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The goal of this paper is to illustrate how the techniques of locally analytic p-adic
representation theory (as developed in [28, 29, 30, 31] and [13, 14, 17]; see also [16]
for a short summary of some of these results) may be applied to study arithmetic
properties of automorphic representations. More specifically, we consider the prob-
lem of p-adically interpolating the systems of eigenvalues attached to automorphic
Hecke eigenforms (as well as the corresponding Galois representations, in situations
where these appear in the étale cohomology of Shimura varieties). We can sum-
marize our approach to the problem as follows: rather than attempting to directly
interpolate the systems of eigenvalues attached to eigenforms, we instead attempt
to interpolate the automorphic representations that these eigenforms give rise to.

To be more precise, we fix a connected reductive linear algebraic group G de-
fined over a number field F , and a finite prime p of F . We let Fp denote the
completion of F at p, let E be a finite extension of Fp over which the group G
splits, let A denote the ring of adèles of F , and let Af denote the ring of finite
adèles of F . The representations that we construct are admissible locally analytic
representations of the group G(Af ) on certain locally convex topological E-vector
spaces. These representations are typically not irreducible; rather, they contain as
closed subrepresentations many locally algebraic representations of G(Af ) which
are closely related to automorphic representations of G(A) of cohomological type.
(It is for this reason that we regard the representations that we construct as forming
an “interpolation” of those automorphic representations.)

Once we have our locally analytic representations of G(Af ) in hand, we may
apply to them the Jacquet module functors of [14]. In this way we obtain p-adic
analytic families of systems of Hecke eigenvalues, which (under a suitable hypothe-
sis, for which see the statement of Theorem 0.7 below) p-adically interpolate (in the
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traditional sense!) the systems of Hecke eigenvalues attached to automorphic repre-
sentations of cohomological type. More precisely, the resulting families interpolate
the systems of Hecke eigenvalues attached to those automorphic representations
which contribute to the cohomology of the arithmetic quotients associated to G,
and whose local factor at p embeds in a principal series representation. (This last
property is a representation theoretic interpretation of the finite slope condition
appearing in [11].)

Most of our efforts in this paper are devoted to constructing the representations
of G(Af ) alluded to above, and to establishing their basic properties; considerably
less space is devoted to the detailed analysis of the p-adic families that we obtain
by applying the Jacquet module functors to these representations. However, we
do consider the case of GL2/Q in enough detail to explain how our results, in that
particular case, lead to a new construction of the eigencurve of [11], valid for all
primes and arbitrary tame level. (In [11] the authors restrict themselves to odd
primes and trivial tame level.) We also indicate how the construction of this paper,
when combined with the results of the forthcoming paper [17], may be used to
construct a two-variable p-adic L-function parameterized by the eigencurve.

The arrangement of the paper is as follows: In Section 1 we extend some of the
definitions and results of [25, V.2.4] (which compares the group cohomology and Lie
algebra cohomology of finite dimensional representations of locally p-adic analytic
groups) to the context of infinite dimensional representations. Section 2 presents
our main constructions and results. In Section 3 we describe how to produce locally
analytic p-adic representations out of certain classical automorphic representations,
thus providing a bridge between the classical theory of automorphic representations
and the locally analytic representation theory that underlies the methods of this
paper. Related to this, we interpret our results in the case of a group that is
compact at infinity in terms of the notion of “locally analytic p-adic automorphic
forms”. Section 4 is devoted to the example of GL2/Q. In the remainder of the
introduction, we briefly sketch the constructions and results of Section 2, and also
comment on the relation between our work and other recent work related to the
p-adic interpolation of automorphic forms.

Cohomology of arithmetic quotients. Let K∞ denote a fixed maximal compact
subgroup of the real group G(R⊗Q F ), and let K◦

∞ be its connected component of
the identity. Let π0 denote the quotient K∞/K

◦
∞. For any compact open subgroup

Kf of G(Af ) we write

Y (Kf ) := G(F )\G(A)/K◦
∞Kf .

If Kf is sufficiently small, and if K ′
f is a normal open subgroup of Kf , then the

natural map Y (K ′
f ) → Y (Kf ) is a Galois covering map, with group of deck trans-

formations isomorphic to the quotient Kf/K
′
f .

Let Ap
f denote the prime-to-p part of the ring of finite adèles of F , so that

Af = Fp × Ap
f . We are particularly interested in Kf of the form Kf = KpK

p,

where Kp is a variable compact open subgroup in G(Fp), and Kp is a compact
open subgroup of G(Ap

f ), fixed for the moment. (We refer to such a subgroup Kp

as a “tame level”.) If we allow Kp to shrink to the identity, while keeping the tame
level fixed, the spaces Y (Kf ) form a projective system, equipped with an action of
π0×G(Fp). Passing to cohomology with coefficients in a ring A yields an inductive
system of A-modules, equipped with an A-linear action of π0 ×G(Fp).
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Taking A to be OE/p
s for some natural number s > 0 (here OE denotes the

ring of integers of E) we define Hn(Kp,OE/p
s) := lim

−→
Kp

Hn(Y (KpK
p),OE/p

s). We

then obtain an E-Banach space H̃n(Kp), equipped with a continuous action of
π0 ×G(Fp), by passing to the projective limit in s, and tensoring with E:

H̃n(Kp) := E ⊗OE
lim
←−

s

Hn(Kp,OE/p
s).

Let Kp′ ⊂ Kp be an inclusion of tame levels. We obtain a corresponding
π0×G(Fp)-equivariant closed embedding of E-Banach spaces H̃n(Kp) → H̃n(Kp′).
Passing to the locally convex inductive limit over all tame levels yields a locally con-
vex E-vector space H̃n equipped in a natural way with an action of π0 ×G(Af ).

In the following results, we will apply some terminology introduced in [13, §7] to
the group π0×G(Af ). When applying this terminology, we will regard π0×G(Af )
as being factored as the product of the locally Fp-analytic group G(Fp) and the
locally compact group π0 ×G(Ap

f ).
The following result (which follows from Theorem 2.2.16 below) describes the

basic properties of the π0 ×G(Af )-representation H̃n.

Theorem 0.1. (i) The representation H̃n is an admissible continuous representa-
tion of π0 ×G(Af ) (in the sense of [13, Def. 7.2.1]).

(ii) For any tame level Kp, the Banach space H̃n(Kp) is recovered as the subspace
of Kp-invariants in H̃n.

Our next result describes the result of passing to the locally L-analytic vectors
of the representation H̃n, for any local field L intermediate between Fp and Qp. It
is a consequence of Theorem 0.1 and the theory of [13, §7].

Theorem 0.2. (i) The representation H̃n
L−la is an admissible locally L-analytic

representation of π0 ×G(Af ) (in the sense of [13, Def. 7.2.7]).
(ii) For any tame level Kp, the natural map H̃n(Kp)L−la → (H̃n

L−la)
Kp

from
the space of locally L-analytic vectors of the G(Fp)-representation H̃n(Kp) to the
space of Kp-invariants in H̃n

L−la is an isomorphism.

If W is a finite dimensional representation of G over E, then there is a local
system of E-vector spaces VW defined on each of the spaces Y (Kf ) (which is the
trivial local system when W is the trivial representation), and we may form the
E-vector space Hn(VW ) := lim

−→
Kf

Hn(Y (Kf ),VW ), which is equipped with a smooth

action of π0 × G(Af ). It is in fact an admissible smooth representation of this
group (as is well known); indeed the space of Kf -invariants in Hn(VW ) is precisely
Hn(Y (Kf ),VW ), and so is finite dimensional.

Let W̌ denote the contragredient representation to W. We equip the tensor prod-
uct Hn(VW ) ⊗E W̌ with an action of π0 × G(Af ) induced by the tensor product
action of G(Fp), and the action of π0×G(Ap

f ) on the first factor. This tensor prod-
uct is then an admissible locally algebraic representation of π0 × G(Af ) (by [13,
Prop. 7.2.16]), and we show that there is a natural π0 ×G(Af )-equivariant map

(0.3) Hn(VW )⊗E W̌ → H̃n.
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Since the π0×G(Af )-action on Hn(VW ) is smooth, giving such a map is equivalent
to giving a π0 ×G(Af )-equivariant map

(0.4) Hn(VW ) → Homg(W̌ , H̃n
L−la)

(where g denotes the Lie algebra of G). When the map (0.4) is an isomorphism, it
yields an intrinsic representation theoretic description of the smooth π0 × G(Af )-
representation Hn(VW ), in terms of the locally analytic representation H̃n

L−la and
the given finite dimensional representation W . Furthermore, the map (0.3) then
identifies Hn(VW ) ⊗E W̌ with the subspace of locally W̌ -algebraic vectors in H̃n.
We are able to give some examples for which (0.4) is an isomorphism (see the
discussion below); in general, we establish the following result.

Theorem 0.5. If W is a finite dimensional representation of G defined over E,
with contragredient W̌ , then the map (0.4 ) (with L = Qp) is the edge map of a
π0 ×G(Af )-equivariant spectral sequence

Ei,j
2 = Exti

g(W̌ , H̃j
Qp−la) =⇒ Hi+j(VW ).

This result is a restatement of Corollary 2.2.18.
In this paper we consider two examples for which the higher Ext terms appear-

ing in the spectral sequence of Theorem 0.5 can be shown to vanish, and thus for
which (0.4) is an isomorphism (for any choice of L as above). One is the case when
(the restriction of scalars to Q of) G satisfies the conditions of [19, Prop. 1.4] (the
spaces Y (Kf ) are then the union of finitely many contractible connected compo-
nents, and so we naturally take n = 0); the other is the case of GL2/Q (for which
we take n = 1). In such situations, we may regard the locally analytic represen-
tation H̃n

Fp−la as providing a p-adic interpolation of the representations Hn(VW )
– or more precisely, of the locally algebraic representations Hn(VW ) ⊗E W̌ , since
it is these representations that are then identified by (0.3) with locally algebraic
subrepresentations of H̃n

Fp−la.
Let us remark that we also establish analogues of Theorems 0.1, 0.2 and 0.5 with

cohomology replaced by compactly supported cohomology.
Eigenvarieties. Suppose now that G is quasi-split over Fp. We fix a Levi factor

T in a Borel subgroup B of G/Fp
(so that T is a torus), and let T̂ denote the rigid

analytic space over E that parameterizes the locally Fp-analytic characters of the
abelian locally Fp-analytic group T := T(Fp). Fix a cohomological degree n, as
well as a tame level Kp. Write H(Kp) := H(G(Ap

f )//Kp) to denote the prime-to-p
Hecke algebra of level Kp (over E), and as in Subsection 2.3 below, factor H(Kp)
as H(Kp) := H(Kp)ram ⊗E H(Kp)sph. Note that H(Kp)sph, the spherical Hecke
algebra of tame level Kp, is a central subalgebra of H(Kp).

Fix an embedding of E into Qp. Suppose that πf is an irreducible π0 ×G(Af )-
representation appearing as a subquotient of Qp ⊗E Hn(VW ), for some irreducible
G-representation W (necessarily definable over E, since G is assumed to split over
E), with the property that πp (the local factor at p of πf ) embeds into IndG(Fp)

B(Fp) θ

for some smooth Qp-valued character θ of T , and for which πKp

f 6= 0. Since πf

is irreducible, the spherical Hecke algebra H(Kp)sph acts on πKp

f through a Qp-
valued character λ, which determines a Qp-valued point of SpecH(Kp)sph. Let ψ
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denote the highest weight character of W̌ (with respect to the chosen Borel B),
regarded as a character of T , and write χ := θψ. Let E(n,Kp)cl denote the set of
points (χ, λ) ∈

(
T̂ × SpecH(Kp)sph

)
(Qp) constructed in this manner from such

irreducible subquotients πf .

Definition 0.6. We define the degree n cohomological eigenvariety of G of tame
level Kp to be the rigid analytic Zariski closure of E(n,Kp)cl in T̂×SpecH(Kp)sph,
and denote it by E(n,Kp).

The following theorem is a consequence of the results proved in Subsection 2.3
below.

Theorem 0.7. If the map (0.4 ) is an isomorphism for each irreducible representa-
tion W of G (and for our fixed choice of cohomological degree n), then the following
are true:

(i) Projection onto the first factor in the product T̂×SpecH(Kp) induces a finite
map E(n,Kp) → T̂ .

(ii) The composite of the finite map E(n,Kp) → T̂ of (i), and the map T̂ → ť
given by differentiating characters, has discrete fibres. (Here ť denotes the dual to
the Lie algebra t of T .) In particular, the dimension of E(n,Kp) is at most equal
to the dimension of T .

(iii) If (χ, λ) is a point of E(n,Kp) in which the first factor χ is locally algebraic
and of non-critical slope (in the sense of [14, Def. 4.4.3]), then (χ, λ) is in fact a
point of E(n,Kp)cl.

(iv) There is a coherent sheaf M of right H(Kp)ram[π0]-modules over E(n,Kp),
whose fibre over any point (χ, λ) of E(n,Kp)cl of non-critical slope is naturally iso-
morphic (as an H(Kp)ram[π0]-module) to the E-linear dual of the (θ, λ)-eigenspace
of the Jacquet module (taken with respect to B(Fp)) of the smooth representation
Hn(Kp,VW̌ ). (Here we have factored χ = θψ as a product of a smooth and an
algebraic character, and written W to denote the irreducible representation of G
whose contragredient has highest weight ψ with respect to B. Also, we have writ-
ten H(Kp)ram[π0] to denote the group ring of π0 with coefficients in the algebra
H(Kp)ram.)

Theorem 0.7 applies in particular to the two examples discussed above. In the
case when G satisfies the conditions of [19, Prop. 1.4], so that the only non-vanishing
cohomology is in degree zero, we naturally take n = 0. This class of examples is
already extremely interesting; for example, taking G to be a totally definite quater-
nion algebra over a totally real field, one obtains a construction of eigenvarieties
parameterizing systems of Hecke eigenvalues attached to Hilbert modular forms
over F . In this case we are able to improve on Theorem 0.7 (ii), to show that in
fact E(n,Kp) is equidimensional of dimension equal to the dimension of T.

In the case of GL2/Q, the important cohomological degree is n = 1. We recover
the eigencurve of [11] (or more precisely, the surface obtained from it by allowing
twists by wild characters at p) as the eigenvariety of trivial tame level. Note that
our method imposes no constraints on the tame level, and so in this case we may
equally well construct an eigenvariety for arbitrary tame level. (We are also able to
include the case p = 2, which is omitted in [11]. A construction of the eigencurve
for all primes and arbitrary tame level has been given independently by Buzzard
[6], using a direct extension of the method of [11].) By working with compactly
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supported cohomology, and applying the results on Jacquet functors to appear in
[17], we can use this point of view on the eigencurve to construct a two-variable p-
adic L-function over the eigencurve. This L-function will be constructed as a certain
section of (a slight modification of) the coherent sheaf M of Theorem 0.7 (iv).

We close our summary with an observation that allows us in some instances to
interpolate Galois representations as well as systems of Hecke eigenvalues. Suppose
that G is a group for which the arithmetic quotients Y (Kf ) (possibly modified in the
manner discussed in Subsection 2.4 below) admit the structure of Shimura varieties,
with canonical models defined over some number field F ′. Then throughout the
preceding discussion, we may take “cohomology” to mean “étale cohomology”, and
thus endow the space H̃n with a representation of Gal(Q/F ′), commuting with the
G(Af )-action. In the cases when Theorem 0.7 applies, this Galois action will be
inherited by the coherent sheaf M, and so M will be a coherent sheaf of Galois
representations over E(n,Kp). For example, in the case of GL2 over Q, for each
tame level we obtain a coherent sheaf of representations of Gal(Q/Q).

Other approaches. There are at least two other approaches to the study of eigen-
varieties that appear in the literature. Coleman and Mazur’s original construction
of the eigencurve [11], via the geometric theory of modular forms, has been ex-
tended to the contexts of Shimura curves by Kassaei [22] and to the context of
Hilbert modular varieties by Kisin and Lai [23].

There is also an approach, the basic idea of which is due to Stevens (generalizing
the approach of Hida [20] in the ordinary case), that has been developed by Ash
and Stevens (for the group GLn over Q [2]), Buzzard (for tori and for definite
quaternion algebras over Q [5], and for totally definite quaternion algebras over
totally real fields [6, §§8,9]) and Chenevier (for groups G over Q that are compact
over R and isomorphic to GLn over Qp [8]). Stevens’ method has in common with
the method of this paper that it uses cohomology of arithmetic quotients as a
means of achieving the desired p-adic interpolation. (In the case of [5], [6, §§8,9]
and [8], the arithmetic quotients that are considered are zero-dimensional. This is
the situation that we consider in Subsection 3.2 below.) Nevertheless, it is quite
different to the approach taken here.

Here is a sketch of Stevens’ method: Take an Iwahori subgroup I of G(Qp), with
image Ω in the flag variety of G(Qp), and consider the space of locally analytic
distributions on Ω. Out of this space construct a quasi-coherent sheaf D on “weight
space” – that is, the space of locally analytic characters of the intersection I

⋂
T .

Let Γ be an arithmetic subgroup of G(R⊗QF ) which embeds into I; then Γ acts on
D, and passing to Γ cohomology (in some chosen degree) yields a sheaf over weight
space on which analogues of the Up-operators act. Passing to the finite slope part
of this sheaf yields the desired eigenvariety, and a coherent sheaf over it (similar to
the coherent sheaf M appearing in Theorem 0.7 (iv)). In practice, it can be difficult
to carry out this process sheaf theoretically over all of weight space, and one can
instead restrict to a sufficiently small affine open neighbourhood of a classical point
of weight space and work directly over the corresponding Tate algebra. (This is
done in [2], for example.)

The basic distinction between our approach and either of the approaches men-
tioned above is our emphasis on the point of view and methods of representation
theory. One advantage of this is that our approach is not specifically tailored to
the study of finite-slope automorphic forms. Spaces of overconvergent automorphic
forms (which form the basic objects in the geometric approach) and the arithmetic
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cohomology of the sheaf D (which forms the basic object in Stevens’ approach) both
seem to be hopelessly large as Hecke modules until one passes to the finite slope
parts. By contrast, the representations H̃n that we construct, and their associated
spaces of analytic vectors, satisfy reasonable finiteness conditions – namely they
are admissible in the appropriate sense. (This is the pay-off for working with the
entire group, and not just the Hecke algebra.) Thus it is reasonable to hope that
our approach will have applications to the construction of families of forms in the
infinite slope (i.e. non-principal series at p) case also.

The representations H̃n that we construct are similar to certain representations
constructed by Shimura. In the paper [32] Shimura considers an inductive limit
of cohomology of arithmetic quotients of Shimura curves attached to a quaternion
algebra over a totally real field F that is split at exactly one infinite place, and
at all the primes lying over a fixed prime p (denoted ` in [32]), equipped with the
natural action of the group G(Qp). (Here G denotes the restriction of scalars of
the quaternion algebra from F to Q.) Using a base-change argument, he is able to
establish a strong control theorem, which in the particular case when G = GL2, is
analogous to the control theorem established by isomorphism (4.3.4) below. One
difference between the results of [32] and ours is that Shimura considers cohomology
with coefficients in Qp/Zp, whereas we consider cohomology with Qp-coefficients,
completed with respect to the norm induced by the cohomology with Zp-coefficients.
More importantly, in [32] there is no analogue of the passage to locally analytic
vectors that plays such an important role in this paper. (I would like to thank
Haruzo Hida for drawing my attention to the details of [32].)

Let us close this discussion of alternative methods by pointing out that Stevens’
approach lends itself in a natural way to the construction of two-variable p-adic L-
functions along the eigencurve (or at least, in the neighbourhood of classical points
on the eigencurve) [33]. As we explain in Section 4, our point of view also gives a
construction of such two-variable p-adic L-functions. In that section, we will recall
Stevens’ result more precisely, and compare it with the construction yielded by our
representation theoretic approach.

Notation and conventions. We follow closely the notational and terminological
conventions introduced in [13] and [14]. In particular, we refer to those papers for
the meaning of any technical terms and pieces of notation that are used without
explanation in the present text.

Acknowledgments. During the course of preparing this paper I discussed my ideas
with many people, and I would like to thank Alexander Beilinson, David Ben-
Zvi, Christophe Breuil, Kevin Buzzard, Vladimir Drinfeld, Haruzo Hida, Robert
Kottwitz, Peter May, and Glenn Stevens for their helpful remarks arising from
these discussions. I would also like to thank the referee, whose careful reading of
the paper and thoughtful suggestions helped to improve the clarity of the exposition.

1. Continuous cohomology and Lie algebra cohomology

(1.1) In [13, §4.1] we studied some basic properties of the functor “pass to
smooth vectors”. In applications, it is necessary to consider not only this functor,
but also its derived functors. The object of this subsection is to introduce these
derived functors, and to establish those properties of them that will be required for
the applications that we have in mind.
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We begin by supposing that G is a compact locally Qp-analytic group. (Equiva-
lently, a compact p-adic analytic group, in the terminology of [25].) We fix a finite
extension E of Qp, with ring of integers OE . Recall that the category of admissible
continuous representations of G over E (as defined and studied in [30] and [13,
§6.2]; we employ the notation of the latter reference) is abelian.

Lemma 1.1.1. If G is a compact locally Qp-analytic group then the abelian cate-
gory of admissible continuous representations of G over E has enough injectives.

Proof. Any admissible continuous representation V admits a closed G-equivariant
embedding into C(G,E)n for some n ≥ 0, and so it suffices to show that the admissi-
ble continuous representation C(G,E)n is injective. This easily follows from the fact
that its dual space is equal to D(G,E)n, which is a free module over D(G,E). �

Since the inclusion E → C(G,E) induces an isomorphism E
∼−→ C(G,E)G (where

the superscriptG denotes “G-invariants”), we see that for any admissible continuous
G-representation V , the space V G is finite dimensional.

Definition 1.1.2. IfG is a compact locally Qp-analytic group then we letH•(G, – )
denote the derived functors of the functor “pass to G-invariants” from the category
of admissible continuous representations of G over E to the category of finite di-
mensional E-vector spaces.

That these derived functors exist follows from Lemma 1.1.1. The following propo-
sition guarantees that they agree with the usual continuous cohomology of G.

Proposition 1.1.3. The derived functors of Definition 1.1.2 agree with the usual
cohomology of G computed with continuous cochains.

Proof. We remark that cohomology with continuous cochains yields a δ-functor
on the category of admissible continuous representations of G. (To see that one
obtains the required long exact sequences, it is necessary to know that any surjection
between objects in our category can be split continuously as a map of topological
spaces. However, such a surjection can even be split as a map of topological vector
spaces [27, Prop. 10.5].)

Since the derived functor of Definition 1.1.2 and continuous cohomology yield
the same H0 term, to obtain the required isomorphism, it suffices to show that
continuous cohomology is effaceable. The argument of Lemma 1.1.1 then shows
that it suffices to prove that C(G,E) has trivial continuous cohomology. This is no
doubt standard; in any case, we recall the proof.

By definition, the continuous cohomology of C(G,E) is computed as the coho-
mology of G-invariants of the complex

(1.1.4) 0 → C(G, C(G,E)) → C(G2, C(G,E)) → · · · ,

with the usual boundary maps, on which the G-action is defined via the left reg-
ular action of G on the products Gn, together with the right-regular action of
G on C(G,E). The example of [27, pp. 111–112] yields natural isomorphisms
C(Gn, C(G,E)) ∼−→ C(Gn ×G,E) ∼−→ C(G, C(Gn, E)), and [13, Lem. 3.2.11] yields
a G-equivariant isomorphism of C(G, C(Gn, E)) with itself, but regarded as a G-
representation via the right regular action of G on itself, and the trivial G-action
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on C(Gn, E). Thus the space of G-invariants of the complex (1.1.4) is naturally
isomorphic to the complex

0 → C(G,E) → C(G2, E) → · · ·

with its usual boundary maps, which has no higher cohomology. �

We now turn to defining the derived functors of the functor “pass to smooth
vectors”.

Definition 1.1.5. If G is a compact locally Qp-analytic group, then we denote by
H•

st(G, – ) the derived functors of the functor “pass to smooth vectors” from the
category of admissible continuous representations of G over E to the category of
abstract E-vector spaces equipped with a G-action.

The subscript “st ” stands for stable, and is explained by the following proposi-
tion. (This choice of notation is taken from [25, V.2.4.10].)

Proposition 1.1.6. If G is a compact locally Qp-analytic group and V is an ad-
missible continuous representation of G, then for any i ≥ 0 there is a natural
isomorphism of E-vector spaces lim

−→
H

Hi(H,V ) ∼−→ Hi
st(G,V ), where the inductive

limit is taken over all the open subgroups H of G.

Proof. For any admissible continuous representation V of G, by definition there is
a natural isomorphism lim

−→
H

V H → Vsm. Passing to derived functors (and noting that

any V that is injective as a G-representation is also injective as anH-representation,
since the forgetful functor from admissible continuous G-representations to ad-
missible continuous H-representations is right adjoint to the exact functor U 7→
E[G]⊗E[H] U), the proposition follows. �

Corollary 1.1.7. If H is an open subgroup of the compact locally Qp-analytic
group G, and if V is an admissible continuous representation of G, then for each
i ≥ 0, the natural map Hi

st(G,V ) → Hi
st(H,V ) is an isomorphism.

Proof. This follows immediately from Proposition 1.1.6. �

Working directly with continuous cochains, we could use the inductive limit
formula of Proposition 1.1.6 to define the functors H•

st(G, – ) on the category of
continuous G-representations for any topological group G. The reason that we
restrict our attention to admissible continuous representations of locally Qp-analytic
groups, and defineH•

st(G, – ) as a derived functor rather than directly via continuous
cochains, is because we then have the standard homological machinery available
with no expenditure of effort.

We now describe a construction that we will require in our subsequent applica-
tions, and which depends on this homological machinery. We suppose that G is a
compact locally Qp-analytic group, and we let V • denote a bounded-below complex
of admissible continuous G-representations, each of which is isomorphic to C(G,E)n

for some natural number n, and in which the boundary maps are continuous and
G-equivariant. The cohomology spaces H•(V •) are again admissible continuous
representations of G.

If we form the subcomplex V •sm of V • then [13, Prop. 6.2.4] and [29, prop. 2.1]
show that each term of V •sm is a strongly admissible smooth representation of G.
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If we regard V •sm as a subcomplex of V •, and if we choose a norm that induces
the Banach space structure on each of the terms of V •, then these norms induce
a norm on each term of V •sm, and the G-action on the terms of V •sm is continuous
with respect to this norm. We thus regard V •sm as a complex of normed spaces each
equipped with a continuous strongly admissible smooth action of G, in which the
boundary maps are continuous and G-equivariant.

For each integer n the cohomology space Hn(V •sm) is thus naturally a semi-
normed space, equipped with a continuous strongly admissible smooth representa-
tion of G. If Ĥn(V •sm) denotes the completion of Hn(V •sm) with respect to its semi-
norm then the continuous G-action on Hn(V •sm) induces a continuous G-action on
Ĥn(V •sm). There is a natural G-equivariant map Hn(V •sm) → Ĥn(V •sm), which will
be injective precisely when the semi-norm on Hn(V •sm) is in fact a norm.

The inclusion of V •sm into V • induces for each integer n a G-equivariant map

(1.1.8) Hn(V •sm) → Hn(V •)sm.

Since Hn(V •) is complete with respect to its natural topology, the map (1.1.8)
extends to a continuous G-equivariant map

(1.1.9) Ĥn(V •sm) → Hn(V •).

Proposition 1.1.10. (i) For each integer n the natural map (1.1.9 ) is a closed
embedding.

(ii) The map (1.1.8 ) is the edge map of a G-equivariant spectral sequence

Ei,j
2 = Hi

st(G,H
j(V •)) =⇒ Hi+j(V •sm).

Proof. Fix an integer n, let Bn(V •) denote the image of the boundary map from
V n−1 to V n, and let Zn(V •) denote the kernel of the boundary map from V n to
V n+1. Both Bn(V •) and Zn(V •) are closed subspaces of V n (the former by [13,
Prop. 6.2.9], and the latter obviously, since the boundary maps in the complex
V • are continuous by assumption). Similarly, let Bn(V •sm) denote the image of
the boundary map from V n−1

sm to V n
sm, and let Zn(V •sm) denote the kernel of the

boundary map from V n
sm to V n+1

sm .
The cohomology group Hn(V •) is equal to the quotient of Zn(V •) by Bn(V •),

while the cohomology group Hn(V •sm) is equal to the quotient of Zn(V •sm) by
Bn(V •sm). If B̂n(V •sm) denotes the closure of Bn(V •sm) in V n, and Ẑn(V •sm) denotes
the closure of Zn(V •sm) in V n, then the completion Ĥn(V •sm) is isomorphic to the
quotient of Ẑn(V •sm) by B̂n(V •sm).

Since by assumption V n−1 is isomorphic to C(G,E)m for some integer m, we see
that V n−1

sm is dense in V n−1, and so Bn(V •sm) is dense in Bn(V •). Thus B̂n(V •sm) =
Bn(V •), Ẑn(V •sm) contains Bn(V •), and Ĥn(V •) is equal to the quotient of Ẑn(V •sm)
by Bn(V •). This certainly embeds as a closed subspace of Hn(V •), and so (i) is
proved.

By assumption each term of V • is acyclic for H•
st(G, – ), and so the existence of

the spectral sequence of part (ii) is a consequence of standard homological alge-
bra. �
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We remark that in general Ẑn(V •sm) is a proper closed subspace of Zn(V •), and
so the map (1.1.9) is not a topological isomorphism. (We will see examples of this
in Subsection 4.2 below.)

We now extend Definition 1.1.5 to the case where G is a (not necessarily com-
pact) locally Qp-analytic group. In this more general situation we cannot show the
existence of enough injectives, and so we resort to a more ad hoc definition.

Definition 1.1.11. If G is a locally Qp-analytic group, and if V is an E-Banach
space equipped with an admissible continuous representation of G, then for each
i ≥ 0 we define Hi

st(G,V ) = lim
−→
H

Hi(H,V ), where H runs over the directed set of

all compact open subgroups of G.

Proposition 1.1.12. The construction of Definition 1.1.11 satisfies the following
properties:

(i) For any admissible continuous representation V of G, there is a natural
isomorphism H0

st(G,V ) ∼−→ Vsm.
(ii) For each i ≥ 0 and any admissible continuous representation V of G, the

E-vector space Hi
st(G,V ) is equipped with a natural admissible smooth G-action.

(iii) If H is a compact open subgroup of G, and V an admissible continuous
representation of G, then Hi(H,V ) maps isomorphically onto the subspace of H-
invariants in Hi

st(G,V ).
(iv) The collection H•

st(G, – ) forms a covariant δ-functor.
(v) Let V be an admissible continuous representation of G. If there exists a

compact open subgroup H of G and an H-equivariant isomorphism V
∼−→ C(H,E)n

for some n ≥ 0, then Hi
st(G,V ) = 0 for all i > 0.

Proof. Part (i) is immediate.
If g is an element of G, and if H is an open subgroup of G, then conjugation

by g induces an isomorphism φg : H ∼−→ gHg−1. The action of g on V induces
an automorphism of V such that φg(h)gv = ghv, for h ∈ H and so we obtain an
induced isomorphism Hi(H,V ) ∼−→ Hi(gHg−1, V ). Passing to the inductive limit
as H shrinks to the identity, we obtain an automorphism σg of Hi

st(G,V ). It is
immediately verified that the association of σg to g defines a G-action on Hi

st(G,V ).
It is a standard fact that inner automorphisms act trivially on cohomology, implying
that Hi(H,V ) is fixed by H. Thus the G-action on Hi

st(G,V ) is smooth. To
complete the proof of (ii), we must also show that this action is admissible. This
follows from part (iii) (which we prove next).

If H is a compact open subgroup of G, then the set of normal open subgroups
of H is cofinal in the directed set of open subgroups of G. Thus there is a natural
isomorphism lim

−→
H1

Hi(H1, V ) ∼−→ Hst(G,V ), where H1 runs over all normal open

subgroups of H. To prove part (iii), it thus suffices to show that for each choice of
such a subgroup H1, the natural map Hi(H,V ) → Hi(H1, V ) identifies the source
with the H-invariants in the target.

The quotient H/H1 is finite, and so has trivial higher cohomology with coeffi-
cients in an E-vector space (E being of characteristic zero). The Hochschild-Serre
spectral sequence thus implies that restricting cohomology classes maps Hi(H,V )
isomorphically onto the H-invariants of Hi(H1, V ). This proves (iii).

Note also that since V is an admissible continuous G-representation (by assump-
tion), it is also an admissible continuous H-representation (since H is compact open
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in G). Thus Hi(H,V ) is finite dimensional. This completes the proof of (ii).
Part (iv) is an immediate consequence of the fact that the functors H•

st(G, – )
are defined as the inductive limit of the δ-functors Hi(H, – ).

If H is a compact open subgroup of G then the proof of Lemma 1.1.1 shows
that C(H,E) is an injective object in the category of admissible continuous rep-
resentations of G, and thus that Hi(H, C(H,E)) vanishes for each i > 0. This
proves (v). �

We now observe that the functor V 7→ Vsm on the category of admissible
continuous representations of G admits an alternative description as the functor
V 7→ (Vla)g, where the subscript “la” denotes the space of locally analytic vec-
tors in V (see [13, Def. 3.5.3]; the local field L is equal to Qp in the situation we
are considering), and g denotes the Lie algebra of G. This suggests that there
should be a relation between the functors H•

st(G,V ) and the Lie algebra cohomol-
ogy H•(g, Vla). Indeed, there is such a relation, given by the following proposition.
The key ingredient is [31, Thm. 7.1], which shows that the functor V 7→ Vla is exact.

Theorem 1.1.13. If G is a locally Qp-analytic group, then there is a natural G-
equivariant isomorphism

H•
st(G, – ) ∼−→ H•(g, (– )la)

of δ-functors on the category of admissible continuous G-representations.

Proof. As already noted, the functor V 7→ Vla is exact, by [31, Thm. 7.1]. As is
implicit in the proof of Lemma 1.1.1, any admissible continuous representation of
G has a resolution by a complex each of whose terms is a finite direct sum of copies
of the injective object C(G,E). Thus to prove the proposition, it suffices to show
that C(G,E)la has vanishing higher g-cohomology.

By [13, 3.5.11], there is a natural isomorphism Cla(G,E) ∼−→ C(G,E)la. Thus we
must show that Cla(G,E) has trivial g-cohomology. We use the standard complex
∧•g ⊗E Cla(G,E) to compute this cohomology, and observe that this complex is
naturally isomorphic to the locally analytic de Rham complex on the locally Qp-
analytic manifold G. A simple locally analytic “Poincaré lemma” shows that this
complex has vanishing higher cohomology, and we are done. �

The preceding result is proved for finite dimensional G-representations in [25,
V.2.4.10 (i)].

(1.2) Let G be a compact locally Qp-analytic group. Up to this point we have
restricted our attention to to E-Banach spaces with continuous G-action. However,
we will also require some more refined results for certainOE-modules with G-action.

If V is an E-Banach space, then any bounded open OE-lattice in V is a p-adically
separated and complete torsion free OE-module. Conversely, if M is a p-adically
separated and complete torsion free OE-module, then the tensor product E⊗OE

M
is naturally an E-Banach space. Indeed, the embedding M → E ⊗OE

M identifies
M with an OE-lattice of E ⊗OE

M, and the gauge of M is a complete norm on
E⊗OE

M . (More generally, if M is a p-adically complete and separated OE-module,
then the image of M in E ⊗OE

M under the natural map becomes an OE-lattice,
whose gauge is a complete norm on E ⊗OE

M .)
If M is any OE-submodule, we will let Mtor denote the torsion subgroup of M ,

and let Mtf denote the quotient M/Mtor . Thus Mtor is the kernel of the natural
map M → E ⊗OE

M, while Mtf is naturally isomorphic to the image of this map.
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We now introduce an analogue for OE [G]-modules of the notion of an admissible
continuous G-representation on an E-Banach space.

Definition 1.2.1. If M is an OE [G]-module, p-adically complete and separated
as an OE-module, then we say that M is admissible if it satisfies the following two
conditions:

(i) The torsion subgroup Mtor of M has bounded exponent.
(ii) The induced G-action on E ⊗OE

M makes this latter space an admissible
continuous representation of G (when equipped with its natural E-Banach space
structure).

Our goal in this section is to establish some basic homological properties of
admissible OE [G]-modules.

We begin with some lemmas. Before stating the first one, note that if M is
an OE [G]-module, then Mtor is an OE [G]-submodule of M , and so Mtf is also
naturally an OE [G]-module.

Lemma 1.2.2. If M is an OE-module (respectively an OE [G]-module) such that
Mtor is of bounded exponent, then M is p-adically separated and complete (respec-
tively admissible) if and only if Mtf is p-adically separated and complete (respec-
tively admissible).

Proof. Both claims are immediate. (For the parenthetical claim, one should use
the fact that the natural map E ⊗OE

M → E ⊗OE
Mtf is an isomorphism.) �

Lemma 1.2.3. Let M be a p-adically separated and complete OE-module, and
suppose that Mtor is of bounded exponent. If N ⊂ M is an inclusion of OE-
modules, then the p-adic topology on M induces the p-adic topology on N if and
only if the p-adic topology on Mtf induces the p-adic topology on Ntf .

Proof. This is easily proved, and we leave the verification to the reader. �

Proposition 1.2.4. Let φ : M → N be an OE-linear and G-equivariant morphism
between admissible OE [G]-modules.

(i) The OE [G]-module kerφ is admissible, and the natural map kerφ→M is a
closed embedding, when each of the source and target are endowed with their p-adic
topologies.

(ii) The OE [G]-module imφ is admissible, and the natural map imφ → N is a
closed embedding, when each of the source and target are endowed with their p-adic
topologies.

(iii) The OE [G]-module cokerφ is again an admissible OE [G]-module.

Proof. Taking into account Lemmas 1.2.2 and 1.2.3, we see that we may replace M
and N by Mtf and Ntf in the proof of the lemma. Thus we assume that M and N
are both torsion free.

Tensoring with E, the map φ induces a continuous G-equivariant map id ⊗ φ :
E ⊗OE

M → E ⊗OE
N of Banach spaces equipped with admissible continuous G-

representations. The kernel of id ⊗ φ is a closed G-invariant Banach subspace of
E ⊗OE

M , on which the resulting G-action is admissible continuous. Thus kerφ
is closed in M when equipped with its p-adic topology, and forms an admissible
OE [G]-module. This proves (i).

Any continuous G-equivariant map between admissible continuous representa-
tions of G is necessarily strict, with closed image [13, Prop. 6.2.9]. Thus imφ is
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closed in N , when endowed with its p-adic topology, and is again an admissible
OE [G]-module. This proves (ii).

If M̃ denotes the saturation of imφ in N , then M̃ is a bounded subset of the
image of id ⊗ φ (being contained in N), and so we see that prM̃ ⊂ imφ for some
sufficiently large integer r. This proves that the torsion subgroup of the cokernel
of φ has bounded exponent. The cokernel of id ⊗ φ is again an E-Banach space,
equipped with an admissible continuous representation of G [13, Cor. 6.2.16]. It
follows that the torsion free quotient of the cokernel of φ is an admissible OE [G]-
module. Thus cokerφ is an extension of a torsion free admissible OE [G]-module
by a torsion subgroup of bounded exponent. By Lemma 1.2.2, the proof of (iii) is
complete. �

Lemma 1.2.5. Let 0 → M → N → P → 0 be a short exact sequence of OE-
modules. If M and P are p-adically separated and complete, and if Mtor and Ptor

are both of bounded exponent, then N is also p-adically separated and complete, and
Ntor is of bounded exponent. Furthermore, the p-adic topology on M coincides with
the topology obtained by regarding M as a subspace of N , equipped with its p-adic
topology.

Proof. The sequence 0 →Mtor → Ntor → Ptor is exact, and thusNtor has bounded
exponent, since this is true of Mtor and Ptor , by assumption.

Consider now the exact sequence of projective systems

{P [ps]}s≥1 → {M/ps}s≥1 → {N/ps}s≥1 → {P/ps}s≥1 → 0.

Since Ptor is of bounded exponent, we see that the transition maps in the pro-
jective system {P [ps]}s≥1 eventually vanish, and so lim

←−
s

P [ps] and R1lim
←−

s

P [ps] are

both trivial. Since the transition maps in the projective systems {M/ps}s≥1 are
surjective, we also find that R1lim

←−
s

M/ps = 0. Passing to the projective limit, we

thus obtain a map of short exact sequences

0 // lim←−
s

M/ps //

��

lim
←−

s

N/ps //

��

lim
←−

s

P/ps //

��

0

0 // M // N // P // 0.

The outer two vertical arrows are isomorphisms, by assumption, and thus so is the
middle vertical arrow. Thus N is p-adically separated and complete. The claim
about topologies also follows from the fact that the transition maps in the projective
system {P [ps]}s≥1 are eventually trivial. �

Lemma 1.2.6. Any extension (in the category of OE [G]-modules) of admissible
OE [G]-modules is again an admissible OE [G]-modules.

Proof. Let 0 →M → N → P → 0 be an extension of OE [G]-modules, and suppose
that M and P are admissible. Lemma 1.2.5 shows that N is p-adically separated
and complete, and that Ntor has bounded exponent. Tensoring this short exact
sequence with E over OE , we obtain a short exact sequence of Banach spaces
equipped with G-action

0 → E ⊗OE
M → E ⊗OE

N → E ⊗OE
P → 0.
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(Note that Lemma 1.2.5 shows that E ⊗OE
M → E ⊗OE

N is a closed embed-
ding.) Since any extension of admissible continuous G-representations is again an
admissible continuous G-representation [13, Prop. 6.2.7], the lemma follows. �

Lemma 1.2.7. If M is a torsion free admissible OE [G]-module, then for some
natural number n we may find an embedding of OE [G]-modules M → C(G,OE)n.
Furthermore, if N denotes the cokernel of this embedding, then we may find an
OE-linear map φ : N → C(G,OE)n such that the composite of φ with the projection
C(G,OE)n → N is equal to multiplication by ps on N , for some natural number s.

Proof. Since M is torsion free, the natural map M → E ⊗OE
M is an embedding.

Since by assumption E ⊗OE
M is an admissible continuous G-representation, it

admits a closed embedding E ⊗OE
M → C(G,E)n for some natural number n.

If we rescale sufficiently, then the restriction of this embedding yields a closed
embedding M → C(G,OE)n.

If N denotes the cokernel of this embedding, then we obtain a short exact se-
quence of E-Banach spaces

0 → E ⊗OE
M → C(G,E)n → E ⊗OE

N → 0.

By [27, Prop. 10.5] we may split this short exact sequence, say by a map σ :
E ⊗OE

N → C(G,E)n. If we take a suitably large power ps′ of p, then ps′σ carries
Ntf (identified with the image of N in E ⊗OE

N) into C(G,OE)n. Since Ntor has
bounded exponent, multiplication by another suitably large power ps′′ of p on N
factors through the natural map N → Ntf . Let s = s′ + s′′, and define φ to be the
composite

N −→ Ntf
psσ−→ C(G,OE)n.

By construction, the composite of φ with the projection C(G,OE) → N induces
multiplication by ps on N . �

It will be useful to have an alternative description of the category of admissible
OE [G]-modules, in terms of projective systems. We begin by introducing some
definitions and notation.

We let A′G denote the abelian category of OE [G]-modules, and let AG denote
the full subcategory of A′G consisting of admissible OE [G]-modules.

We let B′′G denote the abelian category of projective systems {Ms}s≥1 of OE [G]-
modules, for which Ms is annihilated by ps for each s ≥ 1.

Definition 1.2.8. We say that a projective systems {Ms}s≥1 in B′′G is essentially
null if for any s ≥ 1, the transition map Ms′ → Ms vanishes if s′ is sufficiently
large.

The full subcategory of essentially null projective systems is immediately checked
to be a Serre subcategory of B′′G. We let B′G denote the Serre quotient category.

There is a functor A′G → B′′G, defined by sending an OE [G]-module M to the
projective system {M/ps}s≥1. We let S : A′G → B′G denote the composite of this
functor with the natural quotient functor B′′G → B′G. Passing to the projective
limit induces a functor B′′G → A′G that factors through the natural quotient functor
B′′G → B′G. We let T : B′G → A′G denote the induced functor. The functor S is left
adjoint to the functor T . In particular, S is right exact and T is left exact.
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Lemma 1.2.9. (i) The functor S : A′G → B′G becomes exact when it is restricted
to AG.

(ii) The natural transformation idAG
→ T ◦ S induced by the adjointness of S

and T becomes an isomorphism when restricted to AG.

Proof. As observed above, the functor S is right exact. Thus to prove part (i), we
must show that it is also left exact. For this, we must show that for any inclusion
M ⊂ N of admissible OE [G]-modules, the kernel of the natural map {M/ps}s≥1 →
{M/(M

⋂
psN)}s≥1, that is, the projective system {(M

⋂
psN)/psM}s≥1, is essen-

tially null. In other words, we must show that for any s ≥ 0, there is an inclusion
M

⋂
ps′N → psM for s′ sufficiently large. This follows from part (ii) of Proposi-

tion 1.2.4.
Part (ii) is just a rephrasing of the fact that objects ofAG are p-adically separated

and complete. �

Let BG denote the essential image of the functor AG → B′G obtained by restrict-
ing S. Thus the objects of BG are those projective systems {Ms}s≥1 of OE/p

s[G]-
modules for which the projective limitM := lim

←−
s

Ms is an admissible OE [G]-module,

and for which the natural map of projective systems {M/ps}s≥1 → {Ms}s≥1 has
essentially null kernel and cokernel.

Proposition 1.2.10. The functor S, when restricted to AG, yields an equivalence
of categories between AG and BG, with T providing a quasi-inverse.

Proof. This is general categorical nonsense, given the definition of BG as the es-
sential image of S, the fact that T is right adjoint to S, and the conclusions of
Lemma 1.2.9. �

Proposition 1.2.11. The subcategory BG of B′G is closed under passage to kernels
and cokernel of morphisms.

Proof. Since the restriction of S to AG is exact, and since AG is closed under
passing to kernels and cokernels in A′G (by Proposition 1.2.4), we see that BG is
closed under passing to kernels and cokernels in B′G. �

Proposition 1.2.12. If M• is a cochain complex in the category AG, then for each
integer n the natural map {Hn(M•)/ps}s≥1 → {Hn(M•/ps)}s≥1 is an isomor-
phism of objects in BG. Consequently, the natural map Hn(M•) → lim

←−
s

Hn(M•/ps)

is an isomorphism of objects in AG.

Proof. Propositions 1.2.4 and 1.2.11 show that AG and BG are each closed under
passing to kernels and cokernels (when regarded as subcategories of A′G and B′G
respectively), while Proposition 1.2.10 shows that the functors S and T induce
an equivalence of categories between AG and BG. Thus for each n the cohomology
module Hn(M•) lies in AG, the projective system Hn(S(M•)) lies in BG, and there
is a natural isomorphism S(Hn(M•)) ∼−→ Hn(S(M•)). This gives the required
isomorphism in B′G. Applying the quasi-inverse T we obtain the isomorphisms

Hn(M•) ∼−→ TS(Hn(M•)) ∼−→ T (Hn(S(M•)))

in AG, completing the proof of the proposition. �
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In the remainder of this subsection we will analyze the continuous cohomology
of G with coefficients in an admissible OE [G]-module. The results that we obtain
will be applied only in the proof of Proposition 2.4.1, and the reader willing to take
that result on faith may safely pass on to Section 2.

We begin by remarking that the preceding definitions and results apply in par-
ticular when the group G is trivial. In this case we speak simply of admissible
OE-modules, and write A, A′, B, and B′ for the categories introduced above. Ex-
plicitly, the objects of A consist of those OE-modules M for which Mtor is of
bounded exponent, and Mtf is finitely generated. (Take into account Lemma 1.2.2
and the fact that any finitely generated OE-module is p-adically separated and
complete.) In addition to our preceding results, in this case we have the following
lemmas.

Lemma 1.2.13. The category A of admissible OE-modules is a Serre subcategory
of the category A′ of all OE-modules.

Proof. Propositions 1.2.4 and 1.2.6 imply that A is closed under passing to exten-
sions and cokernels in A′. Thus it suffices to show that A is closed under passing
to subobjects. This follows directly from the fact that OE is Noetherian. �

Lemma 1.2.14. Suppose that we are given OE-modules M and N , and a pair
of OE-linear morphisms M → N and N → M whose composition is equal to
multiplication by ps on M , for some natural number s. If N is an admissible
OE-module, then the same is true of M .

Proof. If X denotes the kernel of the map M → N, then X ⊂ M [ps], and there is
an exact sequence 0 → X → Mtor → Ntor . Thus if Ntor is of bounded exponent,
the same is true of Mtor . Also, the map M → N induces an embedding Mtf → Ntf ,
and so if Ntf is of finite type over OE , the same is true of Mtf . �

If M is any topological OE-module equipped with a continuous G-action, then
we let C•con(G,M) denote the complex of continuous cochains on G with values in
M , and let H•

con(G,M) denote the cohomology of the complex C•con(G,M) (the
continuous cohomology of G with coefficients in M). If M is an admissible OE [G]-
module, then when we speak of the continuous cochains or continuous cohomology
of G with coefficients in M , we will always regard M as being equipped with its
p-adic topology.

If 0 → M → N → P → 0 is a sequence of continuous OE-linear and G-
equivariant maps of topological OE-modules equipped with continuous G-actions,
that is short exact as a sequence of OE-modules, then we have an exact sequence
of complexes of OE-modules

(1.2.15) 0 → C•con(G,M) → C•con(G,N) → C•con(G,P ),

which need not be exact on the right in general. (This is one of the complications of
working with continuous cohomology.) However, we do have the following lemma.

Lemma 1.2.16. If in the situation of the preceding paragraph, the topology on P
is the discrete topology, then (1.2.15 ) is exact on the right.

Proof. Since the topology on P is discrete, the maps in C•con(G,P ) are locally
constant, and so may be lifted to locally constant elements of C•con(G,N) (since
N → P is surjective). �
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We begin by noting that the continuous cohomology of C(G,OE) has the ex-
pected values.

Lemma 1.2.17. The natural embedding OE → C(G,OE) induces an isomorphism
OE

∼−→ H0
con(G, C(G,OE)). The continuous cohomology Hi

con(G, C(G,OE)) van-
ishes if i > 0.

Proof. The assertion regarding H0
con(G, C(G,OE)) is evident. The assertion regard-

ing the higher cohomology modules provides a refinement of the vanishing result
discussed in the proof of Proposition 1.1.3, and is proved in the same way. �

Proposition 1.2.18. If M is an admissible OE [G]-module, then for each natural
number i the cohomology module Hi

con(G,M) is an admissible OE-module.

Proof. Let ps be the exponent of Mtor . Then the endomorphism of M induced
by multiplication by ps factors as M → Mtf → M. Thus the endomorphism of
Hi

con(G,M) induced by multiplication by ps factors as

Hi
con(G,M) → Hi

con(G,Mtf ) → Hi
con(G,M).

By Lemma 1.2.14, it suffices to show thatHi
con(G,Mtf ) is an admissibleOE-module,

and so we may restrict our attention to torsion free M .
We proceed by induction on i. Lemma 1.2.17 gives H0

con(G, C(G,OE)) = OE . If
M is torsion free, then by Lemma 1.2.7 we may find an embedding M → C(G,OE)n

for some natural number n, and hence an embedding H0
con(G,M) → On

E . This
establishes the case i = 0.

We now suppose the result is known for i− 1. Let M be torsion free, and again
use Lemma 1.2.7 to regard M as a submodule of C(G,OE)n, for some natural
number n. If N denotes the quotient C(G,OE)n/M, then by that same lemma we
may find a map φ : N → C(G,OE)n such that the composite

N
φ−→ C(G,OE)n −→ N

(the second arrow being the natural projection) is equal to multiplication by ps, for
some natural number s.

We consider the diagram (1.2.15) attached to the short exact sequence 0 →M →
C(G,OE)n → N → 0. If C• denotes the cokernel of the natural map C•con(G,M) →
C•con(G, C(G,OE)n), then there is an injection C• → C•con(G,N). Also, φ induces
a map C•con(G,N) → C•, and the composite C• → C•con(G,N) → C• is equal to
multiplication by ps. Thus we obtain a sequence of maps

Hi−1(C•) → Hi−1
con (G,N) → Hi−1(C•)

whose composite equals multiplication by ps. By induction, we may assume that
Hi−1

con (G,N) is an admissible OE-module, and Lemma 1.2.14 then implies that
Hi−1(C•) is an admissible OE-module.

Consider now the long exact sequence of cohomology attached to the short exact
sequence of complexes

0 → C•con(G,M) → C•con(G, C(G,OE)n) → C• → 0.
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From this long exact sequence we may extract the exact sequence

Hi−1(C•) → Hi
con(G,M) → Hi

con(G, C(G,OE)n).

Lemma 1.2.17 shows that Hi
con(G, C(G,OE)n) is trivial for i > 0, and so we see that

Hi
con(G,M) is a quotient of the admissible OE-module Hi−1(C•). Lemma 1.2.13

implies that Hi
con(G,M) is itself an admissible OE-module. This completes the

proof of the proposition. �

Proposition 1.2.19. If M is an admissible OE [G]-module, then the natural map of
projective systems {Hi

con(G,M)/ps}s≥1 → {Hi
con(G,M/ps)}s≥1 is an isomorphism

in B′. (That is, its kernel and cokernel are essentially null projective systems.)

Proof. If s0 is such that Mtor has exponent ps0 , then multiplication by ps0 factors
through the natural projection M →Mtf , say as

M //

ps0

&&
Mtf

φ // M,

for some map φ : Mtf →M. If s ≥ s0, then write φs = ps−s0φ. For each such value
of s, we have a short exact sequence

0 −→Mtf
φs−→M −→M/ps −→ 0.

Passing to continuous cochains, we obtain a short exact sequence of complexes

0 −→ C•(G,Mtf )
φs−→ C•(G,M) −→ C•(G,M/ps) −→ 0.

(We have exactness on the right by Lemma 1.2.16.) Passing to cohomology, we
obtain for any natural number i a short exact sequence

0 → Hi
con(G,M)/φs(Hi

con(G,Mtf )) → Hi
con(G,M/ps) → Hi+1

con (G,Mtf )[φs] → 0.

(By abuse of notation, we have continued to denote by the same symbol the map
that φs induces on cohomology.)

The composite Mtf
φs−→ M −→ Mtf is equal to multiplication by ps, and

thus Hi+1
con (G,Mtf )[φs] is contained in Hi+1

con (G,Mtf )[ps]. Since Hi+1
con (G,Mtf ) is

an admissible OE-module, by Proposition 1.2.18, we see that the projective sys-
tem {Hi+1

con (G,Mtf )[ps]}s≥s0 (the transition maps being given by multiplication
by p) is essentially null, and hence the same is true of the projective system
{Hi+1

con (G,Mtf )[φs]}s≥s0 . Thus the natural injection of projective systems

{Hi
con(G,M)/φs(Hi

con(G,Mtf ))}s≥s0 → {Hi
con(G,M/ps)}s≥s0

has essentially null cokernel.
For any s ≥ s0, we have inclusions

psHi
con(G,M) ⊂ φs(Hi

con(G,Mtf )) = ps−s0φ(Hi
con(G,Mtf )) ⊂ ps−s0Hi

con(G,M).

Thus the natural surjection of projective systems

{Hi
con(G,M)/ps}s≥s0 → {Hi

con(G,M)/φs(Hi
con(G,Mtf ))}s≥s0

has essentially null kernel. Combining this conclusion with that of the preceding
paragraph, we find that the natural map of projective systems

{Hi
con(G,M)/ps}s≥1 → {Hi

con(G,M/ps)}s≥1

has essentially null kernel and cokernel, as required. �
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Proposition 1.2.20. If M is an admissible OE [G]-module, then for any natural
number i, the natural map E ⊗OE

Hi
con(G,M) → Hi

con(G,E ⊗OE
M) (where the

continuous cohomology of E ⊗OE
M is computed with respect to the Banach space

topology on this tensor product) is an isomorphism.

Proof. As G is compact, the natural map E⊗OE
C•con(G,M) → C•con(G,E⊗OE

M)
is an isomorphism. Passing to cohomology (and taking into account the fact that
E is flat over OE) yields the proposition. �

2. Cohomology of arithmetic quotients of symmetric spaces

(2.1) The goal of this subsection is to explain how one can obtain admissible
continuous representations of locally Qp-analytic groups by taking appropriate lim-
its of cohomology in a tower of covering spaces. The main result is Theorem 2.1.5
below.

Throughout this subsection we assume that G is a compact locally Qp-analytic
group, and we fix a countable basis of open normal subgroups

G = G0 ⊃ G1 ⊃ . . . ⊃ Gr ⊃ . . . .

We suppose given a sequence of continuous maps of topological spaces

· · · → Xr → · · · → X1 → X0,

and assume that each of these spaces is equipped with a right action of G, such
that

(1) the maps in this sequence are G-equivariant;
(2) the open subgroup Gr of G acts trivially on Xr;
(3) if 0 ≤ r′ ≤ r then the map Xr → Xr′ is a Galois covering map with deck

transformations provided by the natural action of Gr′/Gr on Xr.

(If X0 is connected with base point x0, then it is equivalent to give a morphism
π1(X0, x0) → G. For any r ≥ 0, reduction modulo Gr yields a map π1(X0, x0) →
G/Gr, and thus a (not necessarily connected) Galois covering space Xr → X0

whose group of deck transformations is isomorphic to G/Gr (acting on the right).
Precisely, Xr = X̃ ×π1(X,x0) G/Gr, where X̃ is the universal cover of X, on which
π1(X0, x0) acts on the right as deck transformations (after furthermore fixing a
base-point x̃0 of X̃ lying over x0).)

We also suppose given a local system of free finite rank OE-modules V0 on X0

(where OE is the ring of integers in a finite extension E of Qp), and denote by Vr

the pullback of V0 to Xr for any r ≥ 0. The sheaf Vr is G/Gr-equivariant.

Let ∗ denote one of ∅ or c, so that H•
∗ denotes either cohomology or compactly
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supported cohomology. Define

(2.1.1)

Hn
∗ (V) := lim

−→
r

Hn
∗ (Xr,Vr),

Hn
∗ (V)E := E ⊗OE

Hn
∗ (V) ∼−→ lim

−→
r

Hn
∗ (Xr, E ⊗OE

Vr),

Ĥn
∗ (V) := lim

←−
s

Hn
∗ (V)/ps,

Ĥn
∗ (V)E := E ⊗OE

Ĥn
∗ (V),

H̃n
∗ (V) := lim

←−
s

lim
−→

r

Hn
∗ (Xr,Vr/p

s),

H̃n
∗ (V)E := E ⊗OE

H̃n
∗ (V),

TpH
n
∗ (V) := lim

←−
s

Hn
∗ (V)[ps],

VpH
n
∗ (V) := E ⊗OE

TpH
n
∗ (V).

(Here r and s range over all non-negative integers.) Each of the OE-modules and
E-vector spaces that we have defined is equipped with a natural G-action. (The
G-action on Hn

∗ (V) and Hn
∗ (V)E is smooth, but this will typically not be so for the

G-action on the other objects appearing in (2.1.1).)
If we fix for the moment non-negative integers r and s then the exact sequence of

sheaves 0 −→ Vr
ps·−→ Vr −→ Vr/p

s −→ 0 on Xr gives rise to a short exact sequence

0 → Hn
∗ (Xr,Vr)/ps → Hn

∗ (Xr,Vr/p
s) → Hn+1

∗ (Xr,Vr)[ps] → 0.

Passing now to the inductive limit over r yields the short exact sequence

0 → Hn
∗ (V)/ps → lim

−→
r

Hn
∗ (Xr,Vr/p

s) → Hn+1
∗ (V)[ps] → 0.

Each OE/p
s-module appearing in this exact sequence is equipped with a natural G-

action, and the exact sequence is obviously G-equivariant. Passing to the projective
limit over s, we obtain the short exact sequence of G-equivariant maps

(2.1.2) 0 → Ĥn
∗ (V) → H̃n

∗ (V) → TpH
n+1
∗ (V) → 0.

(To see that this sequence is short exact, note that for each value of s the transition
map Hn

∗ (V)/ps+1 → Hn
∗ (V)/ps is surjective.) Tensoring with E over OE yields the

G-equivariant short exact sequence

(2.1.3) 0 → Ĥn
∗ (V)E → H̃n

∗ (V)E → VpH
n+1
∗ → 0.

Lemma 2.1.4. The short exact sequence (2.1.2 ) is a short exact sequence of p-
adically complete and separated OE-modules. Furthermore, the arrow Ĥn

∗ (V) →
H̃n
∗ (V) is a closed embedding, if we endow its source and target with their p-adic

topologies.

Proof. If M is any OE-module, then its p-adic completion lim
←−

s

M/ps is a p-adically

complete and separated OE-module. Its p-adic Tate module lim
←−

s

M [ps] is also p-

adically complete and separated, and is furthermore torsion free. Reducing the
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short exact sequence (2.1.2) modulo ps thus yields, for each natural number s, a
morphism of short exact sequences

0 // Ĥn
∗ (V) //

��

H̃n
∗ (V) //

��

TpH
n+1
∗ (V) //

��

0

0 // Ĥn
∗ (V)/ps // H̃n

∗ (V)/ps // TpH
n+1
∗ (V)/ps // 0.

Passing to the projective limit in s, we obtain a morphism of short exact sequences

0 // Ĥn
∗ (V) //

��

H̃n
∗ (V) //

��

TpH
n+1
∗ (V) //

��

0

0 // lim←−
s

Ĥn
∗ (V)/ps // lim←−

s

H̃n
∗ (V)/ps // lim←−

s

TpH
n+1
∗ (V)/ps // 0.

The left-hand and right-hand vertical arrows of this diagram are isomorphisms, by
the remarks of the first paragraph. Thus the middle arrow is also an isomorphism.
We conclude that H̃n

∗ (V) is p-adically complete and separated, and also that the
map Ĥn

∗ (V) → H̃n
∗ (V) is a closed embedding. �

The preceding lemma implies that each of the tensor products Ĥn
∗ (V)E , H̃

n
∗ (V)E

and VpH
n
∗ (V) is naturally an E-Banach space on which G acts continuously, and

that (2.1.3) is a G-equivariant short exact sequence of E-Banach spaces.

Theorem 2.1.5. Take ∗ = ∅, so that we are discussing cohomology. If X0 is
homotopic to a finite simplicial complex then the following results hold:

(i) The p-adic locally analytic group G acts on each of the E-Banach spaces
appearing in the exact sequence (2.1.3 ) through an admissible continuous repre-
sentation, and the exact sequence (2.1.3 ) is a short exact sequence in the abelian
category of admissible continuous representations of G.

(ii) The composite Hn(V)E → Ĥn(V)E → H̃n(V)E (the first arrow being the
natural map and the second arrow being that which appears in the short exact se-
quence (2.1.3 )) has an alternative factorization as a composite

Hn(V)E → (H̃n(V)E)sm → H̃n(V)E ,

and the first of these maps is the edge map of a spectral sequence

Ei,j
2 = Hi

st(G, H̃
j(V)E) =⇒ Hi+j(V)E .

Proof. In order to prove the theorem, we introduce some notation. First note that
by replacing X0 by a finite simplicial complex homotopic to it, we may assume that
X0 is itself a finite simplicial complex. Let T•(X0) be a choice of finite triangulation
of X0 (where Tn(X0) denotes the collection of n-dimensional simplices occuring in
the triangulation), and let T•(Xr) denote the pullback of T•(X0) under the finite
covering map Xr → X0. The set T•(Xr) is equipped with a free action of G/Gr. If
∆ ∈ Tn(X0) for some n then we let Tn(Xr)/∆ denote the set of simplices in Tn(Xr)
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lying over ∆; the set Tn(Xr)/∆ is then a principal homogeneous G/Gr-set. We
let T̂n/∆ denote the projective limit lim

←−
r

Tn(Xr)/∆; this is a profinite set which is

principal homogeneous with respect to its natural G-action.
For any r ≥ 0, the cohomology of the sheaf Vr is computed by a complex S•(Vr)

whose nth term is

Sn(Vr) :=
∏

∆′∈Tn(Xr)

H0(∆′,Vr)
∼−→

∏
∆∈Tn(X0)

∏
∆′∈Tn(Xr)/∆

H0(∆,V0).

The complex S•(Vr) is equipped with a natural action of G/Gr, and if 0 ≤ r′ ≤ r
then the natural (pullback) map S•(Vr′) → S•(Vr) identifies S•(Vr′) with the
Gr′/Gr-invariants of S•(Vr). Setting S•(V) := lim

−→
r

S•(Vr), we see that S•(V) is

equipped with an action of G. The nth term of S•(V) is given by

Sn(V) ∼−→
∏

∆∈Tn(X0)

lim
−→

r

∏
∆′∈Tn(Xr)/∆

H0(∆,V0)

∼−→
∏

∆∈Tn(X0)

Csm(T̂n/∆,OE)⊗OE
H0(∆,V0).

We let S•(V)E denote the tensor product of the complex S•(V) with E over OE .
Since tensor products commute with inductive limits and finite products, the nth
term is given by

(2.1.6) Sn(V)E
∼−→

∏
∆∈Tn(X0)

Csm(T̂n/∆, E)⊗E H0(∆,V0 ⊗OE
E).

The nth cohomology module of the complex S•(V) is naturally isomorphic to
Hn(V); the nth cohomology space of S•(V)E is naturally isomorphic to Hn(V)E .
(We are using the fact that passage to the inductive limit is exact, and commutes
with tensor products.)

If s is a natural number then we can form similar constructions with V0 replaced
by V0/p

s, and obtain a complex S•(V/ps) = lim
−→

r

S•(Vr/p
s), equipped with a G-

action, whose nth term is

Sn(V/ps) ∼−→
∏

∆∈Tn(X0)

Csm(T̂n/∆,OE/p
s)⊗OE/ps H0(∆,V0/p

s).

The nth cohomology module of S•(V/ps) is naturally isomorphic to the inductive
limit lim

−→
r

Hn(Xr,Vr/p
s).

Taking the projective limit lim
←−

s

S•(V/ps) as s grows to ∞, we obtain a complex

that we denote S̃•(V), again equipped with a G-action, whose nth term is given by

(2.1.7) S̃n(V) ∼−→ lim
←−

s

∏
∆∈Tn(X0)

C(T̂n/∆,OE/p
s)⊗OE/ps H0(∆,V0/p

s)

∼−→
∏

∆∈Tn(X0)

C(T̂n/∆,OE)⊗OE
H0(∆,V0).
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Tensoring with E over OE we obtain a complex S̃•(V)E equipped with a G-action,
whose nth term is given by

(2.1.8) S̃n(V)E
∼−→

∏
∆∈Tn(X0)

C(T̂n/∆, E)⊗E H0(∆,V0 ⊗OE
E).

Let ∆ be a simplex in Tn(X0). As already observed, the right action of G on T̂n/∆

makes T̂n/∆ a principal homogeneous profinite G-set, and so C(T̂n/∆,OE) (respec-
tively C(T̂n/∆, E)) is isomorphic as a G-representation to C(G,OE) (respectively
C(G,E)) equipped with its right regular G-action. In light of this, the description
of each of the terms of S̃•(V) (respectively S̃•(V)E) afforded by (2.1.7) (respec-
tively (2.1.8)) shows that S̃•(V) (respectively S̃•(V)E) is a complex of admissible
OE [G]-modules, in the sense of Definition 1.2.1 (respectively admissible continuous
representations of G).

Passing to cohomology (and taking into account the natural isomorphism

S̃•(V)/ps ∼−→ S•(V/ps)
for each natural number s), Proposition 1.2.12 shows that for each value of n, there
is a natural isomorphism

Hn(S̃•(V)) ∼−→ lim
←−

s

Hn(S•(V/ps)) ∼−→ lim
←−

s

lim
−→

r

Hn(Xr,Vr/p
s) = H̃n(V),

and hence, after tensoring with E, a natural isomorphism

(2.1.9) Hn(S̃•(V)E) ∼−→ H̃n(V)E .

Since S̃•E is a complex of admissible continuous representations of G, the same is
true of its cohomology spaces, and thus we see that H̃n(V)E , when endowed with
its natural Banach space structure, is an admissible continuous representation of G.

It was already observed that (2.1.3) is a short exact sequence of Banach spaces,
and we have seen that its middle term is equipped with an admissible continuous
representation of G. Any G-invariant closed subspace or Hausdorff quotient of an
E-Banach space equipped with an admissible continuous representation of G is
again an E-Banach space equipped with an admissible continuous representation
of G, and so part (i) of the theorem follows.

The morphisms V0 → V0/p
s, as s ranges over all natural numbers, induce a

G-equivariant morphism S•(V) → S•(V/ps) for each s, and hence G-equivariant
morphisms S•(V) → S̃•(V) and S•(V)E → S̃•(V)E . A comparison of (2.1.6)
and (2.1.8) shows that this latter morphism identifies S•(V)E with the complex
of G-smooth vectors in the complex S̃•(V)E . Part (ii) now follows from Proposi-
tion 1.1.10, together with the isomorphism (2.1.9), upon taking the complex V • of
that proposition to be the complex S̃•(V)E . �

Using the results on continuous cohomology proved in Subsection 1.2 we can give
an alternative construction of the spectral sequence of Theorem 2.1.5 (ii). Its only
application will be to the proof of Proposition 2.4.1.

For any fixed values of r and s, and any r′ ≥ r, we have the Hochschild-Serre
spectral sequence

Ei,j
2 = Hi(Gr/Gr′ ,H

j(Xr′ ,V/ps)) =⇒ Hi+j(Xr,V/ps).
Passing to the inductive limit in r′, we obtain a spectral sequence

(2.1.10) Ei,j
2 = Hi

con(Gr, lim−→
r′
Hj(Xr′ ,V/ps)) =⇒ Hi+j(Xr,V/ps).
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Proposition 2.1.11. If we fix a value of r, then passing to the projective limit in s
of the spectral sequences (2.1.10 ), followed by tensoring with E over OE, yields a
spectral sequence

Ei,j
2 = Hi

con(Gr, H̃
j(V)E) =⇒ Hi+j(Xr, E ⊗OE

V).

The inductive limit (with respect to r) of these spectral sequences yields a spectral
sequence that is naturally isomorphic to the spectral sequence of Theorem 2.1.5 (ii).

Proof. The proof of Theorem 2.1.5 shows that H̃j(V) is an admissible OE [G]-
module for each j ≥ 0, which can be computed as the degree j cohomology of
the complex of admissible OE [G]-modules S̃•(V). Proposition 1.2.12 then implies
that for each value of j, the natural map of projective systems

{H̃j(V)/ps}s≥1 → {lim
−→
r′
Hj(Xr′ ,V/ps)}s≥1

has essentially null kernel and cokernel. Thus the induced map of projective systems

{Hi
con(Gr, H̃

j(V)/ps)}s≥1 → {Hi
con(Gr, lim−→

r′
Hj(Xr′ ,V/ps))}s≥1

also has essentially null kernel and cokernel. Taking into account Proposition 1.2.19,
we find that the map of projective systems

{Hi
con(Gr, H̃

j(V))/ps}s≥1 → {Hi
con(Gr, lim−→

r′
Hj(Xr′ ,V/ps))}s≥1

has essentially null kernel and cokernel. In the terminology of Subsection 1.2, this
map is an isomorphism of objects in the category B.

Since Xr is a homotopic to a finite simplicial complex, the natural map

{Hj(Xr,V)/ps}s≥1 → {Hj(Xr,V/ps)}s≥1

is also an isomorphism in the category B. Thus we obtain a spectral sequence

Ei,j
2 = {Hi

con(Gr, H̃
j(V))/ps}s≥1 =⇒ {Hi+j(Xr,V)/ps}s≥1

in the category B. Since passing to the projective limit induces an equivalence
of categories between B and the category A of admissible OE-modules (Proposi-
tion 1.2.10), we obtain a spectral sequence

Ei,j
2 = Hi

con(Gr, H̃
j(V)) =⇒ Hi+j(Xr,V).

(Here we have used the isomorphism Hi
con(Gr, H̃

j(V)) ∼−→ lim
←−

s

Hi
con(Gr, H̃

j(V))/ps,

which follows from the fact that H̃j(V) is an admissible OE [G]-module, together
with Proposition 1.2.18, and the isomorphismHi+j(Xr,V) ∼−→ lim

←−
s

Hi+j(Xr,V)/ps,

which is obvious, since Hi+j(Xr,V) is finitely generated as an OE-module.) Ten-
soring this spectral sequence through by E over OE , and taking into account the
isomorphism of Proposition 1.2.20, we obtain a spectral sequence

Ei,j
2 = Hi

con(Gr, H̃
j(V)E) =⇒ Hi+j(Xr, E ⊗OE

V),
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as in the statement of the proposition.
Passing to the inductive limit in r, and taking into account Propositions 1.1.3

and 1.1.6, yields a spectral sequence

Ei,j
2 = Hi

st(G, H̃
j(V)E) =⇒ Hi+j(V)E .

We leave it to the reader to chase through the various isomorphisms used in the
construction of this spectral sequence, and so verify that it coincides with the
spectral sequence of Theorem 2.1.5 (ii). �

We now state an analogue of Theorem 2.1.5 for compactly supported cohomology.
For this, we assume that X0 is a topological manifold.

Theorem 2.1.12. Suppose that X0 is a topological manifold that is homotopic
to a finite simplicial complex. Then the analogue of Theorem 2.1.5 holds with
cohomology replaced by compactly supported cohomology.

Proof. It suffices to prove the theorem with X0 replaced by a connected compo-
nent; thus we may assume that X0 is equidimensional, say of dimension d. Poincaré
duality yields a canonical isomorphism between compactly supported cohomology
in degree n with coefficients in V and homology in degree d − n with coefficients
in V; pullback of compactly supported cohomology classes corresponds to pullback
of homology classes with respect to the finite covering maps Xr+1 → Xr. Thus we
work from now on with homology rather than with compactly supported cohomol-
ogy. As in the proof of Theorem 2.1.5 we replace X0 by a finite simplicial complex,
and we use the same notation T•(Xr) as in that proof for the induced triangulation
on each Xr.

The homology of Xr with coefficients in Vr is computed by a complex S•(Vr)
whose nth term is

Sn(Vr) :=
∏

∆′∈Tn(Xr)

H0(∆′,Vr)
∼−→

∏
∆∈Tn(X0)

∏
∆′∈Tn(Xr)/∆

H0(∆,V0).

The complex S•(Vr) is equipped with a natural action of G/Gr, and if 0 ≤ r′ ≤
r then the natural (pullback) map S•(Vr′) → S•(Vr) identifies S•(Vr′) with the
Gr′/Gr-invariants of S•(Vr). Setting S•(V) := lim

−→
r

S•(Vr), we see that S•(V) is

equipped with an action of G. The nth term of S•(V) is given by

Sn(V) ∼−→
∏

∆∈Tn(X0)

lim
−→

r

∏
∆′∈Tn(Xr)/∆

H0(∆,V0)

∼−→
∏

∆∈Tn(X0)

Csm(T̂n/∆,OE)⊗OE
H0(∆,V0),

and so is isomorphic as a topological G-module to Sn(V) (in the notation of the
proof of Theorem 2.1.5). Similarly, if we set S̃•(V) = lim

←−
s

lim
−→

r

S̃•(Vr/p
s), then there

is an isomorphism S̃n(V) ∼−→ S̃n(V) for each n.
The chain complexes S•(V) and S̃•(V) are thus term-by-term isomorphic to the

cochain complexes S•(V) and S̃•(V); it is merely the boundary and coboundary
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maps that differ. The proof of Theorem 2.1.5 is hence seen to carry over from
cohomology to homology, and so yields a proof of the present theorem. �

Let us note that in the context of the preceding theorem, the Hochschild-Serre
spectral sequence for compactly supported cohomology yields a spectral sequence
analogous to (2.1.10), with cohomology replaced by compactly supported cohomol-
ogy. The proof of Proposition 2.1.11 then carries over in the compactly supported
case, and thus yields an analogue of that proposition for compactly supported co-
homology.

(2.2) We return to the situation considered in the introduction. Thus we fix a
number field F ⊂ C, a reductive connected linear algebraic group G defined over
F , an isomorphism ı : C ∼−→ Qp, and hence a prime p of F lying over p. We let
Fp denote the completion Fp of F at p (equivalently, the closure of F in Qp), and
let G denote the locally Fp-analytic group G(Fp). We also let A denote the ring of
adèles of F , let Af denote the ring of finite adèles (which we may write as Fp×Ap

f ,
where the second factor denotes the prime-to-p finite adèles), let F∞ denote R⊗QF
(so A = F∞ × Af ), and write G∞ := G(F∞). We fix once and for all a maximal
compact subgroup K∞ of G∞.

We write H◦ to denote the connected component of the identity of a real Lie
group H, and write π0(H) to denote the group of connected components of H; that
is, the quotient H/H◦. The structure theory of real reductive groups (in particular,
the Iwasawa decomposition) shows that the natural map

π0(K∞) → π0(G∞)

is an isomorphism. We thus identity these two connected component groups, and
denote them simply by π0.

If Kf is a compact open subgroup of G(Af ), then we write

(2.2.1) Y (Kf ) := G(F )\G(A)/K◦
∞Kf .

The quotient G∞/K∞ is the symmetric space attached to the real Lie group G∞,
and so the quotient G∞/K◦

∞ is a finite union of copies of this symmetric space,
equipped with a natural action of π0, which acts simply transitively on the set of
connected components. Thus Y (Kf ) is a finite union of quotients of this symmetric
space by congruence subgroups. If Kf is sufficiently small, then G(F ) acts without
fixed points on the quotient G(A)/K◦

∞Kf , and hence Y (Kf ) is a smooth manifold.
If K ′

f is a normal open subgroup of such a subgroup Kf , the natural map Y (K ′
f ) →

Y (Kf ) realises Y (K ′
f ) as an unramified Galois cover of Y (Kf ), with Galois group

isomorphic to the quotient Kf/K
′
f (acting on the right). The natural continuous

action of π0 on the quotient G∞/K◦
∞ induces a natural continuous action of π0 on

each of the quotients Y (Kf ).
Let W be a finite dimensional complex vector space equipped with a representa-

tion of the algebraic group G/C. We define a π0-equivariant local system of complex
vector spaces VW on the manifold Y (Kf ) (for Kf sufficiently small) as follows:

(2.2.2) VW := G(F )\(W × (G(A)/K◦
∞Kf )).

(Here G(F ) acts on W through the given representation, and on the second factor
by left multiplication.) The local system VW on Y (Kf ) is locally isomorphic to the
constant sheaf defined by W .
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As the compact open subgroup Kf shrinks down to the identity, the manifolds
Y (Kf ) form a projective system. The local systems VW are compatible with the
maps in this projective system in an obvious sense: if K ′

f ⊂ Kf , then the pullback
of the local system VW on Y (Kf ) to Y (K ′

f ) is naturally isomorphic to the local
system VW on Y (K ′

f ). Since we intend to apply the results of Subsection 2.1 in the
context of the arithmetic quotients Y (Kf ), let us recall that, although Y (Kf ) may
not be compact, and so may not be homeomorphic to a finite simplicial complex,
it does contain a deformation retract which is a finite simplicial complex.

Let us fix a degree n and a representation W , and consider the cohomology
spaces Hn

∗ (Y (Kf ),VW ), as Kf varies over all compact open subgroups of G(Af ),
and where as in the preceding subsection, ∗ denotes either ∅ or c (so that we are
considering either cohomology or compactly supported cohomology). Passing to
the inductive limit as Kf shrinks down to the identity, we obtain a smooth repre-
sentation Hn

∗ (VW ) := lim
−→
Kf

Hn
∗ (Y (Kf ),VW ) of π0×G(Af ), which is well known to be

admissible. In fact, passing to the Kf -fixed points exactly recovers the cohomology
Hn
∗ (Y (Kf ),VW ).
Our intention is to “p-adically complete” the vector space Hn

∗ (VW ) appropriately
(using the isomorphism ı to regard W , and hence Hn

∗ (VW ), as a Qp-vector space)
so as to obtain an admissible continuous representation of G(Af ).

We first recall an alternative description of the local system VW (regarded as a
Qp-local system via ı).

Definition 2.2.3. Let Kf be a compact open subgroup of G(Af ) (chosen suffi-
ciently small, so that Y (Kf ) is a manifold), and let G0 denote the projection of Kf

onto G. (Thus G0 is a compact open subgroup of G). If M is a G0-module then
we define

VM := (M × (G(F )\G(A)/K◦
∞))/Kf ,

a π0-equivariant local system over Y (Kf ). (The right action of Kf on the product
is defined via m ·k = k−1

p m on the first factor (where kp ∈ G0 is the pth component
of an element k ∈ Kf ) and via right multiplication on the second factor.)

If W is a complex representation of G, then via ı we may regard W as a repre-
sentation of G defined over Qp, and so in particular as a representation of G, via
the inclusion G := G(Fp) ⊂ G(Qp). Let W ′ denote W regarded as a representation
of G in this way.

Lemma 2.2.4. If Kf is a compact open subgroup of G(Af ) then there is a natural
isomorphism of π0-equivariant local systems over Y (Kf ) between VW (as defined
by (2.2.2 ), and then regarded as a Qp-local system via ı) and the local system VW ′

defined via Definition 2.2.3.

Proof. If g ∈ G(A) then let gp denote the pth component of g. The required
isomorphism is provided by the automorphism (w, g) 7→ (g−1

p w, g) of W×G(A). �

The preceding lemma justifies the duplication of notation in (2.2.2) and Defini-
tion 2.2.3. For the duration of this subsection we will consider only local systems
arising from representations of compact open subgroups of G via Definition 2.2.3.
It is technically easier to work with vector spaces defined over a finite extension
of Qp, rather than over Qp. Thus we fix a finite extension E of Fp contained in
Qp, and from now on we let W denote a finite dimensional representation of G
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defined over E (rather than over C or Qp). If we choose E so that G is split over
E, then any representation of G over Qp descends uniquely (up to an isomorphism)
to a representation of G defined over E, and so we do not lose any generality by
considering only W that are defined over E.

In order to make our constructions as natural as possible, it helps to consider
certain directed sets. We let S denote the set of all compact open subgroups of G,
directed downward by inclusion. If W0 is a separated lattice in W , then we let SW0

denote the directed subset of S consisting of those compact open subgroups Kp of G
that leave W0 invariant. If G0 is the maximal subgroup of G leaving W0 invariant,
then G0 is a compact open subgroup of G, and SW0 consists of all open subgroups
Kp of G0. In particular, SW0 is cofinal in S, and if W ′

0 is a second separated lattice
in W , then the intersection SW0

⋂
SW ′0

is also cofinal in each of SW0 , SW ′0
, and S.

Let us temporarily fix a separated latticeW0 inW . IfKf is any open subgroup of
G(Af ) whose image under the projection onto G is contained in SW0 , then via Def-
inition 2.2.3 we obtain on Y (Kf ) a π0-equivariant local system of OE-submodules
VW0 of VW such that E ⊗OE

VW0

∼−→ VW . If K ′
f ⊂ Kf , then the equivariant

local system so obtained on Y (K ′
f ) is naturally isomorphic to the pullback of the

corresponding local system on Y (Kf ).
We now fix a “tame level” Kp (that is, a compact open subgroup Kp of G(Ap

f )).
We form the projective system of arithmetic quotients {Y (KpK

p)}Kp∈SW0
, each

member of which is equipped with a local system VW0 . Let us fix for a moment a
sufficiently small element Kp of SW0 , chosen so that Y (KpK

p) is a manifold. If K ′
p

is a normal open subgroup of Kp, then the natural map Y (K ′
pK

p) → Y (KpK
p) is

unramified and Galois, with Galois group Kp/K
′
p. Thus we are in the situation of

Subsection 2.1, if we take the group G of that subsection to be Kp, and we may
form the constructions introduced in that subsection. We write

Hn
∗ (Kp,VW0) := lim

−→
Kp∈SW0

Hn
∗ (Y (KpK

p),VW0)

∼−→ lim
−→

Kp∈SW0

lim
←−

s

Hn
∗ (Y (KpK

p),VW0/ps),

Hn
∗ (Kp,VW0)E := E ⊗OE

Hn
∗ (Kp,VW0),

H̃n
∗ (Kp,VW0) := lim

←−
s

lim
−→

Kp∈SW0

Hn
∗ (Y (KpK

p),VW0/p
s),

H̃n
∗ (Kp,VW0)E := E ⊗OE

H̃n
∗ (Kp,VW0),

TpH
n
∗ (Kp,VW0) := lim

←−
s

Hn
∗ (Kp,VW0)[p

s],

VpH
n
∗ (Kp,VW0) := E ⊗OE

TpH
n
∗ (Kp,VW0).

(These correspond to the OE-modules and E-vector spaces that in Subsection 2.1
are denoted Hn

∗ (V), Hn
∗ (V)E , H̃n

∗ (V), H̃n
∗ (V)E , TpH

n
∗ (V), and VpH

n
∗ (V), respec-

tively.)
The image of Hn

∗ (Kp,VW0) in Hn
∗ (Kp,VW0)E is a lattice in this E-vector space,

and we let Ĥn
∗ (Kp,VW0)E denote the E-Banach space obtained by completing

Hn
∗ (Kp,VW0)E with respect to the gauge of that lattice. Also, the image of

H̃n
∗ (Kp,VW0) in H̃n

∗ (Kp,VW0)E is a lattice in this E-vector space, and we re-
gard H̃n

∗ (Kp,VW0)E as a semi-normed space, the semi-norm being given by the
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gauge of that lattice. Similarly, we use the gauge of TpH
n
∗ (Kp,VW0) to regard

VpH
n
∗ (Kp,VW0) as a semi-normed E-vector space. The results of Subsection 2.1

show that both these semi-normed spaces are in fact E-Banach spaces.
An inclusion W0 ⊂W ′

0 of separated lattices in W induces an injection of sheaves
VW0 → VW ′0

, and hence morphisms of OE-modules Hn
∗ (Kp,VW0) → Hn

∗ (Kp,VW ′0
),

H̃n
∗ (Kp,VW0) → H̃n

∗ (Kp,VW ′0
), and TpH

n
∗ (Kp,VW0) → TpH

n
∗ (Kp,VW ′0

). (Recall
that the intersection of the directed sets SW0 and SW ′0

is cofinal in each of them.)
Such an inclusion thus induces continuous maps of E-Banach spaces

(2.2.5) Ĥn
∗ (Kp,VW0)E → Ĥn

∗ (Kp,VW ′0
)E ,

(2.2.6) H̃n
∗ (Kp,VW0)E → H̃n

∗ (Kp,VW ′0
)E ,

and

(2.2.7) VpH
n
∗ (Kp,VW0)E → VpH

n
∗ (Kp,VW ′0

)E .

Lemma 2.2.8. If W0 ⊂ W ′
0 is an inclusion of separated lattices in W then all

three morphisms (2.2.5 ), (2.2.6 ) and (2.2.7 ) are topological isomorphisms.

Proof. If the natural number r is chosen sufficiently large, then there is an inclusion
prW ′

0 ⊂W0. Thus we may embed (2.2.5) into the sequence of maps

Ĥn
∗ (Kp, prVW ′0

)E −→ Ĥn
∗ (Kp,VW0)E

(2.2.5)−→ Ĥn
∗ (Kp,VW ′0

)E −→ Ĥn
∗ (Kp, p−rVW0)E .

The composite of the first two arrows is obviously an isomorphism, as is the com-
posite of the second two arrows. Thus the middle arrow is an isomorphism. A
similar argument applies to (2.2.6) and (2.2.7). �

Definition 2.2.9. We make the following definitions:
(i) Ĥn

∗ (Kp,VW ) := lim
−→
W0

Ĥn
∗ (Kp,VW0)E .

(ii) H̃n
∗ (Kp,VW ) := lim

−→
W0

H̃n
∗ (Kp,VW0)K .

(iii) VpH
n
∗ (Kp,VW ) := lim

−→
W0

VpH
n
∗ (Kp,VW0).

(In each case the locally convex inductive limit is taken over the directed set of
separated lattices W0 in W , directed by inclusion).

Lemma 2.2.8 shows that the transition isomorphisms in each of the three in-
ductive systems occuring in Definition 2.2.9 are topological isomorphisms. Thus
for any choice of W0, each of the natural maps Ĥn

∗ (Kp,VW0)E → Ĥn
∗ (Kp,VW ),

H̃n
∗ (Kp,VW0)E → H̃n

∗ (Kp,VW ) and VpH
n
∗ (Kp,VW0) → VpH

n
∗ (Kp,VW ) is a topo-

logical isomorphism. In particular, each of the topological E-vector spaces defined
in Definition 2.2.9 is an E-Banach space.

If g ∈ G and W0 is a separated lattice in W then gW0 is again a separated lattice
in W . Thus we obtain an action of G on the directed set of all separated lattices
in W .
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Lemma 2.2.10. The action of G on the directed set of separated lattices in W
lifts to a continuous actions of G on each of the inductive systems that occurs in
Definition 2.2.9. Thus each of the E-Banach spaces Ĥn

∗ (Kp,VW ), H̃n
∗ (Kp,VW )

and VpH
n
∗ (Kp,VW ) is equipped with a continuous G-action.

If W is the trivial representation, then each of these E-Banach spaces admits a
norm with respect to which the action of G is isometric.

Proof. If g ∈ G and W0 is a separated lattice in W then multiplication by g in-
duces isomorphisms Ĥn

∗ (Kp,VW0)E
∼−→ Ĥn

∗ (Kp,Vg−1W0)E , H̃
n
∗ (Kp,VW0)E

∼−→
H̃n
∗ (Kp,Vg−1W0)E , and VpH

n
∗ (Kp,VW0)

∼−→ VpH
n
∗ (Kp,Vg−1W0). Passing to the

inductive limit over all W0 yields the required action of G on each of Ĥn
∗ (Kp,VW ),

H̃n
∗ (Kp,VW ), and VpH

n
∗ (Kp,VW ). There is a compact open subgroup G0 of G

that leaves any W0-invariant, and this implies that the G-action on each of these
E-Banach spaces is continuous.

Note that when W is the trivial representation of G, any separated lattice W0

in W is invariant under all of G, and so in this case the G-action on Ĥn
∗ (Kp,VW )

(respectively H̃n
∗ (Kp,VW ), VpH

n
∗ (Kp,VW )) is isometric with respect to the norm

defined as the gauge of the image of Ĥn
∗ (Kp,VW0) (respectively H̃n

∗ (Kp,VW0),
VpH

n
∗ (Kp,VW0)). �

Theorem 2.2.11. (i) The group π0 × G acts on each of the E-Banach spaces
Ĥn
∗ (Kp,VW ), H̃n

∗ (Kp,VW ), and VpH
n
∗ (Kp,VW ) via an admissible continuous rep-

resentation.
(ii) If W is the trivial local system, then each of these Banach spaces can be

topologized by a norm with respect to which π0 ×G acts by isometries.
(iii) If Hn

∗ (Kp,VW ) denotes the space of Kp-invariants in the admissible smooth
π0×G(Af )-representation Hn

∗ (VW ), then there is a π0×G-equivariant natural map
Hn
∗ (Kp,VW ) → Ĥn

∗ (Kp,VW ), whose image is dense.
(iv) There is a short exact sequence in the category of admissible continuous

π0 ×G-representations

0 → Ĥn
∗ (Kp,VW ) → H̃n

∗ (Kp,VW ) → VpH
n+1
∗ (Kp,VW ) → 0.

(v) The composite of the map of (iii) with the closed embedding Ĥn
∗ (Kp,VW ) →

H̃n
∗ (Kp,VW ) of (iv) yields a map

Hn
∗ (Kp,VW ) → H̃n

∗ (Kp,VW )sm,

which is the edge map of a π0 ×G-equivariant spectral sequence

Ei,j
2 = Hi

st(G, H̃
j
∗(K

p,VW )) =⇒ Hi+j
∗ (Kp,VW ).

Proof. Since all the local systems under consideration are π0-equivariant, each of
the OK-modules and E-vector spaces that we have defined is equipped in a natural
way with an action of π0, compatible with the various maps between them. The
theorem then follows by applying Theorems 2.1.5 and 2.1.12 to the sheaves VW0 for
each separated lattice W0 ⊂W , passing to the limit with respect to the transition
isomorphisms (2.2.5), (2.2.6) and (2.2.7), and taking into account the naturality of
the G-action given by Lemma 2.2.10, and of the π0-action. �
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Up to this point, we have kept fixed the tame level Kp. We now consider what
happens when the tame level is allowed to change.

Suppose that Kp′ ⊂ Kp is an inclusion of compact open subgroups of G(Ap),
such that Kp′ is normal in Kp. If Kp is any compact open subgroup of G, then we
obtain a surjective map Y (KpK

p′) → Y (KpK
p). Consequently, we obtain a map

of exact sequences in the category of admissible continuous π0 ×G-representations

(2.2.12)

0 // Ĥn
∗ (Kp,VW ) //

��

H̃n
∗ (Kp,VW ) //

��

VpH
n+1
∗ (Kp,VW ) //

��

0

0 // Ĥn
∗ (Kp′,VW ) // H̃n

∗ (Kp′,VW ) // VpH
n+1
∗ (Kp′,VW ) // 0.

Since Kp′ is normal in Kp, each of the E-Banach spaces in the lower short exact
sequence is equipped with a natural continuous action of the quotient Kp/Kp′, and
(by virtue of the naturality of these actions) the arrows in this short exact sequence
are equivariant with respect to these actions.

Proposition 2.2.13. The vertical arrows of (2.2.12 ) are closed embeddings, and
identify the upper exact sequence with the Kp/Kp′-invariants of the lower exact
sequence.

Proof. Let a denote the order of the quotient Kp/Kp′. If U is any Hausdorff topo-
logical E-vector space equipped with a continuous action of Kp/Kp′, the averaging
operator πKp : u 7→ a−1

∑
k∈Kp/Kp′ ku induces a continuous projection of U onto

its closed subspace of Kp-invariants.
Let W0 be a choice of separated lattice in W , and let W ′

0 = a−1W0. Then
multiplication by a−1 is a well-defined map Hn

∗ (Kp′,VW0) → Hn
∗ (Kp′,VW ′0

), while
there is a natural trace map tr : Hn

∗ (Kp′,VW ′0
) → Hn

∗ (Kp,VW ′0
) (induced by the

natural maps Y (KpK
p′) → Y (KpK

p) for each compact open subgroup Kp of G).
Also πKp projects Hn

∗ (Kp′,VW ) onto Hn
∗ (Kp,VW ). These maps fit together into

the commutative diagram

(2.2.14) Hn
∗ (Kp,VW0)

��

!!

// Hn
∗ (Kp,VW )

��

id

||

Hn
∗ (Kp′,VW0)

a−1·
��

// Hn
∗ (Kp′,VW )

πKp

��

Hn
∗ (Kp′,VW ′0

)

tr

��
Hn
∗ (Kp,VW ′0

) // Hn
∗ (Kp,VW )

(where the unlabelled arrows are the natural maps corresponding to the inclusions
W0 ⊂W ′

0 ⊂W, and Kp′ ⊂ Kp).
Lemma 2.2.8 shows that the E-Banach spaces Ĥn

∗ (Kp,VW ) and Ĥn
∗ (Kp′,VW ))

may be obtained as the completion of Hn
∗ (Kp,VW ) and Hn

∗ (Kp′,VW ) respectively
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with respect to the gauge of either the images ofHn
∗ (Kp,VW0) and ofHn

∗ (Kp′,VW0),
or the images of Hn

∗ (Kp,VW ′0
) and of Hn

∗ (Kp′,VW ′0
). A consideration of (2.2.14)

thus shows that πKp extends to a continuous map Ĥn
∗ (Kp′,VW ) → Ĥn

∗ (Kp,VW ),
splitting the natural map Ĥn

∗ (Kp,VW ) → Ĥn
∗ (Kp′,VW ) induced by the inclusion

Kp′ ⊂ Kp. Thus the natural map Ĥn
∗ (Kp,VW ) → Ĥn

∗ (Kp′,VW ) is a closed embed-
ding that identifies its source with the Kp invariants of its target.

A similar argument, in which we pass to ps-torsion in the spaces on the left-hand
side of the diagram (2.2.14), pass to the limit in s, and then tensor with E, shows
that πKp induces a map VpH

n
∗ (Kp′,VW ) → VpH

n
∗ (Kp,VW ), splitting the natural

map VpH
n
∗ (Kp,VW ) → VpH

n
∗ (Kp′,VW ).

If instead of working with VW0 and VW ′0
, we work with the quotient sheaves

VW0/p
s and VW ′0

/ps, then after passing to the limit in s and tensoring with E, we
similarly conclude that πKp induces a map H̃n

∗ (Kp′,VW ) → H̃n
∗ (Kp,VW ), splitting

the natural map H̃n
∗ (Kp,VW ) → H̃n

∗ (Kp′,VW ). This completes the proof of the
proposition. �

Definition 2.2.15. Write

Ĥn
∗ (VW ) := lim

−→
Kp

Ĥn
∗ (Kp,VW ),

H̃n
∗ (VW ) := lim

−→
Kp

H̃n
∗ (Kp,VW ),

VpH
n
∗ (VW ) := lim

−→
Kp

VpH
n
∗ (Kp,VW ).

(Here, the locally convex inductive limits are taken with respect to the set of com-
pact open subsets of G(Ap

f ), directed downward.)

We will apply the terminology of [13, §7] to the group π0 × G(Af ) = π0 ×G ×
G(Ap

f ), taking the locally analytic group G of that reference to be the group G (in
our current notation), and the auxiliary locally compact group Γ of that reference
to be the product π0 ×G(Ap

f ).

Theorem 2.2.16. (i) The group π0 × G(Af ) acts on each of the locally convex
topological E-vector spaces Ĥn

∗ (VW ), H̃n
∗ (VW ), and VpH

n
∗ (VW ) via an admissible

continuous representation.
(ii) For each compact open subgroup Kp of G(Ap

f ) there are natural isomorphisms
of admissible continuous π0 × G-representations Ĥn

∗ (Kp,VW ) ∼−→ Ĥn
∗ (VW )Kp

,

H̃n
∗ (Kp,VW ) ∼−→ H̃n

∗ (VW )Kp

, and VpH
n
∗ (Kp,VW ) ∼−→ VpH

n
∗ (VW )Kp

.

(iii) There is a natural π0×G(Af )-equivariant map Hn
∗ (VW ) → Ĥn

∗ (VW ), whose
image is dense.

(iv) There is a short exact sequence in the category of admissible continuous
π0 ×G(Af )-representations

0 → Ĥn
∗ (VW ) → H̃n

∗ (VW ) → VpH
n+1
∗ (VW ) → 0.

Proof. If g ∈ G(Ap
f ), then right multiplication by g on the spaces Y (KpK

p) (as Kp

ranges over the directed set of compact open subgroups of G) induces isomorphisms
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of the directed systems of spaces {Y (KpgK
pg−1)}Kp∈S

∼−→ {Y (KpK
p)}Kp∈S , and

hence topological isomorphisms

Ĥn
∗ (Kp,VW ) ∼−→ Ĥn

∗ (gKpg−1,VW ),

H̃n
∗ (Kp,VW ) ∼−→ H̃n

∗ (gKpg−1,VW ),
and

VpH
n
∗ (Kp,VW ) ∼−→ VpH

n
∗ (gKpg−1,VW ),

compatible with the π0 × G-action on these spaces. Thus we obtain a topolog-
ical G(Ap

f )-action on each of the spaces Ĥn
∗ (VW ), H̃n

∗ (VW ), and VpH
n
∗ (VW ) of

Definition 2.2.15, commuting with the π0 × G-action on these spaces. Proposi-
tions 2.2.13 shows that each of the locally convex inductive limits appearing in
Definition 2.2.15 is a strict inductive limit (in the sense of [4, p. II.33]), and the
same proposition thus implies that the natural maps Ĥn

∗ (Kp,VW ) → Ĥn
∗ (VW )Kp

,
H̃n
∗ (Kp,VW ) → H̃n

∗ (VW )Kp

, and VpH
n
∗ (Kp,VW ) → VpH

n
∗ (VW )Kp

are topological
isomorphisms. In particular, the G(Ap

f )-action on each of the spaces of Defini-
tion 2.2.15 is strictly smooth, in the sense of [13, Def. 7.1.2]. Taking into account
Theorem 2.2.11 (i), we see that we have proved part (i) and (ii) of the current
theorem. Parts (iii) and (iv) are easy consequences of the corresponding parts of
Theorem 2.2.11, and so we are done. �

Note that by taking W to be the trivial representation (so that VW is the trivial
local system), this result yields Theorem 0.1 of the introduction.

To simplify notation, when W is the trivial representation of G on E we will
write simply Hn

∗ , Ĥn
∗ , H̃

n
∗ , and VpH

n
∗ in place of Hn

∗ (VW ), Ĥn
∗ (VW ), H̃n

∗ (VW ), and
VpH

n
∗ (VW ), and will write Hn

∗ (Kp), Ĥn
∗ (Kp), H̃n

∗ (Kp), and VpH
n
∗ (Kp) in place

of Hn
∗ (Kp,VW ), Ĥn

∗ (Kp,VW ), H̃n
∗ (Kp,VW ), and VpH

n
∗ (Kp,VW ), for any choice of

tame level Kp.

Theorem 2.2.17. If W is any finite dimensional algebraic representation of G
defined over E, then there is a natural isomorphism of admissible continuous π0 ×
G(Af )-representations H̃n

∗ (VW ) ∼−→ H̃n
∗ ⊗E W . (The action of π0 × G(Af ) =

π0 × G × G(Ap
f ) on the target is via the diagonal action of G, and the action of

π0 ×G(Ap
f ) on the first factor.)

Proof. Let us first fix a tame level Kp. If W0 is a separated lattice in W and s is
any natural number then there is a natural isomorphism

lim
−→
Kp

Hn
∗ (Y (KpK

p),VW0/ps) ∼−→ lim
−→
Kp

Hn
∗ (Y (KpK

p),OE/p
s)⊗OE/ps VW0/ps .

(If Kp is sufficiently small, it acts trivially on W0/p
s.) Thus we obtain a natural

isomorphism of inductive systems

{H̃n
∗ (Kp,VW0)}W0⊂W

∼−→ {H̃n
∗ (Kp,OE)⊗OE

W0}W0⊂W

(where these inductive systems are indexed by the collection of separated lattices
W0 in W ). The naturality of this isomorphism shows that it is π0 ×G-equivariant.

Tensoring these OE-modules over OE with E, and then passing to the inductive
limit in W0, we obtain a natural isomorphism H̃n

∗ (Kp,VW ) ∼−→ H̃n
∗ ⊗E W. Now

passing to inductive limit in Kp yields the isomorphism of the theorem. (The
π0 ×G(Af )-equivariance follows from the naturality of the isomorphism.) �

In light of this result, we may rewrite the spectral sequence of Theorem 2.2.11 (v)
in the following manner.
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Corollary 2.2.18. There is a π0 ×G(Af )-equivariant map

Hn
∗ (VW ) → Homg(W̌ , H̃n

∗, Qp−la)

which is the edge map of a π0 ×G(Af )-equivariant spectral sequence

Ei,j
2 = Exti

g(W̌ , H̃j
∗, Qp−la) =⇒ Hi+j

∗ (VW ).

Proof. Theorem 1.1.13 allows us to rewrite the spectral sequence given by part (v)
of Theorem 2.2.11 in the form

Ei,j
2 = Hi(g, H̃j

∗(K
p,VW )Qp−la) =⇒ Hi+j

∗ (Kp,VW ).

Passing to the inductive limit in Kp and taking into account the fact that comput-
ing both locally analytic vectors and Lie algebra cohomology commutes with the
inductive limit (the former by [13, Prop. 3.5.14]) yields a π0 × G(Af )-equivariant
spectral sequence

Ei,j
2 = Hi(g, H̃j

∗(VW )Qp−la) =⇒ Hi+j
∗ (VW ).

Passing to locally Qp-analytic vectors in Theorem 2.2.17, and taking into account
[13, Prop. 3.6.15], yields an isomorphism H̃j

∗(VW )Qp−la
∼−→ H̃j

∗, Qp−la ⊗E W. Com-
bining this with the preceding spectral sequence, we obtain the spectral sequence
of the corollary. �

This yields Theorem 0.5 of the introduction.

Remark 2.2.19. The edge map Hn
∗ (VW ) → Homg(W̌ , H̃n

∗, Qp−la) of the preced-
ing corollary may be rewritten as a morphism Hn

∗ (VW ) → (H̃n
∗ ⊗E W )sm, where

the subscript sm denotes the subspace of vectors on which G acts smoothly (as
follows from the degree 0 case of the isomorphism of Theorem 1.1.13). Giving this
morphism is in turn equivalent to giving a morphism Hn

∗ (VW )⊗E W̌ → H̃n
∗, W̌−lalg

,

by [13, Prop. 4.2.4]. Composing this with the inclusion of H̃n
∗, W̌−lalg

in H̃n
∗ gives

the map (0.3) of the introduction.
Since W̌ is an algebraic representation of G over Fp, the locally W̌ -algebraic

vectors of H̃n
∗ are not merely locally Qp-analytic, but are in fact locally Fp-analytic.

Thus the edge map of the preceding corollary factors as

Hn
∗ (VW ) → Homg(W̌ , H̃n

∗, Fp−la) → Homg(W̌ , H̃n
∗, Qp−la),

where the second arrow is induced by the closed embedding of the locally Fp-analytic
vectors into the locally Qp-analytic vectors.

Remark 2.2.20. Theorem 2.2.17 shows that H̃n
∗ , equipped with the data of the

spectral sequences of the preceding corollary, one for each choice of W , forms the
primitive object in our construction, from which all the other objects that we have
considered may be obtained. Indeed, we recover H̃n

∗ (VW ) as the tensor product
H̃n
∗ ⊗E W . We may then recover Ĥn

∗ (VW ) as the closure of the image of the map
Hn
∗ (VW ) → (H̃n

∗ ⊗E W )sm → H̃n
∗ ⊗E W (where the first arrow is the edge map of

the spectral sequence of Corollary 2.2.18, reinterpreted as in Remark 2.2.19, and
the second arrow is the obvious inclusion), while VpH

n
∗ (VW ) arises as the cokernel

of the embedding Ĥn−1
∗ (VW ) → H̃n−1

∗ (VW ).

Our constructions are compatible with the cup-product on cohomology.
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Proposition 2.2.21. Fix a pair of natural numbers m and n. Also fix ∗1, ∗2 ∈
{∅, c}, and take ∗ to be ∅ if ∗1 = ∗2 = ∅, and to be c otherwise.

(i) The cup-product on cohomology induces continuous π0 × G(Af )-equivariant
morphisms Ĥm

∗1 ⊗̂E Ĥ
n
∗2 → Ĥm+n

∗ , H̃m
∗1 ⊗̂E H̃

n
∗2 → H̃m+n

∗ , and VpH
m
∗1 ⊗̂E VpH

n
∗2 →

VpH
m+n
∗ , compatible with the exact sequences provided by Theorem 2.2.16 (iv).

(ii) If W1 and W2 are two finite dimensional representations of G defined over
E, then the following diagram, in which the left-hand vertical arrow arises from
the cup-product, the right-hand vertical arrow is that of part (i) (restricted to the
indicated spaces of locally algebraic vectors) and the horizontal arrows are given
by the edge-maps of the spectral sequences of Corollary 2.2.18, as reinterpreted in
Remark 2.2.19, is commutative:

(
Hm
∗1(VW1)⊗ W̌1

)
⊗

(
Hn
∗2(VW2)⊗ W̌2

)
//

��

H̃m
∗1, W̌1−lalg

⊗̂ H̃n
∗2, W̌2−lalg

��
Hm+n
∗ (VW1⊗W2)⊗

(
W̌1 ⊗ W̌2

)
// H̃m+n

∗, W̌1⊗W̌2−lalg
.

Proof. This is an easy consequence of the naturality of the cup-product, and of our
constructions. �

In particular, taking ∗ = ∅ and m = n = 0, we find that H̃0 is naturally a
topological E-algebra, equipped with an action of π0 ×G(Af ) as algebra automor-
phisms, and that for either choice of ∗ and each n ≥ 0, the space H̃n

∗ is naturally a
topological H̃0-module, equipped with a compatible π0 ×G(Af )-action.

We now pass from the admissible continuous G-representation H̃∗ to its associ-
ated space of locally analytic vectors. More precisely, if L is any local field inter-
mediate between Fp and Qp, then we can consider the associated space of locally
L-analytic vectors.

Theorem 2.2.22. (i) The space H̃n
∗, L−la is an admissible locally analytic repre-

sentation of π0 ×G(Af ) (in the sense of [13, Def. 7.2.7]).
(ii) For any compact open subgroup Kp of G(Ap

f ), the natural map

H̃n
∗ (Kp)L−la → (H̃n

∗, L−la)
Kp

is a π0 ×G-equivariant isomorphism.
(iii) If W is any finite dimensional representation of G over E, then there is

a π0 × G(Af )-equivariant closed embedding of H̃n
∗, W−lalg, equipped with its finest

convex topology, into H̃n
∗, L−la.

Proof. Part (i) (respectively part (ii)) follows from the corresponding part of Theo-
rem 2.2.16, together with Proposition 7.2.11 (respectively Proposition 7.2.5) of [13],
while part (iii) follows from part (i) together with Propositions 7.2.13 and 7.2.14 of
[13]. �

This yields Theorem 0.2 of the introduction.
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Proposition 2.2.23. If m and n are two natural numbers, and ∗1, ∗2, and ∗ are as
in Proposition 2.2.21, then for any local field L intermediate between Fp and Qp,
the cup-product of cohomology classes induces a π0 × G(Af )-equivariant pairing
H̃m
∗1, L−la ⊗̂E H̃

n
∗2, L−la → H̃m+n

∗, L−la.

Proof. This follows from [13, 3.5.15], applied to the pairing H̃m
∗1 ⊗̂E H̃

n
∗2 → H̃m+n

∗
of Proposition 2.2.21. �

Since π0 is naturally identified with the group of connected components of G∞,
we may regard π0×G(Af ) as being a quotient of the group G(A) in a natural way,
and so regard the π0 × G(Af )-representations considered above as being G(A)-
representations. We have preferred to describe them explicitly as π0 × G(Af )-
representations, since this emphasizes that the real Lie group G∞ intervenes only
through the group of connected components π0.

We close this subsection with the following simple propositions and their corol-
laries.

Proposition 2.2.24. If n = 0 or 1 then VpH
n vanishes.

Proof. It is a general fact that H0(–,OE) and H1(–,OE) are torsion free. �

Corollary 2.2.25. The embedding Ĥ0 → H̃0 is an isomorphism. Furthermore,
for any representation W of G defined over E, the natural map H0(VW )⊗E W̌ →
Ĥ0

W−lalg is an isomorphism.

Proof. The first claim of the corollary follows from the exact sequence of Theo-
rem 2.2.16 (iv), and the case n = 1 of Proposition 2.2.24. The second claim follows
from an examination of the spectral sequence of Corollary 2.2.18 in the case when
i = j = 0. �

Proposition 2.2.26. (i) If n = 0 or 1 then VpH
n
c vanishes.

(ii) If d is the dimension of G∞/K∞, then VpH
d
c and VpH

d+1
c both vanish.

Proof. Part (i) follows from the general fact that H0
c (–,OE) and H1

c (–,OE) are
torsion free. Since the dimension of each quotient Y (Kf ) is equal to d, we see that
Hd

c (Y (Kf ),OE) is the free OE-module spanned by the fundamental classes of the
connected components of Y (Kf ), while Hd+1

c (Y (Kf ),OE) vanishes. Thus part (ii)
holds. �

Corollary 2.2.27. The embeddings Ĥd−1
c → H̃d−1

c and Ĥd
c → H̃d

c are both iso-
morphisms.

Proof. The corollary follows from the exact sequence of Theorem 2.2.16 (iv), and
Proposition 2.2.26. �

(2.3) This subsection presents the proof of Theorem 0.7. We maintain the
notation of the preceding subsection, and suppose in addition that G is split over
E (so that any irreducible representation of G over E is absolutely irreducible).
We also suppose that G is quasi-split over Fp, and choose a Borel subgroup B of G
defined over Fp, as well as a maximal torus T of B (which then splits over E, since
G is assumed to split over E). Write B := B(Fp) and T := T(Fp).

Let us fix a tame level Kp.
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Definition 2.3.1. We say that Kp is unramified at a place v 6= p of F if:
(i) G is unramified at v; that is, if G is quasi-split over Fv, and splits over an

unramified extension of Fv;
(ii) The compact open subgroup Kp

v := Kp
⋂

G(Fv) of G(Fv) is a hyperspecial
maximal compact subgroup of G(Fv).

Otherwise, we say that Kp is ramified at v.

We let S denote the (finite) set of ramified primes of Kp. We write Ap,S
f to

denote the prime to S
⋃
{p} finite adèles, and also write FS =

∏
v∈S Fv (so that

Ap
f = FS×Ap,S

f ). If we write Kp
S := Kp

⋂
G(FS), and write Kp,S := Kp

⋂
G(Ap,S

f ),
then Kp = Kp

S ×Kp,S . Also, Kp,S =
∏

v 6∈S
S
{p}K

p
v .

If H is a compact open subgroup of a locally compact group G, then H(G//H)
will denote the Hecke algebra of H double cosets in G, with coefficients in E.
We will abbreviate H(G(Ap

f )//Kp), H(G(FS)//Kp
S), and H(G(Ap,S

f )//Kp,S) by
H(Kp), H(Kp)ram, and H(Kp)sph respectively. The product decomposition of Kp

induces a corresponding tensor product decomposition of Hecke algebras:

H(Kp) ∼−→ H(Kp)ram ⊗E H(Kp)sph.

Similarly, the product decomposition of Kp,S induces a decomposition of H(Kp)sph

as a restricted tensor product: H(Kp)sph ∼−→
⊗′H(G(Fv)//Kp

v ). The Satake iso-
morphism shows that each of the algebras H(G(Fv)//Kp

v ) is a commutative algebra
of finite type over E. (See [19, §16] for a clear discussion of the Satake isomorphism.)
Thus H(Kp)sph is commutative, and forms a central subalgebra of H(Kp).

Since, by Theorem 2.2.22 (i), the space H̃n(Kp)Fp−la is naturally identified
with the space of Kp-invariants in the admissible locally Fp-analytic π0 × G(Af )-
representation H̃n

Fp−la, it is equipped with a locally Fp-analytic action ofG, together
with commuting actions of π0 and H(Kp) by continuous operators. The Jacquet
module JB(H̃n(Kp)Fp−la) (as defined in [14]) is then an essentially admissible lo-
cally Fp-analytic representation of the torus T , again equipped with commuting
actions of π0 and H(Kp) by continuous operators.

As in the introduction, let T̂ denote the rigid analytic variety over E that pa-
rameterizes the locally Fp-analytic characters of T . (We refer to [13, §6.4] for an
explanation of the construction of T̂ .) Let Can(T̂ , E) denote the E-Fréchet algebra
of rigid analytic functions on T̂ . If F is a coherent rigid analytic sheaf on T̂ , then
the space of global sections Γ(T̂ ,F) is naturally a topological Fréchet module over
Can(T̂ , E), and the theory of quasi-Stein rigid analytic spaces shows that taking
global sections induces an equivalence of categories between the category of coher-
ent rigid analytic sheaves on T̂ , and the category of coadmissible (in the sense of
[31]) Can(T̂ , E)-modules. Evaluating characters at elements of T induces a contin-
uous injection T → Can(T̂ , E)×. Thus if F is a coherent rigid analytic sheaf on T̂ ,
then the space Γ(T̂ ,F) is naturally equipped with a continuous T -representation,
and hence so is its strong dual.

The following proposition then amounts to little more than the definition of
essentially admissible locally Fp-analytic T -representations. (See [13, §6.4].)

Proposition 2.3.2. There is an antiequivalence of categories between the category
of coherent rigid analytic sheaves on T̂ , and the category of essentially admissible
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locally Fp-analytic representations of T defined over E, given by associating to any
coherent sheaf F on T̂ the strong dual of its Fréchet space of global sections Γ(T̂ ,F),
equipped with the T -action described above.

We let E denote the coherent rigid analytic sheaf on T̂ corresponding via the
antiequivalence of categories of Proposition 2.3.2 to JB(H̃n(Kp)Fp−la), and let
Exp(E) denote the support of E (the “set of exponents” appearing in E).

The action of the commutative E-algebra H(Kp)sph on JB(H̃n(Kp)Fp−la) in-
duces an action of H(Kp)sph on the coherent sheaf E , and thus gives rise to a
coherent subsheaf of commutative rings A inside the endomorphism sheaf of E .
We form the relative Spec of A over T̂ ; by construction it admits a Zariski closed
embedding SpecA → T̂ × SpecH(Kp)sph. Since A acts as endomorphisms of E , we
may localize E to a coherent sheaf M on SpecA.

The action of the group ring H(Kp)ram[π0] on JB(H̃n(Kp)Fp−la) commutes with
the H(Kp)sph-action, and so the sheaf M is naturally a coherent sheaf of right
H(Kp)ram[π0]-modules.

Proposition 2.3.3. (i) The natural projection SpecA → T̂ is a finite morphism,
with set-theoretic image equal to Exp(E).

(ii) The map SpecA → ť (where ť is the dual to the Lie algebra t of T ) obtained
by composing the projection of (i) with differentiation of characters has discrete
fibres. In particular, the dimension of SpecA is at most equal to the dimension of
T .

(iii) The fibre of M over a point (χ, λ) of T̂ × SpecH(Kp)sph is dual to the
(T = χ, H(Kp)sph = λ)-eigenspace of JB(H̃n(Kp)Fp−la). In particular, the point
(χ, λ) lies in SpecA if and only if this eigenspace is non-zero.

Proof. Parts (i) and (iii) are immediate from the construction of A. Part (ii) follows
from [14, 0.11]. �

We let G̃, B̃, T̃ denote the restriction of scalars from Fp to Qp of G, B, and T
respectively. Since E contains Fp, there are natural projections

(2.3.4) G̃/E → G/E ,

and

(2.3.5) T̃/E → T/E .

Let W be an irreducible algebraic representation of G over E, whose highest weight
with respect to B is the character ψ of T. Then we may regard W as an irreducible
representation of G̃ via (2.3.4), whose highest weight with respect to B̃ is then ψ,
regarded as a character of T̃ via (2.3.5). Also, by definition T̃(Qp) = T(Fp) = T .
Thus if θ is a smooth character of T , the locally algebraic character θψ of T may
equally well be regarded as a locally algebraic character of T̃(Qp), to which we may
apply Definition 4.4.3 of [14].

Proposition 2.3.6. If χ := θψ is of non-critical slope (in the sense of [14,
Def. 4.4.3]), then the closed embedding JB(H̃n(Kp)W−lalg) → JB(H̃n(Kp)Fp−la)
induces an isomorphism on χ-eigenspaces.
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Proof. This follows from [14, Thm. 4.4.5] and the fact that H̃n(Kp) admits a G(Fp)-
invariant norm. �

Suppose now that the natural map

(2.3.7) Hn(VW̌ )⊗E W → H̃n
W−lalg

provided by Corollary 2.2.18 (see Remark 2.2.19) is an isomorphism for every choice
of irreducible representation W of G over E (and consequently for any such rep-
resentation, since this map is compatible with the formation of direct sums of
representations). Recall that SpecA and the eigenvariety E(n,Kp) (as defined in
Definition 0.6) are both Zariski closed subspaces of T̂ × SpecH(Kp)sph.

Proposition 2.3.8. If (2.3.7 ) is an isomorphism for all W then SpecA contains
E(n,Kp) as a closed subspace.

Proof. Since E(n,Kp) is defined to be the Zariski closure in T̂ × SpecH(Kp)sph of
E(n,Kp)cl, it suffices to show that the latter set of points is contained in SpecA.
A typical point of E(n,Kp) is of the form (θψ, λ), where as above θ is a smooth
character of T and ψ is the highest weight of an irreducible G-representation W ,
such that there exists an irreducible subquotient of Hn(Kp,VW̌ ) which may be
embedded into IndG(Fp)

B(Fp) θ, and on which H(Kp)sph acts via λ. (Here and in the
ensuing discussion, it is implicit that we base-change to a field of definition of
λ.) Since the Jacquet functor is exact when applied to smooth representations
[7, Prop. 3.2.3], we see that θ appears in the λ-eigenspace of JB(Hn(Kp,VW̌ )),
and so by [14, Prop. 4.3.6] the product θψ appears in JB(Hn(Kp,VW̌ )⊗E W ). By
assumptionHn(Kp,VW̌ )⊗EW maps isomorphically to the closed subrepresentation
H̃n

W−lalg of H̃n
Fp−la, and so θψ also appears in the λ-eigenspace of JB(H̃n

Fp−la). The
present proposition thus follows from Proposition 2.3.3 (iii). �

Theorem 0.7 follows from Propositions 2.3.3, 2.3.6, and 2.3.8 taken together.
In light of Proposition 2.3.8, it is natural to ask whether or not E(n,Kp) is

equal to A, or equivalently, whether or not the points of E(n,Kp)cl are Zariski
dense in A. We do not know the answer to this question in general (even under the
hypotheses of Theorem 0.7).

(2.4) The aim of this short subsection is to show that, when the arithmetic
quotients attached to G admit the structure of Shimura varieties, the constructions
of Subsection 3.3 are compatible with the comparison isomorphism between usual
and étale cohomology, and hence that the various spaces considered are equipped
with Galois actions, and the various short exact and spectral sequences constructed
are Galois equivariant.

Let G′ denote the restriction of scalars of G from F to Q, let S denotes the
maximal split torus in the centre of G′, and let S′ denote the maximal split torus
quotient of G′. The natural map S → S′ is an isogeny, and so if S∞ := S(R) and
S′∞ := S′(R), then the induced map S◦∞ → S′◦∞ is an isomorphism. Let Z∞ denote
the centre of G∞ (so Z∞ contains S∞, but is typically larger), and let Z1

∞ denote
the kernel of the natural map Z∞ → S′∞.

The spaces Y (Kf ) that we have defined are not the arithmetic quotients typically
considered in the theory of automorphic forms; it is more usual to consider the quo-
tients Y ◦(Kf ) := Y (Kf )/S◦∞, which have the advantage of being of finite volume.
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(These are the arithmetic quotients considered in [18], for example.) The projection
Y (Kf ) → Y ◦(Kf ) makes the source an S◦∞-bundle over the target. Thus (since S∞
is isomorphic to Rm for some m, and in particular is contractible) the local system
VW on Y (Kf ) attached to any algebraic G-representation W on Y (Kf ) may be
descended to Y ◦(Kf ), and the cohomology and compactly supported cohomology
spaces of Y ◦(Kf ) with coefficients in VW are isomorphic to the corresponding coho-
mology spaces of Y (Kf ) (up to a shift of degree, in the case of compactly supported
cohomology).

In the theory of Shimura varieties it is customary to consider a different quotient
again, namely Ỹ (Kf ) := Y (Kf )/Z◦∞. The projection map Y ◦(Kf ) → Ỹ (Kf ) makes
the source a d-dimensional torus bundle over the target (in the topological sense:
each fibre is a product of d circles), where d is the difference between the split
rank of Z∞ and the rank of S∞ (i.e. the split rank of Z1

∞). If W is an algebraic
representation of G, then the local system VW on Y (Kf ) descends to Ỹ (Kf ) if and
only if Z1

∞ acts trivially on W . (Note that if this condition does not hold, then the
local system VW has trivial cohomology on Y (Kf ); thus nothing is lost in any case
by restricting attention to those W that satisfy this condition.)

For the remainder of this section, we assume that S∞ is in fact the maximal split
torus in Z∞, so that Y ◦(Kf ) = Ỹ (Kf ). This allows us to replace the quotients
Y (Kf ) by the corresponding quotients Ỹ (Kf ) in the results of Subsection 2.2.
(Our assumption is a common one in the Shimura variety context, although it
omits certain examples, such as Shimura curves and Hilbert modular varieties over
totally real fields of degree greater than one. We adopt it more for simplicity than
out of necessity, since we could get around it by working systematically with the
quotients Ỹ (Kf ) in Subsection 2.2, provided that we restricted our attention to
representations W on which Z1

∞ acts trivially.)
Suppose given a number field F ′ ⊂ C, a projective system of schemes Ỹ (Kf )/F ′

defined over F ′ indexed by the compact open subgroups Kf of G(Af ), and an
action of G(Af ) defined on this projective system, such that when we take the
C-valued point of this projective system, the resulting projective system of spaces
Ỹ (Kf )/F ′(C) with its G(Af )-action is isomorphic to the projective system of arith-
metic quotients Ỹ (Kf ), with its G(Af )-action. (More precisely, we should allow
Ỹ (Kf )/F ′ to be a stack, in the case when Ỹ (Kf ) is an orbifold rather than a man-
ifold. However, we will ignore this technicality, since we may restrict our attention
to those Kf that are sufficiently small, in which case Ỹ (Kf ) is a manifold.) If the
group G′ admits a Shimura datum with reflex field equal to F ′, then the theory of
canonical models of Shimura varieties shows that such schemes do exist.

Now suppose that M is a finite G0-module, for some compact open subgroup
G0 of G, and assume that the G0-action on M is continuous, when M is endowed
with its discrete topology. We may then follow the prescription of [24, §3] to define
a compatible system of étale sheaves VM,ét on the projective system of schemes
Ỹ (Kf )/F ′ . More precisely, we can define the sheaf VM,ét on Ỹ (Kf )/F ′ provided
that the projection of Kf onto the pth factor is contained in G0. (This will certainly
hold if Kf is small enough.) Assuming that Kf satisfies this hypothesis, we choose
a compact open normal subgroup K ′

f ⊂ Kf such that the projection of K ′
f onto

the pth factor is contained in the pointwise stabilizer of M, and define VM,ét to be
the étale sheaf represented by the étale cover M ×Kf

Ỹ (K ′
f )/F ′ of Ỹ (Kf )/F ′ . The

resulting sheaf is, up to canonical isomorphism, independent of the choice of K ′
f .
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After passing to C-valued points, the étale sheaf VM,ét corresponds to the sheaf VM

of Definition 2.2.3.
The comparison isomorphism between étale and classical cohomology yields a

canonical isomorphism

H•
ét(C×F ′ Ỹ (Kf )/F ′ ,VM,ét)

∼−→ H•(Ỹ (Kf ),VM ).

If Q denotes the algebraic closure of Q in C, then there is a natural action of
Gal(Q/F ′) on the left-hand side of this isomorphism, which may then be trans-
ported to the right-hand side.

If W is a representation of G defined over E, then the spaces Ĥ•(VW ), H̃•(VW ),
and VpH

•(VW ) constructed in Subsection 2.2 may all be defined as limits with
respect to natural transition maps of various kinds of cohomology groups of the
form H•(Ỹ (KpK

p),VW0/ps), for some compact open subgroup Kp of G, some tame
levelKp, and someKp-invariant sublatticeW0 ofW . Thus each of them is equipped
(via the comparison isomorphism) with a continuous Gal(Q/F ′)-action, commuting
with the G(Af )-action.

By virtue of the natural sheaf theoretic nature of its construction, the short ex-
act sequence of Theorem 2.2.16 (iv) is compatible with respect to these Gal(Q/F ′)-
actions. Also, by the very definition of the étale sheaf VW0/ps , the isomorphism
of Theorem 2.2.17 is compatible with respect to the comparison isomorphism,
and hence with respect to the actions of Gal(Q/F ′) on its source and target (the
Gal(Q/F ′)-action on H̃• ⊗F ′ W being defined to be trivial on the second factor).
Since passing to locally analytic vector is functorial, the Galois action on H̃• in-
duces a continuous Gal(Q/F ′)-action on H̃•

L−la, for each local field L intermediate
between Fp and Qp.

Proposition 2.4.1. In the situation under consideration, the spectral sequence of
Corollary 2.2.18 is Gal(Q/F ′)-equivariant.

Proof. This spectral sequence is obtained by applying part (ii) of Theorem 2.1.5. Al-
though the proof of that theorem uses simplicial methods, Proposition 2.1.11 gives
an alternative construction of the same spectral sequence using just the Hochschild-
Serre spectral sequence for cohomology with coefficients in the torsion local systems
VW0/ps . One has such a Hochschild-Serre spectral sequence also for étale cohomol-
ogy, which is compatible with the comparison maps between singular and étale
cohomology with torsion coefficients. Thus the construction of Proposition 2.1.11
applies equally well in the étale cohomological context, and the present proposition
follows. �

Finally, suppose that G is quasi-split over Fp, so that we may form the eigenva-
riety E(n,Kp) for each cohomological degree n and each tame level Kp. Suppose
furthermore that (2.3.6) is an isomorphism for some choice of n and Kp, and for
all W . Theorem 0.7 yields a coherent sheaf M over E(n,Kp). Since this sheaf is
constructed by applying the functor JB to H̃n(Kp)Fp−la, we see that it inherits a
Galois action, and so forms a coherent sheaf of Gal(Q/F ′)-modules on E(n,Kp)
(and this action is compatible with the right H(Kp)ram-module structure on M).

3. p-adic automorphic representations

(3.1) In this subsection we put ourselves in the situation of Subsection 2.2, and
we employ the notation introduced in that subsection. The given inclusion F ⊂ C
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determines a map

(3.1.1) F∞ := R⊗Q F → C,
and hence a map

(3.1.2) G∞ → G(C).

We let z(g∞) denote the centre of the universal enveloping algebra of the lie algebra
g∞ of G∞.

Definition 3.1.3. (i) Let χ be a complex-valued character of z(g∞) . We say that
χ is allowable if there is an irreducible representation W of G over C such that the
representation of G∞ on W induced by the map (3.1.2) has infinitesimal character
equal to χ. (Note that W is unique up to isomorphism if it exists, since irreducible
representations of G/C are determined up to isomorphism by their infinitesimal
characters.)

(ii) Let π∞ be an irreducible admissible representation of the real reductive
group G∞. We say that π∞ is allowable if the infinitesimal character of π∞ is
allowable in the sense of (i). If we wish to be precise, then we will say that π∞
is W -allowable, where W is the representation of GC whose infinitesimal character
(as a representation of G∞) coincides with that of π∞.

(iii) Let π be an automorphic representation of G(A), and write π = π∞ ⊗ πf ,
where π∞ is an admissible representation of G∞, and πf is a smooth representation
of G(Af ). We say that π is allowable if π∞ is allowable, and if πf can be defined
over a finite extension of Q.

For example, if F = Q then the map (3.1.1) above is simply the inclusion R ⊂ C.
Thus in this case a character of z(g∞) is allowable if and only if it is the infinitesimal
character of an irreducible finite dimensional representation of G over C.

For general F , let G′ denote the restriction of scalars of G to Q, so that G∞ =
G′(R). A character of z(g∞) is allowable if it is the infinitesimal character of an
irreducible algebraic representation of G′ of a certain kind, namely one pulled back
from a finite dimensional representation of G over C by the surjection G′

/C → G/C
induced by (3.1.1).

Note in particular that although we may regard an automorphic representation
π of G(AF ) equally well as an automorphic representation of G′(AQ) (where we
have written AF to denote the adèles of F and AQ to denote the adèles of Q), the
condition that π be allowable as a representation of G(AF ) is not equivalent to the
condition that it be allowable as a representation of G′(AQ). (The former implies
the latter, but not conversely, in general.)1

Since the infinitesimal character of any irreducible algebraic representation of G′

is regular, it follows that an allowable character of z(g∞) is necessarily regular. It
then follows from [10, Thm. 3.13] that for G = GLn, the representation π∞ being
allowable implies that πf is definable over a finite extension of Q.

We recall the following simple lemma.
1For example, an automorphic representation of GL1/F (that is, an idéle class character over

F ) is allowable if its restriction to the connected component of F×∞ (thought of as the component at

infinity of A×F ) is equal to the composite of the map F×∞ → C× induced by (3.1.1) and an algebraic

character z → zn of C×. (Dirichlet’s unit theorem shows that there are no such characters with

n 6= 0 except in the case when F = Q or F is quadratic imaginary.) On the other hand, if G′
denotes the restriction of scalars of GL1/F from F to Q, then any algebraic Hecke character gives

an allowable automorphic representation of G′(AQ).
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Lemma 3.1.4. Let V be an irreducible admissible smooth representation of a p-
adic reductive group H defined over an algebraically closed field Ω. If V1 and V2

are two smooth representations of H defined over a subfield E of Ω, equipped with
isomorphisms Ω⊗E V1

∼−→ Ω⊗E V2
∼−→ V, then there is an isomorphism of V1

∼−→
V2 of H-representations over E, uniquely determined up to multiplication by a non-
zero element of E.

Proof. Let U be a compact open subgroup of H such that V U 6= 0. Note that V U
1

and V U
2 are then also non-zero; indeed V U ∼−→ Ω ⊗E V U

1
∼−→ Ω ⊗E V U

2 . Each of
these spaces of invariants is a representation of the Hecke algebra H(H//U) defined
over E of U double cosets in H. Furthermore, each of these spaces of invariants
is finite dimensional over its field of definition (either Ω or E), since V is assumed
admissible.

From [3, Cor. 3.9 (ii)] we see that we may (and do) choose U so that the functor
W 7→ WU induces an equivalence of categories between the category of smooth
H-representations W (defined over either Ω or E) that are generated over H by
WU , and the category of H(H//U)-modules (defined over either Ω or E). Our
assumption may then be rephrased as saying that we have an Ω-valued point of
the algebraic variety of H(H//U)-equivariant isomorphisms between V U

1 and V U
2 .

The Nullstellensatz assures us that we may then find a point of this variety defined
over the algebraic closure of E, and thus we may assume that Ω is equal to this
algebraic closure.

We now note that since V is irreducible, Schur’s Lemma implies that EndH(V )
is isomorphic to Ω. The lemma thus follows from Hilbert’s Theorem 90. �

Let π be an automorphic representation of G(A) that is allowable in the sense of
Definition 3.1.3 (iii), and write πf = πp ⊗ πp, where πp is a smooth representation
of G and πp is a smooth representation of G(Ap

f ). Let W be the finite dimensional
irreducible representation of G over C for which π∞ is W -allowable.

Via the isomorphism ı : C ∼−→ Qp, we may regard πf = πp⊗πp as an admissible
representation of G(Af ) on a Qp-vector space, and we may also regard W as a
Qp-vector space equipped with a finite dimensional representation of G/Qp

, and so
in particular with a representation of G.

We may descend πf to a finite extension of Fp (since we assumed that it may
be descended even to a finite extension of Q). Let E be a finite extension of Fp to
which πf may be descended, and assume that E is chosen so large that G splits over
E. This implies that W may also be descended to a representation of G defined
over E.

Let πf now denote a descent of πf to E (uniquely determined up to isomorphism
by Lemma 3.1.4) and W denote a descent of W to E (uniquely determined up to
isomorphism by highest weight theory). Write π̃p := πp ⊗E W (equipped with the
diagonal action of G), and (for notational consistency) set π̃p = πp

f .

We set Γ = G(Ap
f ), so that G(Af ) = G×Γ is the product of a locally L-analytic

group and a locally compact group satisfying the hypothesis of [13, §7.2]. When
we apply the terminology and results of that reference to G(Af ) we always regard
it as being factored in this manner.

Definition 3.1.5. We write π̃ := π̃p ⊗E π̃p = (πp ⊗E W ) ⊗E πp
f , regarded as a

representation of G(Af ) = G×Γ, and refer to π̃ as the classical p-adic automorphic
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representation of G(Af ) over E attached to the allowable automorphic representa-
tion π.

If we equip π̃ with its finest convex topology then it becomes an admissible locally
algebraic representation of the adèle group G(Af ), in the sense of [13, Def. 7.2.15].

Let us mention an initial motivation for the introduction of classical p-adic au-
tomorphic representations. Common conditions that arise in the p-adic theory of
automorphic representations, such as an automorphic representation π being ordi-
nary or of non-critical slope, are not local at p; they depend on a comparison of
invariants obtained from the local factors at the infinite places (typically, an infin-
ity type) and from the local factor at p (such as a Satake parameter). However, if
we replace π by the associated classical p-adic automorphic representation π̃, then
these properties often depend only on the local factor π̃p at p. (This is the case
with the two examples mentioned.) Thus they can be analyzed by local p-adic rep-
resentation theoretic techniques. It is this phenomenon that allows us to apply the
local techniques of [13, 14] to the global problem of p-adic interpolation of systems
of Hecke eigenvalues.

The basic example of allowable automorphic representations that we have in
mind are those automorphic representations that contribute to cohomology, as we
will now explain. As above, let G′ denote the restriction of scalars of G from F to Q.
As in Subsection 2.4, let S denote the maximal split subtorus in the centre of G′, and
S′ the the maximal split torus quotient of G′; the natural map S → S′ is an isogeny.
Thus if s denotes the Lie algebra of S, and g̃ denotes the Lie algebra of the kernel
of the the quotient map G′ → S′, then there is a natural isomorphism g̃

⊕
s

∼−→ g.
We write g̃∞ = R ⊗Q g̃. Also, as above, we fix a maximal compact subgroup K∞
of G∞, and write k∞ to denote the Lie algebra of K∞. We let A(G(F )\G(A))
denote the space of K∞-finite automorphic forms on G(F )\G(A). Let W be a
finite dimensional representation of G (defined over C), let χ denote the character
through which z(g∞) acts on W̌ , let Iχ ⊂ z(g∞) denote the kernel of χ, and let
ζ denote the character through which S◦∞ (the group of connected components
of S(R)) acts on W̌ (so ζ is obtained by exponentiating the restriction of χ to
s ⊂ z(g∞)). Let A(G(F )\G(A))[I∞χ ]S

◦
∞=ζ denote the subspace of A(G(F )\G(A))

consisting of vectors on which S◦∞ acts via ζ, and which are annihilated by some
power of Iχ. The main result of [18] shows that there is a natural isomorphism

(3.1.6) Hn(g̃∞, k∞;W ⊗C A(G(F )\G(A))[I∞χ ]S
◦
∞=ζ) ∼−→ Hn(VW ).

Suppose that π is an irreducible automorphic representation of G(A), written
as a quotient π = U/V , where V ⊂ U ⊂ A(G(F )\G(A))[I∞χ ]S

◦
∞=ζ are G(A)-

subrepresentations. (Note that since π is irreducible, z(g∞) must then act on π via
the character χ.) Suppose furthermore that the image of Hn(g̃∞, k∞;W ⊗C U) in
Hn(g̃∞, k∞;W ⊗C A(G(F )\G(A))[I∞χ ]S

◦
∞=ζ) is a proper subspace of the image of

Hn(g̃∞, k∞;W ⊗CV ) in Hn(g̃∞, k∞;W ⊗CA(G(F )\G(A))[I∞χ ]S
◦
∞=ζ). Then πf (the

finite component of π) appears as a subrepresentation of the quotient of the latter
image by the former, and so in particular as an irreducible subquotient of Hn(VW ).
We say that π contributes to cohomology . Conversely, the isomorphism (3.1.6)
shows that any irreducible subquotient of Hn(VW ) arises as the finite component
of such an automorphic representation π.
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If an automorphic representation π contributes to the cohomology of VW , then
π∞ is W̌ -allowable. Since πf appears as a subquotient of Hn(VW ) (for an appro-
priate choice of W ) it may be defined over a finite extension of Q, and thus we see
that π is in fact allowable. If we choose a finite extension E of Fp such that both W
and πf can be defined over E, then we find that the corresponding classical p-adic
automorphic representation π̃ := πf ⊗E W̌ appears as an irreducible subquotient
of the admissible locally algebraic G(Af )-representation Hn(VW )⊗E W̌ .

(3.2) As in Subsection 3.1, let G′ denote the restriction of scalars of G from F
to Q. In this subsection we suppose that G′ has the property that the maximal
split torus in the centre of G′ is a maximal split torus in G′ over R, so that we are
in the situation of [19, Prop. 1.4]. We will construct a space of locally Fp-analytic
p-adic automorphic forms attached to G, in which the classical p-adic automor-
phic representations of G(Af ) constructed in the preceding subsection appear as
subrepresentations.

Our assumption implies that Y ◦(Kf ) = Ỹ (Kf ) for any choice of level Kf . Also,
there is an equality K∞Z∞ = G∞ (as in Subsection 2.4, we let Z∞ denote the
centre of G∞), so that (K∞Z∞)◦ = G◦∞, and the quotient G∞/(K∞Z∞)◦ is equal
to π0, and hence finite. The quotients Ỹ (Kf ) are thus also finite, and their only
non-trivial cohomology is in degree zero. We will relate this cohomology to the
notion of algebraic automorphic form described in [19].

We choose E so that G splits over E, and make the following variation on the
definition of [19, p. 68].

Definition 3.2.1. If W is a finite dimensional representation of G defined over
E then an algebraic automorphic form on G(A) with coefficients in W is a locally
constant function f : G(A) → W such that f(γg) = γf(g) for all γ ∈ G(F ) and
g ∈ G(A). We denote this space by M(W ). It is endowed with a natural action of
G(A), induced by the action by right translation of G(A) on G(F )\G(A).

If Kp is a tame level, then we let M(Kp,W ) denote the Kp-fixed functions in
M(W ).

If W is the trivial representation of G on E then we omit reference to W , and
write simply M and M(Kp) respectively.

Proposition 3.2.2. There is a natural G(A)-equivariant isomorphism M(W ) ∼−→
H0(VW ). (Here we regard H0(VW ) as a G(A)-representation via the surjection
G(A) = G∞ ×G(Af ) → π0 ×G(Af ).)

Proof. Any f ∈M(W ) is constant on the rightG0
∞-cosets in G(A). Fix f ∈M(W ),

and let Kf be a compact open subgroup of G(Af ) such that f is constant on
the right Kf -cosets in G(A). Then f gives rise to the section of G(A)/G0

∞Kf →
W×(G(A)/G0

∞Kf ) defined by g 7→ (f(g), g). The assumption that f is an algebraic
automorphic form implies that this section is G(F )-equivariant, and thus gives an
element of H0(Y (Kf ),VW ). Thus we obtain a G(A)-equivariant map M(W ) →
H0(VW ), which is immediately checked to be an isomorphism. �

As a corollary we find that M(Kp,W ) is isomorphic to H0(Kp,VW ) for each
choice of tame level Kp. Taking W to be the trivial representation E of G, we see
that M(Kp) is isomorphic to H0(Kp), and thus that H̃0(Kp) (being isomorphic
to Ĥ0(Kp) by Corollary 2.2.25) may be identified with the completion of the space
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M(Kp) of algebraic automorphic forms on G(A) of tame level Kp with trivial
coefficients, with respect to the sup norm.

Definition 3.2.3. For each choice of tame level Kp, we refer to H̃0(Kp) as the
space of p-adic automorphic forms on G(A) of tame level Kp. It is an E-Banach
space, equipped with an admissible continuous representation of π0 ×G by isome-
tries. We refer to H̃0 as the space of p-adic automorphic forms on G(A). It is
equipped with an admissible continuous action of π0 ×G(Af ).

If L is a local field intermediate between Fp and Qp, then we refer to the space
H̃0

L−la as the space of locally L-analytic p-adic automorphic forms on G(Af ). It
is a locally convex p-adic vector space of compact type, equipped with a strongly
admissible locally L-analytic representation of π0 ×G(Af ).

It seems worth remarking that H̃0 (respectively H̃0
L−la) may be regarded as the

space of continuous E-valued functions on G(A) that are locally constant on G(Ap
f )-

cosets (respectively, that are locally analytic on G-cosets and locally constant on
G(Ap

f )-cosets) and invariant under left translation by elements of G(F ). This should
serve to justify our use of the adjective automorphic.

Corollary 2.2.25 and Proposition 3.2.2 together show that for any finite di-
mensional representation W of G defined over E, there is a natural isomorphism
M(W )⊗E W̌

∼−→ H̃0
W−lalg. Consequently, unless W is trivial, we do not find auto-

morphic representations appearing as irreducible closed subrepresentations of H̃0;
rather, as the following proposition shows, it is the classical p-adic automorphic
representations that so appear.

Proposition 3.2.4. The locally algebraic absolutely irreducible closed π0×G(Af )-
subrepresentations of H̃0 are (if we forget the π0-action) precisely the classical p-
adic automorphic representations attached to allowable automorphic representations
of G(A) that are definable over E.

Proof. Let us begin by remarking that π0 is an abelian group [19, Prop. 2.4]. Thus
the tensor product of a π0-representation and a G∞-representation is naturally a
G∞-representation, and also any absolutely irreducible π0 ×G(Af )-representation
is absolutely irreducible as a G(Af )-representation. Thus we may ignore the π0-
action, and we must show that the locally algebraic absolutely irreducible closed
G(Af )-subrepresentations of H̃0 coincide with the classical p-adic automorphic rep-
resentations attached to allowable automorphic representations of G(A) that are
definable over E.

If W is an irreducible representation of G defined over E, then Corollary 2.2.25
yields a natural isomorphism H0(VW ) ⊗E W̌

∼−→ H̃0
W̌−lalg

. Thus the locally alge-

braic absolutely irreducible closed G(Af )-subrepresentations of H̃0 coincide with
the absolutely irreducible G(Af )-subrepresentations of H0(VW )⊗E W̌ , as W runs
over all irreducible representations of G defined over E.

We use the isomorphism ı : C ∼−→ Qp to regard C as an extension of E, and so
to form the base-changed representation W/C of G/C. Since G∞ is compact modulo
its centre, any automorphic representation π of G(A) whose infinity component π∞
is W̌/C-allowable contributes to H0(VW/C); furthermore, this cohomology space is
semi-simple as a G(Af )-representation. The discussion at the end of the preceding
subsection therefore shows that the absolutely irreducible G(Af )-subrepresentations
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of H0(VW )⊗E W̌ are precisely the classical p-adic automorphic representations at-
tached to the W̌/C-allowable automorphic representations of G(A) that are definable
over E. This proves the proposition. �

As we have already recalled, when n = 0, the map (2.3.7) is an isomorphism for
any choice of W and any tame level Kp. Thus, if G is quasi-split over Fp, then we
may form the eigenvariety E(0,Kp), for any choice of Kp, and Theorem 0.7 applies.
Furthermore, it follows from [14, Thm. 4.2.36] that E(0,Kp) is equidimensional, of
dimension equal to the dimension of a maximal torus of G/Fp

.

(3.3) So as to give a completely concrete example, in this subsection we consider
the case G = Gm over Q. In this context Fp = Qp is the only possible choice for
the local field L, and so we omit it from the notation.

Let Ẑp denote the prime-to-p profinite completion of Z (so that Ẑ ∼−→ Zp ×
Ẑp). Choose a natural number N prime to p, and denote by K(N) the kernel
of the natural map (Ẑp)× → (Z/N)×. Taking Kp = K(N) in the constructions
of Subsection 2.2, we find that H̃0(K(N)) is an E-Banach algebra, canonically
isomorphic to C(Z×p × (Z/N)×, E). Thus if we pass to the limit over all such K(N),
we obtain an isomorphism

H̃0 ∼−→ C(Z×p , E)⊗E Csm((Ẑp)×, E).

The target is naturally isomorphic to the ring of E-valued functions on Ẑ that are
continuous in the Zp-variable, and smooth in the Ẑp-variable. Passing to locally
analytic vectors yields an isomorphism

H̃0
la

∼−→ Cla(Z×p , E)⊗E Csm((Ẑp)×, E).

Since Gm is a torus, it is certainly quasi-split, and is equal to its own Borel sub-
group, and its own maximal torus. Thus we may form the eigenvariety E(0,K(N))
for any choice of tame level N , and Theorem 0.7 applies (since n = 0). In fact,
we can described E(0,K(N)) explicitly: If we write W := (Z×p )̂ (the space of lo-
cally analytic characters of Z×p ) and let ((Z/N)×)̂ denote the space of characters of
(Z/N)×, then E(0,K(N)) ∼−→W × ((Z/N)×)̂.

Since T = G = Gm, we have T = Q×
p , and the isomorphism Q×

p
∼−→ Z×p × pZ

induces an isomorphism T̂
∼−→ W × Gm. The finite map E(0,K(N)) → T̂ is the

product of the identity map on W and the map ((Z/N)×)̂ → Gm defined by taking
a character of (Z/N)× to its value on p−1.

4. The case of GL2/Q

(4.1) As the title of this section indicates, we now take F = Q and G = GL2.
We fix a finite extension E of Qp as our coefficient field. This is a case in which
Y ◦(Kf ) = Ỹ (Kf ) for any choice of level Kf , and so we will work with the quotients
Ỹ (Kf ) throughout this section. As we will briefly recall, these are the familiar
modular curves.

Indeed G(F∞) = GL2(R) ∼−→ AutR(C), the group of R-linear automorphisms
of C, the subgroup Z∞K∞ is equal to the group generated by C× (= AutC(C) ⊂
AutR(C)) and complex conjugation (which we denote by c), and so (Z∞K∞)◦ is
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equal to C×. The quotient GL2(R)/(Z∞K∞)◦ is isomorphic to the space of ordered
pairs of R-linearly independent complex numbers modulo scaling, which is in turn
isomorphic to C \ R. If X denotes the upper half-plane in C \ R, and if Kf is a
compact open subgroup of GL2(Ẑ), then strong approximation for SL2, and the
fact that Z is a PID, imply that GL2(Af ) = GL2(Q) GL2(Ẑ), and hence that

Ỹ (Kf ) ∼−→ SL2(Z)\(X ×GL2(Ẑ))/Kf

(where of course SL2(Z) acts on X by linear fractional transformations). (Compare
the discussion of [12, §1.2].) The group π0 has order two, and its non-trivial element
acts on Ỹ (Kf ) through the automorphism τ 7→ −τ c of X. As is well known, the
arithmetic quotients Ỹ (Kf ) are affine algebraic curves over C, the so-called modular
curves.

Each finite dimensional representation W of GL2 over E defines a corresponding
family of local systems VW on the curves Ỹ (Kf ). The open Riemann surfaces
Ỹ (Kf ) have non-trivial cohomology in degrees 0 and 1, and we will consider the
constructions of Subsection 2.2 in these cohomological degrees. Proposition 2.2.24,
and our remark concerning the cohomological dimension of Ỹ (Kf ), shows that
VpH

n vanishes for all n; the short exact sequence of Theorem 2.2.16 (iv) then
implies that Ĥn ∼−→ H̃n for every n. Thus we have two spaces to consider: namely,
Ĥ0 and Ĥ1.

The compactly supported cohomology of Ỹ (Kf ) is supported in degrees one and
two. Proposition 2.2.26 and Corollary 2.2.27 show that VpH

n
c vanishes, and that

the map Ĥn
c → H̃n

c is an isomorphism, for n = 1, 2. Thus we have the spaces Ĥ1
c

and Ĥ2
c to consider.

As well as their cohomology and compactly supported cohomology, it will also
be convenient to consider the parabolic cohomology of the modular curves.

Definition 4.1.1. For any finite dimensional representation W of GL2 over E,
we let H1

par(VW ) denote the image of the natural π0 × G(Af )-equivariant map
H1

c (VW ) → H1(VW ); it is a smooth π0 × G(Af )-representation. If Kp is a choice
of tame level, we let H1

par(Kp,VW ) and H1
par(Kp,VW ) denote the Kp-invariants of

H1(VW ). As usual, if W is the trivial representation, we will omit “VW ” from the
notation.

(4.2) If Kf is a compact open subgroup of GL2(Af ), then det(Kf ) is a compact
open subgroup of Ẑ×, and it is well known (and follows directly from the adélic
description) that the set of connected components of the modular curve Ỹ (Kf ) is
naturally isomorphic to Ẑ×/det(Kf ). Thus we see that Ĥ0 is isomorphic to the
corresponding space for the group Gm, considered in Subsection 3.3:

Ĥ0 ∼−→ C(Z×p , E)⊗E Csm((Ẑp)×, E).

The group π0 × GL2(Af ) acts through the determinant map π0 × GL2(Af ) det−→
{±1}×A×

f . (As an aside, let us remark that if W is irreducible of dimension greater
than one, then H0(VW ) = 0, and hence its completion Ĥ0(VW ) also vanishes. On
the other hand, H̃0(VW ) = H̃0⊗E W 6= 0. This illustrates the possibility remarked
upon following the proof of Proposition 1.1.10.)
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The space Ĥ1 is significantly more interesting then Ĥ0, since it contains informa-
tion about p-power congruences of classical modular forms. Naturally, we cannot
give such an explicit description of it. The remainder of this section is devoted
to investigating some of the structure of this π0 × GL2(Af )-representation (and
the various representations obtained from it by passing to locally analytic vectors,
locally algebraic vectors, and so on). In particular, we will study the associated
eigenvariety, and explain its relationship to the eigencurve of [11]. (See Proposi-
tion 4.4.15 below.)

We begin by considering the π0 ×GL2(Af )-equivariant map

(4.2.1) Ĥ0 ⊗̂E Ĥ
1 → Ĥ1

yielded by the cup-product and Proposition 2.2.21. This makes Ĥ1 a topological
module over the topological E-algebra Ĥ0.

Let T denote the maximal torus of GL2 consisting of diagonal matrices. As
usual, we write G = GL2(Qp) and T = T(Qp). Before going further in our analysis,

it will help to introduce more notation. We write T0 = {
(
u 0
0 1

)
|u ∈ Z×p } and

T1 = {
(

1 0
0 v

)
| v ∈ Z×p }. We also write ℘0 =

(
p 0
0 1

)
and ℘1 =

(
1 0
0 p

)
. If 〈℘i〉

denotes the infinite cyclic group generated by ℘i (i = 1, 2), then there is a natural
isomorphism

(4.2.2) T0 × T1 × 〈℘0〉 × 〈℘1〉
∼−→ T.

The determinant map det : G→ Q×
p induces an isomorphism det : T0

∼−→ Z×p , and
hence an embedding of rings

(4.2.3) C(T0, E) ∼−→ C(Z×p , E)
id⊗1
↪→ C(Z×p , E)⊗E Csm((Zp)×, E) ∼−→ Ĥ0.

Lemma 4.2.4. (i) The image of the embedding (4.2.3 ) is a π0×G(Af )-invariant
subalgebra of Ĥ0.

(ii) The π0×G(Af )-action on C(T0, E) provided by (i), when restricted to T0 ⊂
π0 ×G(Af ), agrees with the right regular action of T0 on C(T0, E).

Proof. Both claims are straightforward. �

Thus the map (4.2.1) restricts to a π0 ×GL2(Af )-equivariant map

(4.2.5) C(T0, E) ⊗̂E Ĥ
1 → Ĥ1.

We let (Ĥ1)T0 denote the subspace of Ĥ1 consisting of T0-fixed vectors. Clearly
(Ĥ1)T0 is invariant under π0 × T ×GL2(Ap

f ).

Proposition 4.2.6. The map (4.2.5 ) restricts to a π0×T ×GL2(Ap
f )-equivariant

topological isomorphism C(T0, E) ⊗̂E(Ĥ1)T0
∼−→ Ĥ1.

Proof. We have already observed that the map (4.2.5) has the stated equivariance
properties, and thus so does its restriction

(4.2.7) C(T0, E) ⊗̂E(Ĥ1)T0 → Ĥ1.
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It is a general fact that if G is a compact topological group, V is an E-Banach
space equipped with a continuous G-action, and V is furthermore equipped with a
G-equivariant C(G,E)-Banach module structure (where G acts on C(G,E) through
the right regular action), then the map C(G,E) ⊗̂E V

G → V induced by the topo-
logical module structure on V is a topological isomorphism. Indeed, C(G,E) is nat-
urally a Banach-Hopf-algebra, and our assumption on V implies that V is a Banach-
Hopf-module over C(G,E). The main theorem on Hopf modules [34, Thm. 4.1.1,
p. 84], adapted to the Banach-Hopf setting, then yields the required isomorphism.2

Applying this with G = T0 and V = (Ĥ1)Kp

for a compact open subgroup Kp of
GL2(Ap

f ) (taking into account Lemma 4.2.4 (ii)), and then passing to the inductive
limit over all such Kp, we find that (4.2.7) is a topological isomorphism. �

The preceding proposition expresses the analogue, in our p-adically completed
situation, of the fact that cohomology classes in one of the spaces H1(VW ) may
always be twisted by elements of H0 so as to be invariant under T0. Together with
Proposition 4.2.8 below, it will be applied in Subsection 4.4 to obtain a correspond-
ing decomposition of the eigenvariety for GL2.

As observed in Proposition 2.2.23, the module structure (4.2.1) induces a module
structure

Ĥ0
la ⊗̂E Ĥ

1
la → Ĥ1

la.

(Since Qp is the only field available with respect to which we may consider locally
analytic vectors, here and below we will abbreviate “Qp− la” by “la”.) We may re-
peat the above discussion in the locally analytic context, and so obtain the following
result.

Proposition 4.2.8. There is a natural π0 × T × GL2(Ap
f )-equivariant topological

isomorphism Cla(T0, E) ⊗̂E(Ĥ1
la)

T0
∼−→ Ĥ1

la.

Proof. This follows from the analogue for the compact type Hopf algebra Cla(T0, E)
and its compact type topological Hopf module Ĥ1

la of the “main theorem on Hopf
modules” recalled in the proof of Proposition 4.2.6. �

Analogous results to Propositions 4.2.6 and 4.2.8 hold with Ĥ1 replaced by Ĥ1
c .

(4.3) We turn to analyzing the spectral sequences of Corollary 2.2.18. If we
fix a finite dimensional representation W of GL2 over E, then we obtain the π0 ×
GL2(Af )-equivariant spectral sequence Ei,j

2 = Exti
gl2(W̌ , Ĥj

la) =⇒ Hi+j(VW ).
Let Z denote the centre of GL2 (so that Z ∼−→ Gm). Multiplication in G induces

a homomorphism Z(Qp)× SL2(Qp) → G, which is locally an isomorphism (that is,
induces an isomorphism between sufficiently small neighbourhoods of the identity
in its source and target).

2When applying the main theorem on Hopf modules, note that the Banach comodule structure

cG : V → C(G, E) ⊗̂V
∼−→ C(G, V )

(the isomorphism following by the example of [27, pp. 111-112]) is defined by cG(v)(g) = gv for

all g ∈ G and v ∈ V ; that is, cG(v) is the orbit map of v. Thus

cG(v) = 1 ⊗̂ v = the constant function v on G

if and only v ∈ V G.
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Proposition 4.3.1. If the centre Z of GL2 acts on W via a character χ, then for
any i ≥ 0, there is a natural isomorphism of π0 × Z(Qp) × SL2(Qp) × GL2(Ap

f )-
representations

Homz(E(χ−1), Ĥ0
la)⊗E Hi(sl2,W ) ∼−→ Exti

gl2(W̌ , Ĥ0
la).

(Here z denotes the Lie algebra of Z(Qp) and Homz(E(χ−1), Ĥ0
la) denotes the space

of z-equivariant maps from E(χ−1) (the one-dimensional representation on which
Z(Qp) acts by the character χ−1) to Ĥ0

la. It is a smooth π0 × Z(Qp) × GL2(Ap
f )-

representation, while Hi(sl2, W̌ ) is a smooth SL2(Qp)-representation.)

Proof. The G-representation Ĥ0, when regarded as a representation of π0×Z(Qp)×
SL2(Qp)×GL2(Ap

f ) via the natural map

π0 × Z(Qp)× SL2(Qp)×GL2(Ap
f ) → π0 ×GL2(Af ),

may be regarded as the tensor product of itself, restricted to a representation of
π0×Z(Qp)×GL2(Ap

f ), and of the trivial representation of SL2(Qp). Similarly, the
GL2(Qp)-representation W̌ , when regarded as a Z(Qp) × SL2(Qp)-representation,
may be regarded as the tensor product of χ−1 and of itself, restricted to a repre-
sentation of SL2(Qp).

A version of the Künneth theorem (whose precise formulation and proof we leave
to the reader) shows that the cup-product induces an isomorphism⊕

a+b=i

Exta
z (E(χ−1), Ĥ0

la)⊗ Extb
sl2(W̌ , E) ∼−→ Exti

gl2(W̌ , Ĥ0
la),

in which all the arrows are π0 × Z(Qp) × SL2(Qp) × GL2(Ap
f )-equivariant. (We

are using the fact that map Z(Qp)× SL2(Qp) → G is a local isomorphism, and so
induces an isomorphism between the corresponding Lie algebras.)

Let H be a compact open subgroup of Z(Qp), chosen so small that it maps
isomorphically onto its image in Z×p under the determinant. For any tame level
Kp, the representation Ĥ0(Kp) is isomorphic as an H-representation to a direct
sum of copies of C(Z×p , E). By Proposition 1.1.12 (v) and Theorem 1.1.13, the
spaces Exta

z (E(χ−1), Ĥ0(Kp)) vanish if a > 0. Taking into account the isomorphism
Extb

sl2(W̌ , E) ∼−→ Hb(sl2,W ), the lemma follows. �

Corollary 4.3.2. If W is an irreducible finite dimensional representation W of
GL2, then the space Exti

gl2(W̌ , Ĥ0
la) vanishes except possibly when i = 0 and i = 3.

Furthermore, Homgl2(W̌ , Ĥ0
la) and Ext3gl2(W̌ , Ĥ0

la) are isomorphic as π0×Z(Qp)×
SL2(Qp)×GL2(Ap

f )-representations, and both vanish unless W is one-dimensional.

Proof. Since sl2 is a semi-simple Lie algebra, H1(sl2,W ) vanishes for every finite di-
mensional representation W of SL2 over E. Since sl2 is three-dimensional, Poincaré
duality for Lie algebra cohomology implies that H2(sl2,W ) also vanishes, that
Hi(sl2,W ) vanishes if i > 3, and that H0(sl2,W ) and H3(sl2, W̌ ) are dual to one
another.

If W is irreducible then H0(sl2,W ) is non-zero if and only if W is the trivial rep-
resentation of SL2. The corollary is now seen to follow from Proposition 4.3.1. �
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If we feed the information provided by Corollary 4.3.2 into the spectral sequence
of Corollary 2.2.18, and also take into account the fact that Hn(VW ) vanishes for
n > 1, we obtain the following natural isomorphisms:

(4.3.3) H0(VW ) ∼−→ Homgl2(W̌ , Ĥ0
la),

(4.3.4) H1(VW ) ∼−→ Homgl2(W̌ , Ĥ1
la),

(4.3.5) Ext1gl2(W̌ , Ĥ1
la)

∼−→ Ext3gl2(W̌ , Ĥ0
la).

We also see that Exti
gl2(W̌ , Ĥj

la) vanishes for all values of i and j not appearing in the
above list; that is, for (i, j) 6= (0, 0), (0, 1), (1, 1), (3, 0). Furthermore, Corollary 4.3.2
shows that when (i, j) equals one of (1, 1) or (3, 0), we get a non-vanishing expression
only when W is one-dimensional.

The isomorphism (4.3.4) shows that the hypotheses of Proposition 2.3.8 is satis-
fied for every representation W when n = 1. (The isomorphism (4.3.3) shows that
it is also satisfied for n = 0. Of course, this is a special case of Corollary 2.2.25.)

In [21, §1, ex. 3], Ihara considers the projective limit of the Zp-homology of
the connected components of the modular curves Ỹ (Kf ), as Kf ranges over a
sequence of groups of increasing p-power level and fixed prime-to-p level. This limit
is equipped with a natural action of SL2(Zp). This SL2(Zp)-module is closely related
to the topological dual of the space Ĥ1, considered as a GL2(Zp)-representation. It
may be that the methods of [21] could be of use in analyzing the structure of Ĥ1

as a GL2(Zp)-representation.
We now consider the case of compactly supported cohomology. The following

result shows that this case is particularly simple.

Proposition 4.3.6. The space Ĥ2
c vanishes.

Proof. Fix a tame level Kp. If Kp is a compact open subgroup of GL2(Qp), then Kp

contains an open subgroup K ′
p such that the index [Kp

⋂
SL2(Qp) : K ′

p

⋂
SL2(Qp)]

is divisible by pr, for arbitrary r > 0. The map Ỹ (K ′
pK

p) → Ỹ (KpK
p) thus

has degree divisible by pr on each connected component of the source, and so
the image of the pullback map H2

c (Ỹ (KpK
p),OE) → H2

c (Ỹ (K ′
pK

p),OE) lies in
prH2

c (Ỹ (K ′
pK

p),OE). Since r was arbitrary, it follows that lim
−→
Kp

H2
c (Ỹ (KpK

p),OE)

is p-divisible, and hence that its p-adic completion vanishes. This implies the propo-
sition. �

From the spectral sequence of Corollary 2.2.18, we deduce the following isomor-
phisms:

(4.3.7) H1
c (VW ) ∼−→ Homgl2(W̌ , Ĥ1

c,la),

(4.3.8) H2
c (VW ) ∼−→ Ext1gl2(W̌ , Ĥ1

c,la),

and also that Exti
gl2(W̌ , Ĥ1

c,la) vanishes for i > 1. Since H2
c (VW ) vanishes for irre-

ducible W , except in the case when W is one-dimensional, the isomorphism (4.3.8)
implies that when W is irreducible Ext1gl2(W̌ , Ĥ1

c,la) vanishes unless W is of dimen-
sion one.

We close this section with the following result, whose proof is similar to that of
Proposition 4.3.6.
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Proposition 4.3.9. The natural map Ĥ1
c → Ĥ1 is surjective.

Proof. If Kf is a compact open subgroup of GL2(Af ), let X(Kf ) denote the com-
pletion of the curve Ỹ (Kf ), and let C(Kf ) denote the complement of Ỹ (Kf ) in
X(Kf ) (the set of cusps). For any such Kf , the inclusion of Ỹ (Kf ) in X(Kf )
induces a natural isomorphism H1(X(Kf ), E) ∼−→ H1

par(Kf ).
Fix a tame level Kp, and denote by Ĥ1

par(K
p) the completion of H1

par(Kp) with
respect to the gauge of its sublattice lim

−→
Kp

H1
par(Ỹ (KpK

p),OE). The proposition

will follow if we show that the map Ĥ1
par(K

p) → Ĥ1(Kp) is an isomorphism. A
consideration of the commutative diagram

0

��

0

��
lim
−→
Kp

H1(X(KpK
p),OE) //

��

lim
−→
Kp

H1(X(KpK
p), E)

��

∼ // H1
par(K

p)

��
lim
−→
Kp

H1(Ỹ (KpK
p),OE) //

��

lim
−→
Kp

H1(Ỹ (KpK
p), E)

��

H1(Kp)

lim
−→
Kp

Div0(C(KpK
p),OE) //

��

lim
−→
Kp

Div0(C(KpK
p), E)

��
0 0,

in which Div0(C(KpK
p), R) denotes the R-module of divisors of degree zero sup-

ported on the set of cusps C(Kf ) with coefficients in R, and whose first two columns
are exact, shows that it suffices to prove that the map lim

−→
Kp

Div0(C(Kf ),OE) →

lim
−→
Kp

Div0(C(Kf ), E) is an isomorphism. This in turn follows from the fact that for

any fixed compact open subgroup Kp of GL2(Zp), we may find a normal open sub-
group K ′

p ⊂ Kp such that the map X(K ′
pK

p) → X(KpK
p) is ramified over every

cusp, with ramification degree divisible by any given power of p. �

(4.4) We fix a choice of tame level Kp of the form “Γ1(M)”, for some natural
number M coprime to p ; more precisely, we assume that

Kp := {
(
a b
c d

)
∈ GL2(Ẑp) | c ≡ 0 (mod M), d ≡ 1 (mod M)}.

We will write E(1,M) rather than E(1,Kp) to denote the degree one cohomological
eigenvariety of tame level Kp, defined with respect to the Borel subgroup B of upper
triangular matrices in GL2. Similarly we will write E(1,M)cl rather than E(1,Kp)cl
to denote the set of classical points in E(1,M).
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We also define a variant of E(1,M)cl, to be denoted E(1,M)par,cl, by replac-
ing H1 by H1

par in the definition. We remark that E(1,M)par,cl is obviously a
subset of E(1,M)cl. We further define E(1,M)cl,0 and E(1,M)par,cl,0 to be the
subsets of E(1,M)cl and E(1,M)par,cl respectively consisting of pairs (χ, λ) ∈(
T̂ × SpecH(Kp)sph

)
(Qp) such that χ is trivial when restricted to T0. (Here and

below we will use the notation introduced in Subsection 4.2.)
Let us give an explicit description of T̂×SpecH(Kp)sph. The isomorphism (4.2.2)

yields an isomorphism T̂
∼−→W0×W1×Gm,0×Gm,1, where Gm,i denotes 〈℘i〉̂, and

Wi denotes T̂i (i = 1, 2). The isomorphism det : Ti
∼−→ Z×p induces an isomorphism

Wi
∼−→ W (where, as in Subsection 3.3, W denotes (Z×p )̂ ), while evaluation at

℘i yields an isomorphism Gm,i
∼−→ Gm. For each ` not dividing Mp, the local

Hecke algebra H(GL2(Q`)//GL2(Z`)) is generated by the Hecke operators T (`)

and T (`, `)±1, corresponding to the double cosets of
(
` 0
0 1

)
and

(
`±1 0
0 `±1

)
respectively. Thus H(Kp)sph = E[{T (`), T (`, `)±1}(`,Np)=1].

We now describe the points of E(1,M)par,cl,0 in classical terms.

Definition 4.4.1. By a p-stabilized newform of weight k + 2 ≥ 2 we mean a
cuspform f of weight k + 2 satisfying one of the two following conditions:

(i) The modular form f is a normalized newform on Γ1(prC) for some natural
numbers r > 0 and C prime to p.

(ii) There is a normalized newform g on Γ1(C) for some natural number C
prime to p, such that f(τ) = g(τ) − αpg(pτ) for one of the roots αp of the pth
Hecke polynomial of g.

We say that f has tame conductor C, and p-stabilized conductor Cpr (in case (i))
or Cp (in case (ii)). Note that in either case, if Cpr denotes the p-stabilized conduc-
tor of f , then f is a weight k+2 modular form on Γ1(Cpr), and is an eigenform for
the Atkin-Lehner Up-operator. We say that f is of finite slope if its Up-eigenvalue
is non-zero.

For k ≥ 0, let Wk denote the dual to the kth symmetric power of the standard
two-dimensional representation of GL2, and let ψk denote the highest weight of Wk

with respect to B. If (χ, λ) is a point of E(1,K)par,cl,0, then we may factor χ as
χ = θψ, where θ is a smooth Qp-valued character of T , trivial on T0, and ψ = ψk

for some k ≥ 0. Write α = pθ(℘0) and β = θ(℘1).

Proposition 4.4.2. The set E(1,M)par,cl,0(Qp) is in bijection with the set of p-
stabilized newforms of finite slope whose tame conductor divides M . Let (χ, λ) ∈
E(1,M)par,cl,0(Qp), and let f be the corresponding p-stabilized newform. The as-
serted bijection is uniquely determined by the following properties:

Let θ, ψ, k, α, and β be attached to χ as in the preceding discussion. Let ε denote
the nebentypus of f , and factor ε = εpεM as the product of a character of p-power
conductor and a character of conductor dividing M .

(i) The weight of f is equal to k + 2.

(ii) If we identify Z×p and T1 via v 7→
(

1 0
0 v

)
, then θ|T1 and ε−1

p coincide.

(iii) If ` is a prime not dividing Mp, then εM (`) = λ(T (`, `))εp(`)−1`−k, while
εM (p) = αβ/pk+1.

(iv) The Up-eigenvalue of f is equal to α.
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(v) If ` is a prime not dividing Mp, then the T`-eigenvalue of f is equal to
λ(T (`)).

Proof. Write N0 := {
(

1 x
0 1

)
|x ∈ Zp}, and write P0 := N0T0. A point (θψk, λ)

(for some k ≥ 0) appears in E(1,M)par,cl,0 if and only if the (T+ = θ,H(Kp)sph =
λ)-eigenspace of H1

par(K
p,VW̌k

)P0 is non-zero. (Here T+ := {t ∈ T | tN0t
−1 ⊂ N0}

acts via the Hecke operators πN0,t as defined in [14, Def. 3.4.2]; also we have implic-
itly extended scalars from E to a subfield of Qp over which θ and λ are defined.)
This follows from the relation between the Jacquet module JB(H1

par(K
p,VW̌k

)) and
parabolic induction, given by [14, Prop. 4.3.4]; we are also taking into account the
fact that θ and ψk are trivial on T0.

There is a natural isomorphism H1
par(K

p,VW̌k
)P0

∼−→ lim
−→

r

H1
par(Y1(prM),VW̌k

),

where as usual we have written Y1(prM) to denote the modular curve corresponding
to the congruence subgroup Γ1(prM). The proposition thus follows from the usual
relation between the cohomology of modular curves and modular forms (Eichler-
Shimura theory), together with an interpretation of the Hecke operators πN0,t (for
t = ℘0, t = ℘0℘1, or t ∈ T1), as well as T (`) and T (`, `) (for ` a prime not dividing
Mp), in classical terms.

More precisely, we may write lim
−→

r

H1
par(Y1(prM),VW̌k

) as a direct sum of plus and

minus eigenspaces under the action of π0; after extending scalars to C, the corre-
sponding direct summands may be described by holomorphic and anti-holomorphic
modular forms respectively. We will briefly sketch the holomorphic case; the anti-
holomorphic case is treated in an identical fashion.

If Kf is a compact open subgroup of GL2(Af ), with the property that the de-
terminant mapping maps Kf onto Ẑ×, then the restriction of the projection

X ×GL2(Af ) → GL2(Q)+\(X ×GL2(Af ))/Kf
∼−→ Y (Kf )

to X×1 (where 1 denotes the identity matrix in GL2(Ẑ)) remains surjective. (Here
GL2(Q)+ denotes the subgroup of GL2(Q) consisting of matrices with positive
determinant.) If τ is an element of X, then we may form the element (τ, 1) of
C2, and hence the element (τ, 1)k of Symk(C2) (which equals W̌k, after extending
scalars from E to C). A holomorphic class in H1

par(Y (Kf ),VW̌k
) is represented by

a holomorphic Symk(C2)-valued one-form τ 7→ f(τ)dτ(τ, 1)k on X, where f(τ) is
a holomorphic function on X that vanishes at the cusps and satisfies the following

invariance property: if γ =
(
a b
c d

)
∈ GL2(Q)+

⋂
Kf , then

f(
aτ + b

cτ + d
) = (cτ + d)k+2f(τ);

that is, the function f(τ) is a weight k+2 cuspform with respect to GL2(Q)+
⋂
Kf .

Thus the holomorphic part of lim
−→

r

H1
par(Y1(prM),VW̌k

) may be identified with

the inductive limit lim
−→

r

Sk+2(Γ1(prM)), where Sk+2(Γ) denotes the C-vector space

of cuspforms of weight k+ 2 on the congruence subgroup Γ. It remains to describe
the action of πN0,t, T (`), and T (`, `) in classical terms.
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Let Kf be as above. If g ∈ GL2(Af ), then multiplication on the right by g

induces a homeomorphism Y (gKfg
−1) ∼−→ Y (Kf ), and hence an isomorphism

H1(Y (Kf ),VW̌k
) → H1(Y (gKfg

−1),VW̌k
), that we denote by g∗ (pullback via

g). (This is just the action of g on H1(VW̌k
), restricted to the subspace of Kf -

invariant vectors.) We will now describe explicitly the action induced by g∗ on
the corresponding spaces of cuspforms. Although the necessary computations are
straightforward and well-known, at the suggestion of the referee we will give the
details, since they are crucial for comparing our representation theoretic approach
to p-adic interpolation with the more classical approaches in the literature.

Let cf be the cohomology class represented by a weight k + 2 cuspform f(τ) on

GL2(Q)+
⋂
Kf . We wish to compute g∗cf . If γ =

(
a b
c d

)
∈ GL2(Q)+ is chosen so

that γg ∈ Kf , then γ−1Kfγ = gKfg
−1, giving Y (γ−1Kfγ) = Y (gKfg

−1), and the
homeomorphism Y (γ−1Kfγ) = Y (gKfg

−1) ∼−→ Y (Kf ) induced by right multipli-
cation by γ−1 coincides with the homeomorphism induced by right multiplication
by g. Thus g∗cf = (γ−1)∗cf .

Let τ ∈ X. The image of the (GL2(Q)+, gKfg
−1)-double coset of (τ, 1) under

right multiplication by γ−1 is equal to the (GL2(Q)+,Kf )-double coset of (τ, γ−1),
which coincides with the (GL2(Q)+,Kf )-double coset of (γτ, 1). Similarly, the
image of the (GL2(Q)+, gKfg

−1)-double coset of (τ, γ, w̌) (where w̌ ∈ W̌k; this is
a typical element of VW̌k

over Y (gKfg
−1)) is equal to the (GL2(Q)+,Kf )-double

coset of (γτ, 1, γw̌) (which is an element of VW̌k
over Y (Kf )). Thus, recalling that

cf is represented by the holomorphic one-form f(τ)dτ(τ, 1)k, and that γτ = (aτ +
b)/(cτ + d), we compute that g∗cf = (γ−1)∗cf is represented by the holomorphic

one-form (ad − bc)(cτ + d)−(k+2)f(
aτ + b

cτ + d
)dτ(aτ + b, cτ + d)k, and hence (since

γ(τ, 1)k = (aτ + b, cτ + d)k) that (ad− bc)(cτ + d)−(k+2)f(
aτ + b

cτ + d
) is the cuspform

on GL2(Q)+
⋂
gKfg

−1 that corresponds to the cohomology class g∗cf .
With this formula in hand we may now interpret our various representation

theoretically defined Hecke operators in classical terms. Naturally we take Kf to
be the open subgroup of GL2(Ẑ) corresponding to Γ1(prM)-level structure for some

r ≥ 1; i.e. Kf := {
(
a b
c d

)
∈ GL2(Ẑ) | c ≡ 0 mod prM,d ≡ 1 mod prM}.

We begin with the operator πN0,℘0 , which maps a cohomology class cf to the class

p−1
∑p−1

i=0 g
∗
i cf , where gi :=

(
p i
0 1

)
∈ GL2(Qp) ⊂ GL2(Af ). (Here the inclusion

denotes the embedding of GL2(Qp) as the pth factor of GL2(Af ).) If we set γi :=(
1/p −i/p
0 1

)
∈ GL2(Q)+, then γigi ∈ Kf . Since Upf := p−1

∑p−1
i=0 f(

τ + i

p
),

the above formula allows us to compute that πN0,℘0cf = p−1cUpf , as claimed (the
factor p−1 arising from det γi = p−1).

The operator πN0,℘0℘1 acts via the element g :=
(
p 0
0 p

)
∈ GL2(Qp). Choose

σ ∈ SL2(Z) such that σ ≡
(

1 0
0 p

)
(mod M) and σ ≡

(
1 0
0 1

)
(mod pr). If

we set γ := σ

(
p−1 0
0 p−1

)
∈ GL2(Q)+, then γg ∈ Kf , and computing with the
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above formula shows that πN0,℘0℘1cf = pkc〈p〉M f (where 〈p〉M denotes the diamond
operator corresponding to the residue class of p modulo M).

Similar computations show that if t =
(

1 0
0 v

)
∈ T1 then πN0,tcf = c〈v−1〉pf

(where 〈v−1〉p denotes the mod p-power diamond operator corresponding to v−1 ∈
Z×p ), that T (`)cf = cT`f , and that T (`, `)cf = `kc〈`〉Mpf (where 〈`〉Mp denotes the
diamond operator corresponding to ` modulo M times a power of p). �

The following corollary shows that our use of the term “critical slope” agrees
with the usual sense of this term, in the p-adic theory of modular forms.

Corollary 4.4.3. Let f be a p-stabilized newform of weight k+2 and Up-eigenvalue
α attached to a point (χ, λ) of E(1,M)par,cl,0. The character χ ∈ T̂ (Qp) is of non-
critical slope (in the sense of [14, Def. 4.4.3]) if and only if ordp(α) < k + 1.

Proof. Write χ = θψk as above, and let α0 and α1 denote a basis for the character
lattice of T, chosen so that α0 denotes projection onto the upper left entry, and α1

projection onto the lower right entry, of a matrix in T. There is a unique positive
root of T, namely α0 − α1. The corresponding simple reflection s interchanges α0

and α1. If h = ordp(α), then slope θ = (h− 1)α0 +(k−h+1)α1, while ψk = −kα1.
(Here slope θ is defined as in [14, Def. 1.4.2].) Finally, ρ = (α0 − α1)/2. Thus

slope θ + ρ+ s(ψk + ρ)

= (h− 1
2
)α0 + (k − h+

1
2
)α1 + (−k − 1

2
)α0 +

1
2
α1

= (h− k − 1)(α0 − α1),

and so χ is of non-critical slope if and only if h < k + 1, as claimed. �

The points of E(1,M)cl,0 that don’t belong to E(1,M)par,0 correspond to various
classical Eisenstein series.

Recall from Definition 0.6 that E(1,M) is defined to be the rigid analytic Zariski
closure of E(1,M)cl in T̂ × SpecH(Kp)sph. Similarly, we define E(1,M)par to be
the rigid analytic Zariski closure of E(1,M)par,cl in T̂ × SpecH(Kp)sph, and define
E(1,M)0 and E(1,M)par,0 to be the rigid analytic Zariski closures of E(1,M)cl,0
and E(1,M)par,cl,0 respectively in T̂ × SpecH(Kp)sph.

The isomorphism (4.3.4) shows that Proposition 2.3.8 applies to our current
situation. As in that subsection, let E denote the coherent sheaf on T̂ that corre-
sponds to the dual of JB(H1(Kp)la), and let A denote the commutative subring
of End(E) generated by H(Kp)sph. Proposition 2.3.8 shows that SpecA (which
we regard as a closed subspace of T̂ × SpecH(Kp)sph) contains the eigenvariety
E(1,M). Similarly, let Ec be the coherent sheaf on T̂ that corresponds to the dual of
JB(H1

c (Kp)la), and let Ac denote the commutative subring of End(E) generated by
H(Kp)sph. The isomorphism (4.3.7), and an obvious analogue of Proposition 2.3.8
in the compact supports case, shows that SpecAc (regarded as a closed subspace of
T̂ ×SpecH(Kp)sph) also contains the eigenvariety E(1,M). (Here we are using the
well-known fact that the collection of irreducible GL2(Af )-representations appear-
ing in H1

c (VW ) coincides with the collection of irreducible GL2(Af )-representations
appearing in H1(VW ), for any algebraic representation W of GL2. Thus if we re-
place cohomology by compactly supported cohomology in the definition of E(1,M),
we obtain exactly the same subset of T̂ × SpecH(Kp)sph.)
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In the remainder of this subsection we indicate the relation between our con-
structions and the construction of [11] (and its generalization in [6]).

The inclusion of the trivial character into W0 induces an embedding

(4.4.4) W1 ×Gm,0 ×Gm,1 →W0 ×W1 ×Gm,0 ×Gm,1
∼−→ T̂ .

We let E0 denote the pullback of E to W1×Gm,0×Gm,1 via this embedding. (Thus
E0 is a coherent sheaf on W1 ×Gm,0 ×Gm,1.) We let A0 denote the image of A in
End(E0). Thus SpecA0 is equal to the pullback of SpecA along the embedding

W1 ×Gm,0 ×Gm,1 × SpecH(Kp)sph → T̂ × SpecH(Kp)sph

induced by (4.4.4).
We let W∆ denote the diagonal copy of W embedded in W0 ×W1. Since W is

a rigid analytic group (the group structure given by multiplication of characters),
there is a natural isomorphism

(4.4.5) W∆ ×W1
∼−→W0 ×W1,

given by (w,w)× w1 7→ (w,ww1).

Proposition 4.4.6. There are natural isomorphisms

(4.4.7) E ∼−→ OW∆ � E0

and

(4.4.8) A ∼−→ OW∆ �A0.

(Here the exterior products OW∆ � E0 and A ∼−→ OW∆ � A0 are regarded at first
as sheaves on W∆ × W1 × Gm,0 × Gm,1, and are then transported to sheaves on
W0 ×W1 ×Gm,0 ×Gm,1 via the isomorphism (4.4.5 ).)

Proof. Let N0 := {
(

1 x
0 1

)
|x ∈ Zp}. Since N0 acts trivially on Ĥ0

la, we see that

the isomorphism of Proposition 4.2.8 induces an isomorphism

(4.4.9) Cla(T0, E) ⊗̂E(Ĥ1(Kp)la)T0N0 ∼−→ (Ĥ1(Kp)la)N0 .

If we define T+ as in the proof of Proposition 4.4.2, then the Hecke operators πN0,t

(as defined in [14, Def. 3.4.2]) determine an action of T+ on each of (Ĥ1(Kp)la)T0N0

and (Ĥ1(Kp)la)N0 . By Lemma 4.2.4 (i), the embedding (4.2.3) realises Cla(T0, E)
as a T -invariant subspace of Ĥ0(Kp)la. The isomorphism (4.4.9) is T+-equivariant,
if we equip the source with the tensor product of the T+-action on the first factor
(obtained by restricting the T -action) and the Hecke T+-action on the second factor,
and if we equip the target with the Hecke T+-action. By [14, Prop. 3.2.9] there is
an isomorphism of locally analytic T -representations
(4.4.10)

Cla(T0, E) ⊗̂E((Ĥ1(Kp)la)T0N0)fs
∼−→ ((Ĥ1(Kp)la)N0)fs =: JB(Ĥ1(Kp)la).
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It follows from [14, Prop. 3.2.11] that there is a natural isomorphism

((Ĥ1(Kp)la)T0N0)fs
∼−→ JB(Ĥ1(Kp)la)T0 ,

and hence we may rewrite (4.4.10) as an isomorphism

Cla(T0, E) ⊗̂E JB(Ĥ1(Kp)la)T0 ∼−→ JB(Ĥ1(Kp)la).

Passing to duals, and reinterpreting this isomorphism sheaf theoretically, we obtain
the isomorphism (4.4.7). The isomorphism (4.4.8) follows directly. �

The isomorphism (4.4.8) induces an isomorphism of rigid analytic spaces

(4.4.11) SpecA ∼−→W × SpecA0.

This isomorphism induces in an analogous fashion isomorphisms

(4.4.12) E(1,M) ∼−→W × E(1,M)0

and

(4.4.13) E(1,M)par
∼−→W × E(1,M)par,0.

Having eliminated one of the factors of W in the space T̂ from consideration,
let us explain how one can eliminate the corresponding factor of Gm. The group
(Z/M)× acts on E in the following way: an element x ∈ (Z/M)× acts via the coset(
x̃−1 0
0 x̃−1

)
Kp ∈ H(Kp), where x̃ is any lift of x to an element of Ẑp. (This

normalization of the action is chosen so that on classical points it corresponds to the
action of the diamond operator 〈x〉M , via the correspondence of Proposition 4.4.2.)
Let us choose E so large that all the Q×

p -valued characters of (Z/M)× are defined
over E. Then we find that E =

⊕
εM
EεM , where εM runs over the collection of

such characters, and (–)εM denotes the εM -eigenspace. Similarly, we have E0 =⊕
εM
EεM
0 .

Fix a character εM of (Z/M)×, and let S denote the support of EεM
0 , in the

“scheme theoretic” sense, so that S is the closed rigid analytic subvariety of W1 ×
Gm,0×Gm,1, cut out by the annihilator ideal sheaf of EεM

0 . Then the restriction of
EεM
0 to S is a coherent rigid analytic sheaf whose pushforward to W1×Gm,0×Gm,1

is naturally isomorphic to EεM
0 .

Proposition 4.4.14. (i) The closed subvariety S of W1 × Gm,0 × Gm,1 maps
isomorphically onto its “scheme theoretic” image in W1 ×Gm,1.

(ii) The projection map S →W1 has discrete fibres; in particular, S is at most
one-dimensional.

Proof. The global sections of EεM
0 are equal to (JB(Ĥ1(Kp)la)′)T0,εM . To prove

part (i), it suffices to show that Can(W1 ×Gm,0 ×Gm,1) and Can(W1 ×Gm,1) have
the same image in the ring of endomorphisms of this space.

Let us consider how the element ℘0 ∈ T acts on (JB(Ĥ1(Kp)la)′)T0,εM . If we
take into account that Z(Q)>0 (by which we mean the group of scalar matrices with
positive rational number entries, regarded as a subgroup of Z(Af )) acts trivially on
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this space, we find that ℘0 acts through the scalar εM (p) times the action of ℘−1
1 .

(Here we write εM (x) to denote εM evaluated on the scalar matrix
(
x−1 0
0 x−1

)
.)

Thus we see that indeed Can(Gm,0×Gm,1×W0) and Can(Gm,0×W0) have the same
image in the ring of endomorphisms of (JB(Ĥ1(Kp)la)′)T0Kp,εM , proving (i).

The claim of (ii) follows from Proposition 2.3.3 (ii), which shows that the support
of E maps onto W0×W1 with discrete fibres. Together with Proposition 4.4.6, this
implies that the support of E0, and so also the support of EεM

0 , maps onto W1 with
discrete fibres. �

The preceding proposition shows that EεM
0 may be regarded as a coherent sheaf

on Gm,1 ×W1, whose support maps to W1 with discrete fibres.
LetAεM

0 denote the image ofA in End(EεM
0 ). Then SpecAεM

0 is a closed subspace
of SpecA0, and the Proposition 4.4.14 allows us to regard SpecAεM

0 as a closed
subspace of W1 × Gm,1 × SpecH(Kp)sph. In fact if ` is a prime not dividing
Mp, then T (`, `) acts on SpecEεM

0 via εM (`) times the action of the element `−1,
regarded as a section of OW1 . Thus in fact SpecAεM

0 embeds as a closed subspace
of the product

W1 ×Gm,1 ×
∏

(`,Mp)=1

SpecE[T (`)].

If we let E(1,M)εM
0 denote the the intersection of E(1,M)0 and SpecAεM , then

E(1,M)0 =
∐

εM
E(1,M)εM

0 , and each E(1,M)εM embeds as a closed subspace of

W1 ×Gm,1 ×
∏

(`,Mp)=1

SpecE[T (`)].

In fact the union of these embeddings is again an embedding of E(1,M)0 into
W1×Gm,1×

∏
(`,Mp)=1 SpecE[T (`)]. This follows from the fact that the eigenvalues

of the Hecke operators T (`) parameterize the traces of Frobenius of a family of
Galois pseudorepresentations over E(1,M)0, from whose determinant the tame
nebentypus εM may be recovered.

In short, a point of E(1,M)0 is determined by a “weight” (i.e. an element of
W1), a Up-eigenvalue (i.e. an element of Gm,1 – more precisely, if this element
is denoted a, then the corresponding Up-eigenvalue equals pεM (p)/a, where εM
denotes the tame nebentypus, as one sees from the statement of Proposition 4.4.2),
and a collection of T`-eigenvalues, one for each prime ` not dividing Mp.

It follows from its construction, and from Proposition 4.4.13 (ii), that E(1,M)0
is a reduced rigid analytic space whose connected components are either zero-
dimensional or equidimensional of dimension one. Since E(1,M)0 is equal to
the Zariski closure of E(1,M)cl,0, we see that any zero-dimensional component
of E(1,M)0 must consist of classical points. Since “slope of the Up-eigenvalue” is
a locally constant function on E(1,M)0, we see that any point of E(1,M)cl that is
not isolated in E(1,M)0 can be written as the limit of a sequence of points of clas-
sical weight and of non-critical slope, which are hence themselves classical. Thus
we see that each one-dimensional irreducible component of E(1,M)0 contains a
Zariski dense set of classical points of non-critical slope.

As we will now explain, one can in fact show that E(1,M)0 is isomorphic to the
reduced eigencurve of [11] (or more precisely, to its tame level M generalization
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considered in [6]). This will show in particular that every component of E(1,M)0
has dimension one (i.e. that E(1,M)0 contains no isolated points).

In Part II of [6] Buzzard applies his “eigenvariety machine” to spaces of over-
convergent modular forms of tame level M (for any M ≥ 1 prime to p), equipped
with the action of the compact operator Up and the Hecke algebra T of prime-to-p
Hecke operators, to construct a rigid analytic curve that he calls “D”, which in the
case when M = 1 coincides with the reduced eigencurve constructed in [11].

In general, the curve that Buzzard constructs will not be reduced (because he
works with the full Hecke algebra T, and because of the presence of oldforms).
However, one may form the analogue of Buzzard’s construction after replacing T
by its subalgebra T′ of prime-to-Np Hecke operators, to obtain a curve that we will
denote by D(M). Since we omit the T` for ` dividing M , the curve D(M) will be
reduced. (Compare Proposition 3.9 and the proof of Proposition 4.8 of [9].)

The curve D(M) parameterizes prime-to-M systems of eigenvalues arising from
finite slope overconvergent p-adic Hecke eigenforms of tame level M and arbitrary
weight. Thus a point of D(M) is determined by giving a point of W (the weight),
a point of Gm (the non-zero Up-eigenvalue), and for each prime ` not dividing Mp
a point of A1 (the `th Hecke eigenvalue). Thus we obtain an immersion of D(M)
into W×Gm×

∏
(`,Mp) A1. We noted above that E(1,M)0 also embeds as a closed

subspace of this product.

Proposition 4.4.15. The embedding of D(M) in W×Gm×
∏

(`,Mp)=1 A1 discussed
above induces an isomorphism of D(M) with E(1,M)0.

Proof. Proposition 4.4.2 (and its extension to the non-cuspidal case, the details of
which we leave to the reader) shows that D(M) contains all the points of E(1,M)cl,
and these points are Zariski dense in D(M) by an evident generalization of [11,
Thm. F]. Thus the proposition will follows if we show that D(M) embeds as a
Zariski closed subvariety of W×Gm×

∏
(`,Mp)=1 A1. This follows from the fact that

(by its very construction) the projection D(M) →W×Gm is a finite morphism. �

Corollary 4.4.16. The rigid analytic space E(1,M)0 is equidimensional of dimen-
sion one.

Proof. This follows from the corresponding statement for D(M) (which is a partic-
ular case of [6, Lem. 5.8]). �

Since the isomorphisms (4.4.12) and (4.4.13) show that the varieties E(1,M) and
E(1,M)par are obtained from E(1,M)0 and E(1,M)par,0 by allowing all wild twists,
we deduce from this corollary that E(1,M) and E(1,M)par are equidimensional of
dimension two.

We let M denote the localization of E over SpecA. It is a coherent sheaf on
E . It will be useful to describe explicitly its fibre over a point of E(1,M)par,cl,0 of
non-critical slope and tame conductor M .

Definition 4.4.17. If f is a p-stabilized newform of weight k+ 2 and p-stabilized
conductor Mpr, defined over a finite extension E′ of E, then let Hf denote the
subspace of E′ ⊗E H1(Y1(Mpr),VW̌k

) on which the classical Hecke and diamond
operators of level Mpr act through the corresponding eigenvalues of f .

Let us remark that if in the preceding definition we were to replace H1 by either
H1

c or H1
par then we could analogously define spaces Hc,f and Hpar,f . However,
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since f is a cuspform, the natural maps

Hc,f → Hpar,f → Hf

are both isomorphisms. Thus we write Hf to denote any of these canonically
isomorphic spaces.

Proposition 4.4.18. Suppose that x = (χ, λ) ∈ E(1,M)par,cl,0(Qp) corresponds
(via Proposition 4.4.2 ) to a p-stabilized newform f of weight k + 2, of tame con-
ductor M , and of Up-eigenvalue α. If χ is of non-critical slope (equivalently, by
Corollary 4.4.3, if ordp(α) < k+ 1), then the fibre Mx of M over x is canonically
dual to the space Hf ⊗E (Wk)N . (Here N denotes the unipotent radical of B, so
that (Wk)N is the (one-dimensional) highest weight space of Wk with respect to
N .) It is two-dimensional, and the ±-eigenspaces under the action of π0 are each
one-dimensional.

Proof. Extending scalars from E to a finite extension over which x is defined, we
may assume that x is defined over E. As in the statement and proof of Proposi-
tion 4.4.2, write χ = θψk with θ smooth. The fibre Mc,x is by Proposition 2.3.3 (iii)
dual to the (T = χ,H(Kp) = λ)-eigenspace of JB(Ĥ1(Kp)la). This eigenspace is
identified via the canonical lifting of [14, (3.4.8)] with the subspace of Ĥ1(Kp)P0

on which H(Kp)sph acts through λ, and the Hecke operators πN0,t act through
χ(t), for t ∈ T+. (Here we are using the notation introduced in the proof of
Proposition 4.4.2.) Since χ is of non-critical slope, this eigenspace consists of lo-
cally Wk-algebraic vectors [14, Thm. 4.4.5], and so (by the isomorphism (4.3.4))
is isomorphic to H1(Kp)P0,T+=θ,H(Kp)=λ ⊗E (Wk)N . By assumption (χ, λ) lies in
E(1,M)par,cl,0, and so this space is equal to H1

par(K
p)P0,T+=θ,H(Kp)=λ ⊗E (Wk)N .

If α = pθ(℘0), then α is equal to the Up-eigenvalue of f , and the discussion in
the proof of Proposition 4.4.2 (together with strong multiplicity one for newforms)
identifies H1

par(K
p)P0,T+=θ,H(Kp)=λ with the space Hf . Eichler-Shimura theory

shows that this space is two-dimensional, and that it splits as the direct sum of
±-eigenspaces under the action of π0, each one-dimensional. �

If we take into account the fact that the modular curves Ỹ (Kf ) admit canonical
models defined over Q, then the discussion of Subsection 2.4 shows that that M
is equipped with a natural Gal(Q/Q)-action, commuting with its Hfs(Kp)-module
structure.

Proposition 4.4.19. If x is a point of E(1,M)par,cl,0 of non-critical slope, corre-
sponding (via Proposition 4.4.2 ) to a p-stabilized newform f of weight k + 2 and
tame conductor M , then the fibre Mx is “the” two-dimensional Galois representa-
tion attached to f . More precisely, this action is unramified at primes not dividing
Mp, and if ` is such a prime, then the characteristic polynomial of Frob` (the
arithmetic Frobenius at `) is equal to X2 − a`X + ε(`)`k+1, where a` denotes the
eigenvalue of T` on f , and ε denotes the nebentypus character of f .

Proof. This follows from Proposition 4.4.18 and the known properties of the Ga-
lois representations on the spaces H1

par(K
p,VW̌k

), together with the fact that the
isomorphism of Proposition 4.4.18 is Galois equivariant (as follows from Proposi-
tion 2.4.1). �
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Proposition 4.4.20. The coherent sheaf M is locally free of rank two in the neigh-
bourhood of each point of non-critical slope and tame conductor M in E(1,M)par,cl.

Proof. The isomorphism (4.4.7) gives rise to a corresponding isomorphism M ∼−→
OW �M| SpecA0 , compatible with the isomorphisms (4.4.11) and (4.4.12). Thus it
suffices to check the statement of the corollary with E(1,M) replaced by E(1,M)0.

Proposition 4.4.18 shows that fibre of M over each classical point of non-critical
slope and tame conductor M in E(1,M)par,0 is two-dimensional. This already
implies the statement of the corollary in the neighbourhood of any such point that
is isolated in E(1,M)0 (although Corollary 4.4.16 shows that there are no such
points). Thus it suffices to check the statement of the corollary at classical points
of non-critical slope that lie in one-dimensional components of E(1,M)0. As was
noted above, the neighbourhood of any such point x contains an infinite number of
other such points. As x corresponds to a cuspidal newform of tame conductor M , a
consideration of associated Galois representations shows that it cannot be written
as the p-adic limit of Eisenstein series, or of newforms of tame conductor less than
M . Thus each neighbourhood of x contains infinitely many points of E(1,M)par,cl,0

of non-critical slope and tame conductor M . Since E(1,M)0 is reduced, and since
M has fibre rank two at all such points, we conclude that indeed M is locally free
of rank two in the neighbourhood of x. �

(4.5) We close Section 4 by explaining how the results of the forthcoming paper
[17] relating Jacquet functors and parabolic induction (which are summarized in
[16, §5]) may be applied to construct a two-variable p-adic L-function over the
eigencurves E(1,M)par,0 considered in Subsection 4.4.

One-variable p-adic L-functions, following [26]. In [26] the authors define p-adic
L-functions attached to p-stabilized newforms of non-critical slope. We will briefly
recall their construction, using the notation and point of view adopted in this paper
(which differs slightly from that of [26]).

If r ∈ P1(Q), let {r,∞} denote an arc in the upper half-plane X of C \R joining
r to ∞. (If r = ∞ then we understand this arc to be trivial.) Let Kf be a compact
open subgroup of GL2(Af ), and fix k ≥ 0. Given any element of H1

c (Ỹ (Kf ),VW̌k
),

we may pull this element back to X and then integrate it along {r,∞} (for any
r ∈ P1(Q)) and so obtain an element of W̌k. This may in turn be paired against
any element of Wk so as to obtain a scalar; thus each arc {r,∞} induces an element
in the dual space to H1

c (Ỹ (Kf ),VW̌k
)⊗E Wk, which we again denote by {r,∞}.

Let f be a p-stabilized newform f of weight k+2, of p-stabilized conductor Mpr,
of Up-eigenvalue α, and of non-critical slope (i.e. for which ordp(α) < k + 1). The
discussion of the preceding paragraph allows us in particular to regard {r,∞} (for
r ∈ P1(Q)) as an element in the dual space to Hf ⊗E Wk. Equivalently, we obtain
a map φ : Wk × P1(Q) → Ȟf that is linear in the first variable.

Recall that W̌k is the kth symmetric power of the standard representation of GL2.
Let (0, 1) be the indicated element of E2, and write w̌0 := (0, 1)k ∈ Symk E2 = W̌k.
(If B denotes the Borel subgroup of GL2 consisting of lower triangular matrices,
then w̌0 is a highest weight vector of W̌k with respect to B.) The map Qp ×

Wk → E defined by (z, w) 7→ 〈w̌0,

(
1 z
0 1

)
w〉 identifies Wk with the space of

polynomial functions on Qp of degree ≤ k with coefficients in E. Having made
this identification, the map φ of the preceding paragraph is seen to be a variant of
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the map φ(f, – , – ) defined in [26, §1]. More precisely, the latter map is obtained
by composing the map φ we have constructed with the map Ȟf → C obtained
by pairing elements of Ȟf against the element of Hf defined by the holomorphic
de Rham cohomology class associated to f as in the proof of Proposition 4.4.2
(multiplied by 2πi), and replacing the polynomial P (z) by P (−z).

We may now use the recipe of [26] to define the p-adic L-function attached to x.
This p-adic L-function is defined by a locally analytic distribution on Z×p that we
will denote by µf . We first define the values of µf on locally polynomial functions
of degrees ≤ k. Let P (z) be a polynomial of degree ≤ k, let a ∈ Z×p , and let pm be
some positive power of p. We define

(4.5.1)
∫

a+pmZp

P (z)dµf (z) := α−mφ(P (pmz + a),
a

pm
) ∈ Ȟf .

(Here P (pmz + a) is the indicated polynomial, regarded as an element of Wk via
the above identification.) The integral of any locally polynomial function of degrees
≤ k over Z×p with respect to µf can obviously be written as a linear combination of
such integrals, and so by linearity µf is defined on the space of all such functions.
Since f is of non-critical slope, the Theorem of Vishik and Amice-Vélu [26, Thm.,
p. 13] shows that µf extends to a locally analytic Ȟf -valued distribution on Z×p .
The p-adic L-function attached to f is the Ȟf -valued rigid analytic L-function
on weight space W defined via L(f, χ) :=

∫
Z×p χdµf , for χ ∈ W(Qp). (The p-adic

Fourier theory of Amice [1] shows that this formula does indeed yield a rigid analytic
function on W.)

Two-variable p-adic L-functions. We now explain our construction of two-
variable p-adic L-functions. We will use an obvious variation of the constructions
of Subsection 4.4, in which we work with compactly supported cohomology rather
than cohomology. We let Mc denote the sheaf on SpecAc obtained by localizing Ec.
The natural map Ĥ1

c (Kp)la → Ĥ1(Kp)la induces a corresponding map of Jacquet
modules, and hence a map E → Ec of coherent sheaves on T̂ . This in turn induces
a map

(4.5.2) M|E(1,M)par,0 →Mc|E(1,M)par,0 .

Lemma 4.5.3. The map (4.5.2 ) is an isomorphism in the neighbourhood of each
point of tame conductor M and non-critical slope.

Proof. Proposition 4.4.20, and its obvious analogue in the case of compactly sup-
ported cohomology, show that the source and target of (4.5.2) are each locally free
of rank two in the neighbourhood of points of tame conductor M and non-critical
slope in E(1,M)par,0. Furthermore, this map induces an isomorphism on fibres
at each such point (as follows from Proposition 4.4.18, its analogue in the com-
pactly supported case, and the observations preceding its statement). The lemma
follows. �

Definition 4.5.4. Let E′ be a finite extension of E. We say that a point x =
(χ, λ) ∈ E(1,M)par,0(E′) is bad if the character χ is locally algebraic, of the form
χ = θψk for some smooth character θ and some k ≥ 0, and if the point (r−k−1χ, λ)
also lies in SpecAc; here r denotes the positive simple root of GL2 with respect to
B.
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Proposition 4.5.5. The set of bad points (defined over some finite extension of E)
is a discrete subset of E(1,M)par,0. It does not contain any point of E(1,M)par,cl,0

that is of non-critical slope.

Proof. If x ∈ E(1,M)par,0 is a classical point of non-critical slope, then an ar-
gument like that in the proof of [14, Thm. 4.4.5] shows that x does not satisfy
Definition 4.5.4. This completes the proof of the second claim of the proposition.
Since “slope” is a locally constant function on E(1,M)par,0, we see that any point
of E(1,M)par,0 that does satisfy Definition 4.5.4 has a neighbourhood all of whose
points of classical weight, other than x itself, are in fact of non-critical slope. This
proves the first claim of the proposition. �

Corollary 4.4.16 shows that E(1,M)par,0 is a union of irreducible components
that are each of dimension one. Since the fibre of E(1,M)par over any point of W
is discrete, it follows that each component of E(1,M)par,0 is flat over W.

Definition 4.5.6. We let E(1,M)∗par,0 denote the complement of the set of bad
points in E(1,M)par,0, and let M∗

c denote the quotient of the restriction of Mc to
E(1,M)∗par,0 by its maximal OW -torsion submodule.

Let x ∈ E(1,M)par,cl,0 be a point of non-critical slope, corresponding via Propo-
sition 4.4.2 to a p-stabilized newform f of tame conductor M . Proposition 4.4.20
and Lemma 4.5.3 imply that Mc is locally free of rank two in a neighbourhood
of x, and hence (by the flatness result discussed prior to Definition 4.5.6) that
Mc is OW -torsion free in the neighbourhood of x. Thus Mc and M∗

c coincide
in a neighbourhood of x. Proposition 4.4.18 (and Lemma 4.5.3) then imply that
the fibre M∗

c,x of M∗
c over x is canonically dual to Hf ⊗E (Wk)N . (As in the

statement of Proposition 4.4.18, we let (Wk)N denote the highest weight space of
Wk with respect to B.) There is a unique basis element of (Wk)N that satisfies
〈w̌0, w〉 = 1 (where as above w̌0 denotes the vector (0, 1)k ∈ Symk E2 = W̌k). This
basis element determines an isomorphism (Wk)N ∼−→ E, and hence an isomorphism
M∗

c,x
∼−→ Ȟf .

Our goal in the remainder of this subsection is to prove the following theorem.

Theorem 4.5.7. There is a rigid analytic section of the coherent sheaf OW �
M∗

c on W × E(1,M)∗par,0, which we denote by L, with the property that at each
point x ∈ E(1,M)par,cl,0 of non-critical slope, corresponding via Proposition 4.4.2
to a p-stabilized newform f of tame conductor M , the fibre Lx (which is a rigid
analytic section of OW ⊗M∗

c,x
∼−→ OW ⊗ Ȟf , the isomorphism being provided by

the preceding discussion) is equal to the p-adic L-function Lf constructed above.

Proof. We let U denote the compact type space that is topologically dual to the
Fréchet space of global sections of M∗

c . The natural locally closed immersion
E(1,M)∗par,0 → T̂ × SpecH(Kp)sph allows us to regard the space of global sections
of M∗

c as a topological module over Can(T̂ , E) := Γ(T̂ ,OT̂ ), with a commuting ac-
tion of H(Kp)sph. Thus U is a locally analytic T -representation, equipped with a
commuting H(Kp)sph-action. The locally analytic T -representation U is allowable
in the sense of [16, Def. 5.18], since it is dual to the space of global sections of a
coherent sheaf on a quasi-Stein rigid analytic variety.

We may restrict global sections of Mc to E(1,M)∗par,0 and so obtain global
sections of M∗

c . The dual of this restriction map is a continuous T × H(Kp)sph-
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equivariant map of compact type spaces

(4.5.8) U → JB(Ĥ1
c (Kp)la).

Lemma 4.5.12 below shows that (4.5.8) is balanced, in the sense of [16, Def. 5.17].
As usual, let G = GL2(Qp), and let B := B(Qp) denote the Borel subgroup of

lower triangular matrices. Let IG
B

(U(δ−1)) be the closed subspace of the locally
analytic induction IndG

B
U(δ−1) defined in [16, Def. 5.13]. Lemma 4.5.12 below

shows that in fact IG
B

(U(δ−1)) = IndG
B
U(δ−1). Thus [16, Thm. 5.19] shows that

the map (4.5.8) induces a continuous G×H(Kp)sph-equivariant map

(4.5.9) IndG
B
U(δ−1) → Ĥ1

c (Kp)la.

As above, let N denote the unipotent radical of B (the Borel of upper triangular

matrices). It is naturally isomorphic to Qp (via z 7→
(

1 z
0 1

)
), and embeds as an

open subset of G/B. (See the discussion at the beginning of [16, §5].) In particular,
we obtain an embedding Z×p → G/B, and a corresponding closed embedding of
compact type spaces

(4.5.10) Cla(Z×p , E) ⊗̂E U → IndG
B
U(δ−1).

(The source is a closed subspace of Cla
c (N,U(δ)), which in turn is a closed subspace

of the target.) Recall from [1] that the dual to Cla(Z×p , E) is isomorphic to the space
Can(W, E) := Γ(W,OW). Thus composing (4.5.10) with (4.5.9), and then passing
to topological duals, we obtain a H(Kp)sph-equivariant morphism

(4.5.11) (Ĥ1
c (Kp)la)′ → Γ(W × E(1,M)∗par,0 , OW �M∗

c ).

(Here the source is the topological dual to the space Ĥ1
c (Kp)la, and the right hand

side denotes the Fréchet space of global sections of the coherent sheaf OW � M∗
c

on W × E(1,M)∗par,0.)
One way to construct elements in the source of (4.5.11) is via the arcs {r,∞}

for r ∈ P1(Q). Indeed, integrating along such an arc gives rise to a homomorphism
H1

c (Ỹ (Kf ), A) → A for any level Kf and any ring A, compatibly with change of
level and change of ring. Consequently {r,∞} induces an element of the topological
dual to Ĥ1

c (Kp), and so also (simply by composing with the continuous injection
Ĥ1

c (Kp)la → Ĥ1
c (Kp)) an element of (Ĥ1

c (Kp)la)′. Applying (4.5.11) to the element
in its source corresponding to {0,∞}, we obtain a global section of OW ×M∗ over
W × E(1,M)∗par,0, which we denote by L.

If x ∈ E(1,M)∗par,0(Qp), then let Lx denote the restriction of L to the closed
subspace W × x of W ×E(1,M)par,0; it is a section of OW ×M∗

c,x. Let µx denote
the Ȟf -valued locally analytic distribution on Z×p that corresponds via the p-adic
Fourier theory of [1] to the rigid analytic function Lx on W.

If x is a classical point of non-critical slope, corresponding to a p-stabilized new-
form f of tame conductor M , then by its construction the distribution µx coincides
with the distribution µg appearing in the statement of Proposition 4.9 of [15] (tak-
ing the p-stabilized newform g of that proposition to be f). That proposition shows
that Lx coincides with the p-adic L-function of f , and so completes the proof of
the present theorem. �
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Lemma 4.5.12. (i) The map (4.5.8 ) is balanced.
(ii) The closed embedding IG

B
(U(δ−1)) → IndG

B
U(δ−1) is an isomorphism.

Proof. By [14, Prop. 3.5.6], the map (4.5.8) induces a B-equivariant map

Csm
c (Qp, U(δ−1)) → Ĥ1

c (Kp)la,

and thus a (gl2, B)-equivariant map

(4.5.13) U(gl2)⊗U(b) Csm
c (Qp, U(δ−1)) → Ĥ1

c (Kp)la.

(As in the proof of Theorem 4.5.7, we are identifying Qp with the unipotent radical
N of B.)

Let Clp
c (Qp, U(δ−1)) denote the space of compactly supported locally polynomial

U(δ−1)-valued functions on Qp. The inclusion Qp
∼−→ N → G/B allows us to

regard Clp
c (Qp, U(δ−1)) as a (gl2, B)-invariant subspace of IndG

B
U(δ−1). The in-

clusion of Csm
c (Qp, U(δ−1)) in Clp

c (Qp, U(δ−1)) thus induces a (gl2, B)-equivariant
map

(4.5.14) U(gl2)⊗U(b) Csm
c (Qp, U(δ−1)) → Clp

c (Qp, U(δ−1)).

There are isomorphisms

Csm
c (Qp, U(δ−1)) ∼−→ Csm

c (Qp, E)⊗ U(δ−1)

and
Clp

c (Qp, U(δ−1)) ∼−→ Csm
c (Qp, E)⊗ U(δ−1)[z]

(where U(δ−1)[z] denotes the space of polynomials in z with coefficients in U(δ−1)),
and (4.5.14) may be factored as the tensor product of the identity automorphism
of Csm

c (Qp, E) and a map

(4.5.15) U(gl2)⊗U(b) U → U [z]

(we drop the twists by δ from our notation, since we will consider only Lie algebra
actions from now on, and δ is smooth), defined by the following explicit formula: Let

n− and h denote the elements
(

0 0
1 0

)
and

(
1 0
0 −1

)
of gl2. Then U(gl2) ⊗U(b)

U =
⊕

i(n−)iU, and (4.5.15) is defined by the formula

(4.5.16) (n−)iu 7→ ((h− i+ 1) . . . (h− 1)hu) zi.

Referring to the definitions of [16, §5], we find that part (i) of the lemma is
equivalent to showing that the kernel of (4.5.13) contains the kernel of (4.5.14).
Consider the map

(4.5.17) U → (Ĥ1
c (Kp)la)N0

obtained as the composition of (4.5.8) with the canonical lift JB(Ĥ1
c (Kp)la) →

Ĥ1
c (Kp)la. From the explicit formula (4.5.16), we see that part (i) holds provided



ON THE INTERPOLATION OF SYSTEMS OF HECKE EIGENVALUES 69

that (4.5.17) takes any element u of U on which h acts via an integer k ≥ 0 to a
locally Wk-algebraic element of Ĥ1

c (Kp)la. Note that since the T0-action on U is
fixed to be trivial, the t-action on any such point u under (4.5.17) is completely
determined. The fibre of SpecAc over a given character of ť is discrete, and so we
may assume (after extending scalars if necessary) that such a point u is a generalized
eigenvector for the action of T , with respect to some character χ ∈ T̂ (E), as well as
a generalized eigenvector for the action of H(Kp)sph, with respect to some character
λ ∈ (SpecH(Kp)sph)(E). If v denotes the image of u under (4.5.17), then v is a
generalized χ-eigenvector for the action of the Hecke operators πN0,t (for t ∈ T+),
as well as a generalized λ-eigenvector for the action ofH(Kp)sph. A minor variant of
[14, Prop. 4.4.4] shows that (n−)k+1v lies in the generalized (r−k−1χ, λ)-eigenspace
for the action of the operators πN0,t (t ∈ T+) and the Hecke algebra H(Kp)sph.
From the construction of U , we see that the point (χ, λ) must not be a bad point
of SpecAc, and thus that (r−k−1χ, λ) must not lie on SpecAc. Consequently
the generalized (r−k−1χ, λ)-eigenspace of (Ĥ1

c (Kp)la)N0 vanishes, and so (n−)k+1

annihilates v. Hence v is Wk-locally algebraic, as we wanted to show.
Again referring to the definitions of [16, §5], we see that part (ii) of the lemma

will follow if we show that (4.5.15) (and hence (4.5.14)) is surjective. Since U is dual
to the space of global sections of a flat OW -sheaf, it is divisible as a module under
the action of the polynomial ring E[h]. Formula (4.5.16) thus implies that (4.5.15)
is indeed surjective, as required. �

The global section L of OW � M∗
c may be regarded as a two-variable p-adic

L-function: one variable is provided by the factor OW (with an appropriate nor-
malization this becomes the classical “s”-variable), the other by the punctured
eigencurve E(1,M)∗par,0.

If we decompose the coherent sheaf M∗
c into its ± eigenspaces under the action

of π0, then the section L decomposes into the sum of two sections L±, whose fibres
at classical points of non-critical slope correspond to the usual + and − p-adic L-
functions (which vanish when evaluated on odd and even characters respectively).

Let us remark that Stevens [33] has previously constructed two-variable p-adic
L-functions along the eigencurve, via a method quite different to ours. He uses
his theory of rigid analytic modular symbols to construct a coherent sheaf (which
we will denote by S) along the eigencurve E(1,M)par,0, whose sections are certain
modular symbols with values in the space of locally analytic distributions on Z×p .
The fibre of S at a classical point of non-critical slope maps isomorphically, via a
specialization map, to the dual of the fibre of Mc at such a point. If U is an open
subset of E(1,M)par,0 for which S|U is free of rank two, then by choosing a basis
of each of the ±-parts of S|U , evaluating these modular symbols on the arc {0,∞},
and passing via the p-adic Fourier theory of [1] from distributions on Z×p to rigid
analytic functions on W, Stevens obtains p-adic L-functions L± as rigid analytic
functions on W ×U .
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