p-adic Hodge theory and a
possible p-adic local Langlands correspondence. Finally, we turn to a discussion of
some specific examples, where we can make our generalities more precise.

3.1.1. Conjectures on dimension and vanishing. We begin by making a
somewhat vague conjecture, which can be thought of as a rough expression of our
hopes for reciprocity in the context of global p-adic Langlands: namely (continuing
with the notation introduced in the preceding discussion), we conjecture that Tm

is universal (in some suitable sense) for parameterizing odd formal deformations of
ρm whose ramification away from p is compatible with the tame level structure Kp

f

(via some appropriate form of $-adic local Langlands for the group G at primes
` - p which, again, we won’t attempt to formulate here; but see [36] in the case
when G = GLn). The global Euler characteristic formula for Galois cohomology
lets us compute the expected dimension of such a universal deformation ring, and
this motivates in large part the following concrete conjecture [24, §8].

Conjecture 3.1. Each local factor Tm of TΣ is Noetherian, reduced, and $-
torsion free, of Krull dimension equal to dim B + 1 − l0, where dim B denotes the
dimension of a Borel subgroup B of G.

This is known in some cases (which we will recall below). We know of no way to
prove the Noetherianness of Tm, or the statement about its Krull dimension, other
than to relate the Hecke algebra to a deformation ring of Galois representations,
and then use techniques from the theory of Galois representations to compute the
dimension.

In some situations we can prove that Tm is torsion free and reduced (see e.g. the
discussion of (3.1.2) below), and it seems reasonable to conjecture these properties
in general. Indeed, these properties are closely related to the following conjecture
[24, Conj. 1.5].

Conjecture 3.2. H̃i = 0 if i > q0, while cd H̃q0 = l0, and cd H̃i > l0 + q0 − i if
i < q0. Furthermore, H̃q0 is $-torsion free, and TΣ acts faithfully on H̃q0 .

As noted in [24, Thm. 1.6], the truth of this conjecture for G and all its Levi
subgroups implies the analogous statement for H̃BM

i . Also, the vanishing conjecture
for G×G implies (via the Künneth formula) the torsion-freeness of H̃q0 .
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One of the ideas behind this conjecture is that “all the interesting Hecke eigen-
values should appear in degree q0”. This is inspired by the fact (recalled in (2.1.6))
that tempered automorphic representations don’t contribute to cohomology in de-
grees below q0, so that the Galois representations associated to the systems of
Hecke eigenvalues appearing in degrees below q0 should be “reducible” (i.e. fac-
tor through a proper parabolic subgroup of the C-group). In a Galois deformation
space with unrestricted ramification at p, the reducible representations should form
a proper closed subset, and so should be approximable by “irreducible” Galois rep-
resentations (i.e. representations which don’t factor through a proper parabolic).
Thus we don’t expect to see any systems of Hecke eigenvalues in degrees below q0

which can’t already be observed in degree q0, and hence we expect that TΣ will
act faithfully on H̃q0 .

We also expect that H̃i should be “small” if i < q0, since the possible systems
of Hecke eigenvalues which it can carry are (or should be) constrained. However,
if the H̃i are small enough for i < q0, then the Poincaré duality spectral sequence
(combined with an analysis of the completed cohomology of the boundary, which
can be treated inductively, by reducing to the case of lower rank groups) implies
the vanishing of H̃i in degrees > q0.

If we believe that TΣ acts faithfully on H̃q0 , and that TΣ has dimension
dim B + 1 − l0 (as predicted by Conjecture 3.1), then conjecturing that H̃q0 has
codimension l0 is morally equivalent to conjecturing that the fibres of H̃q0 over the
points of Spec TΣ are of dimension dim G/B. This latter statement fits nicely with
the fact that generic irreducible representations of G := G(Qp) have Gelfand–
Kirillov dimension equal to dim G/B, and the analogy between the dimension
of O[[Kp]]-modules and Gelfand–Kirillov dimension [24, Remark 1.19]. Unfor-
tunately, we don’t know how to make this idea precise, since we don’t know how
to prove (in any generality) this relationship between the Krull dimension of TΣ,
the dimension of H̃q0 , and the dimension of the fibres of the latter over points of
Spec TΣ, even assuming that TΣ acts faithfully on H̃q0 . Nevertheless, the idea that
these dimensions should be related is an important motivation for the conjecture.

We note that if TΣ acts faithfully on H̃q0 , and H̃q0 is $-torsion free, then TΣ

is $-torsion free. This motivates the conjecture of $-torsion freeness in Conjec-
ture 3.1.

Conjecture 3.2 has essentially been proved by P. Scholze in many cases for which
the group G gives rise to Shimura varieties [53, Cor. IV.2.3]. (He has non-strict
inequalities rather than strict inequalities for the codimension of the cohomology
in degrees < q0.)

We mention one more example here, namely the case when G is the restriction
of scalars of SL2 from an imaginary quadratic field. In this case we have l0 = 1,
and the codimension statement of Conjecture 3.2 follows from the computation
sketched in (2.2.2).

3.1.2. Localization at a non-Eisenstein system of Hecke eigenvalues.
Suppose that m is a maximal ideal in TΣ, and that the associated representa-
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tion ρm (which we assume exists) is “irreducible”, i.e. does not factor through any
proper parabolic subgroup of the C-group of G. We refer to such a m as non-
Eisenstein. For any TΣ-module M , we write Mm := Tm ⊗TΣ M to denote the
localization of M at m.

As already noted, we expect that all the systems of Hecke eigenvalues appear-
ing in cohomological degrees < i are “reducible”, i.e. do factor through a proper
parabolic subgroup, and so we conjecture that, when m is a non-Eisenstein maxi-
mal ideal, Hi

(
Y (KpK

p
f ),W)m = 0 for all i < q0 and all local systemsW associated

to Kp-representations W on finitely generated O-modules (where Kp is any suffi-
ciently small compact open subgroup of G).

We remark that if we ignore torsion, then this follows (at least morally) from
Arthur’s conjectures [1]. (Namely, the result is true for the boundary cohomology,
and hence it suffices to check it for the interior cohomology, i.e. the image of
compactly supported cohomology in the usual cohomology. However, the interior
cohomology is contained in the L2-cohomology, and now Arthur’s conjectures imply
that any automorphic representation π contributing to L2-cohomology that is non-
tempered at ∞ — as must be the case for an automorphic representation that
contributes to cohomology in degree < q0 — is non-tempered at every prime, and
hence should give rise to a reducible Galois representation.) We believe that this
statement should be true for torsion cohomology as well.

Let us suppose, then, that Hi
(
Y (KpK

p
f ),W)m = 0 for all i < q0. Just con-

sidering the case when W = O (the trivial representation), we find that H̃i
m = 0

for i < q0. Certainly it should be the case that Hi
(
∂(KpK

p
f ),W)m = 0 when m

is non-Eisenstein. We then find that Hi
c

(
Y (KpK

p
f ),W)m = 0 for all i < q0 as

well. Suppose now that l0 = 0, so that q0 = d/2. Classical Poincaré duality then
gives that Hi

(
Y (KpK

p
f ),W)m = 0 for all i > q0. Presuming that Conjecture 3.2

is true, so that H̃i = 0 for i > q0 and H̃q0 is $-torsion free, a consideration of
the Hochschild–Serre spectral sequence shows that Exti

O[[Kp]](W
∨, H̃q0

m ) = 0 for all
i > 0 and all representations of Kp on finitely generated torsion free O-modules.
From this one easily deduces that (H̃q0)m is projective as an O[[Kp]]-module.

In short, we have given a plausibility argument for the following conjecture,
which refines Conjecture 3.2 in the context of localizing at a non-Eisenstein maxi-
mal ideal.

Conjecture 3.3. If m is a non-Eisenstein maximal ideal in TΣ, and if l0 = 0,
then (H̃i)m = 0 for i 6= q0, and (H̃q0)m is a projective O[[Kp]]-module, for any
sufficiently small subgroup Kp of G. (Here sufficiently small means that G(Q) acts
with trivial stabilizers on G(A)/A◦∞K◦

∞KpK
p
f .)

If l0 = 0, and if Conjecture 3.3 holds for some non-Eisenstein maximal ideal m,
then we see (from the Hochschild–Serre spectral sequence) that for any sufficiently
small Kp (as in the statement of the conjecture) and any representation of Kp on
a finitely generated torsion free O-module W , we have Hi

(
Y (KpK

p
f ),W)m = 0 if

i 6= q0, while Hq0
(
Y (KpK

p
f ),W)m

∼= HomO[[Kp]](W∨, H̃q0
m ). In particular, we see

that Hq0
(
Y (KpK

p
f ),W)m is $-torsion free. We also see that Ĥq0

m = H̃q0
m (since
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Hq0+1
m vanishes, and hence so does TpH

q0+1
m ), and that Tm acts faithfully on H̃q0

m .
Presuming that Hi

(
∂(KpK

p
f ),W

)
m

= 0 (which should certainly be true when
m is non-Eisenstein), we conclude that the natural map

Hq0
c

(
Y (KpK

p
f ),W)m → Hq0

(
Y (KpK

p
f ),W)m

is an isomorphism, and thus that Hq0
(
Y (KpK

p
f ),W)m consists entirely of interior

cohomology. In particular (being torsion free) it embeds into the L2-cohomology.
From this we deduce that the image of TΣ acting on Hq0

(
Y (KpK

p
f ),W)m is re-

duced, and hence (considering all possible Kp and W ) that Tm itself is reduced,
as well as being $-torsion free. This provides some evidence for the reducedness
and torsion-freeness statements in Conjecture 3.1.

We now recall some known results in the direction of Conjecture 3.3. In the
case when G = GL2, the concept of a non-Eisenstein maximal ideal is well-defined,
and the above conjecture holds [32, Cor. 5.3.19]. In the case when G = GLN ,
this notion is again well-defined, and the vanishing of (H̃i)m is proved for i in the
stable range in [25]. Again, if G is a form of U(n− 1, 1) over Q, then the notion of
a non-Eisenstein maximal ideal is well-defined, and in [34] we prove vanishing of
(H̃i)m for i in a range of low degrees, for certain maximal ideals m. In particular, in
the case of U(2, 1), we are able to deduce Conjecture 3.3, provided not only that m
is non-Eisenstein, but that the associated Galois representation ρm has sufficiently
large image, and is irreducible locally at p, satisfying a certain regularity condition.

As one more example, note that if G∞/A∞ is compact (in which case certainly
l0 = 0), then Conjecture 3.3 holds. Indeed, in this case we saw in (2.2.4), for
sufficiently small Kp, that H̃0 is free over O[[Kp]], even without localizing at a
non-Eisenstein maximal ideal.

If l0 6= 0, then we don’t expect that (H̃q0)m should be projective over O[[Kp]];
indeed, this would be incompatible with Conjecture 3.2. Rather, we expect that
it should be pure of codimension l0, in the sense of [55, Def. 3.1].

3.1.3. The relationship with p-adic Hodge theory. Let us continue to sup-
pose that l0 = 0 and that m is a non-Eisenstein maximal ideal in TΣ, and let us
suppose that Conjecture 3.3 holds. As we have observed, this implies that for any
(sufficiently small) compact open subgroup Kp of G, and any representation W of
Kp on a finitely generated torsion free O-module, we have

Hi
(
Y (KpK

p
f ),W)m

∼= HomO[[Kp]](W∨, H̃q0
m ) ∼= HomO[[Kp]]

(
(H̃q0)m,W

)
(the first isomorphism being given by the Hochschild–Serre spectral sequence, and
the second by duality).

We now suppose that W is an O-lattice in an irreducible algebraic represen-
tation V of G over L. Since Hi

(
Y (KpK

p
f ),W)m is $-torsion free, it is a lattice

in Hi
(
Y (KpK

p
f ),V)m. Considering the description of this cohomology in terms

of automorphic forms (as in (2.1.6)) and the conjectures regarding Galois repre-
sentations associated to automorphic forms [21, Conj. 5.3.4], we infer that the
Galois representations associated to the systems of Hecke eigenvalues appearing in
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Hi
(
Y (KpK

p
f ),V)m should be potentially semistable locally at p, with Hodge–Tate

weights related to the highest weight of the algebraic representation V .
Since m is non-Eisenstein, it should make sense to speak of the formal defor-

mation ring Rρm
of ρm, and we conjecture that there is a natural isomorphism

Tm
∼= Rρm

. We see that the Tm-modules Hi
(
Y (KpK

p
f ),W)m (where W ranges

over the various lattices in the various algebraic representations V ) should then be
supported on the set of points of Spec Rρm

corresponding to deformations of ρm

that are potentially semistable at p.
The Fontaine–Mazur conjecture [38], when combined with Langlands reci-

procity, should give a precise description of the support of Hi
(
Y (KpK

p
f ),W)m,

in purely Galois-theoretic terms. Namely, any potentially semistable deformation
of ρm of the appropriate Hodge–Tate weights should be motivic, and hence should
be associated to an automorphic form on the quasi-split inner form of G. Whether
this automorphic form can then be transferred to G, and can contribute to coho-
mology at level KpK

p
f , should be answered by an analysis of the local Langlands

correspondence for G.
Conversely, if we can prove directly that the support of Hi

(
Y (KpK

p
f ),W)m is

as predicted by the Fontaine–Mazur–Langlands conjecture, then we can deduce
this conjecture for deformations of ρm that are classified by Spec Tm. We recall
in (3.2.2) below how this strategy is compatible with an optimistic view-point on
how p-adic local Langlands might behave. We briefly recall in (3.3.1) how this
strategy was employed in [32] and [46] in the case when G = GL2.

Let us fix a sufficiently small open subgroup Kp. Since (H̃q0)m is projective over
O[[Kp]] by assumption, it is a direct summand of a finitely generated free O[[Kp]]-
module, and hence H̃q0

m is a direct summand of C(Kp,O)
L

n, for some n > 0. Thus
L ⊗O H̃q0

m is a direct summand of C(Kp, L)⊕n, the space of continuous L-valued
functions on Kp. Now the theory of Mahler expansions shows that the affine ring
L[G] embeds with dense image in C(Kp, L) [51, Lemma A.1]. Recall that, as a
G-representation, we have L[G] ∼=

⊕
V V ⊗L HomG(V,L[G]), where V runs over

(a set of isomorphism class representatives of) all irreducible representations of G.
(At this point, we assume for simplicity that L is chosen so that all the irreducible
representations of G over Qp are in fact defined over L; thus these irreducible V
are in fact absolutely irreducible.) Now the inclusion of L[G] into C(Kp, L) induces
an isomorphism HomG(V,L[G]) ∼= HomKp

(
V, C(Kp, L)

)
(both are naturally iden-

tified with V ∨, the contragredient of V ). We conclude that the natural morphism⊕
V V ⊗L HomKp

(
V, C(Kp, L)

)
→ C(Kp, L) is injective with dense image. This

property is clearly preserved under passing to direct sums and direct summands,
and hence the natural morphism

⊕
V V ⊗LHomKp

(V, H̃q0
m ⊗OL)→ H̃q0

m ⊗OL is also
injective with dense image. Replacing V by V ∨ (which clearly changes nothing,
since we are summing over all irreducible algebraic representations of G), and re-
calling that (by Hochschild–Serre) HomKp(V ∨, H̃q0

m ⊗O L) ∼= Hq0
(
Y (KpK

p
f ),V

)
m

,

we find that Tm acts faithfully on
⊕

V Hq0
(
Y (KpK

p
f ),V

)
m

(since, as we noted
above, it follows from Conjecture 3.3 that Tm acts faithfully on H̃q0

m ).
Assuming that we can identify Tm with a deformation space of Galois repre-
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sentations, and that we know that Hq0
(
Y (KpK

p
f ),V

)
m

is indeed supported on an
appropriate locus of potentially semistable deformations, the preceding analysis
shows that these loci (as V varies) are Zariski dense in Spec Tm.

In forthcoming work [37], the author and V. Paškūnas will apply a more sophis-
ticated version of this argument to deduce additional Zariski density statements
for various collections of potentially semistable loci in global Galois deformation
spaces.

Note that these density results rely crucially on the projectivity statement of
Conjecture 3.3 for their proof. As we already noted, we can’t expect such a state-
ment to be true when l0 > 0, and (at least if G is semisimple, or, more generally, if
the semisimple part of G satisfies l0 > 0) we don’t expect the potentially semistable
points to be Zariski dense in global deformation spaces in this case. (See [26] for
an elaboration on this point.) In particular, in such contexts, we don’t expect that
Ĥq0 will equal H̃q0 , and so H̃q0 , and Spec TΣ, should receive a non-trivial contri-
bution from torsion classes (via the term TpH

q0+1 in the exact sequence (6)).

3.2. p-adic local Langlands. Until now, our discussion has been entirely
global in nature. We now turn to describing how these global considerations might
be related to a possible p-adic local Langlands correspondence.

3.2.1. The basic idea. Let us return for a moment to the direct sum decompo-
sition (10). Local-global compatibility for classical Langlands reciprocity says that
if π∞⊗πp is a direct summand of Acusp(Kp

f )χ−1 which contributes to cohomology,
lying in a Hecke eigenspace that corresponds to some p-adic Galois representa-
tion ρ, then the local factor πp and the Weil–Deligne representation attached to ρ
(which should be defined, since ρ should be potentially semistable at p) should
correspond via the local Langlands correspondence (or perhaps more generally via
the local form of Arthur’s conjectures [1], if π∞ and πp are not tempered). In
particular, the local factor at p and the local Galois representation at p should be
related in a purely local manner.

The basic idea of a p-adic local Langlands correspondence is that the same
should be true when we take into account the structure of completed cohomology.
To explain this, we continue the discussion of the preceding paragraph, and, in
addition, we place ourselves in the context introduced in (3.1.3) (in particular, we
continue to assume that the hypotheses and conclusions of Conjecture 3.3 hold).
Thus, we assume that ρ is a deformation of ρm, and that π∞ and πp are tempered,
so that we have an embedding πp ↪→ Hq0(V)m

∼= lim−→Kp
HomKp(V ∨, L⊗O H̃q0

m ). We

may rewrite this as an embedding V ∨⊗L πp ↪→ L⊗O H̃q0
m and we can then take the

closure of V ∨ ⊗ πp in Hq0(V)m, to obtain a unitary Banach space representation
̂V ∨ ⊗L πp of G over L. A slightly more refined procedure is to form the intersection

(V ∨⊗L πp)◦ := (V ∨⊗L πp)∩ H̃q0
m (the intersection being taken in L⊗O H̃q0

m ). This
is a G-invariant O-lattice contained in V ∨⊗L πp, and the Banach space ̂V ∨ ⊗L πp

is then obtained by completing V ∨ ⊗L πp with respect to this lattice. A natural
question to ask, then, in the spirit of a local Langlands correspondence and local-
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global compatibility, is whether ̂V ∨ ⊗L πp depends only on the restriction to p of
the associated Galois representation ρ. Since by assumption m is non-Eisenstein,
the Galois representation ρ should admit an essentially unique integral model ρ◦,
and we could further ask whether (V ∨ ⊗L πp)◦ depends only on the restriction to
p of ρ◦. This question goes back to C. Breuil’s first work on the p-adic Langlands
correspondence in the case when G = GL2 (see especially the introduction of [13]).
It has been largely resolved in that case, but remains open in general.

3.2.2. An optimistic scenario. The most optimistic conjecture that one might
entertain regarding a p-adic local Langlands correspondence is that for any formal
deformation ring Rr parameterizing the deformations of a representation r of the
local Galois group GQp into the F-valued points of the C-group of G, there is a
profinite Rr-module M , finitely generated over Rr[[Kp]] for some (and hence every)
compact open subgroup Kp ⊂ G, equipped with a continuous G-action extending
its Kp-module structure, which realizes the p-adic local Langlands correspondence
for the group G in the following sense: in the context of (3.2.1) (and continuing
with the notation of that discussion), the fibre over the restriction to p of ρ◦ (which
is a point in Spec Rr, if r is the restriction of ρm to GQp) is isomorphic to the O-dual
of (V ∨ ⊗L πp)◦. (Here we suppress the issue of whether Rr should be understood
to be a framed deformation ring, or a pseudo-deformation ring, or . . . .) In short,
M should be a local analogue of the completed homology space (H̃q0)m.

Since M is finitely generated over Rr[[Kp]], for any representation W of Kp on a
finitely generated torsion free O-module, the Rr-module Homcont

Kp
(M,W )d (where

d denotes the continuous O-dual) is a finitely generated Rr-module. Another
property one might require of M is that when W is a Kp-invariant O-lattice in
an irreducible algebraic G-representation V , then Homcont

Kp
(M,W )d is supported

on an appropriate locus of potentially semistable representations, corresponding to
the fact that HomO[[Kp]]

(
(H̃q0)m,W

)
(which is isomorphic to Hq0

(
Y (KpK

p
f ),W

)
)

is supported on a locus of potentially semistable representations in Spec Tm.
Ideally, one might ask for the support of Homcont

Kp
(M,W )d to be the full poten-

tially semistable locus of appropriate Hodge–Tate weights (corresponding to the
highest weight of V ) and Weil–Deligne representations (corresponding to the par-
ticular choice of Kp and the nature of the local Langlands correspondence for G).
As we indicated in (3.1.3), such a result, combined with the local-global compati-
bility between M and (H̃q0)m, would prove that any global Galois representation
corresponding to a point of Spec Tm which is potentially semistable of appropriate
Hodge–Tate weights and with an appropriate Weil–Deligne representation, in fact
arises from a system of Hecke eigenvalues occurring in H̃q0

(
Y (KpK

p
f ),V

)
m

, thus
verifying the Fontaine–Mazur–Langlands conjecture for such points.

Note that a local Galois representation lies in the support of Homcont
Kp

(M,W )d

precisely if the dual to the fibre of M at this point receives a non-zero Kp-
equivariant homomorphism from W . In particular, the dual to the fibre at such a
point contains locally algebraic vectors. In the case of GL2, the idea of describing
p-adic local Langlands for potentially semistable representations in terms of locally
algebraic vectors goes back to C. Breuil’s first work on the subject [11, 12].
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The optimistic scenario described here has been realized for the group G =
GL2(Qp); this is the theory of p-adic local Langlands for GL2(Qp) [6, 29, 50, 30]
(see also [5, 14]). Whether it can be realized for other groups, or is overly optimistic,
remains to be seen.

3.3. Examples. We again illustrate our discussion with some examples.

3.3.1. GL2 of Q. As already mentioned, the theory of p-adic local Langlands for
GL2(Qp) provides a structure satisfying all the desiderata of (3.2.2). The local-
global compatibility between this structure and H̃1

m (the localization of completed
cohomology at a non-Eisenstein maximal ideal of the Hecke algebra) has been
proved in [32] (see also [14, 15]) (under a mild hypothesis on the local behaviour
of ρm). In particular, the strategy of (3.1.3) then applies to prove the Fontaine–
Mazur–Langlands conjecture for points of Spec Tm.

Under the slightly stronger hypotheses that p is odd and ρm remains irreducible
on restriction to GQ(ζp) (the Taylor–Wiles condition) one can prove that Tm

∼= Rρm

[8], [32, Thm. 1.2.3]. Since Conjecture 3.3 holds in this context [32, Cor. 5.3.19], the
method of (3.1.3) (applied with Kp = GL2(Zp)) allows us to deduce the density of
the crystalline loci in Spec Rρm

; the extension of this method to be described in [37]
will allow us to deduce other density results about various potentially semistable
loci. Here is one such simple variant: instead of considering the restriction to
GL2(Zp) of the family V of algebraic representations of GL2, we instead consider
the family of representations σ ⊗ V , where σ is some fixed supercuspidal type
and V is algebraic. This allows us to show that potentially crystalline points of
(any fixed) supercuspidal type are Zariski dense in Tm (and hence in Rρm

, if the
Taylor–Wiles condition is satisfied).

3.3.2. A definite quaternion algebra ramified at p. Let D be the quater-
nion algebra over Q that is ramified at ∞ and p, and let G = D×. Then G∞/A∞
is compact, and so, as noted above, Conjecture 3.3 holds. The classical Jacquet–
Langlands correspondence allows us to attach odd two-dimensional Galois repre-
sentations to systems of Hecke eigenvalues. In particular, if m is non-Eisenstein,
then Tm is a quotient of Rρm

.
Assuming that p is odd and ρm satisfies the Taylor–Wiles condition, we con-

clude that in fact Tm
∼= Rρm

. Indeed, we saw in the preceding example that the
potentially crystalline points of supercuspidal type are Zariski dense in Rρm

. Since
Fontaine–Mazur–Langlands holds in this context, they all arise from classical mod-
ular forms, and hence (by Jacquet–Langlands) from classical automorphic forms on
D×. Thus Spec Tm contains a Zariski dense set of points in Spec Rρm

, and so the
two Specs coincide. As one interesting consequence of this, we note that (assuming
that the Taylor–Wiles condition holds) the Hecke algebras at m for GL2 and D×

are naturally isomorphic (both being isomorphic to Rρm
). One can think of this

as a p-adic interpolation of the classical Jacquet–Langlands correspondence. It is
interesting to note that even though under the classical Jacquet–Langlands corre-
spondence automorphic forms on GL2 that are principal series at p don’t match
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with a corresponding Hecke eigenform on D×, they are not excluded from this
p-adic Jacquet–Langlands correspondence.

As another consequence, note that if we choose Kp to be the units in the
maximal order of (D⊗Qp)×, and apply the density argument of (3.1.3), we deduce
that the representations which are genuinely semistable at p (i.e. semistable, and
not crystalline) are Zariski dense in Spec Tm, and hence in Spec Rρm

, provided the
Taylor–Wiles condition holds.

3.3.3. Definite quaternion algebras over totally real fields. Consider the
case where G is the restriction of scalars to Q of the units D× in a totally definite
quaternion algebra D over a totally real field F ; and suppose that F is unram-
ified at p, and D is split at every prime in F above p. Put ourselves in the
situation of (3.2.1), with the additional assumption that V is the trivial represen-
tation, and πp is a tamely ramified principal series. In this case πp contains, as
a GL2(Zp ⊗Z OF )-subrepresentation, a principal series type σ, which is a repre-
sentation of GL2(OF /p) induced from a character of the Borel subgroup. In the
paper [16], Breuil gave a conjectural description of the isomorphism class of the
lattice σ◦ := σ ∩ H̃0

m, purely in terms of the restriction to p of ρ◦. Under mild
assumptions on ρm, this was proved in [35]. This gives some evidence towards the
possibility that (V ∨ ⊗L πp)◦ may be of a purely local nature.

3.3.4. Compact unitary groups. In [27], we apply Taylor–Wiles patching to
pass from completed cohomology over a unitary group that is compact at infinity
to a G-representation on a module M∞ over the ring R∞ obtained by adjoining
a certain number of formal variables to a local deformation ring. More precisely:
for any finite extension K of Qp, any n such that p - 2n, and any representation
r : GK → GLn(Fp) that admits a potentially crystalline lift which is potentially
diagonalizable (in the sense of [4]), we can (by [33, Cor. A.7]) choose a unitary group
G and Hecke maximal ideal m so that G := G(Qp) is isomorphic to a product of
copies of GLn(K), and such that the restriction of ρm to GK is equal to r. The G-
representation M∞, which is a module over Rr[[x1, . . . , xn]] for some some n ≥ 0,
is then obtained by patching the completed cohomology for G.

The module M∞ satisfies several of the desiderata of (3.2.2): it is finitely gen-
erated over R∞[[Kp]], and the modules Homcont

Kp
(M,W )d (for Kp-invariant lattices

W in algebraic representations) are supported on a union of components of the
appropriate potentially semistable loci. Many questions about M∞ remain open,
however: whether the support of M∞ equals the entirety of Spec R∞; whether all
potentially semistable points are contained in the support of Homcont

Kp
(M,W )d (for

an appropriate choice of W and Kp); and whether M∞ is in fact of a purely local
nature.

One further property of M∞ is that it is projective in the category of profi-
nite topological O[[Kp]]-modules. In [37], we hope to show that M∞ is in fact of
full support on Spec Rr[[x1, . . . , xn]] in many cases, and thus extend the method
described in (3.1.3) to deduce density results for potentially semistable represen-
tations in local deformation spaces.
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[50] Paškūnas, V., The image of Colmez’s Montreal functor, Publ. Math. IHES 118
(2013), 1–191.

[51] Paškūnas, V., Blocks for mod p representations of GL2(Qp), Proceedings of the LMS
Durham Symposium 2011 (to appear).
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