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LOCALLY ANALYTIC REPRESENTATION

THEORY OF p-ADIC REDUCTIVE GROUPS: A

SUMMARY OF SOME RECENT DEVELOPMENTS

Matthew Emerton

Northwestern University

The purpose of this short note is to summarize some recent progress in the theory
of locally analytic representations of reductive groups over p-adic fields. This theory
has begun to find applications to number theory, for example to the arithmetic
theory of automorphic forms, as well as to the “p-adic Langlands programme” (see
[3, 4, 5, 10, 11, 12]). I hope that this note can serve as an introduction to the
theory for those interested in pursuing such applications.

The theory of locally analytic representations relies for its foundations on no-
tions and techniques of functional analysis. We recall some of these notions in
Section 1. In Section 2 we describe some important categories of locally analytic
representations (originally introduced in [20], [23] and [8]). In Section 3, we discuss
the construction of locally analytic representations by applying the functor “pass
to locally analytic vectors” to certain continuous Banach space representations. In
Section 4 we briefly describe the process of parabolic induction in the locally ana-
lytic situation, which allows one to pass from representations of a Levi subgroup of a
reductive group to representations of the reductive group itself, and in Section 5 we
describe the Jacquet module construction of [9], which provides functors mapping
in the opposite direction. Parabolic induction and the Jacquet module functors are
“almost” adjoint to one another. (See Theorem 5.19 for a precise statement.)

Acknowledgments. I would like to thank David Ben-Zvi for his helpful remarks
on an earlier draft of this note, as well as the anonymous referee, whose comments
led to the clarification of some points of the text.

1. Functional analysis

We begin by recalling some notions of non-archimedean functional analysis. A
more detailed exposition of the basic concepts is available in [17], which provides
an excellent introduction to the subject.

Let K be a complete discretely valued field of characteristic zero. A topological
K-vector space V is said to be locally convex if its topology can be defined by a
basis of neighbourhoods of the origin that are OK-submodules of V ; or equivalently,
by a collection of non-archimedean semi-norms. (We will often refer to V simply
as a convex space, or a convex K-space if we which to emphasize the coefficient
field K.) The space V is called complete if it is complete as a topological group
under addition.
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If V is any locally convex K-space, then we may complete V to obtain a complete
Hausdorff convex K-space V̂ , equipped with a continuous K-linear map V → V̂ ,
which is universal for continuous K-linear maps from V to complete Hausdorff K-
spaces. (See [17, Prop. 7.5] for a construction of V̂ . Note that in this reference V̂
is referred to as the Hausdorff completion of V .)

If V is a convex K-space, then we let V ′ denote the space of K-valued continuous
K-linear functionals on V , and let V ′b denote V ′ equipped with its strong topology
(the “bounded-open” topology – see [17, Def., p. 58]; the subscript “b” stands for
“bounded”). We refer to V ′b as the strong dual of V . There is a natural K-linear
“double duality” map V → (V ′b )′; we say that V is reflexive if this map induces a
topological isomorphism V → (V ′b )′b.

If V and W are two convex K-spaces, then we always equip V ⊗K W with the
projective tensor product topology. This topology is characterized by the require-
ment that the map V ×W → V ⊗KW defined by (v, w) 7→ v⊗w should be universal
for continuous K-bilinear maps from V ×W to convex K-spaces. (See [17, §17]
for more details about the construction and properties of this topology.) We let
V ⊗̂K W denote the completion of V ⊗K W .

A complete convex space V is called a Fréchet space if it is metrizable, or equiv-
alently, if its topology can be defined by a countable set of seminorms. If the
topology of the complete convex space V can be defined by a single norm, then
we say that V is a Banach space. Note that we don’t regard a Fréchet space or a
Banach space as being equipped with any particular choice of metric, or norm.

If V and W are Banach spaces, then the space L(V,W ) of continuous linear
maps from V to W again becomes a Banach space, when equipped with its strong
topology. (Concretely, if we fix norms defining the topologies of V and W respec-
tively, then we may define a norm on L(V,W ) as follows (we denote all norms by
|| ||): for any T ∈ L(V,W ), set ||T || = supv∈V s.t. ||v||=1 ||T (v)||.) We say that an
element T ∈ L(V,W ) is compact if it may be written as a limit (with respect to
the strong topology) of a sequence of maps with finite dimensional range (see [17,
Rem. 18.10]).

If V is a Fréchet space, then completing V with respect to each of the members of
an increasing sequence of semi-norms that define its topology, we obtain a projective
sequence of Banach spaces {Vn}n≥1, and an isomorphism of topological K-vector
spaces

V
∼−→ lim

←−
n

Vn,

where {Vn}n≥1 is a projective system of Banach spaces over K, and the right hand
side is equipped with the projective limit topology. Conversely, any such projective
limit is a Fréchet space over K.

Definition 1.1. A nuclear Fréchet space over K is a K-space which admits an
isomorphism of topological K-vector spaces

V
∼−→ lim

←−
n

Vn,

where {Vn}n≥1 is a projective system of Banach spaces over K with compact transi-
tion maps (and the right hand side is equipped with the projective limit topology).

In fact there is a more intrinsic definition of nuclearity for any convex space [17,
Def., p. 120], which is equivalent to the above definition when applied to a Fréchet
space (as follows from the discussion of [17, §16] together with [20, Thm. 1.3]).
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Proposition 1.2. Let V be a nuclear Fréchet space.
(i) V is reflexive.
(ii) Any closed subspace or Hausdorff quotient of V is again a nuclear Fréchet

space.

Proof. See [17, Prop. 19.4]. �

We now introduce another very important class of locally convex spaces.

Definition 1.3. We say that a convex K-space V is of compact type if there is an
isomorphism of topological K-vector spaces

V
∼−→ lim

−→
n

Vn,

where {Vn}n≥1 is an inductive system of Banach spaces over K with compact and
injective transition maps (and the right hand side is equipped with the locally
convex inductive limit topology).

Proposition 1.4. Let V be a space of compact type.
(i) V is complete and Hausdorff.
(ii) V is reflexive.
(iii) Any closed subspace or Hausdorff quotient of V is again of compact type.

Proof. See [20, Thm. 1.1, Prop. 1.2]. �

Proposition 1.5. Passing to strong duals yields an anti-equivalence of categories
between the category of spaces of compact type and the category of nuclear Fréchet
spaces.

Proof. This is [20, Thm. 1.3]. A proof can also be extracted from the discussion of
[17, §16]. �

We now define an important class of topological algebras over K (originally
introduced in [23]).

Definition 1.6. Let A be a topological K-algebra. We say that A is nuclear
Fréchet-Stein algebra if we may find an isomorphism A

∼−→ lim
←−
n

An, where {An}n≥1

is a sequence of Noetherian K-Banach algebras, for which the transition maps
An+1 → An are compact (as maps of K-Banach spaces) and flat (as maps of K-
algebras), and such that each of the maps A→ An has dense image (or equivalently,
by [2, II §3.5 Thm. 1], such that each of the maps An+1 → An has dense image).

If A is a nuclear Fréchet-Stein algebra over K, then A is certainly a nuclear
Fréchet space. If A is a topological K-algebra, then any two representations of A
as a projective limit as in Definition 1.6 are equivalent in an obvious sense. (See [8,
Prop. 1.2.7].)

Example 1.7. Let us explain the motivating example of a nuclear Fréchet-Stein
algebra. Suppose that X is a rigid analytic space over K that may be written as
a union X =

⋃∞
n=1 Xn, where {Xn}n≥1 is an increasing sequence of open affinoid

subdomains of X, for which the inclusions Xn → Xn+1 are admissible and relatively
compact (in the sense of [1, 9.6.2]), and such that for each n the restriction map
Can(Xn+1,K) → Can(Xn,K) has dense image. (Here Can(Xn,K) denotes the Tate
algebra of rigid analytic K-valued functions on Xn.) We will say that such a
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rigid analytic space X is strictly quasi-stein. (If one omits the requirement that
the inclusions be relatively compact, one obtains the notion of a quasi-stein rigid
analytic space, as defined by Kiehl.) Since Xn → Xn+1 is an admissible open
immersion for each n ≥ 1, the restriction map Can(Xn+1,K) → Can(Xn,K) is flat.
The relative compactness assumption implies that it is furthermore compact, and
hence that the space

Can(X,K) ∼−→ lim
←−
n

Can(Xn,K)

of rigid analytic functions on X is naturally a nuclear Fréchet-Stein algebra.

Definition 1.8. Let A be a nuclear Fréchet-Stein algebra over K, and write A ∼−→
lim
←−
n

An as in Definition 1.6. We say that a Hausdorff topological A-module M is

coadmissible if the following two conditions are satisfied:
(i) The tensor product Mn := An ⊗A M is a finitely generated An-Banach

module, for each n. (We regard the tensor product An ⊗A M as being a quotient
of An ⊗K M , and endow it with the quotient topology induced by the projective
tensor product topology on An ⊗K M .)

(ii) The natural map M → lim
←−
n

Mn is an isomorphism of topological A-modules.

The preceding definition is a variation of [23, Def., p. 152], to which it is equiv-
alent, as the results of [23, §3] show.

Theorem 1.9. Let A be a nuclear Fréchet-Stein algebra over K.
(i) Any coadmissible topological A-module is a nuclear Fréchet space.
(ii) Any A-linear map between coadmissible topological A-modules is automati-

cally continuous, with closed image.
(iii) The category of coadmissible topological A-modules (with morphisms being

A-linear maps, which by (ii) are automatically continuous) is closed under taking
finite direct sums, passing to closed submodules, and passing to Hausdorff quotients.

Proof. This summarizes the results of [23, §3]. �

Remark 1.10. The category of all locally convex Hausdorff topological A-modules
is an additive category that admits kernels, cokernels, images and coimages. More
precisely, if f : M → N is a continuous A-linear morphism between such modules,
then its categorical kernel is the usual kernel of f , its categorical image is the closure
of its set-theoretic image (regarded as a submodule of N), its categorical coimage is
its set-theoretical image (regarded as a quotient module of M), and its categorical
cokernel is the quotient of N by its categorical image.

Part (ii) of Theorem 1.9 implies that if M and N in the preceding paragraph are
coadmissible, then the image and coimage of f coincide. Part (iii) of the Theorem
then implies that the kernel, cokernel, and image of f are again coadmissible. Thus
the category of coadmissible topological A-modules is an abelian subcategory of the
additive category of locally convex Hausdorff topological A-modules.

Remark 1.11. If B is a Noetherian K-Banach algebra (for example, one of the
algebras An appearing in Definitions 1.6 and 1.8), then the results of [1, 3.7.3]
show that the natural functor from the category of finitely generated B-Banach
modules (with morphisms being continuous B-linear maps) to the abelian category
of finitely generated B-modules, given by forgetting topologies, is an equivalence of
categories. Theorem 1.9 is an analogue of this result for the nuclear Fréchet-Stein



LOCALLY ANALYTIC REPRESENTATION THEORY OF p-ADIC GROUPS 5

algebra A. It shows that forgetting topologies yields a fully faithful embedding of
the category of coadmissible topological A-modules as an abelian subcategory of
the abelian category of all A-modules. In light of this, one can suppress all mention
of topologies in defining this category (as is done in the definitions of [23, p. 152]).

Definition 1.12. If A is a nuclear Fréchet-Stein algebra over K, we say that a
topological A-module M is strongly coadmissible if it is a Hausdorff quotient of
An, for some natural number n.

Since A is obviously a coadmissible module over itself, Theorem 1.9 implies that
any strongly coadmissible topological A-module is a coadmissible topological A-
module.

Example 1.13. Suppose that X is a strictly quasi-Stein rigid analytic space over
K, as in Example 1.7. If M is any rigid analytic coherent sheaf on X, then the
space M of global sections of M is naturally a coadmissible Can(X,K)-module,
and passing to global sections in fact yields an equivalence of categories between
the category of coherent sheaves on X and the category of coadmissible Can(X,K)-
modules. The Can(X,K)-module M of global sections of the coherent sheaf M is
strongly coadmissible if and only if M is generated by a finite number of global
sections.

Fix a complete subfield L ofK. We close this section by recalling the definition of
the space of locally analytic functions on a locally L-analytic manifold with values
in a convex space. (More detailed discussions may be found in [14, §2.1.10], [20,
p. 447], and [8, §2.1].)

Definition 1.14. If X is an affinoid rigid analytic space over L, and if W is a
K-Banach space, then we write Can(X,W ) := Can(X,K) ⊗̂K W . (Here, as above,
we let Can(X,K) denote the Tate algebra of K-valued rigid analytic functions on
X, equipped with its natural K-Banach algebra structure.)

If the setX := X(L) of L-valued points of X is Zariski dense in X, then Can(X,W )
may be identified with the space of W -valued functions on X that can be described
by convergent power series with coefficients in W .

Now let X be a locally L-analytic manifold. A chart of X is a compact open
subset X0 of X together with a locally analytic isomorphism between X0 and the
set of L-valued points of a closed ball. We let X0 denote this ball (thought of as a
rigid L-analytic space), so that X0

∼−→ X0(L). By an analytic partition of X we
mean a partition {Xi}i∈I of X into a disjoint union of charts Xi. We assume that
X is paracompact; then any covering of X by charts may be refined to an analytic
partition of X. (Here we are using a result of Schneider [18, Satz 8.6], which shows
that any paracompact locally L-analytic manifold is in fact strictly paracompact,
in the sense of the discussion of [20, p. 446].)

If V is a Hausdorff convex space, then we say that a function f : X → V is
locally analytic if for each point x ∈ X, there is a chart X0 containing x, a Banach
space W equipped with a continuous K-linear map φ : W → V , and a rigid analytic
function f0 ∈ Can(X0,W ) such that f = φ◦f0. (Replacing W by its quotient by the
kernel of φ, we see that it is no loss of generality to require that φ be injective.) We
let Cla(X,V ) denote the K-vector space of locally analytic V -valued functions on
X, and let Cla

c (X,V ) denote the subspace consisting of compactly supported locally
analytic functions.
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It follows from the definition that there are K-isomorphisms of vector spaces

Cla(X,V ) ∼−→ lim
−→

{Xi,Wi,φi}i∈I

∏
i∈I

Can(Xi,Wi)

and
Cla

c (X,V ) ∼−→ lim
−→

{Xi,Wi,φi}i∈I

⊕
i∈I

Can(Xi,Wi),

where in both cases the inductive limit is taken over the directed set of collections of
triples {Xi,Wi, φi}i∈I , where {Xi}i∈I is an analytic partition of X, each Wi is a K-
Banach space, and φi : Wi → V is a continuous injection. We regard Cla(X,V ) and
Cla

c (X,V ) as Hausdorff convex spaces by equipping them with the locally convex
inductive limit topologies arising from the targets of these isomorphisms. Note
that the inclusion Cla

c (X,V ) → Cla(X,V ) is continuous, but unless X is compact
(in which case it is an equality) it is typically not a topological embedding.

Given any collection {Xi,Wi, φi}i∈I as above, there is a natural map⊕
i∈I

Can(Xi,Wi) =
⊕
i∈I

Can(Xi,K) ⊗̂K Wi

⊕ id ⊗̂φi−→
⊕
i∈I

Can(Xi,K) ⊗̂K V −→

(⊕
i∈I

Can(Xi,K)

)
⊗̂K V.

(Note that if we were working with inductive, rather than projective, tensor product
topologies, then the last map would be an isomorphism.) Passing to the inductive
limit over all such collections yields a continuous map

(1.15) Cla
c (X,V ) → Cla

c (X,K) ⊗̂K V.

Proposition 1.16. If X is σ-compact (i.e. the union of a countable number of
compact open subsets) and V is of compact type then the map (1.15) is a topological
isomorphism and Cla

c (X,V ) is again of compact type.

Proof. If X is compact (so that Cla
c (X,V ) = Cla(X,V )) then this is [8, Prop. 2.1.28].

The proof in the general case is similar. �

2. Categories of locally analytic representations

Fix a finite extension L of Qp, for some prime p, as well a field K that extends
L and is complete with respect to a discrete valuation extending that on L. Let
G be a locally L-analytic group (an analytic group over L, in the sense of [25,
p. LG 4.1]). The identity element of G then has a neighbourhood basis consisting
of compact open subgroups of G [25, Cor. 2, p. LG 4.23].

If H is any compact open subgroup of G, then Proposition 1.16 shows that the
space Cla(H,K) of locally L-analytic K-valued functions on H is a compact type
convex K-space, and hence its strong dual is a nuclear Fréchet space, which we will
denote by Dla(H,K). Any element h ∈ H gives rise to a “Dirac delta function”
supported at h, which is an element δh ∈ Dla(H,K). In this way we obtain an
embedding K[H] → Dla(H,K) (where K[H] denotes the group ring of H over K).
The image of K[H] is dense in Dla(H,K), and the K-algebra structure on K[H]
extends (in a necessarily unique fashion) to a topological K-algebra structure on
Dla(H,K) [20, Prop. 2.3, Lem. 3.1].
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Theorem 2.1. The topological K-algebra Dla(H,K) is a nuclear Fréchet-Stein
algebra.

Proof. This is the main result of [23]. A different proof is given in [8, §5.3]. �

We will now consider various convex K-spaces V equipped with actions of G by
K-linear automorphisms. There are (at least) three kinds of continuity conditions
on such an action that one can consider. Firstly, one may consider a situation in
which G acts by continuous automorphisms of V . (Such an action is referred to
as a topological action in [8]; note that this condition does not make any reference
to the topology of G.) Secondly, one may consider the case when the action map
G× V → V is separately continuous. Thirdly, one may consider the case when the
action map G × V → V is continuous. If V is barrelled (see [17, Def., p. 39]; for
example a Banach space, a Fréchet space, or a space of compact type) then any
separately continuous action is automatically continuous, by the Banach-Steinhaus
theorem.

Proposition 2.2. If V is a compact type convex space, equipped with an action of
G by continuous K-linear automorphisms, then the following are equivalent:

(i) For some compact open subgroup H of G, the K[H]-module structure on V
extends to a (necessarily unique) Dla(H,K)-module structure on V , for which the
map Dla(H,K)×V → V describing this module structure is separately continuous.

(i’) For every compact open subgroup H of G, the K[H]-module structure on V
extends to a (necessarily unique) Dla(H,K)-module structure on V , for which the
map Dla(H,K)×V → V describing this module structure is separately continuous.

(ii) For some compact open subgroup H of G, the K[H]-module structure on V ′b
arising from the contragredient H-action on V ′b extends to a (necessarily unique)
topological Dla(H,K)-module structure on V ′b .

(ii’) For every compact open subgroup H of G, the K[H]-module structure on V ′b
arising from the contragredient H-action on V ′b extends to a (necessarily unique)
topological Dla(H,K)-module structure on V ′b .

(iii) There is a compact open subgroup H of G such that for any v ∈ V , the orbit
map ov : H → V, defined via h 7→ hv, lies in Cla(H,V ).

(iii’) For any v ∈ V , the orbit map ov : G → V, defined via g 7→ gv, lies in
Cla(G,V ).

Proof. The uniqueness statement in each of the first four conditions is a consequence
of the fact that K[H] is dense in Dla(H,K), for any compact locally analytic L-
analytic group. The equivalence of (i), (ii) and (iii) follows from [20, Cor. 3.3] and
the accompanying discussion at the top of p. 453 of this reference. The equivalence
of (iii) and (iii’) is straightforward. (See for example [8, Prop. 3.6.11].) Since (iii’)
is independent of H, we see that (i’) and (ii’) are each equivalent to the other four
conditions. �

Definition 2.3. If V is a compact type convex space equipped with an action of
G by continuous K-linear automorphisms, then we say that V is a locally analytic
representation of G if the equivalent conditions of Proposition 2.2 hold.

We let Repla.c(G) denote the category of compact type convex spaces equipped
with a locally analytic representation of G (the morphisms being continuous G-
equivariant K-linear maps).
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Example 2.4. If G is compact, so that Cla(G,K) is a compact type convex space
(by Proposition 1.16), then the left regular action of G on Cla(G,K) equips this
space with a locally analytic G-representation. This is perhaps most easily seen by
applying the criterion of Proposition 2.2 (ii). Indeed, the strong dual of Cla(G,K)
is equal to Dla(G,K), and under the contragredient action to the left regular repre-
sentation, an element g ∈ G acts as left multiplication by δg on Dla(G,K). Thus the
required topological Dla(G,K)-module structure on the strong dual of Cla(G,K) is
obtained by regarding the topological algebra Dla(G,K) as a left module over itself
in the tautological manner.

Similarly, the right regular action of G on Cla(G,K) makes Cla(G,K) a locally
analytic G-representation. (Indeed, the topological automorphism f(g) 7→ f(g−1)
of Cla(G,K) intertwines the left and right regular representations.)

Remark 2.5. If V is an object of Repla.c(G), then since the orbit maps ov lie in
Cla(G,V ) for all v ∈ V they are in particular continuous on G. Thus the G-action
on V is separately continuous, and hence (as was remarked above) continuous, by
the Banach-Steinhaus theorem. Furthermore, we may differentiate the G-action
on V and so make G a module over the Lie algebra g of G (or equivalently, over
its universal enveloping algebra U(g)). The action g × V → V is again seen to be
separately continuous (since the derivatives along the elements of g of a function
in Cla(G,V ) again lie in Cla(G,V )), and hence (applying the Banach-Steinhaus
theorem once more) is continuous.

The U(g)-module structure on V admits an alternative description. Indeed,
for any compact open subgroup H of G, there is a natural embedding U(g) →
Dla(H,K), given by mapping X ∈ U(g) to the functional f 7→ (Xf)(e). (Here X
acts on f as a differential operator,1 and e denotes the identity of G.) Since V is
an object of Repla.c(V ), it is a Dla(H,K)-module (by part (i) of Theorem 2.1), and
so in particular is a U(g)-module. This U(g)-module structure on V coincides with
the one described in the preceding paragraph.

Now suppose that Z is a topologically finitely generated abelian locally L-
analytic group. If E is any finite extension of L, then we may consider the set
Ẑ(E) of E×-valued locally L-analytic characters on Z.

Proposition 2.6. There is a strictly quasi-stein rigid analytic space Ẑ over L that
represents the functor E 7→ Ẑ(E).

Proof. This is [8, Prop. 6.4.5]. �

Example 2.7. Suppose that L = Qp, and that Z is the group Zp. Then Ẑ is
isomorphic to the open unit disk centered at 1. (A character of Ẑ may be identified
with its value on the topological generator 1 of Zp.)

Example 2.8. Suppose that L = Qp, and that Z is the multiplicative group Q×p .
There is an isomorphism

Q×p
∼−→ Z×p × pZ ∼−→ µ× Γ× pZ,

1More precisely, the g action on Cla(H, K) that we have in mind is the one obtained via
differentiating the right regular action of H on Cla(H, K). (By applying Example 2.4 to H, we

find that this H-action is locally analytic, and so may indeed be differentiated to yield a g-action.)

It is given explicitly by the formula (Xf)(h) =
d

dt |t=0
f(h exp(tX)), for any X ∈ g.
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where µ denotes the subgroup of roots of unity in Q×p , Γ denotes the subgroup of
Z×p consisting of elements congruent to 1 modulo p (respectively p2 if p = 2), and
pZ denotes the cyclic group generated by p ∈ Q×p . The group Γ is isomorphic to
Zp, and so there is an isomorphism

Ẑ
∼−→ Hom(µ,Q×p )× open unit disk around 1 ×Gm.

Here Hom(µ,Q×p ) is the character group of the finite group µ, the open unit disk
around 1 is the character group of Γ (see the preceding example), and Gm is the
character group of pZ. (A character of the cyclic group pZ may be identified with
its value on p).

The discussion of Example 1.7 shows that the K-algebra Can(Ẑ,K) of rigid
analytic functions on Ẑ is a nuclear Fréchet-Stein algebra. Evaluation of characters
at elements of Z induces an embedding of K-algebras K[Z] → Can(Ẑ,K), with
dense image (by [8, Prop. 6.4.6] and [20, Lem. 3.1]), and we have the following
analogue of Proposition 2.2.

Proposition 2.9. If V is a compact type convex space, equipped with an action of
Z by continuous K-linear automorphisms, then the following are equivalent:

(i) The K[Z]-module structure on V extends to a (necessarily unique) Can(Ẑ,K)-
module structure on V , for which the map Can(Ẑ,K) × V → V describing this
module structure is separately continuous.

(ii) The K[Z]-module structure on V ′b arising from the contragredient Z-action
on V ′b extends to a (necessarily unique) topological Can(Ẑ,K)-module structure on
V ′b .

Proof. This follows from [8, Prop. 6.4.7]. �

If the Z-action on V satisfies the equivalent conditions of the preceding propo-
sition, then it is separately continuous (as follows from condition (i)), and so is in
fact continuous.

If Z is a compact abelian locally L-analytic group (which is then necessarily
topologically finitely generated [8, Prop. 6.4.1]), then we have the two nuclear
Fréchet algebras Dla(Z,K) and Can(Ẑ,K), each containing the group ring K[Z]
as a dense subalgebra.

Proposition 2.10. If Z is a compact abelian locally L-analytic group, then there
is an isomorphism of topological K-algebras Dla(Z,K) ∼−→ Can(Ẑ,K), uniquely
determined by the condition that it reduces to the identity on K[Z] (regarded as a
subalgebra of the source and target in the natural manner).

Proof. This is [8, Prop. 6.4.6]. It is proved using the p-adic Fourier theory of
[22]. �

We now wish to tie together the two strands of the preceding discussion. We
begin with the following strengthening of Theorem 2.1.

Theorem 2.11. If H is a compact locally L-analytic group and Z is a topological
finitely generated abelian locally L-analytic group, then the completed tensor product
Can(Ẑ,K) ⊗̂K Dla(H,K) (which by [17, p. 107] is a K-Fréchet algebra) is a nuclear
Fréchet-Stein algebra.
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Proof. This follows from [8, Prop. 5.3.22], together with the remark following [8,
Def. 5.3.21]. �

Suppose now that G is a locally L-analytic group, whose centre Z (an abelian
locally L-analytic group) is topologically finitely generated.

Definition 2.12. We let Repz
la.c(G) denote the full subcategory of Repla.c(G) con-

sisting of locally analytic representations V of G, the induced Z-action on which
satisfies the equivalent conditions of Proposition 2.9.

It follows from Propositions 2.2 and 2.9 that if V is a compact type convex space
equipped with an action of G by continuous K-linear automorphisms, then the
following are equivalent:

(i) V is an object of Repz
la.c(G).

(ii) For some (equivalently, every) compact open subgroup H of G, the G-action
on V induces a (uniquely determined) Can(Ẑ,K) ⊗̂K Dla(H,K)-module structure
on V for which the corresponding map

Can(Ẑ,K) ⊗̂K Dla(H,K)× V → V

is separately continuous.
(iii) For some (equivalently, every) compact open subgroup H of G, the contra-

gredient G-action on V ′b induces a (uniquely determined) structure of topological
Can(Ẑ,K) ⊗̂K Dla(H,K)-module on V ′b .

We can now define some important subcategories of the category Repz
la.c(G).

Definition 2.13. Let V be an object of Repz
la.c(G).

(i) We say that V is an essentially admissible locally analytic representation of
G if V ′b is a coadmissible Can(Ẑ,K) ⊗̂K Dla(H,K)-module for some (equivalently,
every) compact open subgroup H of G.

(ii) We say that V is an admissible locally analytic representation of G if V ′b
is a coadmissible Dla(H,K)-module for some (equivalently, every) compact open
subgroup H of G.

(iii) We say that V is a strongly admissible locally analytic representation of G
if V ′b is a strongly coadmissible Dla(H,K)-module for some (equivalently, every)
compact open subgroup H of G.

The equivalence of “some” and “every” in each of these definitions follows from
the fact that ifH ′ ⊂ H is an inclusion of compact open subgroups ofG then the alge-
bra Dla(H,K) is free of finite rank as a Dla(H ′,K)-module (sinceH ′ has finite index
in H). Clearly, any strongly admissible locally analytic G-representation is admis-
sible, and any admissible locally analytic G-representation is essentially admissible.
The notion of strongly admissible (respectively admissible, respectively essentially
admissible) locally analytic G-representation was first introduced in [20] (respec-
tively [23], respectively [8]). (Let us remark that any object V of Repla.c(G) for
which V ′b satisfies condition (ii) of Definition 2.13 automatically lies in Repz

la.c(G),
by [8, Prop. 6.4.10], and so the definitions of admissible and strongly admissible
locally analytic representations of G given above do coincide with those of [23] and
[20].)

We let Repes(G) denote the full subcategory of Repz
la.c(G) consisting of essen-

tially admissible locally analytic representations, let Repad(G) denote the full sub-
category of Repes(G) consisting of admissible locally analytic representations, and
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let Repsa(G) denote the full subcategory of Repad(G) consisting of strongly admis-
sible locally analytic representations. These various categories lie in the following
sequence of full embeddings:

Repsa(G) ⊂ Repad(G) ⊂ Repes(G) ⊂ Repz
la.c(G) ⊂ Repla.c(G).

Both of the categories Repla.c(G) and Repz
la.c(G) are closed under passing to count-

able direct sums (and more generally to Hausdorff countable locally convex induc-
tive limits), closed subrepresentations, Hausdorff quotients, and completed tensor
products [9, Lems. 3.1.2, 3.1.4].

Theorem 2.14. Each of Repes(G) and Repad(G) is an abelian category, closed
under the passage to closed G-subrepresentations, and to Hausdorff quotient G-
representations.

Proof. This follows from Theorem 1.9. �

The subcategory Repsa(G) of Repad(G) is closed under passing to finite direct
sums and closed subrepresentations, but in general it is not closed under passing
to Hausdorff quotients.

Remark 2.15. Let Z0 denote the maximal compact subgroup of Z, and let H be
a compact open subgroup of G. Replacing H by Z0H if necessary, we may assume
that H contains Z0 (so that then Z0 = H

⋂
Z). The K-algebra Can(Ẑ0,K) ∼−→

Dla(Z0,K) is a subalgebra of each of Can(Ẑ,K) and Dla(H,K). If V is an ob-
ject of Repz

la.c(G), then the two actions of Can(Ẑ0,K) on each of V and V ′b (ob-
tained by regarding it as a subalgebra of Can(Ẑ,K) or Dla(H,K) respectively)
coincide (since both are obtained from the one action of Z0 on V ). Thus the
Can(Ẑ,K) ⊗̂K Dla(H,K)-action on each of V and V ′b factors through the quotient
algebra Can(Ẑ,K) ⊗̂Can(Ẑ0,K)Dla(H,K). We take particular note of two conse-
quences of this remark.

Example 2.16. If Z is compact (and so equals Z0), and if V lies in Repz
la.c(G),

then the preceding remark shows that the Can(Ẑ,K) ⊗̂K Dla(H,K)-action on each
of V and V ′b factors through Dla(H,K). Thus any essentially admissible locally
analytic G-representation is in fact admissible. Also, in this situation, the categories
Repla.c(G) and Repz

la.c(G) are equal. Thus if the centre Z of G is compact, it can
be neglected entirely throughout the preceding discussion.

Example 2.17. If G is abelian, then G = Z. The preceding remark shows that
if V lies in Repz

la.c(G), then the Can(Ẑ,K) ⊗̂K Dla(H,K)-action on each of V and
V ′b factors through Can(Ẑ,K). Example 1.13 then shows that passing to strong
duals induces an antiequivalence of categories between the category Repes(Z) and
the category of coherent rigid analytic sheaves on Ẑ. Under this antiequivalence,
the subcategory Repad(Z) of Repes(Z) corresponds to the subcategory consisting of
those coherent sheaves on Ẑ whose pushforward to Ẑ0 under the surjection Ẑ → Ẑ0

(induced by the inclusion Z0 ⊂ Z) is again coherent. (The point is that on the level
of global sections, this pushforward corresponds to regarding a Can(Ẑ,K)-module
as a Can(Ẑ0,K)-module, via the embedding Can(Ẑ0,K) → Can(Ẑ,K).)
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Example 2.18. If G is compact, then Cla(G,K) is an object of Repsa(G), and
furthermore, any object of Repsa(G) is a closed subrepresentation of Cla(G,K)n,
for some n ≥ 0. (This follows directly from Definitions 2.13 (iii) and 1.12, and the
fact that passing to strong duals takes closed subrepresentations of Cla(G,K)n to
Hausdorff quotient modules of Dla(G,K)n.)

The following result connects the locally analytic representation theory discussed
in this note with the more traditional theory of smooth representations of locally
L-analytic groups.

Theorem 2.19. If V is an admissible smooth representation of G on a K-vector
space (in the usual sense), and if we equip V with its finest locally convex topology,
then V becomes an element of Repad(G). Conversely, any object V of Repad(G) on
which the G-action is smooth is an admissible smooth representation of G, equipped
with its finest locally convex topology.

Proof. See [8, Prop. 6.3.2] or [23, Thm. 6.5]. �

In the applications to the theory of automorphic forms, one typically assumes
that G is the group of L-valued points of a connected reductive linear algebraic
group G defined over L. (Any such group certainly has topologically finitely gen-
erated centre.) In this case, we can make the following definition.

Definition 2.20. If W is a finite dimensional algebraic representation of G defined
over K, then we say that a representation of G on a K-vector space V is locally
W -algebraic if, for each vector v ∈ V , there exists an open subgroup H of G, a
natural number n, and an H-equivariant homomorphism Wn → V whose image
contains the vector v.

When W is the trivial representation of V , we recover the notion of a smooth
representation of G. The following result generalizes Theorem 2.19.

Theorem 2.21. Suppose that G = G(L), for some connected reductive linear alge-
braic group over L. If V is an object of Repad(G) that is also locally W -algebraic,
for some finite dimensional algebraic representation W of G over K, then V is iso-
morphic to a representation of the form U ⊗B W, where B denotes the semi-simple
K-algebra EndG(W ), and U is an admissible smooth representation of G defined
over B, equipped with its finest locally convex topology. Conversely, any such tensor
product is a locally W -algebraic representation in Repad(G).

Proof. This is [8, Prop. 6.3.10]. �

Remark 2.22. Taking the tensor product of finite dimensional representations
and smooth representations is something that is quite unthinkable in the classical
theory of smooth representations of G (in which the field of coefficients typically
is taken to be C, or an `-adic field, with ` 6= p). In the arithmetic theory of auto-
morphic forms, the role of smooth representations of p-adic reductive groups is to
carry information about representations of the absolute Galois group of L on `-adic
vector spaces. (This is a very vague description of the local Langlands conjecture.)
The consideration of locally algebraic representations of the type considered in
Theorem 2.21 opens up the possibility of finding representations of p-adic reductive
groups that can carry information about the representations of the absolute Galois
group of L on p-adic vector spaces; in this optic, the role of the finite dimensional
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factor is to remember the “p-adic Hodge numbers” of such a representation. (See
the introductory discussion of [3] for a lengthier account of this possibility.)

3. Locally analytic vectors in
continuous admissible representations

Let L, K and G be as in the preceding section. In this section we discuss an
important method for constructing strongly admissible locally analytic representa-
tions of G, which involves applying the functor “pass to locally analytic vectors” to
certain Banach space representations of G. We will begin by defining that functor,
but first we must recall the notion of an analytic open subgroup of G.

Suppose that H is a compact open subgroup of G that admits the structure
of a “chart” of G; that is, a locally analytic isomorphism with the space of L-
valued points of a closed ball. We let H denote the corresponding rigid analytic
space (isomorphic to a closed ball) that has H as its space of L-valued points. If
furthermore the group structure on H extends to a rigid analytic group structure
on H, then, suppressing the choice of chart structure on H, we will refer to H as
an analytic open subgroup of G. Since G is locally L-analytic, it has a basis of
neighbourhoods consisting of analytic open subgroups. (See the introduction of [8,
§3.5] for a more detailed discussion of the notion of analytic open subgroup.)

Suppose now that U is a Banach space over K, equipped with a continuous
G-action. If H is an analytic open subgroup of H, then we let UH−an denote the
subspace of U consisting of vectors u for which the orbit map ou : H → U defined
by ou(h) = hu is (the restriction to H of) a rigid analytic U -valued function on
H. Via the association of ou to a vector u ∈ UH−an, we may regard UH−an as a
subspace of Can(H, U), the Banach space of rigid analytic U -valued functions on H.

Lemma 3.1. For any analytic open subgroup H of G, the space UH−an is a closed
subspace of Can(H, U).

Proof. A rigid analytic function φ in Can(H, U) belongs to UH−an if and only if its
restriction to H is in fact of the form ou, for some u ∈ U (which will then certainly
lie in UH−an). This is the case if and only if φ satisfies the equation φ(h) = hφ(e)
for all h ∈ H. (Here e denotes the identity element in H). These equations cut out
a closed subspace of Can(H, U), as claimed. �

We will always regard UH−an as being endowed with the Banach space topology
it inherits by being considered as a closed subspace of Can(H, U), as in the preced-
ing lemma. The inclusion UH−an → U is thus continuous, but typically is not a
topological embedding.

Definition 3.2. We say that a vector u in U is locally analytic if the orbit map
ou lies in Cla(G,U). (In fact, it suffices to require that ou be locally analytic in a
neighbourhood of the identity, since the G-action on U is by continuous automor-
phisms). We let Ula denote the subspace of U consisting of locally analytic vectors;
the preceding parenthetical remark shows that Ula =

⋃
H UH−an, where H runs over

all analytic open subgroups of G. We topologize Ula by endowing it with the locally
convex inductive limit topology arising from the isomorphism Ula

∼−→ lim
−→
H

UH−an

(the inductive limit being taken over the directed set of analytic open subgroups
of G).
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This definition exhibits Ula as the locally convex inductive limit of a sequence
of Banach spaces (and thus Ula is a so-called LB-space). The inclusion Ula → U is
continuous, but typically is not a topological embedding.

The map u 7→ ou defines a continuous injection

(3.3) Ula → Cla(G,U).

Note that in [19] and [23], the topology on Ula is defined to be that induced by
regarding it as a subspace of Cla(G,U). In general, this is coarser than the inductive
limit topology of Definition 3.2.

We next introduce some terminology related to lattices in convex spaces.

Definition 3.4. A separated, open lattice L in a convex K-space U is an open
OK-submodule of U that is p-adically separated. We let L(U) denote the set of all
separated open lattices in U .

Definition 3.5. If U is a convex space, then we say that two lattices L1,L2 ∈ L(U)
are commensurable if aL1 ⊂ L2 ⊂ a−1L1 for some a ∈ K×.

Clearly commensurability defines an equivalence relation on L(U).

Definition 3.6. If L ∈ L(U) then we let {L} denote the commensurability class
of L (i.e. the equivalence class of L under the relation of commensurability). We
let L(U) denote the set of commensurability classes of elements of L(U).

Example 3.7. If U is a Banach space over K, then L(U) is non-empty, and in
fact the elements of L(U) form a neighbourhood basis of U . Furthermore, any two
elements of L(U) are commensurable, and so L(U) consists of a single element.

In general, if L ∈ L(U), then L gives rise to a continuous norm sL on U , its
gauge, uniquely determined by the requirement that L is the unit ball of sL. We
let UL denote U equipped with the topology induced by sL, and let ÛL the Banach
space obtained by completing UL with respect to the norm sL. The identity map
on the underlying vector space of U induces a continuous bijection U → UL, and
hence a continuous injection U → ÛL. Given a pair of elements L1,L2 ∈ L(U), the
topologies on UL1 and UL2 coincide if and only if L1 and L2 are commensurable.

Suppose now that U is equipped with a continuous G-action. There is then an
induced action of G on L(U), defined by (g,L) 7→ gL for g ∈ G and L ∈ L(U).
This action evidently respects the relation of commensurability, and so descends to
an action on L(U). We write L(U)G (respectively L(U)G) to denote the subset of
L(U) (respectively of L(U)) consisting of elements that are fixed under the action
of G. Passing to commensurability classes induces a map L(U)G → L(U)G.

Lemma 3.8. If L is an element of L(U), then the G-action on U induces a contin-
uous G-action on UL (and hence on ÛL) if and only if the commensurability class
{L} is G-invariant.

Proof. It is immediate from the definitions that G acts on UL via continuous auto-
morphisms if and only if {L} is G-invariant. Since the G-action on U is continuous
by assumption, and since the natural bijection U → UL is continuous, the G-action
on UL automatically satisfies conditions (i) and (iii) of [8, Lem. 3.1.1]. It thus
follows from that lemma that if G acts on UL via continuous automorphisms, then
the G-action on UL is in fact continuous. �
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Lemma 3.9. Let H be an open subgroup of G.
(i) If H is compact, then the map L(U)H → L(U)H is surjective.
(ii) If L ∈ L(U) is such that {L} ∈ L(U)H , then there is an open subgroup H ′

of H such that L ∈ L(U)H′ .

Proof. Suppose that L ∈ L(U) is H-invariant. The H-action on U then induces a
continuous H-action on UL, by Lemma 3.8. Part (i) of the present lemma is now
seen to follow from [8, Lem. 6.5.3], while part (ii) follows immediately from the fact
that the H-action on UL is continuous. �

In contrast to part (i) of the preceding lemma, if G is not compact then the map
L(U)G → L(U)G is typically not surjective. For example, if U is a Banach space,
then L(U)G = L(U) (since the set on the right is a singleton). On the other hand,
asking that L(U)G be non-empty is a rather stringent condition.

Definition 3.10. A continuous representation of G on a Banach space is said to
be unitary if L(U)G 6= ∅, that is, if U contains an open, separated lattice that is
invariant under the entire group G (or equivalently, if its topology can be defined
by a G-invariant norm).

Suppose now that L ∈ L(U)H for some open subgroup H of G. If π denotes a
uniformizer of OK , then L/πL is a vector space over the residue field OK/πOK ,
equipped with a smooth representation of H.

Definition 3.11. If U is a convex space, equipped with a continuous G-action of
G, then we say that L ∈ L(U) is admissible if it is H-invariant, for some compact
open subgroup H of G, and if the resulting smooth H-representation on L/πL is
admissible.

Note that if L ∈ L(U) is admissible, and if H ⊂ G is a compact open subgroup
that satisfies the conditions of the preceding definition with respect to L, then any
open subgroup H ′ ⊂ H also satisfies these conditions.

Lemma 3.12. If L ∈ L(U) is admissible, then every lattice in {L} is admissible.

Proof. Let H be a compact open subgroup of G that satisfies the conditions of Def-
inition 3.11 with respect to L. If L′ is an element of {L}, then by Lemma 3.9 (ii)
(and replacing H by an open subgroup if necessary) we may assume that L′ is again
H-invariant. Since L′ and L are commensurable, we may also assume (replacing
L′ by a scalar multiple if necessary) that πnL ⊂ L′ ⊂ L for some n > 0. Thus
L′/πL′ is an H-invariant subquotient of L/πn+1L. The latter H-representation is
a successive extension of copies of L/πL, and so by assumption is an admissible
smooth representation of H over OK/π

n+1OK . Any subquotient of an admissible
smooth H-representation over OK/π

n+1OK is again admissible. (This uses the
fact that the category of such representations is anti-equivalent – via passing to
OK/π

n+1OK-duals – to the category of finitely generated modules over the com-
pleted group ring (OK/π

n+1OK)[[H]], together with a theorem of Lazard to the
effect that this completed group ring is Noetherian [16, V.2.2.4].2) In particular we
conclude that L′/πL′ is admissible. �

2Strictly speaking, this reference only applies to the case when K = Qp, so that OK = Zp.
However, the result is easily extended to the case of general K; see for example the proof of [8,
Thm. 6.2.8].
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We say that a commensurability class {L} ∈ L(U) is admissible if one (or equiv-
alently every, by Lemma 3.12) member of the class is admissible in the sense of
Definition 3.11.

Proposition 3.13. If U is an object of Repes(G), then L(U) contains an admis-
sible lattice if and only if U is strongly admissible. Furthermore, if U is strongly
admissible, then for any compact open subgroup H of G, we may find an admissible
H-invariant lattice in L(U).

Proof. See [8, Prop. 6.5.9]. �

Definition 3.14. Let U be a Banach space over K, equipped with a continuous
action of G. We say that U is an admissible continuous representation of G, or
an admissible Banach space representation of G, if one (or equivalently every, by
Lemma 3.12) lattice in L(U) is admissible, in the sense of the Definition 3.11.

Theorem 3.15. The category of admissible continuous representations of G (with
morphisms being continuous G-equivariant K-linear maps) is an abelian category,
closed under passing to closed G-subrepresentations and Hausdorff quotient G-
representations.

Proof. This is the main result of [21]. (See [8, Cor. 6.2.16] for the case when K is
not local.) The key point is that if H is any compact open subgroup of G, then the
completed group ring OK [[H]] is Noetherian [16, V.2.2.4].3 �

We let Repb.ad(G) denote the abelian category of admissible continuous rep-
resentations of G. One important aspect of the preceding result is that maps in
Repb.ad(G) are necessarily strict, with closed image.

Example 3.16. If G is compact, then the space C(G,K) of continuous K-valued
functions on G, made into a Banach space via the sup norm, and equipped with the
left regular G-action, is an admissible continuous G-representation. Furthermore
any object of Repb.ad(G) is a closed subrepresentation of C(G,K)n for some n ≥ 0.
(See [8, Prop.-Def. 6.2.3].)

If G is (the group of Qp-points of) a p-adic reductive group over Qp, then the
admissible G-representations that are also unitary are perhaps the most important
objects in the category Repb.ad(G). In [3, §1.3], Breuil explains the role that he
expects these representations to play in a hoped-for “p-adic local Langlands” cor-
respondence, in the case of the group GL2(Qp). For a discussion of how some of
Breuil’s ideas might generalize to the case of a general reductive group, see [24, §5].

The following result provides a basic technique for producing strongly admissible
locally analytic representations of G.

Proposition 3.17. If U is an object of Repb.ad(G), then Ula is a strongly admis-
sible locally analytic representation of G.

Proof. This follows from the discussions of Examples 2.18 and 3.16, and the fol-
lowing two (easily verified) facts: (i) for any compact open subgroup H of G, there
is a natural isomorphism Cla(H,K) ∼−→ C(H,K)la [8, Prop. 3.5.11]; (ii) if U and

3See the preceding note.
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V are Banach spaces equipped with continuous G-representations, if U → V is a
G-equivariant closed embedding, and if Vla is of compact type, then the diagram

Ula
//

��

Vla

��
U // V

is Cartesian in the category of convex spaces; in particular, the map Ula → Vla is
again a closed embedding [8, Prop. 3.5.10]. See [8, Prop. 6.2.4] for the details of
the argument. �

A version of the preceding theorem, working with the topology obtained on Ula

by regarding it as a closed subspace of Cla(G,U), is given in [23, Thm. 7.1 (ii)].
We remark that if U is an object of Repb.ad(G), then the map (3.3) is in fact a
topological embedding (see [5, Rem. A.1.1]). Thus, for such U , the topology on
Ula induced by regarding it as a subspace of Cla(G,U) coincides with the inductive
limit topology given by Definition 3.2.

Lemma 3.18. If U is a convex space equipped with a continuous action of G, and if
H is an open subgroup of G, then there exists a continuous H-equivariant injection
U → W for some admissible continuous H-representation W if and only if L(U)
contains an H-invariant admissible commensurability class.

Proof. Given such a map U → W, the preimage of any lattice in W determines
a commensurability class in L(U) with the required properties. Conversely, given
such a commensurability class {L}, it follows from Lemma 3.8 that the H-action
on U extends to a continuous H-action on ÛL, and so we may take W = ÛL. �

Definition 3.19. An object V of Repad(G) is called very strongly admissible if V
admits a G-equivariant continuous K-linear injection into an object of Repb.ad(G),
or equivalently (by Lemma 3.18), if L(V ) contains a G-invariant admissible com-
mensurability class.

We let Repvsa(G) denote the full subcategory of Repad(G) consisting of very
strongly admissible locally analytic G-representations. It is evidently closed under
passing to subobjects and finite direct sums. Proposition 3.13 shows that it is a
full subcategory of Repsa(G).

It also follows from Proposition 3.13 that if G is compact, then every strongly
admissible locally analytic G-representation is in fact very strongly admissible. The
author knows no example of a strongly admissible, but not very strongly admissible,
locally analytic G-representation (for any G).

The following theorem of Schneider and Teitelbaum is fundamental to the theory
of admissible continuous representations.

Theorem 3.20. If L = Qp and if K is a finite extension of L then the map
U 7→ Ula yields an exact and faithful functor from the category Repb.ad(G) to the
category Repvsa(G).

Proof. See [23, Thm. 7.1]. (That the image of this functor lies in Repvsa(G) follows
from Proposition 3.17 and the definition of Repvsa(G).) �



18 MATTHEW EMERTON

Given the exactness statement in the preceding result, the faithfulness statement
is equivalent to the fact that Ula is dense as a subspace of U .

In the context of Theorem 3.20, the functor U 7→ Ula is not full, in general, as we
now explain. If U is an object of Repb.ad(G), if L is an element of L(U), and if we
write Lla = L

⋂
Ula, then {Lla} is a G-invariant and admissible commensurability

class in Ula, which is evidently well-defined independent of the choice of L (since
all lattices in L(U) are commensurable).

Conversely, if V is an object of Repvsa(G), equipped with a G-invariant and
admissible commensurability class {M} ∈ L(V ), then the completion V̂M is an
object of Repb.ad(G). In the case when (V, {M}) = (Ula, {Lla}) (in the notation of
the previous paragraph), it follows from Theorem 3.20 (and the remark following
that theorem) that V̂M

∼−→ U.
Thus, if we let C denote the category whose objects consist of pairs (V, {M}),

where V is an object of Repvsa(G) and {M} ∈ L(V ) is a G-invariant admissible
commensurability class (and whose morphisms are defined in the obvious way),
then the preceding discussion shows that U 7→ (Ula, {Lla}) is a fully faithful functor
Repb.ad(G) → C, to which the functor (V, {M}) 7→ V̂M is left adjoint, and left quasi-
inverse. On the other hand, the obvious forgetful functor C → Repvsa(G) (forget
the commensurability class of lattices), while faithful, is not full. This amounts
to the fact that a given very strongly admissible locally analytic representation
of G can admit more than one G-invariant commensurability class of admissible
lattices. Explicit examples are provided by the results of [3] (which show that the
same irreducible admissible locally algebraic representation of GL2(Qp) can admit
non-isomorphic admissible continuous completions, which are even unitary, in the
sense of Definition 3.10).

4. Parabolic induction

This section provides a brief account of parabolic induction in the locally analytic
context. We let L and K be as in the preceding sections, and we suppose that G is
(the group of L-valued points of) a connected reductive linear algebraic group over
L. We let P be a parabolic subgroup of G, and let M be the Levi quotient of P .

If V is an object of Repla.c(M) (regarded as a P -representation through the
projection of P onto M), then we make the following definition:

IndG
P V = {f ∈ Cla(G,V ) | f(pg) = pf(g) for all p ∈ P, g ∈ G},

equipped with its right regular G-action. (We topologize IndG
P V by regarding it as

a closed subspace of Cla(G,V ).)

Proposition 4.1. If V lies in Repla.c(M) (respectively Repz
la.c(M), Repad(M),

Repsa(M), Repvsa(M)), then IndG
P V lies in Repla.c(G) (respectively Repz

la.c(G),
Repad(G), Repsa(G), Repvsa(G)).

Proof. Although the proof of each of these statements is straightforward, altogether
they are a little lengthy, and we omit them. �

Locally analytic parabolic induction satisfies Frobenius reciprocity.

Proposition 4.2. If U and V are objects of Repla.c(G) and Repla.c(M) respec-
tively, then the P -equivariant map IndG

P V → V induced by evaluation at the identity
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of G yields a natural isomorphism LG(U, IndG
P V ) ∼−→ LP (U, V ). (Here LG(– , – )

and LP (– , – ) denote respectively the space of continuous G-equivariant K-linear
maps and the space of continuous P -equivariant K-linear maps between the indi-
cated source and target.)

Proof. This is a particular case of [14, Thm. 4.2.6], and also follows from [8,
Prop. 5.1.1 (iii)]. �

Just as in other representation theoretic contexts, parabolic induction provides
a way to obtain interesting new representations from old. The following result is
due to H. Frommer [15]. (The case when G = GL2(Qp) was first treated in [20].)

Theorem 4.3. Suppose that L = Qp and that G is split, and let G0 be a hyper-
special maximal compact subgroup of G. If U is a finite dimensional irreducible
object of Repla.c(M) for which U(g) ⊗U(p) U

′ is irreducible as U(g)-module, then
IndG

P U is topologically irreducible as a G0-representation, and so in particular as
a G-representation. (Here U ′ denotes the contragredient to U , and U(p) is the
universal enveloping algebra of the Lie algebra p of P .)

One surprising aspect of this result is that it shows (in contrast to the cases of
smooth representations of compact p-adic groups, and continuous representations
of compact real Lie groups) that the compact group G0 can admit topologically
irreducible infinite dimensional locally analytic representations.

5. Jacquet modules

Let L, K and G be as in the previous section, let P be a parabolic subgroup of
G, and choose an opposite parabolic P to P . The intersection M := P

⋂
P is then

a Levi subgroup of each of P and P . Let N denote the unipotent radical of P .
If U is an object of Repla.c(M), then let Csm

c (N,U) denote the closed subspace of
Cla

c (N,U) consisting of compactly supported, locally constant (= smooth) U -valued
functions on N . The projection map G → P\G restricts to an open immersion
of locally analytic spaces N → P\G, and this immersion allows us to identify
Cla

c (N,U) with the subspace of IndG
P
U consisting of functions whose support is

contained in PN . In this way Cla
c (N,U) becomes a closed (U(g), P )-submodule

of IndG
P
U , and Csm

c (N,U) is identified with the closed P -submodule of Cla
c (N,U)

consisting of elements annihilated by n (the Lie algebra of N).

Proposition 5.1. If U is an object of Repla.c(M) then Csm
c (N,U) is an object of

Repla.c(P ).

Proof. This follows from the identification of Csm
c (N,U) with a closed P -invariant

subspace of IndG
P
U, which Proposition 4.1 shows to be an object of Repla.c(G). �

The formation of Csm
c (N,U) is clearly functorial in U , and so we obtain a functor

Csm
c (N, – ) from Repla.c(M) to Repla.c(P ).

Proposition 5.2. The restriction of Csm
c (N, – ) to Repz

la.c(M) (which is thus a
functor from Repz

la.c(M) to Repla.c(P )) admits a right adjoint.

Proof. See [9, Thm. 3.5.6]. �

As usual, let δ denote the smooth character of M that describes how right mul-
tiplication by elements of M affects left-invariant Haar measure on P . Concretely,
if m ∈M , then δ(m) is equal to [N0 : mN0m

−1]−1, for any compact open subgroup
N0 of N . If U is an object of Repz

la.c(M), then let U(δ) denote the twist of U by δ.
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Definition 5.3. We let JP denote the functor from Repla.c(P ) to Repz
la.c(M) ob-

tained by twisting by δ the right adjoint to the functor Csm
c (N, –). If V is an object

of Repla.c(P ), we refer to JP (V ) as the Jacquet module of V .

Thus for any objects U of Repz
la.c(M) and V of Repla.c(P ) there is a natural

isomorphism

(5.4) LP (Csm
c (N,U), V ) ∼−→ LM (U(δ), JP (V )).

Remark 5.5. If U is an object of Repz
la.c(M), then the natural map U(δ) →

JP (Csm
c (N,U)) in Repz

la.c(M), corresponding via the adjointness isomorphism (5.4)
to the identity automorphism of Csm

c (N,U), is an isomorphism [9, Lem. 3.5.2]. Thus
the isomorphism (5.4) is induced by passing to Jacquet modules (i.e. applying the
functor JP ).

Remark 5.6. Regarding a G-representation as a P -representation yields a forget-
ful functor from Repla.c(G) to Repla.c(P ). Composing this functor with the functor
JP yields a functor from Repla.c(G) to Repz

la.c(M), which we again denote by JP .

Theorem 5.7. The functor JP restricts to a functor Repes(G) → Repes(M).

Proof. See [9, Thm. 0.5]. �

This theorem provides the primary motivation for introducing the notion of
essentially admissible locally analytic representations. Indeed, even if V is an object
of Repad(G), it need not be the case that JP (V ) lies in Repad(M); however, see
Corollary 5.24 below.

Example 5.8. If G is quasi-split (that is, has a Borel subgroup defined over L),
and if we take P to be a Borel subgroup of G, then M is a torus, and so Repes(M)
is antiequivalent to the category of coherent sheaves on the rigid analytic space of
characters M̂ . Thus if V is an object of Repes(G), then we may regard JP (V ) as
giving rise to a coherent sheaf on M̂ . This fact underlies the approach followed in
[10] to the construction of the eigencurve of [7], and of more general eigenvarieties.

Example 5.9. If V is an admissible smooth representation of G, then there is a
natural isomorphism between JP (V ) and VN , the space of N -coinvariants of V [9,
Prop. 4.3.4]. This space of coinvariants is what is traditionally referred to as the
Jacquet module of V in the theory of smooth representations.

More generally, if V = U ⊗B W is an admissible locally W -algebraic represen-
tation of G, as in Theorem 2.21, then there is a natural isomorphism JP (V ) ∼−→
UN ⊗B WN (where WN denotes the space of N -invariants in W ) [9, Prop. 4.3.6].
Since U is an admissible smooth G-representation, the space UN is an admissible
smooth M -representation [6, Thm. 3.3.1]. Thus JP takes admissible locally W -
algebraic G-representations to admissible locally WN -algebraic M -representations.

The remainder of this section is devoted to explaining the relation between the
functor JP on Repla.c(G) and the process of locally analytic parabolic induction.
We begin with the following remark.

Remark 5.10. If V is an object of Repla.c(G), then the universal property of
tensor products yields a natural isomorphism

(5.11) LP (Csm
c (N,U), V ) ∼−→ L(g,P )(U(g)⊗U(p) Csm

c (N,U), V ).
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Thus for such V , the adjointness isomorphism (5.4) induces an isomorphism

(5.12) L(g,P )(U(g)⊗U(p) Csm
c (N,U), V ) ∼−→ LM (U(δ), JP (V ).)

Definition 5.13. As above, we regard Csm
c (N,U) as a closed subspace of IndG

P
(U).

We let IG
P

(U) (respectively Ig
p
(U)) denote the closed G-subrepresentation (respec-

tively the U(g)-submodule) of IndG
P
U that it generates.

Note that Ig
p
(U) admits the following alternative description: taking V to be

IndG
P

(U), the isomorphism (5.11), applied to the inclusion Csm
c (N,U) ⊂ IndG

P
U ,

induces a (g, P )-equivariant map

U(g)⊗U(p) Csm
c (N,U) → IndG

P
(U),

whose image coincides with Ig
p
(U). In particular, there is a (g, P )-equivariant sur-

jection

(5.14) U(g)⊗U(p) Csm
c (N,U) → Ig

p
(U).

Remark 5.15. The isomorphism of Remark 5.5 yields a closed embedding U(δ) →
JP (IG

P
(U)), and hence for each object V of Repla.c(G), passage to Jacquet modules

induces a morphism

(5.16) LG(IG
P

(U), V ) → LM (U(δ), JP (V )),

which is injective, by the construction of IG
P

(U). Restricting elements in the source
of this map to Ig

p
(U) yields the left hand vertical arrow in the following commutative

diagram

LG(IG
P

(U), V )
(5.16) //

��

LM (U(δ), JP (V ))

L(g,P )(I
g
p
(U), V ) // L(g,P )(U(g)⊗U(p) Csm

c (N,U), V )

∼ (5.12)

OO

whose bottom horizontal arrow is induced by composition with (5.14).

Definition 5.17. Let U and V be objects of Repz
la.c(M) and Repla.c(G) respec-

tively, and suppose given an element ψ ∈ LM (U(δ), JP (V )), corresponding via
the adjointness map (5.12) to an element φ ∈ L(g,P )(U(g) ⊗U(p) Csm

c (N,U), V ).
We say that ψ is balanced if φ factors through the surjection (5.14), and we let
LM (U(δ), JP (V ))bal denote the subspace of LM (U(δ), JP (V )) consisting of bal-
anced maps. (Note that the property of a morphism being balanced depends not
just on JP (V ) as an M -representation, but on its particular realization as the
Jacquet module of the G-representation V .)

Equivalently, LM (U(δ), JP (V ))bal is the image of the injection

L(g,P )(I
g
p
(U), V ) → LM (U(δ), JP (V ))

given by composing the right hand vertical arrow and bottom horizontal arrow in
the commutative diagram of Remark 5.15. A consideration of this diagram thus
shows that the image of (5.16) lies in LM (U(δ), JP (V ))bal.
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Definition 5.18. Let U be an object of Repz
la.c(M), and let H denote the space

of linear M -equivariant endomorphisms of U . We say that U is allowable if for any
pair of finite dimensional algebraic M-representations W1 and W2, each element of
LH[M ](U ⊗K W1, U ⊗K W2) is strict (i.e. has closed image). (Here each U ⊗K Wi

is regarded as an H[M ]-module via the H action on the left hand factor along with
the diagonal M -action.)

It is easily checked that if U is an object of Repes(M) and W is a finite dimen-
sional algebraic M -representation, then M ⊗K W is again an object of Repes(M).
Thus objects of Repes(M) are allowable in the sense of Definition 5.18.

Theorem 5.19. If U is an allowable object of Repz
la.c(M) (in the sense of Def-

inition 5.18) and if V is an object of Repvsa(G) (see Definition 3.19) then the
morphism

LG(IG
P

(U), V ) → LM (U(δ), JP (V ))bal

induced by (5.16) is an isomorphism.

The proof of Theorem 5.19 will appear in [13].

Remark 5.20. An equivalent phrasing of Theorem 5.19 is that (under the hy-
potheses of the theorem) the left hand vertical arrow in the commutative diagram
of Remark 5.15 is an isomorphism.

Remark 5.21. If U and V are admissible smooth representations of M and G
respectively, then IG

P
(U) coincides with the smooth parabolic induction of U , while

any M -equivariant morphism U(δ) → JP (V ) is balanced. The isomorphism of
Theorem 5.19 in this case follows from Casselman’s Duality Theorem [6, §4].

Example 5.22. We consider the case when G = GL2(Qp) in some detail. We take
P (respectively P ) to be the Borel subgroup of upper triangular matrices (respec-
tively lower triangular matrices) of G, so that M is the maximal torus consisting
of diagonal matrices in G.

Let χ be a locally analytic K-valued character of Q×p , and let U denote the one
dimensional representation of M over K on which M acts through the character(
a 0
0 d

)
7→ χ(a). Let k ∈ K denote the derivative of the character χ.

Suppose first that k is a non-negative integer. Let Wk denote the irreducible
representation Symk K2 of GL2(Qp) over K, and let χk denote the highest weight

of Wk with respect to P (so χk is the character
(
a 0
0 d

)
7→ ak of M). If U(χ−1

k )

denotes the twist of U by the inverse of χk, then U(χ−1
k ) is a smooth representation

of M .
The G-representation IG

P
(U) is a proper subrepresentation of IndG

P
U ; it coincides

with the subspace of functions that are locally polynomial of degree ≤ k when
restricted to N = Qp under the open immersion N → P\G = P1(Q), and may also
be characterized more intrinsically as the subspace of locally algebraic vectors in
IndG

P
U. It decomposes as a tensor product in the following manner:

IG
P

(U) ∼= (IndG
P
U(χ−1

k ))sm ⊗K Wk,

where the subscript “sm” indicates that we are forming the smooth parabolic in-
duction of the smooth representation U(χ−1

k ).
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If V is any object of Repvsa(G), then we let VWk−lalg denote the closed sub-
space of Wk-locally algebraic vectors in V . (See Proposition-Definition 4.2.2 and
Proposition 4.2.10 of [8].) The closed embedding VWk−lalg → V induces a corre-
sponding morphism on Jacquet modules (which is again a closed embedding; see
[9, Lem. 3.4.7 (iii)]), which in turn induces an injection LM (U(δ), JP (VWk−lalg)) →
LM (U(δ), JP (V )). It is not hard to check that LM (U(δ), JP (V ))bal is precisely the
image of this injection.

Now the space VWk−lalg admits a factorization VWk−lalg
∼= X ⊗K Wk, where

X is an admissible smooth locally analytic GL2(Qp)-representation [8, Prop.4.2.4],
and so by Example 5.9 there is an isomorphism JP (VWk−lalg) ∼= JP (X)(χk). Thus
Theorem 5.19 reduces to the claim that the natural map

LG((IndG
P
U(χ−1

k ))sm ⊗K Wk, X ⊗K Wk) → LM (U(δ), JP (X)(χk))

induced by passing to Jacquet modules is an isomorphism. This map sits in the
commutative diagram

LG((IndG
P
U(χ−1

k ))sm ⊗K Wk, X ⊗K Wk) //

∼
��

LM (U(δ), JP (X)(χk))

∼
��

LG((IndG
P
U(χ−1

k ))sm, X) // LM (U(χ−1
k )(δ), JP (X)),

where the bottom arrow is again induced by applying JP . Thus we are reduced to
considering the case of Theorem 5.19 when U and V are both smooth. As noted in
the preceding remark, this case of Theorem 5.19 follows from Casselman’s Duality
Theorem.

If k is not a non-negative integer, on the other hand, then IG
P

(U) coincides with
IndG

P
U, and every element of LM (U(δ), JP (V )) is balanced. In this case the proof

of Theorem 5.19 is given in [5, Prop. 2.1.4]. (More precisely, the cited result shows
that the left hand vertical arrow of the commutative diagram of Remark 5.15 is an
isomorphism.)

Corollary 5.23. Suppose that G is quasi-split, and that P is a Borel subgroup of
G. If V is an absolutely topologically irreducible4 very strongly admissible locally
analytic representation of G for which JP (V ) 6= 0, then V is a quotient of IG

P
(χ)

for some locally L-analytic K-valued character χ of the maximal torus M of G.

Proof. We sketch the proof; full details will appear in [13]. Since JP (V ) is a non-zero
object of Repes(M), we may find a character ψ ∈ M̂(E) for some finite extension E
of K for which the ψ-eigenspace of JP (V ⊗K E) is non-zero. Taking U to be ψδ−1

in Definition 5.17, we let W denote the image of the map U(g)⊗U(p) Csm
c (N,U) →

V ⊗K E corresponding via (5.12) to the inclusion of U(δ) into JP (V ⊗K E). If dψ
denotes the derivative of ψ (regarded as a weight of the Lie algebra m of M) then
Csm

c (N,U) is isomorphic to a direct sum of copies of dψ as a U(p)-module, and so
W is a direct sum of copies of a quotient of the Verma module U(g)⊗U(p) dψ.

Let W [n] denote the set of elements of W killed by n; this space decomposes as
a direct sum of weights of m. Furthermore, for every weight α of m that appears,

4That is, E ⊗K V is topologically irreducible as a G-representation, for every finite extension
E of K.
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there is a corresponding character ψ̃ appearing in JP (V ⊗K E) for which dψ̃ = α.
(Compare the proof of [9, Prop. 4.4.4].) The theory of Verma modules shows that
we may find a weight α of m appearing in W [n] such that α − β does not appear
in W [n] for any element β in the positive cone of the root lattice of m. Let ψ̃ be a
character of M appearing in JP (V ⊗KE) for which α = dψ̃, and set Ũ = ψ̃δ−1. Our
choice of α ensures that the resulting inclusion Ũ(δ) → JP (V ⊗K E) is balanced,
and so Theorem 5.19 yields a non-zero map IG

P
(Ũ) → V ⊗K E. Since V ⊗K E is

irreducible by assumption, this map must be surjective. Since V is defined over K,
a simple argument shows that ψ̃δ−1 must also be defined over K. �

Corollary 5.24. Let G and P be as in Corollary 5.23. If V is an admissible
locally analytic representation of G of finite length, whose composition factors are
very strongly admissible, then JP (V ) is a finite dimensional M -representation.

Proof. The functor JP is left exact (see [9, Thm. 4.2.32]), and so it suffices to prove
the result for topologically irreducible objects of Repvsa(G). One easily reduces to
the case when V is furthermore an absolutely topologically irreducible object of
Repvsa(G). If JP (V ) is non-zero then Corollary 5.23 yields a surjection IG

P
(χ) → V

for some χ ∈ M̂(K). Although JP is not right exact in general, one can show that
the induced map JP (IG

P
(χ)) → JP (V ) is surjective. Thus it suffices to prove that

the source of this map is finite dimensional. This is shown by a direct calculation.
The details will appear in [13]. �
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