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4. Proof of Theorem 0.13 52
5. Examples, complements, and applications 59
Appendix 70
References 74

Let L be a finite extension of Qp (for some prime p), let G be (the L-valued
points of) a connected reductive linear algebraic group over L, and let P be a
parabolic subgroup of G, with unipotent radical N and Levi factor M . We also
fix an extension K of L, complete with respect to a discrete valuation extending
that of L. All representations will be on K-vector spaces (whether or not this is
explicitly stated).

In the paper [7] we defined a Jacquet module functor JP that takes locally
analytic G-representations to locally analytic M -representations, which when re-
stricted to the category of admissible smooth representations of G, coincides with
the Jacquet module functor of [5] (i.e. the functor of N -coinvariants). This functor
plays an important role in the study of certain global questions related to the p-adic
interpolation of automorphic forms [8], and its applications in that context provided
the original motivation for its introduction and study. However, it is natural to ask
whether this functor also has an intrinsic representation theoretic significance. In
considering this question, we are guided by the fact that in the theory of admis-
sible smooth G-representations, the Jacquet module functor is both left, and, for
more subtle reasons – namely the Casselman Duality Theorem – right adjoint to
parabolic induction. More precisely, one has the two formulas

(0.1) HomG(V, (IndG
P U)sm) ∼−→ HomM (JP (V ), U)

and

(0.2) HomG((IndG
P
U)sm, V ) ∼−→ HomM (U(δ), JP (V )),
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where U and V are arbitrary admissible smooth representations of M and G respec-
tively, P denotes an opposite parabolic to P , U(δ) denotes U with its M -action
twisted by the modulus character δ of P (thought of as a character of M), and
(IndG

P U)sm and (IndG
P
U)sm denote the smooth induction of U to G from P and P

respectively. (See [5, §4].)
In this paper we investigate the relation between the locally analytic Jacquet

module functor JP and parabolic induction, with the goal of extending the adjoint-
ness formula (0.2) to the locally analytic context. (The formula (0.1) cannot extend
to the locally analytic context, since JP is not right exact, as Example 5.1.9 below
shows.) The formula that we will establish not only serves to establish the rep-
resentation theoretic significance of the functor JP , but also has important global
applications – for example, to the construction of p-adic L-functions attached to
automorphic forms [8, § 4.5].

The first result that we establish in the direction of our goal is the following
lemma, proved in Subsection 2.8. (We refer to the Notations and conventions
below for the definition of the various categories of locally analytic representations
that appear in the statement of this and subsequent results.)

Lemma 0.3. If U is any object of Repz
la.c(M), then there is a closed M -equivariant

embedding U(δ) → JP (IndG
P
U). (Here IndG

P
U denotes the locally analytic parabolic

induction of U from P to G.)

For any object U of Repz
la.c(M), this lemma allows us to regard U (with its M -

action twisted by δ) as a subspace of JP (IndG
P
U). We define IG

P
(U) to be the closed

G-subrepresentation of IndG
P
U generated by the image of U under the canonical

lifting of JP (IndG
P
U) to IndG

P
U . (Recall from [7, (0.9)] that the canonical lift

depends for its definition on a choice of compact open subgroup N0 of N , as well
as a lift of M to a Levi factor of P . Here and below we fix such a choice of N0,
while we take the Levi factor to be M = P

⋂
P . In fact IG

P
(U) is well-defined

independent of the choice of N0; see Lemma 2.8.3 below.) The subrepresentation
IG
P

(U) is the part of IndG
P
U that can be “detected” by its Jacquet module. (See

Corollary 5.1.4 below for a precise statement in the case when G is quasi-split and P
is a Borel subgroup.) For example, if U is an admissible smooth M -representation,
then IG

P
(U) = (IndG

P
U)sm. Passing to Jacquet modules thus yields, for any U ∈

Repz
la.c(M) and V ∈ Repla.c(G), an injection

(0.4) LG(IG
P

(U), V ) → LM (U(δ), JP (V )).

It is not the case in general that (0.4) is surjective, for the following reason.
If V is an object of Repla.c(P ), then the canonical lifting JP (V ) → V is a U(p)-
equivariant map (where U(p) acts on JP (V ) through its quotient U(m)), and so
induces a U(g)-equivariant map

(0.5) U(g)⊗U(p) JP (V ) → V.

(Here we are using gothic letters to denote Lie algebras, and U(–) to denote uni-
versal enveloping algebras.) Taking V = IndG

P
(U) in (0.5) (for any object U of

Repz
la.c(M)), and taking into account Lemma 0.3, we obtain in particular a U(g)-

equivariant map

(0.6) U(g)⊗U(p) U → IG
P

(U).
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(We have dropped the twist by δ, since δ is a smooth character, and so induces
the trivial character of p.) Any map in the source of (0.4) induces a commutative
diagram

(0.7) U(g)⊗U(p) U

(0.6)

��

// U(g)⊗U(p) JP (V )

(0.5)

��
IG
P

(U) // V.

Definition 0.8. We say that a map in the target of (0.4) is balanced if the kernel
of the induced map

U(g)⊗U(p) U −→ U(g)⊗U(p) JP (V )
(0.5)−→ V

contains the kernel of (0.6). We let LM (U(δ), JP (V ))bal denote the subspace of
LM (U(δ), JP (V )) consisting of balanced maps. (Note that this space depends not
just on JP (V ) as an M -representation, but on its realization as the Jacquet module
of V . On the other hand, the kernel of (0.6), and hence the condition that a map
be balanced, is independent of the choice of N0 used to determine the canonical
lifting; see Lemma 0.18 below.)

The commutativity of (0.7) shows that LM (U(δ), JP (V ))bal contains the image
of (0.4).

The present paper aims to study the following question.

Question 0.9. Is the injection

(0.10) LG(IG
P

(U), V ) → LM (U(δ), JP (V ))bal

induced by (0.4) an isomorphism?

A positive answer (perhaps with some hypotheses on U and V ) would yield a
generalization of (0.2) to the locally analytic context. (Note that the condition of
maps being balanced does not arise in the context of smooth representations, since
the Lie algebra actions on smooth representations are trivial.)

Before stating our main result, we make two further definitions.

Definition 0.11. Let U be an object of Repla.c(M), and let A denote the space
of linear M -equivariant endomorphisms of U . We say that U is allowable if for any
pair of finite dimensional algebraic M -representations W1 and W2, each element of
LA[M ](U ⊗K W1, U ⊗K W2) is strict (i.e. has closed image). (Here each U ⊗K Wi

is regarded as an A[M ]-module via the A action on the left-hand factor along with
the diagonal M -action.)

Any essentially admissible locally analytic representation of M is allowable, in
the sense of this definition [6, Prop. 6.4.11, Prop. 6.4.16].

Definition 0.12. We say that an admissible locally analytic G-representation V
is very strongly admissible if there is a continuous G-equivariant K-linear injection
V →W , where W is an admissible continuous representation of G on a K-Banach
space.
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Any very strongly admissible locally analytic G-representation is strongly admis-
sible (see [6, Prop. 6.2.4] and [16, Thm. 7.1]), and conversely when G is compact
[6, Prop. 6.5.9]. The author does not know an example of a strongly admissible
locally analytic representation that is not very strongly admissible.

We may now state our main result (proved in Subsection 4.3).

Theorem 0.13. If U is an allowable object of Repz
la.c(M), and if V is a very

strongly admissible G-representation, then the map (0.10) is an isomorphism.

When combined with an explicit computation of Jacquet modules of the locally
analytic principal series (see Proposition 5.1.5 and Remark 5.1.8 below), Theo-
rem 0.13 has the following corollaries (proved in Subsection 5.3).

Corollary 0.14. Suppose that G is quasi-split, and that P is a Borel subgroup
of G. If V is a topologically irreducible very strongly admissible locally analytic
representation of G for which JP (V ) 6= 0 then V is a quotient of IG

P
(U) for some

finite dimensional locally analytic representation U of the maximal torus M of G.

Corollary 0.15. Suppose that G is quasi-split, and that P is a Borel subgroup of
G. If V is an admissible locally analytic representation of G of finite length, whose
composition factors are very strongly admissible, then JP (V ) is a finite dimensional
M -representation.

As we remarked above, in addition to these purely representation theoretic ap-
plications, Theorem 0.13 has applications in the global context. For example, in
the case when G = GL2(Qp), it can be applied to the construction of two-variable
p-adic L-functions attached to overconvergent p-adic modular forms [8, §4.5].

A sketch of the proof of Theorem 0.13. For any object U of Repla.c(M), denote
by Csm

c (N,U) the space of locally constant compactly supported U -valued functions
on N ; see Subsection 2.2 below for a description of the topology of Csm

c (N,U), and
of the natural P -action on this space. Let IG

P
(U)(N) denote the (g, P )-invariant

closed subspace of IG
P

(U) consisting of elements supported onN . (Here we regardN
as an open subset of P\G; we refer to Subsection 2.3 for a definition of the support
of an element of IndG

P
U as a subset of P\G. Note that Lemma 2.3.5 implies that

IG
P

(U)(N) is closed in IndG
P
U .) The open immersion N → P\G induces a closed

P -equivariant embedding Csm
c (N,U) → IndG

P
U which factors through IG

P
(U)(N),

and hence induces a (g, P )-equivariant map U(g) ⊗U(p) Csm
c (N,U) → IndG

P
U. If

IG
P

(U)lp(N) denotes the coimage of this map (i.e. the quotient of U(g)⊗pCsm
c (N,U)

by the kernel of this map), then there is induced a continuous (g, P )-equivariant
injection

(0.16) IG
P

(U)lp(N) → IG
P

(U)(N).

If U is an allowable object of Repz
la.c(M), then IG

P
(U) is a local closed G-

subrepresentation of IndG
P
U , polynomially generated by degree zero (using ter-

minology to be introduced in Section 2), and IG
P

(U)lp(N) consists of the locally
polynomial elements of IG

P
(U)(N); see Subsection 2.8. The results of Section 2

imply that IG
P

(U) is generated as a G-representation by IG
P

(U)(N), and that (0.16)
has dense image.
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We can now outline the proof of Theorem 0.13. Let U be an allowable object of
Repz

la.c(M), and V be a very strongly admissible locally analytic G-representation.
The adjointness result of [7, Thm. 3.5.6] yields an isomorphism

(0.17) LM (U(δ), JP (V )) ∼−→ L(g,P )(U(g)⊗U(p) Csm
c (N,U), V ).

The following result follows essentially by definition.

Lemma 0.18. The isomorphism (0.17) restricts to an isomorphism

LM (U(δ), JP (V ))bal ∼−→ L(g,P )(IG
P

(U)lp(N), V ).

Now restriction from IG
P

(U) to IG
P

(U)(N) induces a map

(0.19) LG(IG
P

(U), V ) → L(g,P )(IG
P

(U)(N), V ),

while (0.16) induces a map

(0.20) L(g,P )(IG
P

(U)(N), V ) → L(g,P )(IG
P

(U)lp(N), V ).

Taking into account Lemma 0.18, we see that Theorem 0.13 will follow if we can
show that each of these maps is an isomorphism.

The proof that (0.19) is an isomorphism is the subject of Subsection 4.1. It
relies crucially on the fact that IG

P
(U) is generated by IG

P
(U)(N) (and in fact,

on the slightly stronger result of Lemma 2.4.13, which also addresses the issue of
topologies), and on the assumption that the G-action on V is locally analytic. The
proof that (0.20) is an isomorphism is the subject of Subsection 4.2. Since the
map (0.16) is injective, with dense image (U being allowable), the key point is to
show that any element of the source of (0.20) remains continuous when IG

P
(U)lp(N)

is equipped with the topology obtained by regarding it as a subspace of IG
P

(U)
via (0.16). This is done using a variant of the method of Amice-Vélu and Vishik
[1, 18]; it is here that we use the assumption that V is very strongly admissible.

The arrangement of the paper. Section 1 develops some necessary preliminary
results. In Subsection 1.1 we establish a useful structural result for objects of
Repz

la.c(G), for any locally L-analytic group G. In Subsection 1.2 we prove some
basic results on what we call locally integrable g-representations; these are contin-
uous representations of the Lie algebra g of a locally L-analytic group G for which
the action on any vector may be integrated to an action of some compact open
subgroup of G. In Subsection 1.3 we prove a certain technical lemma. In Subsec-
tion 1.4 we describe some simple functional analysis related to spaces of compactly
supported functions, and also to spaces of germs of locally analytic functions, on
locally L-analytic spaces. In Subsection 1.5 we recall a result from highest weight
theory.

In Section 2 we return to the setting of the introduction. After an initial discus-
sion of locally analytic parabolic induction in Subsection 2.1, and after establishing
some notation in Subsection 2.2, in Subsections 2.3 through 2.7 we develop the
structure theory of what we call local closed G-subrepresentations of IndG

P
U. In

Subsection 2.8 we apply these results to the representation IG
P

(U).
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As above, let N0 denote a compact open subgroup of N . Let ZM denote the
centre of M , and define Z+

M = {z ∈ ZM | zN0z
−1 ⊂ N0}. In Section 3 we fix

a K-Banach space U equipped with a continuous ZM -action (note that there is
then a natural action of the semidirect product N0Z

+
M on Cla(N0, U)), a pair of

N0Z
+
M -invariant closed subspaces S ⊂ T ⊂ Cla(N0, U), and a K-Banach space

W equipped with a continuous N0Z
+
M -action. We then give a criterion for the

restriction map LN0Z+
M

(T,W ) → LN0Z+
M

(S,W ) to be an isomorphism. (Actually,
we replace S and T by their ultrabornologicalizations; this is harmless from the
point of view of our intended applications.) This result provides the variant of the
results of Amice-Vélu and Vishik on tempered distributions that was alluded to
above. The criterion that we give is described in terms of certain extra structure
whose existence we assume. In Subsection 3.1 we describe this extra structure, and
state our isomorphism criterion in terms of it, while the proof of the isomorphism
criterion is given in Subsection 3.2.

In Section 4 we present the proof of Theorem 0.13. In fact we prove a more
general result, in which IG

P
(U) is replaced by any local closed G-subrepresentation

X of IndG
P
U that is polynomially generated by bounded degrees (as defined in

Subsection 2.7); this result will be useful in future applications. Subsection 4.1
(respectively Subsection 4.2) proves that (the analogue for arbitrary X of) the
map (0.19) (respectively the map (0.20)) is an isomorphism. In Subsection 4.3 we
bring these results together to prove our main result, which then has Theorem 0.13
as a consequence.

In Section 5 we give some complements to and applications of our results, focus-
ing on the case when G is quasi-split and P is a Borel subgroup. In Subsection 5.1
we present some results concerning the Jacquet modules of parabolically induced
representations. In Subsection 5.2 we establish a certain technical result (Theo-
rem 5.2.18). In Subsection 5.3 we prove Corollaries 0.14 and 0.15. In an appendix
we establish some general results about admissible locally analytic representations
that are required in Subsection 5.2.

A special case of the main theorem. A proof of the main theorem of Section 4,
namely Theorem 4.3.2, in the special case when G = GL2(Qp), the parabolic P is a
Borel subgroup, the representation U being induced is a locally analytic character,
and the local closed G-subrepresentation X of IndG

P
U is taken to be IndG

P
U itself,

is given in the appendix to [3]. The argument in this special case follows the same
lines as in the general case, but with many simplifications, both in the group theory
and in the functional analysis. The reader interested in following the details of our
argument in the general case may find it helpful to first study the argument in this
simplified setting.

Notation and conventions. As in the introduction, we fix a prime p, a finite
extension L of Qp, and an extension K of L that is complete with respect to a
discrete valuation that extends the discrete valuation on L. All vector spaces that
we consider will have coefficients in K (whether or not this is explicitly mentioned).

Throughout this paper, we will systematically identify linear algebraic groups
over L with their groups of points; this should cause no confusion, since for a linear
algebraic group, the set of L-valued points is Zariski dense in the corresponding
algebraic group.

If V is a topological vector space, then by a topological action of a group (or
semigroup, ring, Lie algebra, etc.) on V we mean an action on V via continuous
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endomorphisms. (We use this term in distinction to a continuous action on V ,
meaning an action for which the action map is jointly continuous, with respect to
the topology on V and whatever topology is under consideration on the object that
is acting.)

We refer to [6, §1] for the notion of a BH-space, and of a BH-subspace of a
convex K-space. If V is a BH-space, then we let V denote the latent Banach space
underlying V . (See [6, Def. 1.1.1, Prop. 1.1.2].) More generally, if V is an arbitrary
Hausdorff convex K-vector space, then we let V denote the ultrabornologicalization
of V ; that is, V := lim

−→
W

W , where W runs over all BH-subspaces of V . (It follows

from [6, Prop. 1.1.2] that the transition maps are continuous, and we endow V with
the locally convex inductive limit topology.) Since V is a locally convex inductive
limit of Banach spaces, it is ultrabornological [2, ex. 20, p. III.46]. The continuous
injections W → V induce a continuous bijection V → V , which is an isomorphism
if and only if V is itself ultrabornological.

We refer to [6, §1] for the notion of a space of LB-type, and of an LB-space, and
to [2, Cor., p. II.34] for the version of the Open Mapping Theorem that applies to
maps between LB-spaces.

All locally L-analytic spaces appearing are assumed to be paracompact (and
hence strictly paracompact in the sense of [13, p. 446], by [12, Satz 8.6]).

For any locally L-analytic group G, we let Reptop.c(G) denote the category whose
objects are Hausdorff locally convex K-vector spaces of compact type, equipped
with a topological action of G, and whose morphisms are continuous G-equivariant
K-linear maps. We let Repla.c(G) denote the full subcategory of Reptop.c(G) con-
sisting of locally analytic representations ofG on convexK-vector spaces of compact
type. (The notion of a locally analytic representation of G is defined in [13, p. 12];
see also [6, Def. 3.6.9].)

If the centre ZG of G is topologically finitely generated then we let Repes(G)
denote the full subcategory of Repla.c(G) consisting of essentially admissible lo-
cally analytic representations of G (as defined in [6, Def. 6.4.9]). We let Repad(G)
denote the full subcategory of Repes(G) consisting of admissible locally analytic
representations of G (as defined in [16]; see also [6, Def. 6.1.1]).

There is another full subcategory of Repla.c(G) that we will consider, to be de-
noted by Repz

la.c(G). The objects of this category are convexK-spaces V of compact
type, equipped with a locally analytic G-representation, that may be written as the
union of an increasing sequence of ZG-invariant BH-subspaces. Recall that by
definition, any object of Repes(G) is an object of Repz

la.c(G).
We refer to [7, §3.1] for a summary of the basic results regarding these categories

of G-representations.
We briefly recall the notion of an analytic open subgroup of an L-analytic group,

referring to [6, §3.5, §5.2] for a detailed discussion. If G is an L-analytic group, then
an analytic open subgroup of G actually consists of the following data: an open
subgroup H of G, a rigid L-analytic group H that is isomorphic as a rigid analytic
space to a closed ball, and a locally L-analytic isomorphism H

∼−→ H(L). Although
all three pieces of data are required to specify an analytic open subgroup, typically
we will refer simply to an analytic open subgroup H of G. We adopt the convention
that if an analytic open subgroup is denoted by H (possibly decorated with some
subscripts or superscripts), then the underlying rigid analytic group will always be
denoted by H (decorated with the same superscripts or subscripts). Given analytic
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open subgroups H1 and H2 of G, and an inclusion H2 ⊂ H1, we say that this
is an inclusion of analytic open subgroups if it arises from a rigid analytic open
immersion H2 → H1 by passing to L-valued points.

If H is an analytic open subgroup of G, and g ∈ G, then we will write gH to
denote a copy of the rigid analytic space H, with the understanding that the locally
analytic space of L-valued points of gH is to be naturally identified with the coset
gH ⊂ G via the locally L-analytic isomorphism (gH)(L) = H(L) ∼−→ H

∼−→ gH
(the final isomorphism being provided by left multiplication by g). For example,
if {gi}i∈I is a collection of right coset representatives of H in G, then

∐
i∈I giH

is a rigid analytic space whose set of L-valued points is naturally isomorphic to
G =

∐
i∈I giH as a locally L-analytic space. We will apply similar notation with

regard to the left cosets Hg of H in G.
Finally, we recall from [6] that we call an analytic open subgroup H of G good

if there exists an OL-Lie sublattice h of the Lie algebra g of G (i.e. h is a finitely
generated OL-submodule of g which spans g over L, and which is closed under the
Lie bracket) on which the Lie bracket may be exponentiated to form a rigid analytic
group H, whose underlying group of L-valued points may be identified with H (in a
manner compatible with the inclusion h ⊂ g). Good analytic open subgroups of G
exist, and are cofinal among all analytic open subgroups of G [17, LG 5.35, Cor. 2].

If H is a good analytic open subgroup H of G, and r ∈ (0, 1)
⋂
|L×|, then the

polydisk of radius r around the origin of H is an affinoid rigid analytic group, which
we denote by Hr. We let Hr := Hr(L) denote the corresponding locally analytic
groups of L-valued points. We also write H◦ :=

⋃
r<1 Hr, and write H◦ := H◦(L).

(Note that H◦ = Hr for r close enough to 1.) See [6, §5.2] for more details of these
constructions.

1. Preliminaries

(1.1) Let G be a locally L-analytic group, and letH be a compact open subgroup
of G. Note that HZG is then an open subgroup of G.

Lemma 1.1.1. We may find a a cofinal sequence {Hi}i≥0 of analytic open sub-
groups of H, chosen so that H normalizes each Hi. (Recall that this means that H
normalizes the group of L-rational points Hi of Hi, and that the resulting action of
H on Hi via conjugation is induced by a corresponding action of H on Hi via rigid
analytic automorphisms.)

Proof. Let g denote the Lie algebra of G (and hence also of H), and fix an OL-Lie
sublattice h of g. We may find an OL-Lie sublattice h0 of h which is invariant under
the adjoint action of H. Replacing h0 by pnh0 for sufficiently large n if necessary, we
may furthermore assume that h0 exponentiates to a good analytic open subgroup
H0 of H. If we let Hi be the good analytic open subgroup attached to pih0 for each
i ≥ 0, then {Hi}i≥0 satisfies the requirements of the lemma. �

We now prove a useful structural result regarding objects of Repz
la.c(G).

Lemma 1.1.2. If {Hi}i≥0 is any cofinal sequence of analytic open subgroups of
H satisfying the conclusion of Lemma 1.1.1, and if U ∈ Repz

la.c(G), then we may
write U ∼−→ lim

−→
i

Ui, where each Ui is a K-Banach space equipped with an Hi-analytic

HZG-action, and the transition maps Ui → Ui+1 are compact, injective, and HZG-
equivariant.
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Proof. Since U is a locally analytic representation of G, and hence of H, on a
compact type space (and so in particular on an LB-space), we may write U =⋃

i≥0 U1,i, where {U1,i}i≥0 is an increasing sequence of H-invariant BH-subspaces
of U , such that for each i ≥ 0, the induced H-representation on U1,i is Hi-analytic.
(This follows from [6, Prop. 3.2.15, Thm. 3.6.12].) Since U is an object of Repz

la.c(G),
we may also write U =

⋃
i≥0 U2,i, where {U2,i}i≥0 is an increasing sequence of ZG-

invariant BH-subspaces of U .
For any i ≥ 0, the unit ball U◦2,i of U2,i (with respect to some norm defining

the Banach space structure on U2,i) is bounded in U , and thus so is the closure
of HU◦2,i in U (since H is compact, and so acts equicontinuously on U , by [6,
Lem. 3.1.4]). The K-span of HU◦2,i is thus an HZG-invariant BH-subspace of U
(since U is complete; see [2, Cor., p. III.8]) that contains U2,i. Replacing U2,i by
this BH-subspace, we may assume that each U2,i is in fact HZG-invariant.

By passing to appropriate subsequences of the two sequences {U1,i}i≥0 and
{U2,i}i≥0 of BH-subspaces of U , and relabelling as necessary, we may furthermore
assume that U1,i ⊂ U2,i for all i ≥ 0 [2, Prop. 1, p. I.20]. Passing to latent Banach
space structures (taking into account [6, Prop. 1.1.2 (ii)]) and then to Hi-analytic
vectors (taking into account [6, Thm. 3.6.3]) this inclusion induces continuous in-
jections

U1,i = (U1,i)Hi−an → (U2,i)Hi−an → U2,i.

We deduce that U ∼−→ lim
−→

i

(U2,i)Hi−an.

By [6, Prop. 1.1.2 (ii)] and the functoriality of passing to Hi-analytic vectors,
we see that the HZG-action on U2,i induces a HZG-action on (U2,n)Hi for each
i ≥ 0. Since U is of compact type, by passing to a subsequence of {(U2,i)Hi−an}i≥0

and then relabelling we may furthermore assume that each of the transition maps
(U2,i)Hi−an → (U2,i+1)Hi+1−an is compact. Taking Ui = (U2,i)Hi−an gives the
lemma. �

(1.2) Let G be a locally L-analytic group with Lie algebra g. In this subsection
we develop some simple definitions and results related to g-representations that are
locally integrable, in the sense that the g-action on any vector may be integrated
to an action of some compact open subgroup of G.

Let H be an analytic open subgroup of G. If V is a K-Banach space, then
Can(H, V ) := Can(H,K) ⊗K V is again a K-Banach space, equipped with mutu-
ally commuting actions of H by each of the left and right regular actions. By [6,
Prop. 3.3.4], these actions are H-analytic in the sense of [6, Def. 3.6.1]. If V is
furthermore equipped with a topological g-action (which is then necessarily con-
tinuous, since V is Banach, and so barrelled), then we obtain a topological action
of g on Can(H, V ), namely the action induced by the action on V (the “pointwise
action”), which commutes with each of the regular H-actions.

We define a g × g-action on Can(H, V ) by having the first factor act through
the pointwise action, and the second factor act through the derivative of the left
regular H-action; this g × g-action commutes with the right regular H-action. If
∆ : g → g × g denotes the diagonal embedding, then composing the g × g-action
with ∆ induces yet another g-action on Can(H, V ); we denote this copy of g acting
on Can(H, V ) by ∆(g), to avoid confusion.
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Definition 1.2.1. We write VH−int := Can(H, V )∆(g), the closed subspace of in-
variants in Can(H, V ) under the action of ∆(g), and refer to VH−int as the space of
H-integrable vectors in V . Note that since the right regular H-action on Can(H, V )
commutes with the ∆(g)-action, this action restricts to an H-action on VH−int, and
we regard VH−int as an H-representation in this way.

Since VH−int is a closed subspace of the Banach space Can(H, V ), it is again a
Banach space. The formation of VH−int is evidently functorial in V . Evaluation at
the identity of H induces a natural continuous map

(1.2.2) VH−int → V.

Lemma 1.2.3. (i) The H-action on VH−int is H-analytic.
(ii) The map (1.2.2) is injective and g-equivariant, if we endow VH−int with the

g-action obtained by differentiating the H-action. (This make sense, by (i).)

Proof. Claim (i) follows from [6, Prop. 3.6.2], since VH−int is a closed subrepresen-
tation of the H-analytic H-representation Can(H, V ).

If we differentiate the H-action on VH−int, we obtain a g-action on VH−int, with
respect to which the map (1.2.2) (which we recall is induced by evaluating elements
of VH−int ⊂ Can(H, V ) at the identity element of H) is immediately checked to be g-
equivariant. The kernel of (1.2.2) is thus g-invariant, and so an element in the kernel
of (1.2.2) is a rigid analytic V -valued function on H whose power series expansion
at the identity vanishes identically. Consequently (1.2.2) has trivial kernel, and (ii)
is proved. �

Definition 1.2.4. We say that a topological g-action on a K-Banach space V is
H-integrable if the map (1.2.2) is a bijection (in which case the Open Mapping
Theorem shows that it is a topological isomorphism, since the source and domain
are both Banach spaces).

If the Banach space V is equipped with an H-integrable action of g, then we may
use the isomorphism (1.2.2) to transport the H-action on VH−int to an H-action on
V . We will say that this H-action is obtained by “integrating the g-action”.

Lemma 1.2.5. If V is a K-Banach space equipped with an H-analytic action of
H, then the g-action on V obtained by differentiating the H-action is H-integrable,
and the map (1.2.2) is H-equivariant.

Proof. If we define the ∆1,2(H)-action on Can(H, V ) as in the discussion of [6, §3.3],
then its derivative gives the ∆(g)-action described above, and so we have continuous
H-equivariant injections

Can(H, V )∆1,2(H) −→ Can(H, V )∆(g) (1.2.2)−→ V.

By definition (see [6, Def. 3.3.1, Def. 3.6.1]), our assumption implies that the com-
posite of these injections is a bijection, and thus so is the second, that is, the
map (1.2.2). �
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Proposition 1.2.6. If V is a K-Banach space equipped with a topological g-action,
and if W is a closed g-invariant subspace of V , then the natural commutative dia-
gram

WH−int
//

��

VH−int

��
W // V

(in which the vertical arrows are provided by (1.2.2), the bottom horizontal arrow is
the inclusion, and the top horizontal arrow arises from the bottom one by applying
the functor “pass to H-integrable vectors”) is Cartesian (in the category of K-
Banach spaces).

Proof. By [6, Prop. 2.1.23], the given closed embedding of W into V induces a
closed embedding Can(H,W ) → Can(H, V ). Passing to ∆(g)-invariants yields the
proposition. �

Corollary 1.2.7. If V is a K-Banach space equipped with an H-integrable action
of g, and if W is a closed g-invariant subspace of V , then the g-action on W is
again H-integrable, and the inclusion W ⊂ V is H-equivariant, if we endow W and
V with the H-actions provided by integrating their respective g-actions.

Proof. This follows directly from Proposition 1.2.6. �

Proposition 1.2.8. Let H2 ⊂ H1 be an inclusion of analytic open subgroups of
G. If V is a K-Banach space equipped with a topological g-action, then there is a
natural g-equivariant continuous injection VH1−int → VH2−int, uniquely determined
by the requirement that the diagram

VH1−int
//

%%KKKKKKKKKK
VH2−int

��
V,

in which the diagonal and vertical arrows are provided by (1.2.2), commutes.

Proof. Since H2 ⊂ H1 is an inclusion of analytic open subgroups, by definition it
arises from a rigid analytic open map H2 → H1 by passing to L-valued points.
The required map is obtained from the pull-back map Can(H1, V ) → Can(H2, V ) by
passing to ∆(g)-invariants. �

Let V be a convex K-space equipped with a topological g-action. If W is a
g-invariant BH-subspace of V , then [6, Prop. 1.1.2 (ii)] shows that the g-action
on W lifts to a topological g-action on the latent Banach space W ; and so for any
analytic open subgroup H of G, we may define WH−int following Definition 1.2.1.
If W1 ⊂ W2 is an inclusion of g-invariant BH-subspaces of V , and H2 ⊂ H1 an
inclusion of analytic open subgroups of G, then we obtain a commutative diagram
of continuous g-equivariant injections

(W 1)H1−int
//

��

(W 2)H1−int

��
(W 1)H2−int

// (W 2)H2−int,
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in which the bottom (respectively top) arrow is induced by the functoriality of the
formation of H1-integrable (respectively H2-integrable) vectors, while the two ver-
tical arrows are induced by Proposition 1.2.8. (The commutativity of this diagram
follows from the naturality of the maps given by Proposition 1.2.8.) Composing
either the left-hand vertical and bottom arrows or the top and right-hand vertical
arrows of this diagram, we obtain a continuous g-equivariant injection

(1.2.9) (W 1)H1−int → (W 2)H2−int.

As W ranges over the directed set of all BH-subspaces of V , and H ranges over the
directed set of all analytic open subgroups of G, the maps (1.2.9) make a directed
set out of the collection of g-representations WH−int.

Definition 1.2.10. If V is a convex K-space equipped with a topological g-action,
then we define the space of locally integrable vectors, Vlint, in V to be the locally
convex inductive limit Vlint := lim

−→
H,W

WH−int, where H runs over the directed set of

analytic open subgroups of G, W runs over the directed set of g-invariant BH-
subspaces of V , and the transition maps are defined via (1.2.9).

Since each of the space WH−int appearing in the inductive limit that defines Vlint

is equipped in a natural way with a continuous g-action, and since the transition
maps (1.2.9) are g-equivariant, we see that Vlint is equipped in a natural way with a
continuous g-action. (One sees immediately that the g-action on Vlint is topological;
however it is then necessarily continuous, since Vlint is barrelled, being defined as
the locally convex inductive limit of Banach spaces). The formation of Vlint (with
its g-action) is obviously functorial in V , and the maps (1.2.2) (with V replaced by
the spaces W ) induce a natural continuous g-equivariant injection

(1.2.11) Vlint → V.

Proposition 1.2.12. If V is a Hausdorff convex K-vector space equipped with a
topological g-action, then the natural map (Vlint)lint → Vlint (obtained by substituting
Vlint for V in (1.2.11)) is a topological isomorphism.

Proof. Let W be a g-invariant BH-subspace of V , and let H be an analytic open
subgroup of V . Then by definition of Vlint (and taking into account Lemma 1.2.3)
the space WH−int is identified with a g-invariant BH-subspace of Vlint. It is also
equipped with an H-analytic representation, by Lemma 1.2.3, and so Lemma 1.2.5
shows that the map (WH−int)H−int →WH−int (obtained by taking V to be WH−int

in (1.2.2)) is a topological isomorphism. Passing to the locally convex inductive
limit over all such W and H, we obtain the isomorphism that forms the top row of
the commutative diagram

(1.2.13) lim
−→

H,W

(WH−int)H−int ∼ //

��

lim
−→

H,W

WH−int

∼
��

(Vlint)lint
// Vlint,

in which the left vertical arrow is the continuous injection induced by definition of
(Vlint)lint, the right vertical arrow is the isomorphism induced by definition of Vlint,
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and the bottom arrow is induced by replacing V by Vlint in (1.2.11). Since the top
and right-hand arrows of (1.2.13) are topological isomorphisms, while the other two
arrows are continuous injections, we see that these other two arrows (in particular,
the bottom arrow) are also topological isomorphisms, as required. �

Proposition 1.2.14. For any Hausdorff convex K-vector space V of LB-type
equipped with a topological g-action, Vlint is an LB-space.

Proof. Since V is the union of a countable collection of BH-spaces, and since G
admits a countable neighbourhood basis of the identity consisting of analytic open
subgroups, we may replace the directed set appearing in the inductive limit of
Definition 1.2.10 by a cofinal directed set that is countable. Thus Vlint may be
written as the locally convex inductive limit of a sequence of Banach spaces, and
so by definition is an LB-space. �

Proposition 1.2.15. Let V be a Hausdorff convex K-vector space equipped with a
topological g-action, and let W be a g-invariant closed subspace of V . Let W1 denote
the preimage of W in Vlint under (1.2.11), which is a g-invariant closed subspace
of Vlint. Then the map Wlint → Vlint (induced by functoriality of the formation of
locally integrable vectors) induces a continuous bijection of Wlint onto W1.

Proof. Consider the diagram of continuous g-equivariant injections

Wlint
//

""EEEEEEEE

!!
W1

��

// Vlint

��
W // V,

in which the outer part of the diagram (obtained by omitting W1) arises from the
natural transformation (1.2.11) and the functoriality of the formation of locally
integrable vectors, while the square is a Cartesian diagram of topological K-vector
spaces. We must show that any vector w ∈ W1 lies in the image of the map
Wlint → W1. From the definition of Vlint and the construction of W1, we see that
we may find a g-invariant BH-subspace X of V , and an analytic open subgroup
H of G, so that under the map Vlint → V , the image of w lies in W

⋂
X, while w

lies in XH−int. Since W is closed in V , we see that W
⋂
X is a BH-subspace of

W , and that W
⋂
X is a closed g-invariant subspace of X. Proposition 1.2.6 thus

shows that w lies in (W
⋂
X)H−int. From the definition of Wlint, we see that w does

lie in the image of the map Wlint →W1, as required. �

Definition 1.2.16. We say that a topological g-action on a convex K-space V is
locally integrable if V is barrelled, and if the map (1.2.11) is a bijection.

Proposition 1.2.17. If V is an LB-space equipped with a locally integrable g-
action, then the continuous bijection (1.2.11) is in fact a topological isomorphism.

Proof. Proposition 1.2.14 implies that Vlint is again an LB-space. Thus (1.2.11) is
a continuous bijection between LB-spaces, and so by the Open Mapping Theorem
necessarily is a topological isomorphism. �
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Proposition 1.2.18. If V is a barrelled convex K-space equipped with a locally
analytic G-action, then the resulting g-action on V makes V a locally integrable
g-representation.

Proof. By assumption the map Vla := lim
−→
H

lim
−→
W

WH−an is an isomorphism (the in-

ductive limit being taken over the directed set of analytic open subgroups H of
G, and (H being fixed), the directed set of H-invariant BH-subspaces W of V ).
Each of the Banach spaces WH−an is an H-analytic representation of H, and so
by Lemma 1.2.5 the continuous injection (WH−an)H−int → WH−an is an isomor-
phism. Since the images of the spaces (WH−an) in V (with respect to the maps
WH−an → W → W ⊂ V ) have union equal to all of V by assumption, we see that
indeed the map (1.2.11) is a bijection. �

Proposition 1.2.19. Let V be a Hausdorff convex K-vector space equipped with
a locally integrable representation of g, and let W be a closed G-invariant subspace
of V . If W is barrelled, then W is also a locally integrable g-representation.

Proof. Proposition 1.2.15 implies that the natural map Wlint → W is a bijec-
tion. �

Proposition 1.2.20. If V is a Hausdorff convex K-vector space equipped with
a topological g-action, and if there is a g-equivariant isomorphism lim

−→
i∈I

Vi
∼−→ V,

where {Vi}i∈I is a g-equivariant inductive system of Hausdorff K-vector spaces,
each equipped with a locally integrable action of g, then the g-action on V is again
locally integrable.

Proof. Since V is the locally convex inductive limit of the barrrelled spaces Vi, it
is barrelled. Functoriality of the formation of locally integrable vectors yields the
commutative diagram

lim
−→
i∈I

(Vi)lint

��

// Vlint

��lim
−→
i∈I

Vi // V.

The left-hand vertical arrow and lower horizontal arrow are both continuous bi-
jections, by assumption, and thus so is the right-hand vertical arrow (since it is a
priori a continuous injection). �

Proposition 1.2.21. Let H be an analytic open subgroup of G, let W be a Ba-
nach space equipped with an H-integrable action of g, let Y be a dense g-invariant
subspace of W , and let V be an LB-space equipped with a topological G-action.
Suppose that φ : W → V is a continuous K-linear map, with the property that φ|Y
factors through a g-equivariant map Y → VH−an. Then φ itself factors through a
continuous H-equivariant map W → VH−an.

Proof. Since g acts in an H-integrable fashion on W , Lemma 1.2.3 provides an H-
analytic H-action on W . Consider the continuous map Φ : H ×W → V defined by
Φ(h,w) = φ(hw)−hφ(w). If we fix w ∈ Y , then the resulting map is an element of
Can(H, V ) (since φ|Y factors through VH−an), and all its derivatives vanish (since φ|Y
is g-equivariant). Thus Φ|H×Y vanishes, and since Y is dense inW , we conclude that
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Φ vanishes, and thus that φ is H-equivariant. Since H acts H-analytically on W ,
we conclude that φ factors through a continuous H-equivariant map W → VH−an,
as claimed. �

Corollary 1.2.22. Let H be an analytic open subgroup of G, let W be a Banach
space equipped with an H-integrable action of g, and let V be an LB-space equipped
with a locally analytic G-action. If φ : W → V is a g-equivariant continuous K-
linear map, then there is an analytic open subgroup H ′ ⊂ H such that φ factors
through a continuous H ′-equivariant map W → VH′−an.

Proof. By assumption Vla → V is a bijection. Since V is an LB-space and W is a
Banach space, it follows from the definition of Vla [6, Def. 3.5.3] and [2, Prop. 1,
p. I.20] that we may find an inclusion of analytic open subgroups H ′ ⊂ H so that φ
factors through a continuous mapW → U, where U is anH ′-invariantBH-subspace
of V for which theH ′-action on the underlying latent Banach space U is H′-analytic.
The corollary thus follows from Proposition 1.2.21 (taking Y = W ). �

Proposition 1.2.23. Let W be an LB-space over K equipped with a locally in-
tegrable g-action, and write W ∼−→ lim

−→
i≥0

W i, where each Wi is a g-invariant BH-

subspace of W on which the g-action is again locally integrable. Fix a g-invariant
subspace Y of W , and for each i ≥ 0 let Yi denote the preimage of Y under the
continuous injection W i →W . Suppose that:

(i) Yi is dense in W i for each i ≥ 0;
(ii) Yi contains a Banach subspace of W i that generates Yi as g-module.
In addition, let V be a convex K-space of LB-type equipped with a topological

G-action, and let φ : W → V be a continuous K-linear map with the property that
φ|Y factors through a g-equivariant map Y → Vla. Then φ itself factors through a
continuous g-equivariant map W → Vla.

Proof. Fix a value of i ≥ 0, and let Bi ⊂ Yi be a Banach subspace of Yi that
generates Yi as a g-module. (Such a subspace exists, by assumption (ii).) Since
Bi ⊂ Y, we have that φ(Bi) ⊂ Vla by assumption. Thus φ(Bi) ⊂ VH−an for some
analytic open subgroup H of V (since Bi is a Banach space; cf. the proof of the
preceding corollary). Since W i is a Banach space on which the g-action is locally
integrable, it follows from [2, Prop. 1, p. I.20] that by shrinking H if necessary, we
may arrange for the g-action on W i to be H-integrable. Since φ|Y is g equivariant,
since U(g)Bi = Yi, and since VH−an is a g-invariant subspace of Vla, we see that φ|Yi

is g-equivariant, with image lying in VH−an. Proposition 1.2.21 and assumption (i)
thus imply that φ|W i

factors through a continuous g-equivariant map W i → VH−an,
and so in particular through a continuous g-equivariant map W i → Vla. Letting
i→∞ yields the proposition. �

(1.3) Let H2 ⊂ H1 be an inclusion of analytic open subgroups of a locally L-
analytic group G, and let U be a K-Banach space. We endow Can(H1, U) (respec-
tively Can(H2, U)) with an H1-action (respectively an H2-action) via the right regu-
lar representation. As was recalled in Subsection 1.2, these actions are H1-analytic
and H2-analytic respectively and differentiating them induces a g-action on each of
Can(H1, U) and Can(H2, U). (As usual g denotes the Lie algebra of G.) Restricting
functions from H1 to H2 yields a g-equivariant map Can(H1, U) → Can(H2, U).
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Lemma 1.3.1. Let X be a closed g-invariant subspace of Can(H2, U). If f ∈
Can(H1, U) is such that f|H2 ∈ X, then for each h ∈ H1 the function (hf)|H2 again
lies in X.

Proof. Since the H1-action on Can(H1, U) is H1-analytic, the map h 7→ hf is a rigid
analytic map from H1 to Can(H1, U), and thus

(1.3.2) h 7→ (hf)|H2

is a rigid analytic map from H1 to Can(H2, U). Since the map f 7→ f|H2 is g-
equivariant, since X is g-invariant, and since f|H2 lies in X, one furthermore com-
putes that all derivatives of arbitrary order of (1.3.2) at e lie in X. Thus (since X
is closed) we see that (1.3.2) is in fact an X-valued rigid analytic function on H1.
This proves the lemma. �

(1.4) For any locally L-analytic space X and any Hausdorff convex K-vector
space U , we let Cla

c (X,U) denote the vector space of compactly supported locally
analytic U -valued functions on X. If Ω ⊂ Ω′ is an inclusion of compact open subsets
of X, then extension by zero defines an injective map

(1.4.1) Cla(Ω, U) → Cla(Ω′, U).

Extension by zero also defines an injective map

(1.4.2) Cla(Ω, U) → Cla
c (X,U),

for each compact open subset Ω of X. Clearly the maps (1.4.2) are compatible with
the maps (1.4.1), and so we obtain a map

(1.4.3) lim
−→
Ω

Cla(Ω, U) → Cla
c (X,U),

in which the inductive limit is taken over all compact open subsets of X.

Lemma 1.4.4. The map (1.4.3) is an isomorphism of abstract K-vector spaces.

Proof. This follows from the very definition of a function having compact sup-
port. �

Lemma 1.4.5. If we equip source and target with their usual topology (as recalled
in [6, Def. 2.1.25] or [13, p. 5]), then (1.4.1) is a closed embedding.

Proof. If we write Ω′′ := Ω′ \Ω, then the equation Ω′ = Ω
∐

Ω′′ expresses Ω′ as the
disjoint union of two compact open subsets. Thus there is a natural isomorphism
Cla(Ω′, U) ∼−→ Cla(Ω, U)⊕Cla(Ω′′, U). The map (1.4.1) corresponds to the inclusion
of the first direct summand, and so is indeed a closed embedding. �

In particular, this lemma shows that the transition maps in the inductive limit
of (1.4.3) are continuous, and so we may endow it with its locally convex inductive
limit topology.
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Definition 1.4.6. We topologize Cla
c (X,U) by equipping lim

−→
Ω

Cla(Ω, U) with its

locally convex inductive limit topology, and declaring (1.4.3) to be a topological
isomorphism.

The formation of Cla
c (X,U) is evidently covariantly functorial in U , and con-

travariantly functorial with respect to proper maps in X.
The obvious natural map Cla

c (X,U) → Cla(X,U) is a continuous injection. Since
Cla(X,U) is Hausdorff (see the remark following [6, Prop. 2.1.26]) we see that
Cla

c (X,U) is also Hausdorff. Alternatively, this follows from the fact that the tran-
sition maps in (1.4.3) are closed embeddings (by Lemma 1.4.5), since a strict in-
ductive limit of Hausdorff convex spaces is Hausdorff [2, Prop. 9, p. II.32].

Lemma 1.4.7. If X is σ-compact and U is of compact type, then Cla
c (X,U) is of

compact type.

Proof. Since X is σ-compact, we may find a cofinal subsequence of compact open
subsets of X. By [6, Prop. 2.1.28] the inductive limit (1.4.3) is thus isomorphic to
the inductive limit with injective transition maps of a sequence of compact type
spaces, and so is again of compact type. �

Lemma 1.4.8. If G is a locally L-analytic group and U is a Hausdorff locally
convex K-space, then the right regular action of G on Cla

c (G,U) is locally analytic.

Proof. We fix a compact open subgroup G0 of G. We may then restrict the compact
open subsets Ω in the inductive limit (1.4.3) to consist of finite unions of right cosets
of G0 in G. The right regular action of G0 on such a coset gG0 induces a locally
analytic action of G on Cla(gG0, U), by the discussion following [6, Def. 3.6.9],
and hence on Cla(Ω, U) for any finite union Ω of such cosets. It follows from [6,
Prop. 3.6.17] that Cla

c (G,U) is locally analytic as a G0-representation, and so also
as a G-representation. �

Definition 1.4.9. If x is a point of a locally L-analytic space X, and U is a
Hausdorff locally convex K-vector space, then we let Cω(X,U)x denote the space
of germs at the identity x of locally analytic U -valued functions on X; that is

Cω(X,U)x = lim
−→
Ω3x

Cla(Ω, U),

where the locally convex inductive limit is taken over the directed set of open
neighbourhoods Ω of x in X, and the transition maps are given by restricting
functions.

Lemma 1.4.10. If the V is a convex K-space of compact type, then for any point
x on a locally L-analytic space X, the space of germs Cω(X,V )x is again of compact
type.

Proof. Let X0 be a chart around x in X, so that there exists a closed rigid analytic
ball X0 such that X0

∼−→ X0(L). Let {Xi}i≥0 be a cofinal sequence of admissible
open affinoid balls containing x in X0, chosen so that the inclusion Xi+1 ⊂ Xi is
relatively compact. Write V ∼−→ lim

−→
i

Vi, where each transition map Vi → Vi+1 is a

compact injection between K-Banach spaces. There is then a natural topological
isomorphism lim

−→
i

Can(Xi, Vi)
∼−→ Cω(X,K)x, where the transition maps defining the
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inductive limit are obtained by restricting from Xi to Xi+1, together with mapping
from Vi into Vi+1. We may rewrite the transition map Can(Xi, Vi) → Can(Xi+1, Vi+1)
in the form

(1.4.11) Can(Xi,K) ⊗̂
K
Vi → Can(Xi+1,K) ⊗̂

K
Vi+1,

where the arrow is obtained as the completed tensor product of the restriction map
Can(Xi,K) → Can(Xi+1,K) with the transition map Vi → Vi+1. The former map is
compact since the inclusion Xi+1 ⊂ Xi is relatively compact, while the latter map is
compact by assumption. Thus it follows from [6, Cor. 1.1.27] and [11, Lem. 18.12]
that (1.4.11) is injective and compact, and hence that Cω(X,K)x is of compact
type, as claimed. �

(1.5) In this subsection we recall a standard lemma from highest weight theory.
Not knowing a reference, we include a proof.

We first establish the necessary notation. Let g be a split reductive Lie algebra
over K, let p be a fixed Borel subalgebra of g, with nilpotent radical n, let m be a
Cartan subalgebra of p (so that p = m

⊕
n), let p be an opposite Borel to p, chosen

so that p
⋂

p = m, and let n be the nilpotent radical of p (so that p = m
⊕

n). We
let ∆ denote the set of roots of m acting on g. We write ∆ = ∆+

∐
∆− as the

disjoint union of the positive roots (i.e. the roots appearing in n) and the negative
roots (i.e. the roots appearing in n). If r ∈ ∆+ is a positive root, then we fix a basis
element Xr of the r-root space. We also fix a basis element X−r of the −r-root
space, chosen so that if Hr := [Xr, X−r], then [Hr, X±r] = ±2X±r. The elements
Xr (respectively X−r) for r ∈ ∆+ form a basis for n (respectively n) as a vector
space.

The Weyl group W of g with respect to m acts simply transitively on the set
of Borel subalgebras of g containing m, and also acts on ∆, and these actions are
compatible, in the following sense: if w(p) is the transform of p under some w ∈W ,
with nilpotent radical w(n), then w(∆+) is the set of roots which appear in w(n).
(Equivalently, the elements Xw(r), for r ∈ ∆+, form a basis for w(n).)

If w ∈ W , let ∆w := ∆+

⋂
w(∆−), and let Iw := {(kr)r∈∆w

| kr ∈ Z≥0}. Thus
∆w denotes the set of roots that n and w(n) have in common, while Iw denotes the
set of non-negative integral multi-indices indexed by the set ∆w. We will denote a
typical element of Iw by k, and a typical component of k by kr (r ∈ ∆w).

If r ∈ ∆+, we let sr ∈W denote the reflection associated to r. If w ∈W , then the
length of w is the minimal number of factors appearing in a factorization of w into a
product of simple reflections (i.e. elements sr attached to simple roots r ∈ ∆+). If w
has length l, then the order of ∆w is also equal to l, and for an appropriately chosen
ordering of the elements r1, . . . , rl of ∆w, we have the factorization w = sr1 · · · srl

.

If V is a g-representation, then for any integer k ≥ 0 let V nk

denote the p-
subrepresentation of V consisting of elements annihilated by nk. We write V n∞ :=⋃

k≥0 V
nk

. (Note that this is a g-subrepresentation of V .) If w ∈ W and k ∈ Iw,
we write

(V n)k := {v ∈ V n | (Hr − kr)v = 0 for all r ∈ ∆w}.

Lemma 1.5.1. Let V be a g-representation, and suppose that V = V n∞ . If w ∈W
has length l, and if r1, . . . , rl is an ordering of the elements of ∆w, chosen so that
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w = sr1 . . . srl
, then the space V w(n) of w(n)-invariants in V is contained in the

subspace
∑

k∈Iw
(X−r1)

kr1 · · · (X−rl
)krl (V n)k of V .

Proof. We prove the lemma by induction on the length l of the element w ∈ W .
If w is the identity element (i.e. l = 0), then ∆w is empty, and the assertion to be
proved reduces to the tautology V n = V n. Suppose now w is non-trivial (so that
∆w is non-empty). Note that r1 lies in ∆w, and that −r1 is a simple root of w(n).

For each k ≥ 0, let (V w(n))k := {v ∈ V w(n) | (Xr1)
kv = 0}. Clearly V w(n) =⋃

k≥0(V
w(n))k. We first prove that (V w(n))k = (V w(n))Hr1 (Hr1+1)···(Hr1+k−1) (=:

{v ∈ V w(n) |Hr1(Hr1 + 1) · · · (Hr1 + k − 1)v = 0}). If k = 0, then there is nothing
to prove, so we may assume that k ≥ 1. Now let v ∈ (V w(n))k. By assumption
X−r1 v = (Xk

r1)v = 0. Thus we compute that

0 = (Xr1)
kX−r1 v = (X−r1(Xr1)

k + (Xr1)
k−1(Hr1 + k − 1))v

= (Xr1)
k−1(Hr1 + k − 1)v.

Hence (V w(n))k−1 ⊂ (Hr1 +k−1)(V w(n))k ⊂ (V w(n))k−1 (the first inclusion holding
from the fact that (Hr1 + k − 1) is coprime to Hr1(Hr1 + 1) · · · (Hr1 + k − 2),
which annihilates (V w(n))k−1, by induction on k), and so in fact (V w(n))k−1 =
(Hr1 + k − 1)(V w(n))k. Suppose now that v ∈ V w(n) is such that (Hr1 + k − 1)v ∈
(V w(n))k−1; we wish to show that v ∈ V w(n)

k . By what we have just shown, we may
find v′ ∈ (V w(n))k such that (Hr1 + k− 1)v = (Hr1 + k− 1)v, and so replacing v by
v − v′, we may assume that (Hr1 + k − 1)v = 0. If we choose l minimally so that
v ∈ (V w(n))l, then, by what we have shown, (V w(n))l−1 3 (Hr1 + l− 1)v = (l− k)v.
Since l is minimal, we find that l = k, and so v ∈ (V w(n))k. Thus we have shown
that (V w(n))k = {v ∈ V w(n) | (Hr1 + k − 1)v ∈ (V w(n))k−1}. By induction on k,
we conclude that (V w(n))k = (V w(n))Hr1 (Hr1+1)···(Hr1+k−1). Consequently, we may
decompose V w(n) as the direct sum

(1.5.2) V w(n) =
⊕
k≥0

(V w(n))Hr1=−k,

with the non-zero elements of the kth direct summand being annihilated by Xk+1
r1 ,

but by no smaller power of Xr1 .
If we write w′ := sr1w = sr2 · · · srl

∈ W , then ∆w′ = ∆w \ {r1} = {r2, . . . , rl}.
By induction we may assume that

(1.5.3) V w′(n) ⊂
∑

k′∈∆w′

(X−r2)
kr2 · · · (X−rl

)krl (V n)k′ .

We claim that

(1.5.4) (Xr1)
k(V w(n))Hr1=−k ⊂ (V w′(n))Hr1=k.

Note that w′(∆+) = (w(∆+) \ {−r1})
⋃
{r1}. Since (Xr1)

k+1 annihilates the space
(V w(n))Hr1=−k, the left-hand side of (1.5.4) is annihilated by Xr1 . On the other
hand, if r ∈ w(∆+)\{−r1}, then any iterated commutator [Xr1 , [Xr1 , . . . , [Xr1 , Xr]]]
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either lies in w(n) or else vanishes. Thus the left-hand side of (1.5.4) is annihilated
by Xr. This shows that

(1.5.5) (Xr1)
k(V w(n))Hr1=−k ⊂ V w′(n).

On the other hand, it follows immediately from the formula [Xr1 , X−r1 ] = Hr1 that

(1.5.6) (Xr1)
k(V w(n))Hr1=−k ⊂ V Hr1=k.

The inclusion (1.5.4) follows from (1.5.5) and (1.5.6).
One easily deduces from (1.5.3) that

(1.5.7) (V w′(n))Hr1=k ⊂
∑

k′∈∆w′

(X−r2)
kr2 · · · (X−rl

)krl ((V n)k′)Hr1=k

=
∑

k∈∆w s.t. kr1=k

(X−r2)
kr2 · · · (X−rl

)krl (V n)k.

Finally, a simple commutator calculation shows that the actions of (X−r1)
k(Xr1)

k

and (−1)kHr1(Hr1 +1) · · · (Hr1 +k−1) on V w(n) coincide. Thus (X−r1)
k(Xr1)

k acts
on (V w(n))Hr1=−k as multiplication by k!, and hence (combining (1.5.4) and (1.5.7))

(V w(n))Hr1=−k = (X−r1)
k(Xr1)

k(V w(n))Hr1=−k

⊂
∑

k∈∆w s.t. kr1=k

(X−r1)
k · · · (X−rl

)krl (V n)k.

Taken together with (1.5.2), this proves the lemma. �

2. Parabolically induced representations

(2.1) Let G be a connected reductive linear algebraic group over L. Fix a
parabolic subgroup P of G, with Levi quotient M . If U is an object of Repla.c(M),
then we define

IndG
P U := {f ∈ Cla(G,U) | f(pg) = pf(g) for all p ∈ P},

regarded as a closed subspace of Cla(G,U), and equipped with the right regular
action of G. (Here we regard P as acting on U through its Levi quotient M .)

We may find a compact open subgroup G0 of G such that G = PG0. (For
example, G0 could be taken to be a special, good, maximal compact subgroup of G
[4, p. 140].) If we write P0 = G0

⋂
P, then as a G0-representation, we may identify

IndG
P U with the closed subspace

IndG0
P0
U = {f ∈ Cla(G0, U) | f(pg) = pf(g) for all p ∈ P0}

of the space Cla(G0, U). This latter space is of compact type, by [6, Prop. 2.2.28],
and thus IndG

P U is a space of compact type. It follows from [6, Prop. 3.5.11,
Lem. 3.6.14] that IndG

P U is an object of Repla.c(G).
Evaluation at the identity of G induces a continuous P -equivariant map

IndG
P U → U.

It follows from [6, Prop. 5.1.1 (iii)] that if V is an object of Repla.cG, then this
map induces a “Frobenius reciprocity” isomorphism

LG(V, IndG
P U) ∼−→ LP (V,U).

Let us remark that a thorough discussion of the basic properties of locally analytic
induction, including this Frobenius reciprocity isomorphism, appeared in the 1997
dissertation of Feaux de Lacroix [10, §4].
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Proposition 2.1.1. If U is an object of Repz
la.c(M), then IndG

P U is an object of
Repz

la.c(G).

Proof. Apply Lemma 1.1.1 to find a cofinal sequence {Hi}i≥1 of analytic open sub-
groups of G0, each normalized by G0. For each i ≥ 1, let Pi denote the intersection
of Hi with P (thinking of P as a closed rigid analytic subspace of G), and let Mi

denote the image of Pi under the projection P →M. Then {Mi}i≥1 forms a cofinal
sequence of analytic open subgroups of M , each of which is normalized by the image
M0 of P0 in M .

Apply Lemma 1.1.2 to write U ∼−→ lim
−→
i≥1

Ui, where each Ui is a K-Banach space

equipped with a locally analytic M0ZM -action that is Mi-analytic. Then we may
write

IndG
P U

∼−→ IndG0
P0
U

∼−→ lim
−→

i

{f ∈ Cla(G0, Ui)Hi−an | f(pg) = pf(g) for all p ∈ P0, g ∈ G0}.

Each term in this inductive limit is a Banach space whose image in IndG
P U is

invariant under ZG (since ZG ⊂ ZM ), and thus we have exhibited IndG
P U as an

object of Repz
la.c(G). �

Proposition 2.1.2. If U is an admissible (respectively strongly admissible, respec-
tively very strongly admissible) locally analytic representation of M , then IndG

P U
is an admissible (respectively strongly admissible, respectively very strongly admis-
sible) locally analytic representation of G.

Proof. As above, we exploit the isomorphism IndG
P U

∼−→ IndG0
P0
U. Fix a choice of

lifting of M to a Levi factor of P , and write M0 := G0

⋂
M. By definition, U is an

admissible (respectively strongly admissible) locally analytic representation of M
if and only if it is such a representation of M0.

Let P denote an opposite parabolic to P , chosen so that P
⋂
P = M, our

fixed choice of Levi factor of P . Applying [7, Prop. 4.1.6] (after fixing a minimal
parabolic of G contained in P ) we choose a cofinal sequence {Hi}i≥0 of analytic
open subgroups of G0, whose underlying rigid analytic subgroups Hi admit a rigid
analytic Iwahori decomposition Ni×Mi×Ni → Hi with respect to P and P . Note
that the subgroups Mi := Mi(L) then form a cofinal sequence of analytic open
subgroups of M0.

Let U be an admissible locally analytic M0-representation. Fix i ≥ 0. If g ∈ G0,
let Ug denote U regarded as a locally analytic representation of g−1Pg , via
(g−1pg) · u = pu, and write P g

i = Hi

⋂
g−1Pg. Choose an analytic open sub-

group Lg
i of the locally analytic group P g

i , for which the closed embedding Lg
i ⊂ Hi

arises from a rigid analytic closed embedding Lg
i ⊂ Hi. Since U is an admissi-

ble locally analytic M0-representation, and so in particular an admissible locally
analytic P0-representation, Ug is an admissible locally analytic P g

i -representation.
In particular, the space (Ug)Lg

i−an of Lg
i -analytic vectors in Ug is a Banach space

admitting a Lg
i -equivariant closed embedding (Ug)Lg

i−an → Can(Lg
k,K)r, for some

r ≥ 0. (Here and below we are using the characterization of admissible locally
analytic representations provided by [6, Def. 6.1.1], and the discussion following
that definition.)
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The decomposition of G0 into right Hi-cosets induces a natural Hi-equivariant
closed embedding

IndG0
P0
U →

⊕
g∈G0/Hi

IndHi

P g
i
Ug →

⊕
g∈G0/Hi

IndHi

Lg
i
Ug,

and hence [6, Prop. 3.3.23] a closed embedding of Hi-representations

(IndG0
P0
U)Hi−an →

⊕
g∈G0/Hi

(IndHi

Lg
i
Ug)Hi−an.

We will show that each (IndHi

Lg
i
Ug)Hi−an admits an Hi-equivariant closed em-

bedding into Can(Hi,K)r, for some r ≥ 0. and thus conclude that (IndG0
P0
U)Hi−an

admits a closed Hi-equivariant embedding into Can(Hi,K)s, for some s ≥ 0. Since
i ≥ 0 was arbitrary, we will have established that IndG0

P0
U is an admissible locally

analytic representation.
It follows from [6, props. 3.3.23, 3.3.24] that (IndHi

Lg
i
Ug)Hi−an is equal to the

preimage of IndHi

Lg
i
Ug under the natural map Can(Hi, U

g) → Cla(Hi, U
g). Any

element in Can(Hi, U
g) whose image in Cla(Hi, U

g) lies in IndHi

Lg
i
Ug must actually lie

in Can(Hi, (Ug)Lg
i−an), as follows immediately from the closed embedding Lg

i ⊂ Hi

and the definition of IndHi

Lg
i
Ug as a subspace of Cla(Hi, U

g). Thus (IndHi

Li
Ug)Hi−an is

the preimage of IndHi

Lg
i
Ug under the natural map Can(Hi, (Ug)Lg

i−an) → Cla(Hi, U
g),

and so in particular embeds as a closed subspace of Can(Hi, (Ug)Lg
i−an). The closed

embedding (Ug)Lg
i−an → Can(Lg

i ,K)r thus induces a closed embedding

(IndHi

Lg
i
Ug)Hi−an → Can(Hi, Can(Lg

i ,K))r ∼−→ Can(Lg
i ×Hi,K)r.

Again, by the definition of IndHi

Lg
i
Ug, this closed embedding lies in the closed

subspace of Can(Lg
i × Hi,K)r consisting of functions f satisfying the condition

f(pg, h) = f(1, pgh) for any pg ∈ Lg
i , h ∈ Hi. Restricting to the closed subvariety

1×Hi of Lg
i ×Hi induces an isomorphism between this subspace and Can(Hi,K)r.

Thus we obtain the required closed embedding (IndHi

Lg
i
Ug)Hi−an → Can(Hi,K)r.

If we suppose that U is a strongly admissible locally analytic representation of
M0, then a similar, but more straightforward, argument shows that IndG0

P0
U is a

strongly admissible locally analytic representation of G0. Indeed, since U is strongly
admissible, it admits a closed M0-equivariant embedding U → Cla(M0,K)r, for
some r ≥ 0. (See the remark following [6, Def. 6.2.1].) Thus Cla(G0, U) admits a
closed embedding into

Cla(G0, Cla(M0,K))r ∼−→ Cla(M0 ×G0,K)r.

The closed subspace IndG0
P0
U of Cla(G0, U) lands in the subspace of functions f for

which f(m, g) = f(1,mg) (for m ∈ M0, g ∈ G0). Restricting such functions to
1×G0 ⊂M0×G0 induces an isomorphism of this subspace with Cla(G0,K)r. Thus
we obtain a closed embedding IndG0

P0
U → Cla(G0,K)r, as required.
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Finally, suppose that U is very strongly admissible, and choose an admissible Ba-
nach space representation W of M for which U admits a continuous M -equivariant
injection U →W . There is then a continuous G-equivariant injection

(2.1.3) IndG
P U → {f ∈ C(G,W ) | f(pg) = pf(g) for all p ∈ P}.

(The target of this map is the continuous induction of W from M to G.) The
preceding argument shows that the source of (2.1.3) is a strongly admissible G-
representation, and a similar argument, using the fact that W is an admissible
Banach space representation of M , shows that the target of (2.1.3) is an admissible
Banach space representation of G. By definition, we conclude that the source
of (2.1.3) is a very strongly admissible locally analytic G-representation. �

(2.2) Let G be a connected reductive linear algebraic group over L. Fix a
parabolic subgroup P of G, a Levi factor M of P , and let P denote the opposite
parabolic to P , chosen so that P

⋂
P = M. Let N and N denote the unipotent

radicals of P and P respectively, so that P = MN and P = MN. Fix an object U
of Repla.c(M).

Recall the definitions of the convex spaces Cla
c (N,U) and Cω(N,U)e from Sub-

section 1.4. These are of compact type, by Lemma 1.4.7 and 1.4.10 respectively.
We endow Cla

c (N,U) with a locally analytic P -action as follows: If f ∈ Cla
c (N,U)

and p ∈ P , then factor p = mn with m ∈ M and n ∈ N , and define the function
pf ∈ Cla

c (N,U) via the formula (pf)(n′) = mf(m−1n′mn) for all n′ ∈ N ; here m
acts on the element f(m−1n′mn) of U via the given locally analytic action of M
on U . Lemma 1.4.8 shows that the N -action is locally analytic. It is easily verified
that this is also true of the M -action (and hence of the P -action). We will not
give a direct proof here, however, since the local analyticity of the P -action follows
from Lemma 2.3.6 below and the fact that G, and so P , acts locally analytically
on IndG

P
U .

Let Csm
c (N,U) denote the space of compactly supported locally constant func-

tions on N . Note that Csm
c (N,U) coincides with the closed subspace of n-invariants

in Cla
c (N,U). Thus Csm

c (N,U) is a closed P -invariant subspace of Cla
c (N,U), and

so in particular is an object of Repla.c(P ). (By construction this locally analytic
P -action on Csm

c (N,U) agrees with that defined in [7, §3.5].)
We define a locally analytic M -action on Cω(N,U)e as follows: If f ∈ Cω(N,U)e,

and m ∈ M , then let the germ mf ∈ Cω(N,U)e be defined via the formula
(mf)(n) = mf(m−1nm) for n ∈ N sufficiently close to e (i.e. close enough for
f(m−1nm) to be defined); here m acts on the element f(m−1nm) of U via the
given locally analytic action of M on U . Again, we omit the (easy) direct proof
that this action is locally analytic, since local analyticity of the action follows
from Corollary 2.3.4 below and the fact that the P (and hence the M -action) on
(IndG

P
U)e is locally analytic (by Lemma 2.3.5 (i)).

We let ZM denote the centre of M , let A denote the maximal split torus in ZM ,
and fix a coweight α : L× → A that pairs strictly negatively with each restricted
root of A acting on N . Set z0 = α(p)−1. In the remainder of this subsection we
introduce some auxiliary constructions that will be useful for what follows. We
apply [7, Prop. 4.1.6] (after fixing a minimal parabolic of G contained in P ) to find
a cofinal sequence {Hi}i≥0 of good analytic open subgroups of G that admit a rigid
analytic Iwahori decomposition with respect to P and P , such that Hi is normal in



24 MATTHEW EMERTON

H0 for each i ≥ 0, such that each inclusion Hi+1 ⊂ Hi is relatively compact, and
such that Ni := zi

0N0z
−i
0 for all i ≥ 0. Let Hi

∼−→ NiMiNi be the rigid analytic
Iwahori decomposition of Hi. Also, fix an increasing sequence {N i}i≥0 of compact
open subsets of N , chosen so that N0 ⊃ N0, and so that N =

⋃
i≥0N

i.
We now define two submonoids of the centre ZM ofM that will play an important

role in what follows.

Definition 2.2.1. Write Z+
M = {z ∈ ZM | zN0z

−1 ⊂ N0} (respectively Z−M = {z ∈
ZM |N0 ⊂ zN0z

−1}). Note that each of Z+
M and Z−M is a submonoid of ZM .

Write U ∼−→ lim
−→
n

Ui, where Ui is a K-Banach space equipped with an Mi-analytic

action of M0, and the transition maps are compact, injective, and M0-equivariant.
In the case when U is an object of Repz

la.c(M), we furthermore choose the Ui to
be ZM -invariant, and the transition maps to be ZM -equivariant (as we may, by
Lemma 1.1.2).

For each pair of integers i, j ≥ 0, we define the K-Banach spaces of functions
Ai,j := Can(Ni, Uj) and Bi,j :=

⊕
n∈Ni\N0

Can(Nin,Uj) (where the direct sum is
over a set of left coset representatives of Ni in N0). These are spaces of Uj-valued
rigid analytic functions on the spaces Ni and

∐
n∈Ni\N0

Nin respectively.
If i′ ≥ i ≥ 0 and j′ ≥ j ≥ 0, then there are continuous injections

(2.2.2) Ai,j → Ai′,j′

and

(2.2.3) Bi,j → Bi′,j′

induced by the continuous injection Uj → Uj′ , together with restricting functions
from Ni to Ni′ , or from

∐
n∈Ni\N0

Nin to
∐

n∈Ni′\N0
Ni′n.

Taking the germ of an element of Ai,j at e yields a continuous injection

(2.2.4) Ai,j → Cω(N,U)e.

Passing to the inductive limit in i and j, we obtain an isomorphism

(2.2.5) lim
−→
i,j

Ai,j
∼−→ Cω(N,U)e.

(The transition maps in the inductive limit are provided by the maps (2.2.2).) Also,
extension by zero yields a natural continuous injection

(2.2.6) Ai,j → Cla
c (N,U).

Composing (2.2.6) with the natural map Cla
c (N,U) → Cω(N,U)e given by passing

to the germ of a locally analytic function at the identity yields the map (2.2.4).
Regarding an element of Bi,j as a Uj-valued function on N0 we obtain a contin-

uous injection

(2.2.7) Bi,j → Cla(N0, Uj).
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Fixing j, and passing to the inductive limit in i, we obtain an isomorphism

(2.2.8) lim
−→

i

Bi,j
∼−→ Cla(N0, Uj).

The continuous injection Uj → U induces a continuous injection

(2.2.9) Cla(N0, Uj) → Cla(N0, U),

which when composed with (2.2.7) yields a continuous injection

(2.2.10) Bi,j → Cla(N0, U).

Passing to the inductive limit in i and j yields an isomorphism

(2.2.11) lim
−→
i,j

Bi,j
∼−→ Cla(N0, U),

which may also be obtained by taking the inductive limit with respect to j of the iso-
morphisms (2.2.8). (The transition maps in the inductive limits (2.2.8) and (2.2.11)
are provided by the maps (2.2.3).)

(2.3) We maintain the notation of Subsection 2.2. In this subsection, and those
that follow, we will consider parabolic induction from P to G (rather than from P
to G).

Unless the M -action on our fixed object U of Repla.c(M) is trivial, the elements
of IndG

P
U are not U -valued functions on P\G. (Rather, they are sections of a bundle

on P\G, with fibres isomorphic to U .) Nevertheless, any element f of IndG
P
U has

a well-defined support (that is, region over which its germ is non-zero) on P\G,
which is a compact open subset of this quotient. (The support of f as a function
on G is an open and closed subset of G, invariant under left multiplication by P ,
and so corresponds to a compact open subset of P\G.)

If f ∈ IndG
P
U and Ω is a compact open subset of P\G, then we write f|Ω to

denote the function

f|Ω(g) =
{
f(g) if Pg ∈ Ω
0 otherwise.

The function f|Ω is clearly again an element of IndG
P
U .

Definition 2.3.1. (i) If Ω is any open subset of P\G, we let (IndG
P
U)(Ω) denote

the subspace of elements whose support is contained in Ω.
(ii) If x ∈ P\G, then we define the stalk of IndG

P
U at x to be

(IndG
P
U)x := lim

−→
Ω3x

(IndG
P
U)(Ω),

where the locally convex inductive limit is taken over the directed set of compact
open neighbourhoods of x, with the transition map (IndG

P
U)(Ω) → (IndG

P
U)(Ω′)

(for Ω ⊃ Ω′ an inclusion of neighbourhood of x) being given by f 7→ f|Ω′ . If Ω
is an open subset of P\G containing x, then we denote by stx (for “stalk at x”)
the continuous map (IndG

P
U)(Ω) → (IndG

P
U)x, arising from the description of the

target as an inductive limit.

Since N
⋂
P = {e}, the map n 7→ Pn is an open immersion

(2.3.2) N → P\G,

and we thus regard N as an open subset of P\G.
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Lemma 2.3.3. If Ω is a compact open subset of N , regarded also as a compact
open subset of P\G via (2.3.2), then there is a natural topological isomorphism
Cla(Ω, U) ∼−→ (IndG

P
U)(Ω).

Proof. The preimage of Ω (regarded as a subset of P\G) in G is equal to PΩ. We
may write G = PΩ t (G\(PΩ)); this is a partition of G into two open sets invariant
under the left action of P on G. Thus we obtain a topological isomorphism

(IndG
P
U)(Ω) ∼−→ {f ∈ Cla(PΩ, U) | f(pg) = pf(g) for all g ∈ PΩ}.

Since N
⋂
P = {e}, multiplication induces a locally analytic isomorphism P ×Ω →

PΩ. Thus restricting to Ω induces an isomorphism (IndG
P
U)(Ω) ∼−→ Cla(Ω, U). That

we do indeed obtain an isomorphism follows from the fact that P acts (through M)
in a locally analytic fashion on U , so that we may extend any element of Cla(Ω, U)
in a unique manner to an element of (IndG

P
U)(Ω) (using the natural orbit map

U → Cla(P ,U) provided by [6, Thm. 3.5.7, Thm. 3.6.12]). �

Corollary 2.3.4. The open immersion (2.3.2) induces an M -equivariant topolog-
ical isomorphism Cω(N,K)e

∼−→ (IndG
P
U)e.

Proof. This follows immediately from Lemma 2.3.3, by passing to the inductive
limit over the compact open neighbourhoods Ω of e. (The claimed M -equivariance
follows immediately from a consideration of the M -action on Cω(N,K)e as de-
fined at the end of Subsection 2.2, the definition of the induction IndG

P
U, and the

construction of the isomorphism.) �

As usual, for any x ∈ P\G, we write Gx to denote the stabilizer of x in G (with
respect to the action of G on P\G given by right multiplication). If x = Pg, then
of course Gx = g−1Pg.

Lemma 2.3.5. (i) For each x ∈ P\G, the stalk (IndG
P
U)x is a compact type space,

equipped in a natural way with a (g, Gx)-action. Furthermore, the g-action is locally
integrable, and the Gx-action is locally analytic.

(ii) If Ω is an open subset of P\G, then (IndG
P
U)(Ω) is a closed g-invariant

subspace of IndG
P
U . Furthermore, the g-action is locally integrable.

(iii) For any g ∈ G and x ∈ P\G, the action of g induces a topological isomor-
phism g· : (IndG

P
U)gx

∼−→ (IndG
P
U)x, compatible with the (g, Ggx)-action on the

source and the (g, Gx)-action on the target (in the sense that g(Xf) = Adg(X)gf
and g(g′f) = (gg′g−1)gf for any g ∈ G, X ∈ g, g′ ∈ Ggx (note that gg′g−1 is then
an element of Gx), and f ∈ (IndG

P
U)gx).

(iv) For each x ∈ P\G, the map stx : IndG
P
U → (IndG

P
U)x is (g, Gx)-equivariant.

Proof. Since g acts on IndG
P
U through differential operators, it is obvious that

(IndG
P
U)(Ω) is a g-invariant subspace of IndG

P
U for any open subset Ω of P\G.

Thus for any x ∈ P\G, the stalk (IndG
P
U)x is described as the locally convex

inductive limit of g-representations, with g-equivariant transition maps, and so is
naturally a topological g-representation. Incidentally, we see that the claim of (iv)
regarding g-equivariance is true by definition of the g-action on (IndG

P
U)x.

It is clear that for any g ∈ G and x ∈ P\G, the action of g induces a topological
isomorphism (IndG

P
U)gx

∼−→ (IndG
P
U)x, such that g(Xf) = Adg(X)gf for any
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X ∈ g and f ∈ (IndG
P
U)gx. In particular, if g ∈ Gx then g induces a topological

automorphism of (IndG
P
U)x, and so we find that (IndG

P
U)x is a topological (g, Gx)-

representation. This establishes (iii) (since the remaining claimed compatibility
“g(g′f) = (gg′g−1)gf” follows directly from the definitions of the actions involved)
and a part of (i). By construction of the Gx-action on (IndG

P
U)x, we see that the

claim of (iv) regarding Gx-equivariance holds (and this completes the proof of (iv)).
Corollary 2.3.4 and Lemma 1.4.10 show that (IndG

P
U)e is of compact type. Since

acting by g−1 ∈ G gives a topological isomorphism (IndG
P
U)e

∼−→ (IndG
P
U)x for

any x = Pg ∈ P\G, we see that every (IndG
P
U)x is of compact type, establishing

another claim of (i).
By definition we see that (IndG

P
U)(Ω) =

⋂
x∈Ω ker(stx). The target of each

map stx is of compact type, and so Hausdorff, and hence ker(stx) is closed for
all x ∈ P\G. Consequently (IndG

P
U)(Ω) is closed. The g-action on IndG

P
U is lo-

cally integrable, by Proposition 1.2.18, and so Proposition 1.2.19 shows that the
same is true of the the g-action on (IndG

P
U)(Ω). This completes the proof of (ii).

To complete the proof of (i), and hence of the lemma, we must show that the
g-action and Gx-action on (IndG

P
U)x are locally integrable and locally analytic

respectively. By the result of the preceding paragraph, we see that (IndG
P
U)x

is the g-equivariant locally convex inductive limit of a sequence of locally inte-
grable g-representations, and so by Proposition 1.2.20 it is a locally integrable
g-representation. Since the Gx-action on IndG

P
U is locally analytic, and since

stx : IndG
P
U → (IndG

P
U)x is surjective and Gx-equivariant, it follows from [6,

Prop. 3.6.14] that the Gx-action on (IndG
P
U)x is also locally analytic. �

Lemma 2.3.6. The open immersion (2.3.2) induces a P -equivariant topological
isomorphism Cla

c (N,U) ∼−→ (IndG
P
U)(N).

Proof. Since any element of (IndG
P
U)(N) has compact support, we see that the

isomorphisms of Lemma 2.3.3 give rise to a continuous bijection

(2.3.7) Cla
c (N,U) → (IndG

P
U)(N).

The source of (2.3.7) is of compact type, by Lemma 1.4.7, and so is the target,
since by Lemma 2.3.5 (ii) it is a closed subspace of the compact type space IndG

P
U .

The Open Mapping Theorem thus implies that (2.3.7) is an isomorphism. As in
the proof of Corollary 2.3.4, the P -equivariance of this isomorphism is immediately
checked. �

We transport the (g, P )-action on (IndG
P

)e given by Lemma 2.3.5 (iii) to a
(g, P )-action on Cω(N,U)e via the isomorphism of Corollary 2.3.4, and hence re-
gard Cω(N,U)e as a (g, P )-representation. Similarly, we transport the g-action on
(IndG

P
U)(N) to a g-action on Cla

c (N,U) via the isomorphism of Lemma 2.3.6, and
hence regard Cla

c (N,U) as a (g, P )-representation.
Composing the closed embedding (IndG

P
U)(N) → IndG

P
U with the isomorphism

of Lemma 2.3.6 and the continuous injection (2.2.6) yields for each i ≥ 0 a contin-
uous injection

(2.3.8) Ai,i → IndG
P
U,
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which we use to regard Ai,i as the latent Banach space underlying a BH-subspace
of IndG

P
U . Similarly, composing the isomorphism of Corollary 2.3.4 with (2.2.4)

yields for each i ≥ 0 a continuous injection

(2.3.9) Ai,i → (IndG
P
U)e,

via which we regard Ai,i as the latent Banach space underlying a BH-subspace of
(IndG

P
U)e.

Proposition 2.3.10. (i) For any i ≥ 0 the image of Ai,i in IndG
P
U under (2.3.8)

is Hi-invariant. The resulting Hi-action on Ai,i (given by [6, Prop. 1.1.2 (ii)]) is
furthermore Hi-analytic.

(ii) For any i ≥ 0, the image of Ai,i in (IndG
P
U)e under (2.3.9) is g-invariant.

If U is an object of Repz
la.c(M), then it is furthermore Z−M -invariant.

Proof. Since Hi is a rigid analytic group, the group operation on Hi induces a rigid
analytic map

(2.3.11) Ni ×Hi → Hi
∼−→ Ni ×Mi × Ni

(where the second arrow is the rigid analytic Iwahori decomposition of Hi). Set
P i := Hi

⋂
P = N iMi, and write

(IndHi

P i
Ui)Hi−an := {f ∈ Can(Hi, Ui) | f(pg) = pf(g) for all p ∈ P i, g ∈ Gi}

(where P i acts on Ui through its quotient Mi). Taking into account (2.3.11) and
the fact that the Mi-action on Ui is Mi-analytic, we see that restricting functions
to Ni induces an isomorphism

(2.3.12) (IndHi

P i
Ui)Hi−an

∼−→ Can(Ni, Ui) = Ai,i.

On the one hand, right translation by elements of Hi equips the source of (2.3.12)
with an Hi-analytic Hi-action. On the other hand, since Hi admits an Iwahori de-
composition, any element of (IndHi

P i
Ui)Hi−an evidently admits a unique extension by

zero to an element of IndG
P
U , and we obtain a continuous Hi-equivariant injection

(2.3.13) (IndHi

P i
Ui)Hi−an → IndG

P
U,

which fits into the commutative diagram

(IndHi

P i
Ui)Hi−an

(2.3.12) //

&&NNNNNNNNNN
Ai,i

(2.3.8)

��
IndG

P
U.

Part (i) follows from the fact that the diagonal arrow is Hi-equivariant, while the
horizontal arrow is an isomorphism.
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Consider the commutative diagram

Ai,i
(2.3.8) //

(2.3.9) $$IIIIIIIII IndG
P
U

ste

��
(IndG

P
U)e.

Part (i) shows that the image of the horizontal arrow is g-invariant, and since the
vertical arrow is g-equivariant, by Lemma 2.3.5 (iv), we see that the image of the
diagonal arrow is also g-invariant. To complete the proof of (ii), we must show that
when U is an object of Repz

la.c(M) this image is also Z−M -invariant.
Since we have chosen Ui to be ZM -invariant when U is an object of Repz

la.c(M),
we find that for any z ∈ ZM and f in the image of (2.3.9), the translate zf is a
Ui-valued rigid analytic function on zNiz

−1. If z ∈ Z−M , then Ni ⊂ zNiz
−1, and

(since Ni and zNiz
−1 are good analytic open subgroups of G) this inclusion extends

to a rigid analytic embedding Ni ⊂ zNiz
−1. Thus zf in particular restricts to a

Ui-valued rigid analytic function on Ni. Hence the image of (2.3.9) is Z−M -invariant,
as claimed. �

We use [6, Prop. 1.1.2 (ii)] to lift the (g, Z−M )-action on the image of (2.3.9) given
by part (ii) of the preceding lemma to a continuous (g, Z−M )-action on Ai,i. Part (i)
of the proposition (together with Lemma 1.2.5) shows that the g-action on Ai,i is
then Hi-integrable, and that the resulting Hi-action on Ai,i is compatible with the
map (2.3.8).

Lemma 2.3.5 shows that (IndG
P
U)(N0) is a closed g-invariant subspace of IndG

P
U ,

and so Cla(N0, U) (which the isomorphism of Lemma 2.3.6 maps isomorphically to
(IndG

P
U)(N0)) is a closed g-invariant subspace of Cla

c (N,U).

Lemma 2.3.14. For each i ≥ 0, the image of Bi,i under the continuous injec-
tion (2.2.10) is a g-invariant subspace of Cla(N0, U). The induced g-action on Bi,i

is locally integrable.

Proof. There is a natural isomorphism

(2.3.15) Bi,i
∼−→

⊕
n∈Ni\N0

nAi,i.

Proposition 2.3.10 (i) shows that the image of Ai,i in Cla(N0, U) is g-invariant, and
(together with Lemma 1.2.5) that the g-action on Ai,i is locally integrable. Since
translation by n intertwines the action of X ∈ g on Ai,i with the action of Adn(X)
on nAi,i, and since Adn is an automorphism of g, we see that the image of nAi,i is
also g-invariant, and that the induced g-action on nAi,i is again locally integrable,
for each n ∈ Ni\N0. Taking into account the isomorphism (2.3.15), the lemma is
proved. �

We close this subsection with a result that strengthens part (i) of Lemma 2.3.5.
For the remainder of this subsection, let us break with our conventions and write N
to denote the algebraic group underlying N . Since N is unipotent, it is σ-affinoid
in the sense of [6, §3.4], i.e. it may be written as an increasing union N =

⋃∞
j=1 Nj

,
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where Nj
is an admissible affinoid open subgroup of N. We write N

j
:= Nj

(L)
to denote the locally analytic group of L-valued points of Nj

(which is a compact
open subgroup of N). We may and do choose the affinoid groups Nj

so that N
j

is
Zariski dense in Nj

for each j ≥ 1.

Lemma 2.3.16. The stalk (IndG
P
U)e, which by Lemma 2.3.5 (i) is a locally an-

alytic P -representation, is N-analytic as an N -representation, in the sense of [6,
Def. 3.6.1].

Proof. By [6, Thm. 3.3.16], it suffices to show that for each j ≥ 1, and for each
f ∈ (IndG

P
U)e, the orbit map of : N j → (IndG

P
U)e is induced by a rigid analytic

function on N
j
.

We may choose i ≥ 0 such that f lies in the image of (2.3.9), and hence (via the
isomorphism (2.3.12)) may regard f as an element of (IndHi

P i
Ui)Hi−an, and hence

also (via the embedding (2.3.13)) as an element of IndG
P
U (extended by zero from

PHi to G). Again breaking with our conventions, write G to denote the algebraic
group underlying G. There is an algebraic, and hence rigid analytic, action of N
on G via conjugation. Explicitly, we consider the action

(2.3.17) N×G → G

given by the formula (n, g) 7→ n−1gn on the level of L-valued points. Evidently
e ∈ G is fixed by this action. Since Nj

is affinoid, and since the collection of affinoid
open subgroups {Hi′} forms a cofinal sequence of open affinoid neighbourhoods of
e in G, we may find i′ ≥ 0 such that (2.3.17) restricts to a rigid analytic map

Nj ×Hi′ → Hi,

and so in particular to a rigid analytic map

Nj × Ni′ → Hi.

This map induces a corresponding map on spaces of Ui-valued rigid analytic func-
tions:

Can(Hi, Ui) → Can(Nj × Ni′ , Ui)
∼−→ Can(Nj

, Can(Ni′ , Ui)).

Precomposing this with the closed embedding (IndHi

P i
Ui)Hi−an → Can(Hi, Ui), and

postcomposing it with the map Can(Nj
, Can(Ni′ , Ui)) → Can(Nj

, (IndG
P
U)e) induced

by (2.2.4) and the isomorphism of Corollary 2.3.4, we obtain a continuous map

(IndHi

P i
Ui)Hi−an → Can(Nj

, (IndG
P
U)e).

Evaluating this map on the element f of its source, we obtain a rigid analytic map

(2.3.18) Nj → (IndG
P
U)e.

A consideration of the formula f(nn) = f(n−1nn) for n ∈ Ni′ and n ∈ N
j

shows
that the restriction of (2.3.18) to the group N

j
of L-valued points of Nj

coincides
with of . Thus of is indeed a rigid analytic map, and the lemma is proved. �

(2.4) We maintain the notation of the preceding subsections. In this subsec-
tion we introduce certain G-subrepresentations of IndG

P
U (namely, the local closed

subrepresentations) that play a crucial role in our later argument.
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Definition 2.4.1. We say that a vector subspace X of IndG
P
U is local if for any

f ∈ X and compact open subset Ω of P\G the function f|Ω again lies in X.

Definition 2.4.2. Let X be a local subspace of IndG
P
U .

(i) For any open subset Ω of P\G, we write X(Ω) = X
⋂

(IndG
P
U)(Ω).

(ii) If x ∈ P\G, then we define the stalk of X at x to be

Xx := lim
−→
Ω3x

X(Ω),

where the locally convex inductive limit is taken over the directed set of compact
open neighbourhoods of x, with the transition map X(Ω) → X(Ω′) (for Ω ⊃ Ω′ an
inclusion of neighbourhood of x) being given by f 7→ f|Ω′ .

We begin by establishing some basic lemmas regarding local subspaces of IndG
P
U .

Lemma 2.4.3. Let X be a local subspace of IndG
P
U. We have the following char-

acterization of X, namely

X = {f ∈ IndG
P
U | stx(f) ∈ Xx for all x ∈ P\G}.

Proof. Let us write Y = {f ∈ IndG
P
U | stx(f) ∈ Xx for all x ∈ P\G}. It is clear

that X ⊂ Y, and we must show that this is an equality. Let f be an element of Y .
For each element x of P\G, choose an element Fx of X whose stalk at x coincides
with that of f . We may find an analytic chart Yx containing x such that both f
and Fx are rigid analytic on the underlying rigid analytic ball Yx, and thus coincide
on Yx. Since P\G is compact, we may partition it into a disjoint union of open
subsets Ωx ⊂ Yx, as x ranges over some finite set S of points of P\G. If we set
F :=

∑
x∈S Fx|Ωx

, then F lies in X (since X is local), and coincides with f . �

Lemma 2.4.4. If X is a local subspace of IndG
P
U, then so is its closure Y in

IndG
P
U . Furthermore, for any open subset Ω of P\G, the closure of X(Ω) is equal

to Y (Ω).

Proof. Since the map

(2.4.5) f 7→ f|Ω

(for any compact open subset Ω of P\G) is a continuous endomorphism of IndG
P
U ,

we see that if X is local, then so its closure Y . If we fix an open subset Ω of P\G,
then (taking into account Lemma 2.3.5 (ii) and the fact that Y is closed) we see
that Y (Ω) is closed, and so certainly contains the closure of X(Ω). Conversely, if
F ∈ Y (Ω), we will show that F lies in the closure of X(Ω). Replacing Ω by the
support of F , we may furthermore assume that Ω is compact. Since F = F|Ω, and
F does lie in the closure of X by assumption, this again follows from the continuity
of (2.4.5). �
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Lemma 2.4.6. If X is a local closed N -invariant subspace of IndG
P
U , then the

stalk Xe is a closed subspace of (IndG
P
U)e.

Proof. We will use the notation introduced in Subsection 2.2. Via Corollary 2.3.4
we identify (IndG

P
U)(N)e with Cω(N,U)e, and so regard Xe as a subspace of

Cω(N,U)e, and for each i ≥ 0 we let Xi denote the closed subspace of Ai,i ob-
tained as the preimage of X under the continuous map (2.3.8).

The natural map lim
−→

i

Xi → Xe is evidently an isomorphism of abstract K-vector

spaces. We claim that for each i ≥ 0, the preimage of Xi+1 in Ai,i under the
transition map Ai,i → Ai+1,i+1 provided by (2.2.2) is equal to Xi. Given this,
it follows from [6, Prop. 1.1.41], Lemma 1.4.10, and the isomorphism (2.2.5) that
lim
−→

i

Xi embeds as a closed subspace of Cω(N,U)e. This will complete the proof of

part (i).
To prove the claim, suppose that f ∈ Ai,i is such that f|Ni+1 lies in Xi+1.

Lemma 1.3.1 implies that for each n ∈ Ni, the function (nf)|Ni+1 = n(f|Ni+1n) lies
in Xi+1. Since X is N -invariant, we find that f|Ni+1n lies in X for each n ∈ Ni.
Letting n run over a set of left coset representatives of Ni+1 in Ni, we find that
f =

∑
n f|Ni+1n lies in X, and so in Xi. �

The next set of results is aimed at providing a useful description of local closed
G-invariant subspaces of IndG

P
U in terms of closed (g, P )-invariant subspaces of

(IndG
P
U)e.

Proposition 2.4.7. Let X be a local closed G-invariant subspace of IndG
P
U .

(i) Xe is a closed (g, P )-invariant subspace of (IndG
P
U)e.

(ii) If x = Pg ∈ P\G, then the isomorphism of Lemma 2.3.5 (iii) induced by
multiplication by g induces an isomorphism Xx

∼−→ Xe.
(iii) We have the following characterization of X, namely

X = {f ∈ IndG
P
U | gstx(f) ∈ Xe for all x = Pg ∈ P\G}.

Proof. It is clear that Xe is a (g, P )-invariant subspace of (IndG
P
U)e. The remainder

of part (i) follows from Lemma 2.4.6, part (ii) is immediate, and part (iii) is a
restatement of Lemma 2.4.3 in the situation of the proposition (taking into account
the statement of part (ii)). �

We will establish a converse to the preceding Proposition. We begin by introduc-
ing some notation. Suppose that X is a subspace of (IndG

P
U)e. For each i ≥ 0, let Xi

denote the preimage of X under the map (2.3.9). Recall from Proposition 2.3.10 (i)
that for each i ≥ 0, the space Ai,i is equipped with an Hi-analytic Hi-action.

Lemma 2.4.8. If X is a closed g-invariant subspace of (IndG
P
U)e, then for each

i ≥ 0 the subspace Xi of Ai,i is closed and Hi-invariant.

Proof. Since (2.3.9) is continuous and g-invariant, we see that Xi is a closed g-
invariant subspace of Ai,i. The lemma then follows from Lemma 1.2.5 and Corol-
lary 1.2.7. �

We now prove the converse to Proposition 2.4.7.
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Proposition 2.4.9. If X is a closed (g, P )-invariant subspace of (IndG
P
U)e, and

if we define

X = {f ∈ IndG
P
U | gstx(f) ∈ X for all x = Pg ∈ P\G}

(where g ∈ G acts on stx(f) via the isomorphism of Lemma 2.3.5 (iii)), then X is a
closed local G-invariant subspace of IndG

P
U, and the natural map Xe → X induced

by ste is an isomorphism.

Proof. Note that X is well-defined, since we have assumed that X is P -invariant,
and X is G-invariant, local, and closed in IndG

P
U by construction. Furthermore, the

map Xe → X is certainly an injection, and we must show that it is also surjective.
Let f ∈ IndG

P
U be an element for which ste(f) is equal to some given element of

X . We will find a neighbourhood Ω of e such that f|Ω lies in X, and thus show
that ste(f) lies in Xe.

Choose a value of i ≥ 0 so that f|Ni
lies in the image of Ai,i under the contin-

uous injection (2.3.8). Since f|Ni
lies in Xi (using the notation introduced above),

it follows from Lemma 2.4.8 that nf|Ni
lies in Xi for all n ∈ Ni. We conclude

that ste(nf) = stn(f) lies in X for all n ∈ Ni, and thus that f|Ni
lies in X, as

required. �

Propositions 2.4.7 and 2.4.9 together show that closed local G-invariant sub-
spaces of IndG

P
U are determined by their stalks at the base point e of P\G, and

that the association X 7→ Xe provides a bijection between the lattice of local
closed G-invariant subspaces of IndG

P
U , and the closed (g, P )-invariant subspaces

of (IndG
P
U)e. The following result will be useful for detecting such subspaces

of (IndG
P
U)e.

Lemma 2.4.10. A closed g-invariant subspace of (IndG
P
U)e is P -invariant if and

only if it is M -invariant.

Proof. The only if direction is obvious. The if direction follows from Lemma 2.3.16,
which shows that an n-invariant closed subspace of (IndG

P
U)e is automatically N -

invariant. �

If X is a local G-invariant subspace of IndG
P
U and Ω is an open subset of P\G,

then the inclusion X(Ω) ⊂ X together with the G-action on X induces a map

(2.4.12) K[G]⊗K X(Ω) → X,

which is continuous if we endow K[G] with its finest convex topology and the tensor
product with the inductive tensor product topology. (This tensor product may be
described less canonically as a direct sum of copies ofX(Ω), indexed by the elements
of G.)

Lemma 2.4.13. If X is a local closed G-invariant subspace of IndG
P
U and Ω is

an open subset of P\G, then (2.4.12) is a strict surjection.

Proof. Since P\G is compact, we may find a finite set of elements {g1, . . . , gn} ⊂ G
such that P\G =

⋃n
i=1 Ωgi, and thus (since X is local) such that the map

(2.4.14)
n⊕

i=1

X(Ω) → X
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defined by (fi) 7→
∑

i gifi is surjective. Since the source and target of (2.4.14)
are of compact type, it is furthermore a strict surjection. Since it factors as the
composite of (2.4.12) and the continuous map

⊕n
i=1X(Ω) → K[G] ⊗K X defined

by (fi) 7→
∑

i gi ⊗ fi, it is immediate that (2.4.12) is also a strict surjection, as
claimed. �

(2.5) We maintain the notation of the preceding subsections. We let Cpol(N,K)
denote the ring of algebraic K-valued functions on the affine algebraic group N ;
i.e. if N denotes the linear algebraic group underlying N , then Cpol(N,K) is the
subspace of Cla(N,K) obtained by restricting the global sections of the structure
sheaf of N over K to the set N of L-valued points of N. Since N is Zariski dense
in N, the ring of functions Cpol(N,K) is naturally identified with the affine ring
of N over K.

Since N is unipotent, we may naturally identify it as an algebraic variety with its
Lie algebra n (regarded as an affine space over L); we denote this identification as
usual via X 7→ exp(X). The group law on N is then determined by the Lie bracket
on n together with the Baker-Cambpell-Hausdorff formula:

exp(X) exp(Y ) = exp(X + Y +
1
2
[X,Y ] + · · · ).

This identification induces a natural isomorphism between Cpol(N,K) and the sym-
metric algebra over K of the dual to n:

(2.5.1) Cpol(N,K) ∼−→ Sym•
K ň,

where ň := HomL(n,K) is the K-dual space to n.
Since the group structure on N is induced by the algebraic group law of N,

the space of functions Cpol(N,K) is invariant under the right regular action of N .
We may extend the right regular N -action on Cpol(N,K) to a P -action as follows.
If m ∈ M , define (mf)(n) = f(m−1nm) for any m ∈ M,f ∈ Cpol(N,K), and
n ∈ N . One immediately checks that mf again lies in Cpol(N,K). Using the
equality P = MN , we combine the M and N -action on Cpol(N,K) into a P -action.
The resulting P -action on Cpol(N,K) is algebraic, in the sense that Cpol(N,K)
may be written as the union of an increasing sequence of finite dimensional P -
invariant subspaces, on each of which P acts through an algebraic representation.
Differentiating this P -action we make Cpol(N,K) a p-module (where p denotes the
Lie algebra of P ). Note that since P is a connected algebraic group, this p-action
uniquely determines the P -action that gives rise to it.

We define a bilinear pairing Cpol(N,K)×U(n) → K via

(2.5.2) (f,X) 7→ (Xf)(e)

(where as usual e denotes the identify element of N). We may use this pairing to
give another useful description of Cpol(N,K).

Lemma 2.5.3. The pairing (2.5.2) induces an n-equivariant isomorphism

Cpol(N,K) ∼−→ HomK(U(n),K)n∞ .
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(Here HomK(U(n),K) is equipped with its right regular U(n)-action, and the target
is the U(n)-submodule of HomK(U(g),K) consisting of elements that are annihilated
by nk for some k ≥ 0.)

Proof. This is well-known and straightforward. �

Note that since the n-action on HomK(U(n),K)n∞ is locally finite by defini-
tion, we may integrate the n-action to obtain an N -action. The isomorphism of
Lemma 2.5.3 is then N -equivariant (since we observed above that the N -action on
Cpol(N,K) is also obtained by integrating the corresponding n-action).

We endow Cpol(N,K) with its finest convex topology; since Cpol(N,K) is of
countable dimension, this topology makes it a compact type space. The preced-
ing description of the P -action on Cpol(N,K) shows that it is P0-analytic for any
analytic open subgroup P0 of P , and so in particular is locally analytic.

If W is any Hausdorff convex K-space, then we write Cpol(N,W ) := W ⊗K

Cpol(N,K) to denote the space of polynomial functions on N with coefficients in W .
We endow Cpol(N,W ) with the inductive tensor product topology. Since Cpol(N,K)
is endowed with its finest convex topology, we see that Cpol(N,W ) is topologically
isomorphic to a direct sum of copies of W (indexed by the elements of a basis of
Cpol(N,K)). We will apply this notation with W taken either to be U (our fixed
object of Repla.c(M)), or one of the BH-subspaces Ui of U (in the notation of
Subsection 2.2).

We let P act on U through its quotient M , and define a P -action on Cpol(N,U)
by taking the tensor product of the P -action on U and the P -action discussed above
on Cpol(N,K). If we regard Cpol(N,U) as a space of U -valued functions on N , then
this action is given by the formula

(2.5.4) (mnf)(n′) = mf(m−1n′mn)

for m ∈ M,n, n′ ∈ N , and f ∈ Cpol(N,U). Since the M -action on U and the
P -action on Cpol(N,K) are both locally analytic, the same is true of the P -action
on Cpol(N,U). Differentiating this action makes Cpol(N,U) a U(p)-module.

We will now explain how the p-action on Cpol(N,U) may be extended in a natural
manner to a g-action, making Cpol(N,U) a (g, P )-module. We will do this by giving
another description of Cpol(N,U), which will naturally exhibit the (g, P )-action on
this space.

We first note that the isomorphism of Lemma 2.5.3 induces an isomorphism

(2.5.5) Cpol(N,U) ∼−→ HomK(U(n), U)n∞ .

If we regard U as a p-representation, via the quotient map p → m, then the iso-
morphism U(p)⊗K U(n) ∼−→ U(g) induced by multiplication in U(g) gives rise to a
natural isomorphism

(2.5.6) HomU(p)(U(g), U)n∞ ∼−→ HomK(U(n), U)n∞

(where the source is defined by regarding U(g) as a U(p)-module via left multipli-
cation). Combining the isomorphisms (2.5.5) and (2.5.6) yields an isomorphism

(2.5.7) Cpol(N,U) ∼−→ HomU(p)(U(g), U)n∞ .

We may use this isomorphism to transport the U(g)-action on the target induced
by right multiplication to a U(g)-action on the source.
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Lemma 2.5.8. The g-action on Cpol(N,U) arising from the isomorphism (2.5.7)
is continuous, and makes Cpol(N,U) a (g, P )-representation.

Proof. This is easily checked by the reader. �

We will need to consider certain gradings on the spaces Cpol(N,K). Recall that
we have fixed a coweight α of the maximal split torus in ZM that pairs strictly
negatively with all the restricted roots of N . The adjoint action of α on g and
the coadjoint action of α on ň induce gradings on g and on Sym•

K ň. (Note that
the grading on the latter space typically does not coincide with the grading by
symmetric powers).

We use the isomorphism (2.5.1) to transport the grading on Sym•
K ň to a grading

of Cpol(N,K). We let Cpol,d(N,K) denote the dth graded piece of Cpol(N,K) with
respect to this grading. Our assumption on α implies that Cpol,d(N,K) is finite
dimensional for each d, and vanishes if d < 0. Since the grading on Cpol(N,K) is
defined using a coweight of the centre of M , we see that each of the graded pieces
Cpol,d(N,K) is an M -invariant subspace of Cpol(N,K).

We write
Cpol,≤d(N,K) :=

⊕
d′≤d

Cpol,d′(N,K)

and
Cpol,>d(N,K) :=

⊕
d′>d

Cpol,d′(N,K).

Since our choice of α ensures that n is graded in negative degrees, we see that each
of the spaces Cpol,≤d(N,K) is n-invariant, and hence forms a P -invariant subspace
of Cpol(N,K).

For any Hausdorff convex K-vector space W we induce a grading on the tensor
product Cpol(N,W ) = W ⊗K Cpol(N,K) by defining

Cpol,d(N,W ) := W ⊗K Cpol,d(N,K)

for all d ≥ 0. We also write

Cpol,≤d(N,W ) = W ⊗K Cpol,≤d(N,K) =
⊕
d′≤d

Cpol,d′(N,W )

and
Cpol,>d(N,W ) = W ⊗K Cpol,>d(N,K) =

⊕
d′>d

Cpol,d′(N,W )

for all d ≥ 0.
Taking W = U , each of the spaces Cpol,d(N,U) (respectively Cpol,≤d(N,U)) is a

closed M -invariant (respectively closed P -invariant) subspace of Cpol(N,U).

Lemma 2.5.9. The g-action on Cpol(N,U) arising from the isomorphism (2.5.7)
is a graded action, if we endow each of g and Cpol(N,U) with the grading induced
by α described above.

Proof. This is clear. �
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Suppose now that Y is an open affinoid rigid analytic polydisk contained in N.
Since the space of polynomial functions on N is dense in the space of rigid analytic
functions on Y, we obtain a continuous injection

(2.5.10)
⊕
d≥0

Cpol,d(N,Uj)
∼−→ Cpol(N,Uj) → Can(Y, Uj)

with dense image. Thus we may regard Can(Y, Uj) as a completion of Cpol(N,Uj)
with respect to a certain topology. We now describe this completion more explicitly.

We begin by introducing some notation.

Definition 2.5.11. Let W d (for d ≥ 0) denote a sequence of Banach spaces,
each equipped with a fixed norm || – ||d that defines the topology on W d. Let⊕̂

d≥0W
d denote the completion of the direct sum

⊕
d≥0W

d with respect to the
norm || (wd) || := maxd≥0 ||wd ||d (where (wd) denotes an element of

⊕
d≥0W

d).

Note that the construction of
⊕̂

d≥0W
d depends on the particular choice of

norms || – ||d, and not just on the topological vector space structures of the Banach
spaces W d.

Let us now fix a norm on Uj that defines the topology on Uj ; the induced sup
norm on elements of Can(Y, Uj) then defines the topology on Can(Y, Uj). Note
that for any fixed degree d, the continuous injection (2.5.10) restricts to a closed
embedding

(2.5.12) Cpol,d(N,Uj) → Can(Y, Uj).

If we write || – ||dY,j to denote the pull-back of the sup norm on Can(Y, Uj) to
the Banach space Cpol,d(N,Uj) via (2.5.12), then || – ||dY,j defines the topology on
Cpol,d(N,Uj).

Lemma 2.5.13. The map (2.5.10) induces a topological isomorphism

⊕̂
d≥0

Cpol,d(N,Uj)
∼−→ Can(Y, Uj),

the source of the isomorphism being defined via Definition 2.5.11, using the norms
|| – ||dY,j.

Proof. This follows directly from definition of the space of rigid analytic functions
Can(Y, Uj). �

Recall from Subsection 2.2 that Ai,j := Can(Ni, Uj), for any i, j ≥ 0. The
previous discussion applies in particular when we take Y := Ni. In this case (2.5.10)
induces a continuous injection

(2.5.14)
⊕
d≥0

Cpol,d(N,Uj)
∼−→ Cpol(N,Uj) → Ai,j

with dense image. Writing || – ||di,j := || – ||dNi,j
, we obtain the following special case

of Lemma 2.5.13.
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Lemma 2.5.15. The map (2.5.14) induces a topological isomorphism⊕̂
d≥0

Cpol,d(N,Uj)
∼−→ Ai,j ,

the source of the isomorphism being defined via Definition 2.5.11, using the norms
|| – ||di,j.

Note that the Banach spaces appearing as direct summands in the source of the
isomorphism of Lemma 2.5.15 are independent of i; however, the norms || – ||di,j do
depend on the choice of i (as they must, since Ai,j certainly depends on i as well
as j). The next result quantifies the dependence of these norms on i.

Lemma 2.5.16. For any i ≥ 0, the norms || – ||d0,j and || – ||di,j on Cpol,d(N,Uj) are
related by the formula

|| – ||di,j = |p|di|| – ||d0,j .

Proof. Since z0 = α(p)−1 and Ni = zi
0N0z

−i
0 , this follows from the fact that the

grading on Cpol(N,Uj) is defined via the coweight α. �

The isomorphism lim
−→

i

Uj
∼−→ U of Subsection 2.2 induces an isomorphism

(2.5.17) lim
−→

j

Cpol(N,Uj)
∼−→ Cpol(N,U).

Passing to the inductive limit of the maps (2.5.14), and taking into account the
isomorphisms (2.5.17) and (2.2.5), we obtain a map

(2.5.18) Cpol(N,U) → Cω(N,U)e.

Lemma 2.5.19. The maps (2.5.18) is a continuous (g,M)-equivariant injection
with dense image.

Proof. Since for each i, j ≥ 0 the morphism (2.5.14) is a continuous injection, with
dense image, the same is true of (2.5.18). The claimed equivariance is easily checked
by the reader. �

Composing (2.5.18) with the isomorphism of Corollary 2.3.4 then yields a con-
tinuous (g,M)-equivariant injection

(2.5.20) Cpol(N,U) → (IndG
P
U)e

with dense image.
In the remainder of this subsection we introduce some terminology and basic

results related to spaces of locally polynomial functions.

Definition 2.5.21. Let Clp
c (N,U) denote the tensor product

Cpol(N,U)⊗K Csm
c (N,K) ( ∼−→ U ⊗K Cpol(N,K)⊗K Csm

c (N,K)
∼−→ Cpol(N,K)⊗K Csm

c (N,U)).

equipped with the inductive (or equivalently, by [6, Prop. 1.1.31], projective) ten-
sor product topology. (The superscript “lp” stands for “locally polynomial”.) It
is a compact type convex K-space, which we endow with a continuous (g, P )-
representation by having U(g) act via its action on the first factor Cpol(N,U),
and having P act diagonally.
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Lemma 2.5.22. The P -action on Clp
c (N,U) is locally analytic.

Proof. This follows from [6, 3.6.18] and the fact that the P -action on each of
Cpol(N,U) and Csm

c (N,K) is locally analytic. �

Multiplication of polynomials by smooth functions induces a map

(2.5.23) Clp
c (N,U) → Cla

c (N,U).

Lemma 2.5.24. The morphism (2.5.23) is a continuous (g, P )-equivariant injec-
tion, whose image is equal to the subspace of Cla

c (N,U) consisting of functions f
that are locally polynomial, in the sense that in a neighbourhood of each point of N ,
the function f is defined by an element of Cpol(N,U).

Proof. This is easily confirmed by the reader. �

Definition 2.5.25. For any open subset Ω of N , define Clp
c (Ω, U) := Cpol(N,U)⊗K

Csm
c (Ω,K). For d ≥ 0, let Clp,≤d

c (Ω, U) denote the closed subspace Cpol,≤d(N,U)⊗K

Csm
c (Ω,K) of Clp(Ω, U).

The closed embedding Csm
c (Ω,K) → Csm

c (N,K) given by extending functions
by zero induces a closed embedding Clp

c (Ω, U) → Clp
c (N,U), via which we regard

Clp
c (Ω, U) as a g-invariant closed subspace of Clp

c (N,U).

Lemma 2.5.26. The closed subspace Clp
c (Ω, U) of Clp

c (N,U) is equal to the preim-
age of the closed subspace Cla

c (Ω, U) of Cla
c (N,U) under the map (2.5.23).

Proof. This is immediate. �

The composite of the map (2.5.23) with the isomorphism of Lemma 2.3.6 restricts
to a continuous injection

(2.5.27) Clp
c (Ω, U) → (IndG

P
U)(Ω).

for any open subset Ω of N . The description of the image of (2.5.23) provided by
Lemma 2.5.24 shows that the image of (2.5.27) is a local subspace of IndG

P
U (in

the sense of Definition 2.4.1), whose stalk at e is equal to the image of (2.5.20).

(2.6) In this section we develop some further results related to representations
on spaces of polynomial functions. Although these results are not required for the
proof of the main theorem in Subsection 4.3, they will be useful in applications.
(See for example Propositions 2.7.16 and 5.2.11 below.)

Fix a chart Y around e ∈ N and integers d, j ≥ 0. Let Πd
j : Can(Y, Uj) →

Cpol,d(N,Uj) denote the projection onto the dth direct summand in the isomorphism
of Lemma 2.5.13.

Lemma 2.6.1. If I denotes the identity operator from Can(Y, Uj) to itself, then
there is an equality I =

∑∞
d=1 Πd

j in L(Can(Y, Uj), Can(Y, Uj))s (i.e. the series on
the right converges in weak topology to the identity operator).

Proof. This is clear from the isomorphism of Lemma 2.5.13. �

Let d/dt denote the standard non-zero tangent vector at the identity of the torus
L×, and write ∂α to denote the pushforward of d/dt with respect to α (so ∂α is a
non-zero element in the Lie algebra of ZM ). The action of ZM on Cω(N,U) being
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locally analytic, it induces an action of ∂α on Cω(N,U)e, as well as on Can(Y, Uj)e

for each open affinoid polydisk Y contained in N and each j ≥ 0. These actions
induce maps

(2.6.2) K[∂α] → L(Cω(N,U)e, Cω(N,U)e)s

and

(2.6.3) K[∂α] → L(Can(Y, Uj), Can(Y, Uj))s.

(Here K[∂α] denotes the polynomial ring over K in ∂α, or equivalently, the universal
enveloping algebra of the lie algebra of the one dimensional torus L×. Note also
that the targets of these two maps are equipped with their weak topologies.)

The following result is a special case of the theory of diagonalizable modules
developed in [10, §1.3.1]. We give a complete proof, since [10] remains unpublished,
and the argument is in any case straightforward.

Proposition 2.6.4. If ∂α acts on the locally analytic M -representation U via a
scalar, then for each d, j ≥ 0, the projection Πd

j lies in the closure of the image
of (2.6.3).

Proof. Recall that Can(Y, Uj) = Can(Y,K) ⊗̂K Uj , and that the ∂α-action on this
tensor product is simply the tensor product action of the ∂α-action on each factor.
By assumption ∂α acts on U , and hence Uj , through a scalar λ.

Fix d ≥ 0. For any r ≥ 0 such that 0 ≤ d < pr, let φd,r : Zp → {0, 1} denote the
characteristic function of the coset d+prZp ⊂ Zp. It is a continuous function on Zp,
and so admits a Mahler expansion φd,r(x) :=

∑∞
k=0 ad,r,k

(
x
k

)
, with ad,r,k ∈ Zp. Let

Pd,r :=
∑pr−1

k=0 ad,r,k

(
x
k

)
∈ Zp[x]. Note that then Pd,r(x) = φd,r(x) if 0 ≤ x < pr;

more concretely,

(2.6.5) Pd,r(x) =
{

1 if x = d

0 if 0 ≤ x < pr and x 6= d.

Let f ∈ Can(Y, Uj), and via the isomorphism of Lemma 2.5.13 write f =∑∞
d′=1 fd′ , where fd′ ∈ Cpol,d′(N,Uj) = Cpol,d′(N,K) ⊗K Ui for each d′ ≥ 0, and

||fd′ ||d
′

Y,j → 0 as d′ →∞. Taking into account (2.6.5), one computes that

(2.6.6) Pd,r(∂α − λ)f =
∞∑

d′=0

Pd,r(d′)fd′ = fd +
∑

d′≥pr

Pd,r(d′)fd′ .

Since Pd,r(d′) ∈ Zp for all d′ ≥ 0, we find that

lim
d′→∞

||Pd,r(d′)fd′ ||d
′

i,j ≤ lim
d′→∞

||fd′ ||d
′

i,j = 0,

which when combined with (2.6.6) shows that

lim
r→∞

Pd,r(∂α − λ)f = fd.

Thus Pd,r(∂α − λ) converges weakly to Πd
j as r → ∞, and so Πd

j does lie in the
closure of the image of (2.6.3). �
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The preceding discussion applies in particular taking Y := Ni for some i ≥ 0.
We then write

Πd
i,j : Ai,j = Can(Ni, Uj) → Cpol,d(N,Uj)

for the projection denoted above by Πd
j . The projections Πd

i,j are compatible with
the transition maps of (2.2.5) and (2.5.17), and so passing to the corresponding
inductive limits, they yield maps

Πd : Cω(N,U)e → Cpol,d(N,U).

Corollary 2.6.7. (i) If I denotes the identity operator from Cω(N,U)e to itself,
then there is an equality I =

∑∞
d=1 Πd in L(Cω(N,U)e, Cω(N,U)e)s (i.e. the series

on the right converges in weak topology to the identity operator).
(ii) If ∂α acts on the locally analytic M -representation U via a scalar, then for

each d, j ≥ 0, the projection Πd
j lies in the closure of the image of (2.6.2).

Proof. The claims follow from Lemma 2.6.1 and Proposition 2.6.4, together with
the isomorphism (2.2.5). �

(2.7) We maintain the notation of the preceding subsections.

Definition 2.7.1. If X is a subspace of (IndG
P
U)e, then we let X pol denote the

preimage of X under the map (2.5.20).

The map (2.5.20) induces a continuous injection

(2.7.2) X pol → X .

Lemma 2.7.3. If X is a closed (g,M)-invariant subspace of (IndG
P
U)e, then X pol

is closed (g, P )-invariant subspace of Cpol(N,U), and (2.7.2) is a (g,M)-equivariant
map.

Proof. Evidently X pol is a closed (g,M)-invariant subspace of Cpol(N,U), since the
map (2.5.20) is continuous and (g,M)-equivariant. Furthermore (2.7.2) is (g,M)-
equivariant, being a restriction of (2.5.20). Since the N -action on Cpol(N,U) is ob-
tained by integrating the n-action, we see that X pol, being both M and n-invariant,
is in fact P = MN -invariant. �

The following lemma gives a result in the converse direction to that just proved.

Lemma 2.7.4. If X is a closed (g,M)-invariant subspace of Cpol(N,U), and if X̂
denotes the closure in (IndG

P
U)e of the image of X under (2.5.20), then X̂ is a

(g, P )-invariant subspace of (IndG
P
U)e.

Proof. Since X is assumed to be (g,M)-invariant, the same is true of its image
under (2.5.20), and thus of the closure X̂ of this image. Lemma 2.4.10 shows that
if U is an object of Repz

la.c(G) then X is in fact (g, P )-invariant. �

Definition 2.7.5. If X is a local closed G-invariant subspace of IndG
P
U, then

for any open subset Ω of N we let X lp(Ω) denote the preimage of X(Ω) under
the continuous injection (2.5.27). For any d ≥ 0, we let X lp,≤d(Ω) denote the
intersection of X lp(Ω) and Clp,≤d

c (Ω, U).
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For any open subset Ω of N , the map (2.5.27) evidently restricts to a continuous
injection

(2.7.6) X lp(Ω) → X(Ω).

In the case when Ω = N , Lemma 2.5.24 implies that (2.5.27) is (g, P )-equivariant.
Since X(N) is a closed (g, P )-invariant subspace of (IndG

P
U)(N), we thus see that

X lp(N) is a closed (g, P )-invariant subspace of Clp
c (N,U).

SinceXe is a closed subspace of (IndG
P
U)e (by Proposition 2.4.7 (i)), Lemma 2.7.3

shows that (Xe)pol is a closed (g, P )-invariant subspace of Cpol(N,U). By defini-
tion we have an isomorphism Cpol(N,U)⊗K Csm(N,K) ∼−→ Clp

c (N,U) (see Defini-
tion 2.5.21), which restricts to a closed embedding

(2.7.7) (Xe)pol ⊗K Csm(N,K) → Clp
c (N,U).

Lemma 2.7.8. The map (2.7.7) induces an isomorphism

(Xe)pol ⊗K Csm(N,K) ∼−→ X lp(N).

Proof. Let Y denote the image of (2.7.7). To show that Y ⊂ X lp(N), it suffices
(since X is local) to show that for every element F ∈ (Xe)pol, and for every suffi-
ciently small compact open subset Ω of N , the function F|Ω lies in X. (Here F|Ω
denotes the locally polynomial function defined by F on Ω, and by zero elsewhere.)
If n ∈ Ω, then F|Ω = n−1(nF )|Ωn−1 . Since X is an N -invariant subspace of IndG

P
U,

while (Xe)pol is an N -invariant subspace of Cpol(N,U) (by Lemma 2.7.3), we see
that it suffices to treat the case when Ω is a sufficiently small neighbourhood of e.
It then follows from the very definition of (Xe)pol that F|Ω lies in X for sufficiently
small neighbourhoods Ω of e.

To prove thatX lp(N) ⊂ Y, it suffices to show that if a locally polynomial function
f ∈ Cla

c (N,U) lies in X, then for any sufficiently small compact open subset Ω of N
we have f|Ω = F|Ω for some F ∈ (Xe)pol. If n ∈ Ω, then f|Ω = n−1(nf)|Ωn−1 . Again
using the N -invariance of X and of (Xe)pol, we see that it suffices to treat the case
when Ω is a sufficiently small neighbourhood of e. Since f is locally polynomial,
we see that F := ste(f) is a polynomial and that f|Ω = F|Ω for any sufficiently
small neighbourhood Ω of e. Since f ∈ X, it follows that F lies in (Xe)pol. This
completes the proof of the lemma. �

Proposition 2.7.9. If X is a local closed G-invariant subspace of IndG
P
U , then

the following are equivalent.
(i) The image of (Xe)pol in Xe under the map (2.7.2) (with X taken to be Xe)

is dense in Xe.
(ii) The image of (2.7.6) is dense in X(Ω) for some (or equivalently, for every)

non-empty open subset Ω of N .
Furthermore, X is then equal to the closed G-subrepresentation of IndG

P
U gen-

erated by the image of (2.7.6) for any non-empty open subset Ω of N .

Proof. Suppose that (i) holds. The image of (2.7.6) for Ω = N is a local (g, P )-
invariant subspace of X(N). If we let Y denote the closure of this image, then Y
is (g, P )-invariant, and Lemma 2.4.4 shows that Y is again local. We claim that
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there is an equality of stalks Yn = Xn for all n ∈ N . Granting this, it follows from
Lemma 2.4.3 that Y = X(N). Since, by Lemma 2.4.4, Y (Ω) coincides with the
closure of the image of (2.7.6) for any open subset Ω of N , we conclude that (ii)
holds.

If we consider stalks at e, then it is clear that Ye contains the image of (2.7.2)
(applied to (Xe)pol), and is contained in Xe. Since Ye is closed in (IndG

P
U)e, by

Lemma 2.4.6, our hypothesis implies that ste(Y ) = Xe. Since both Y and X(N)
are N -invariant, it follows that indeed Yn = Xn for all n ∈ N , as claimed.

Conversely, suppose that (ii) holds, i.e. that (2.7.6) has dense image for some
open subset Ω of N . Since the map ste is continuous, the image of the composite

(2.7.10) X lp(Ω)
(2.7.6)−→ X(Ω) ste−→ (IndG

P
U)e

is dense in Xe = ste(X). The isomorphism of Lemma 2.7.8 restricts to an isomor-
phism

(Xe)pol ⊗K Csm(Ω,K) ∼−→ X lp(Ω).

Thus we see that the image of (2.7.10) coincides with the image of (2.7.2), and
so (i) holds.

Finally, if condition (ii) holds then X(Ω) is by assumption the closure of the
image of (2.7.6). Since (2.4.12) is a surjection (X being local) we see thatX is indeed
the closed G-subrepresentation of IndG

P
U generated by the image of (2.7.6). �

Definition 2.7.11. We say that a subspace of Cpol(N,U) is graded if it is graded
with respect to the grading induced by α on Cpol(N,U) that was discussed in
Subsection 2.5.

Suppose now that X is a closed graded (g,M)-invariant subspace of Cpol(N,U).
The isomorphism (2.5.17) then induces isomorphisms

(2.7.12) X ∼−→ lim
−→

j

Xj
∼−→ lim

−→
j

⊕
d≥0

Xd
j ,

where Xj denotes the preimage of X under the natural injection Cpol(N,Uj) →
Cpol(N,U), and Xd

j := Xj

⋂
Cpol,d(N,Uj) (where the intersection takes place in

Cpol(N,Uj)). If we let X̂i,j denote the closure in Ai,j of the image of Xj un-
der (2.5.14), then the isomorphism of Lemma 2.5.15 induces an isomorphism

X̂i,j
∼−→

⊕̂
d≥0

Xd
j ,

where the target is defined via Definition 2.5.11, using the restriction of the norms
|| – ||di,j to Xd

i,j .
From this description of X̂i,j it is clear that X̂i,j coincides with the preimage

of X̂i′,j′ under the transition map (2.2.2), for any i′ ≥ i, j′ ≥ j. It follows from
[6, Prop. 1.1.41] together with the isomorphism (2.2.5) and the isomorphism of
Corollary 2.3.4 that we have an isomorphism

(2.7.13) lim
−→
i,j

X̂i,j
∼−→ X̂

(where as in the statement of Lemma 2.7.4, we let X̂ denote the closure of in
(IndG

P
U)e of the image of X under (2.5.20)).
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Corollary 2.7.14. The evident inclusion X ⊂ X̂pol is in fact an equality.

Proof. If follows directly from the explicit description of X̂ provided by (2.7.12)
and (2.7.13) that the preimage of X̂ under the injection

Cpol(N,Uj) −→ Cpol(N,U)
(2.5.20)−→ (IndG

P
U)e

coincides with Xj , for each j ≥ 0, and thus that the preimage of X̂ under (2.5.20)
coincides with X, as claimed. �

Definition 2.7.15. If X is a local closed G-invariant subspace of IndG
P
U, then

we say that X is polynomially generated if (Xe)pol is a graded (in the sense of
Definition 2.7.11) subspace of Cpol(N,U), and if the image of (Xe)pol under (2.5.20)
is dense in Xe.

We say that X is polynomially generated by bounded degrees if furthermore
(Xe)pol is generated as a g-module by (Xe)pol,≤d := (Xe)pol

⋂
Cpol,≤d(N,U), for

some d ≥ 0.

If U is an object of Repz
la.c(M), then the results of this Subsection and of Subsec-

tion 2.4 show that the polynomially generated local closed G-invariant subspaces of
IndG

P
U are in natural bijection with the closed graded (g,M)-invariant subspaces

of Cpol(N,U), the bijection being provided by X 7→ (Xe)pol.
We close this subsection with a result which helps illustrate the scope of Defini-

tion 2.7.15.

Proposition 2.7.16. If the M -representation U admits a central character, then
every local closed G-subrepresentation of IndG

P
U is polynomially generated. If U

is furthermore finite dimensional, then any such G-subrepresentation is in fact
generated by bounded degrees.

Proof. If X is a local closed G-subrepresentation of IndG
P
U , then it follows from

Proposition 2.4.7 (i) that Xe is a (g, P )-invariant, and so in particular ∂α-invariant,
closed subspace of (IndG

P
U)e. Corollary 2.6.7 then implies that (Xe)pol is graded,

and that its image under (2.5.20) is dense in Xe. Thus X is polynomially generated,
as claimed.

If U is finite dimensional, then Cpol(N,U) is a finitely generated U(g)-module.
Since U(g) is Noetherian, (Xe)pol is then also finitely generated, and so is generated
over g by (Xe)pol,≤d for some sufficiently large value of d. This shows that X is
generated by bounded degrees. �

(2.8) We maintain the notation of the previous subsections. We begin by proving
Lemma 0.3.

Proof of Lemma 0.3. Composing the closed embedding

(2.8.1) Csm
c (N,U) → Cla

c (N,U)

with the isomorphism of Lemma 2.3.6 yields a closed embedding

(2.8.2) Csm
c (N,U) → IndG

P
U.
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Passing to Jacquet modules, and taking into account [7, Lem. 3.5.2], we obtain a
closed embedding U(δ) → JP (IndG

P
U), as required. �

Recall from the introduction that if U is an object of Repz
la.c(M), then IG

P
(U) is

defined to be the closed G-subrepresentation of IndG
P
U generated by the image of

U under the canonical lifting of JP (IndG
P
U) to IndG

P
U . Recall from the discussion

of [7, §3.4] that the canonical lifting depends on a choice of compact open subgroup
N0 of N (and also a choice of Levi factor of P ; however, we have already fixed such
a choice). The following lemma gives another description of IG

P
(U), which shows

that it is well-defined independently of the choice of N0.

Lemma 2.8.3. If U is an object of Repz
la.c(M), then IG

P
(U) coincides with the

closed G-subrepresentation of IndG
P
U generated by the image of the closed embed-

ding (2.8.2).

Proof. Fix a compact open subgroup N0 of N , and for u ∈ U , let u|N0 ∈ Csm
c (N,U)

denote the function that is identically equal to u on N0, and that is zero on the
complement of N0 in N . The canonical lifting U → IndG

P
U is defined by sending

an element u ∈ U to the image of u|N0 under (2.8.1). (See the discussion following
the proof of [7, Thm. 3.5.6].) Since {u|N0 |u ∈ U} generates Csm

c (N,U) as a P -
representation, we see that the image of U under the canonical lift generates the
image of (2.8.2) as a P -representation. Consequently, the closed G-representation
generated by the image of U under the canonical lift coincides with the closed
G-representation generated by the image of (2.8.2). �

Regarding an element of U as a constant U -valued function on N induces a
closed P -equivariant embedding

(2.8.4) U → Cpol(N,U).

(Here P acts on U through its quotient M .) Tensoring (2.8.4) with Csm
c (N,K) over

K induces a closed P -equivariant embedding

(2.8.5) Csm
c (N,U) → Clp

c (N,U).

Note that the composite of (2.8.5) and (2.5.23) coincides with (2.8.1).
The P -equivariant maps (2.8.4) and (2.8.5) induce (g, P )-equivariant maps

(2.8.6) U(g)⊗U(p) U → Cpol(N,U)

and

(2.8.7) U(g)⊗U(p) Csm
c (N,U) → Clp

c (N,U).

respectively. We may regard (2.8.7) as being obtained from (2.8.6) by tensoring
with Csm

c (N,K) over K.

Lemma 2.8.8. If U is an allowable object of Repla.c(M), then the image of (2.8.6)
is a closed (g, P )-invariant subspace of Cpol(N,U).

Proof. Multiplication in U(g) induces an isomorphism U(n) ⊗K U(p) ∼−→ U(g).
Thus we may rewrite (2.8.6) as a map U(n) ⊗K U → Cpol(N,U). We may further
write this map as the direct sum of maps

(2.8.9) Ud(n)⊗K U → Cpol,d(N,U) = Cpol,d(N,K)⊗K U,
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as d ranges over the non-negative integers. (Here Ud(n) denotes the degree d graded
piece of U(n) with respect to the grading induced by α.)

Since the formation of the maps (2.8.9) is functorial in U , they are EndM (U)-
equivariant, and hence have closed image (since each of Ud(n) and Cpol,d(N,K) is
a finite dimensional algebraic M -representation, and U is assumed allowable). It
follows from [2, Cor. 1, p. II.31] that (2.8.6) has closed image, as asserted. �

Proposition 2.8.10. If U is an allowable object of Repz
la.c(M), then IG

P
(U) is a lo-

cal closed polynomially generated G-invariant subspace of IndG
P
U , and IG

P
(U)lp(N)

(as given by Definition 2.7.5) coincides with the image of (2.8.7).

Proof. Let X denote the image of (2.8.6), which by Lemma 2.8.8 is a closed subspace
of Cpol(N,U). Since (2.8.4) identifies U with Cpol,0(N,U), Lemma 2.5.9 shows
that X is furthermore graded, in the sense of Definition 2.7.11. If X̂ denotes
the closure of the image of X under the map (2.5.20), then Lemma 2.7.4 shows
that X̂ is a (g, P )-invariant subspace of (IndG

P
U)e, which corresponds to a local

closed subrepresentation X of IndG
P
U via the construction of Proposition 2.4.9.

Corollary 2.7.14 implies that X = X̂pol, and thus that X is polynomially generated
in the sense of Definition 2.7.15.

Proposition 2.7.9 implies that X coincides with the closed G-representation gen-
erated by X lp(N), which Lemma 2.7.8 shows to be isomorphic to X⊗K Csm

c (N,K).
The definition of X then shows that X lp(N) is equal to the image of (2.8.7). Since
this image maps under (2.5.27) (taking Ω to be N) to the g-subrepresentation of
IndG

P
U generated by the image of (2.8.2), we conclude from Lemma 2.8.3 that X

coincides with IG
P

(U). This establishes the proposition. �

In the context of the preceding proposition, note that by construction IG
P

(U)
is in fact polynomially generated in degree zero. Note also that the proof of this
proposition shows that IG

P
(U)lp(N) coincides with the space denoted in the same

manner in the introduction.

3. A variant of the method of Amice-Vélu and Vishik

(3.1) We maintain the notation introduced in Subsection 2.2, and fix in addi-
tion a K-Banach space V equipped with a continuous action of ZM . We recall from
Subsection 1.4 the definition of Cla

c (N,V ) as a convex K-vector space. We endow
Cla

c (N,V ) with the right regular action of N , and with the ZM -action defined by
(zf)(n) = zf(z−1nz). These actions together give a locally analytic action of NZM

on Cla
c (N,V ). If we embed Cla(N0, V ) as the closed subspace of Cla

c (N,V ) consist-
ing of functions supported on N0, then Cla(N0, V ) is an N0Z

+
M -invariant subspace

of Cla
c (N,V ).

For each i ≥ 0, consider the space Bi :=
⊕

n∈Ni\N0
Can(Nin, V ) (the direct sum

ranging over a set of left coset representatives of Ni in N0). This may be naturally
identified with the space of Ni-analytic vectors in Cla(N0, V ) with respect to the
left regular action of N0, and so is equipped with a natural map

(3.1.1) Bi → Cla(N0, V ).

Since any Ni-analytic vector is also Ni+1-analytic, there is a natural map

(3.1.2) Bi → Bi+1,
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compatible with (3.1.1) for i and i + 1. We may form the inductive limit lim
−→

i

Bi

with respect to the maps (3.1.2), and the maps (3.1.1) induce an isomorphism

(3.1.3) lim
−→

i

Bi
∼−→ Cla(N0, V );

this gives a concrete realization of Cla(N0, V ) as an inductive limit of Banach spaces.
The right regular N0-action on Cla(N0, V ) induces an N0-action on each Bi, and

the maps (3.1.1), (3.1.2), and (3.1.3) are all N0-equivariant. The action of z0 on
Cla(N0, V ) induces an isomorphism zi

0B0
∼−→ Can(Ni, V ). Since the action of any

element n ∈ N0 induces an isomorphism Can(Ni, V ) ∼−→ Can(Nin
−1, V ), we obtain

an isomorphism

(3.1.4)
⊕

n∈Ni\N0

nzi
0B0

∼−→ Bi.

Suppose that S ⊂ T are closed N0Z
+
M -invariant subspaces of Cla(N0, V ). For

each i ≥ 0, let Ti (respectively Si) denote the preimage of T (respectively S) under
the map (3.1.1). The closed embedding S ⊂ T induces a closed embedding

(3.1.5) Si ⊂ Ti

for each i ≥ 0, while the isomorphism (3.1.4) induces closed embeddings

(3.1.6)
⊕

n∈Ni\N0

nzi
0T0 → Ti

and

(3.1.7)
⊕

n∈Ni\N0

nzi
0S0 → Si.

As discussed in the Notations and conventions, let T and S denote the ultra-
bornologicalizations of S and T respectively. It follows from [2, Prop. 1, p. I.20]
that there are natural isomorphisms lim

−→
i

Ti
∼−→ T and lim

−→
i

Si
∼−→ S (the transition

maps for these locally convex inductive limits being induced by the maps (3.1.2)).
Recall that we have continuous bijections

(3.1.8) T → T and S → S.

The closed embeddings (3.1.5) induce a continuous injection

(3.1.9) S → T

in a manner compatible with the bijections (3.1.8).
The reason for considering T and S is that T and S, while being of LB-type –

that is, they are a countable union of BH-subspaces, being closed subspaces of the
LB-space Cla(N0, V ) – may not be LB-spaces. The space T (respectively S) may be
regarded as being the same underlying abstract vector space as T (respectively S),
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endowed with the coarsest locally convex topology that both makes it an LB-space
and is finer than the given topology on T (respectively S).

Since the formation of ultrabornologicalizations is functorial, the N0Z
+
M -action

on T and S induces an N0Z
+
M -action on each of the space T and S, uniquely

determined by the requirement that the bijections (3.1.8) be N0Z
+
M -equivariant.

(These actions are a priori separately continuous, but since T and S are LB-, and
so barrelled, spaces, they are in fact continuous.) The map (3.1.9) is then also
necessarily N0Z

+
M -equivariant.

Let W be a K-Banach space equipped with a continuous action of N0Z
+
M . Our

goal in the remainder of this subsection is to state a theorem giving conditions
under which the map

(3.1.10) LN0Z+
M

(T ,W ) → LN0Z+
M

(S,W )

induced by (3.1.9) is an isomorphism. The proof of this theorem will be given in
the following subsection.

In order to state our theorem, we must introduce further notation. We fix
a norm || – ||V on V that determines its Banach space structure. Since Bi :=⊕

n∈Ni\N0
Can(Nin, V ) = Can(

∐
n∈Ni\N0

Nin, V ) is equal to the space of rigid an-
alytic V -valued functions on the affinoid

∐
n∈Ni\N0

Nin, the choice of the norm
|| – ||V on V determines a norm on Bi, namely the usual rigid analytic sup norm.
We denote this norm by || – ||i; it determines the Banach space structure on Bi. We
also fix a norm || – ||W on W that determines its Banach space structure.

Since N0 is compact and acts continuously on W , we may and do assume that
|| – ||W is N0-invariant (by [6, Lem. 6.5.3] for example). Since z0 acts as a continuous
endomorphism of W , we may find C1 > 0 such that || z0w ||W ≤ C1||w ||W for all
w ∈ W . Since z0 induces a continuous automorphism of V , we may find C2 > 0
such that || z0(u) ||V > C2||u || for all u ∈ V. Write C = C1/C2.

For each i ≥ 0, fix a topological complement S⊥i to Si in Ti (as we may, by [11,
Prop. 10.5]), and let πi (respectively π⊥i ) denote the projection Ti → Si with kernel
S⊥i (respectively the projection Ti → S⊥i with kernel Si).

Theorem 3.1.11. Suppose that the closed embeddings (3.1.6) and (3.1.7) are iso-
morphisms, and that there exists ε > 0 such that εC < 1, and such that for all
i′ ≥ i ≥ 0, one has

(3.1.12) ||π⊥i′ (f) ||i′ ≤ εi
′−i|| f ||i

for all f ∈ Ti. Then (3.1.10) is an isomorphism.

As remarked above, we present the proof of this result in Subsection 3.2. The
following lemma gives a criterion for verifying the first hypothesis of Theorem 3.1.11.

Lemma 3.1.13. Let T be a closed subspace of Cla(N0, V ) such that:
(i) For all f ∈ T , the element z−1

0 (f|N1) of Cla(N0, V ) again lies in T .
(ii) For any f ∈ T and any compact open subspace Ω ⊂ N0, the restriction f|Ω

(regarded as an element of Cla(N0, V ) via extending by zero) again lies in T .
Then the closed embedding (3.1.6) is an isomorphism.

Proof. Fix i ≥ 0 and n ∈ N0, and let f ∈ Ti

⋂
Can(Nin, V ). Since Ti is N0-

invariant, we see that nf ∈ Ti

⋂
Can(Ni, V ), and so by (i) (applied i times) we
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find that z−i
0 nf ∈ T0. Thus Ti

⋂
Can(Nin, V ) ⊂ n−1zi

0T0. The reverse inclusion
is clear (T being N0Z

+
M -invariant), and so in fact Ti

⋂
Can(Nin, V ) = n−1zi

0T0.
Since (ii) implies that Ti =

⊕
n∈Ni\N0

Ti

⋂
Can(Nin, V ), we see that (3.1.6) is an

isomorphism, as claimed. �

(3.2) In this subsection we prove Theorem 3.1.11. Thus we assume that the
closed embeddings (3.1.6) and (3.1.7) are in fact isomorphisms, and that (3.1.12)
holds for all i′ ≥ i ≥ 0 and some ε (which we fix) satisfying 0 < ε < C−1. We begin
by establishing some estimates.

Lemma 3.2.1. If i ≥ 0 and f ∈ Ti, then || f ||i+1 ≤ || f ||i.
Proof. Recall that || f ||i+1 is computed as the sup norm of f over the rigid analytic
space

∐
n∈Ni+1\N0

Ni+1n, while || f ||i is computed as the sup norm of f over the
rigid analytic space

∐
n∈Ni\N0

Nin. Since the former rigid analytic space is an open
subset of the latter, the claimed inequality obviously holds. �

Lemma 3.2.2. If i ≥ 0 and f ∈ Ti, so that z0f ∈ Ti+1, then || z0f ||i+1 ≥ C2|| f ||i.
Proof. By assumption f is a rigid analytic function on

∐
n∈Ni\N0

Nin, and so z0f
is the rigid analytic function on

∐
n∈Ni+1\N1

Ni+1n defined by

(z0f)(x) = z0(f(z−1
0 xz0))

(and extended by zero to
∐

n∈Ni+1\N0
Ni+1n). We compute that

|| z0f ||i+1 = sup{|| (z0f)(x) ||V |x ∈
∐

n∈Ni+1\N1

Ni+1n}

= sup{|| z0(f(z−1
0 xz0)) ||V |x ∈

∐
n∈Ni+1\N1

Ni+1n}

≥ sup{C2|| f(z−1
0 xz0) ||V |x ∈

∐
n∈Ni+1\N1

Ni+1n}

= C2 sup{|| f(x) ||V |x ∈
∐

n∈Ni\N0

Nin} = C2|| f ||i,

as claimed. �

Lemma 3.2.3. Let t be a continuous semi-norm on T that satisfies the following
conditions:

(i) The semi-norm t is N0-invariant.
(ii) We have t(z0f) ≤ C1t(f) for all f ∈ T .
Then there exists A > 0 such that t(f) ≤ ACi|| f ||i for all i ≥ 0 and f ∈ Ti.

Proof. Since t is continuous, there is a constant A > 0 such that t(f) ≤ A|| f ||0
for all f ∈ T0. Now let f ∈ Ti. Since (3.1.6) is an isomorphism, we may write
f =

∑
n∈Ni\N0

nzi
0gn for some gn ∈ T0. We then compute (taking into account

conditions (i) and (ii)) that

t(f) ≤ max{t(zi
0gn)} ≤ Ci

1 max{t(gn)} ≤ ACi
1 max{|| gn ||0}.

On the other hand, Lemma 3.2.2 shows that

|| f ||i = max{|| zi
0gn ||i} ≥ Ci

2 max || gn ||0.
Combining these two inequalities (and recalling that C = C1/C2) yields the in-
equality of the lemma. �
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Lemma 3.2.4. If t is any continuous semi-norm on T that satisfies conditions (i)
and (ii) of Lemma 3.2.3, then for all i′ ≥ i ≥ 0 and f ∈ Ti we have t(π⊥i′ (f)) ≤
ACi(εC)i′−i|| f ||i.

Proof. This follows from Lemma 3.2.3 (applied to π⊥i′ (f) ∈ Ti′) and (3.1.12). �

Lemma 3.2.5. If t is any continuous semi-norm on T that satisfies conditions (i)
and (ii) of Lemma 3.2.3, then the image of (3.1.9) is dense in T with respect to the
topology induced by t.

Proof. If f ∈ Ti, then it follows from Lemma 3.2.4 and the assumption that εC < 1
that limi≤i′→∞ t(f − πi′(f)) = limi≤i′→∞ t(π⊥i′ (f)) = 0. �

We can now prove that (3.1.10) is injective. Let F : T → W be an N0Z
+
M -

equivariant continuous K-linear map T → W, and let t denote the continuous
semi-norm on T defined by t(f) = ||F (f) ||W for all f ∈ T . It follows directly
from the corresponding properties of || – ||W that t satisfies conditions (i) and (ii)
of Lemma 3.2.3. If the restriction of F to the image of (3.1.9) vanishes, then the
restriction of t to the image of (3.1.9) also vanishes. Lemma 3.2.5 then implies
that t vanishes identically on T , and thus that F vanishes. Consequently (3.1.10)
is injective.

The proof that (3.1.10) is surjective is similar. We begin by proving the following
result.

Proposition 3.2.6. Let s be a continuous semi-norm on S that satisfies condi-
tions (i) and (ii) of Lemma 3.2.3, with t and T replaced by s and S. Then there
is a uniquely determined continuous semi-norm t on T that satisfies conditions (i)
and (ii) of Lemma 3.2.3, and such that s is equal to the composite of t with (3.1.9).

Proof. The uniqueness is a direct consequence of Lemma 3.2.5. As for the ex-
istence, we have the following explicit definition of t: If f ∈ Ti, then t(f) =
limi≤i′→∞ s(πi′(f)). We will show that this gives a well-defined continuous semi-
norm on T that satisfies conditions (i) and (ii) of Lemma 3.2.3. Note that if f ∈ Si

then πi′(f) = f for all i′ ≥ i, and so it is clear that s is equal to the composite of t
and (3.1.9).

To show that t(f) is well-defined, we must show that the limit exists. For this,
it suffices to show that limi≤i′→∞ s(πi′+1(f) − πi′(f)) exists and equals zero. We
compute that (for some A > 0)

(3.2.7)

s(πi′+1(f)− πi′(f))

≤ ACi′+1||πi′+1(f)− πi′(f) ||i′+1

= ACi′+1||π⊥i′+1(f)− π⊥i′ (f) ||i′+1

≤ ACi′+1 max{||π⊥i′+1(f) ||i′+1, ||π⊥i′ (f) ||i′+1}

≤ ACi′+1 max{||π⊥i′+1(f) ||i′+1, ||π⊥i′ (f) ||i′}

≤ ACi′+1εi
′−i max{ε, 1}|| f ||i

= ACi+1 max{ε, 1}(εC)i′−i|| f ||i

(where the first inequality follows from Lemma 3.2.3, applied with s and Si′+1 in
place of t and Ti, the subsequent equality follows from the equation πi′+1(f) −
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πi′(f) = f −π⊥i′+1(f)− (f −π⊥i′ (f)) = π⊥i′ (f)−π⊥i′+1(f), the second inequality is an
application of the non-archimedean triangle inequality, the third inequality follows
from Lemma 3.2.1, and the fourth inequality follows from (3.1.12).) Since εC < 1
by assumption, we conclude that indeed limi≤i′→∞ s(πi′+1(f)−πi′(f)) = 0, and so
t is well-defined. It is clear that t is a semi-norm, since s is a semi-norm and the
projections πi′ are linear.

The inequality (3.2.7) immediately generalizes: If i ≤ i′ ≤ i′′, and f ∈ Ti then

(3.2.8) s(πi′′(f)− πi′(f)) ≤ max{s(πi′+1(f)− πi′(f)), . . . , s(πi′′(f)− πi′′−1(f))}

≤ ACi+1 max{ε, 1}(εC)i′−i|| f ||i,

using (3.2.7) and the fact that εC < 1.
Now ||πi(f) ||i ≤ max{||π⊥i (f) ||i, || f ||i} = || f ||i (applying (3.1.12) with i′ = i),

which together with Lemma 3.2.3 (putting πi(f), s and Si in place of f , t and Ti)
implies that s(πi(f)) ≤ ACi|| f ||i. Combining this and (3.2.8), we find that

s(πi′(f)) ≤ max{s(πi(f)), s(πi′(f)− πi(f))} ≤ ACi max{1, Cmax{ε, 1}}|| f ||i.

Passing to the limit as i′ →∞, we deduce that

t(f) ≤ ACi max{1, Cmax{ε, 1}}|| f ||i.

This implies that t is continuous on Ti. Since T ∼−→ lim
−→

i

Ti, we conclude that t is

continuous on T .
If i ≥ 0 and f ∈ Ti, then for any i′ ≥ i, we compute that

t(f − πi′(f)) = lim
i′≤i′′→∞

s(πi′′(f − πi′(f)))

= lim
i′≤i′′→∞

s(πi′′(f)− πi′(f)) ≤ ACi+1 max{ε, 1}(εC)i′−i|| f ||i

(where the inequality follows from (3.2.8)). Passing to the limit as i′ → ∞, and
remembering that εC < 1, we find that limi≤i′→∞ t(f − πi′(f)) = 0, and thus that
πi′(f) → f in the t-topology on T as i′ → ∞. In particular, we conclude that the
image of (3.1.9) is dense in T with respect to the t-topology. Since conditions (i)
and (ii) of Lemma 3.2.3 hold for s on S by assumption, we conclude that they also
hold for t on T . �

We can now prove that (3.1.10) is surjective. Let F1 : S → W be an N0Z
+
M -

equivariant continuous K-linear map, and let s denote the continuous semi-norm on
S defined by s(f) = ||F1(f) ||W . The semi-norm s satisfies conditions (i) and (ii) of
Lemma 3.2.3, and so we may extend s to a semi-norm t on T as in Proposition 3.2.6.
Since t induces the s-topology on the image of S in T under the injection (3.1.9),
since this image is dense in the t-topology on T , since F1 is continuous with respect
to the s-topology on S (by the very definition of s), and since W is complete,
we conclude that there is a t-continuous map F : T → W whose composition
with (3.1.9) coincides with F1. Furthermore, since the action of N0Z

+
M is continuous

with respect to the t-topology on T , and since F1 is N0Z
+
M -equivariant, we conclude

that F is N0Z
+
M -equivariant. Since t is continuous with respect to the inductive

limit topology on T , we see that F is continuous with respect to the inductive limit
topology on T . Thus F is the required element of LN0Z+

M
(T ,W ) that maps to F1

under (3.1.10).
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4. Proof of Theorem 0.13

(4.1) We maintain the notation introduced in Subsection 2.2. In particular,
we fix an object U of Repla.c(M), which in fact we assume to lie in Repz

la.c(M).
We also fix a local closed G-invariant subspace X of IndG

P
U . If V is a locally

analytic G-representation, then restriction of morphisms from X to X(N) induces
a morphism

(4.1.1) LG(X,V ) → L(g,P )(X(N), V ).

The following result show that an element in the target of (4.1.1) is as G-equivariant
as it can be.

Lemma 4.1.2. Suppose that V is an LB-space equipped with a locally analytic
G-representation, and let φ be an element in the target of (4.1.1). If f ∈ X(N)
and g ∈ G are chosen so that gf also lies in X(N), then φ(gf) = gφ(f).

Proof. Let Ω ⊂ N be the support of f . Since Ω is compact, we may choose i
sufficiently large so that for any n ∈ Ω we have Nin ⊂ Ω, and (nf)|Ni

is Ni-
analytic, taking values in Ui. If we fix this value of i, and let Xi denote the
preimage under (2.3.8) of X(N) (or equivalently, the preimage under (2.3.9) of
Xe), then we see (taking into account Proposition 2.3.10 and the fact that X is a
G-invariant subspace of IndG

P
U) that Xi is an (Hi, Z

−
M )-invariant closed subspace of

Ai,i, which by assumption contains (nf)|Ni
for any n ∈ Ω. Since φ is a continuous

g-equivariant map between the LB-spaces X(N) and V , and since the G-action
on V is locally analytic, we deduce from [2, Prop. 1, p. I.20] that we may find a
BH-subspace W of V that is Hj-invariant for some j ≥ i, such that the Hj action
on W obtained by [6, Prop. 1.1.1 (ii)] is Hj-analytic, and such that φ induces a
g-equivariant continuous map Xi →W .

By assumption the compact open subset Ωg−1 of P\G (which is the support of
gf) is contained in N (regarded as an open subset of P\G via the open immer-
sion (2.3.2)). Equivalently, the product Ωg−1, now computed in G (by regarding
Ω as a compact subset of G via the closed embedding N ⊂ G), is contained in
PN = NP . If we let Ω denote the projection of Ωg−1 onto N , then Ω is a compact
subset of N . Thus we may find z ∈ Z−M such that zΩz−1 ⊂ N j .

Fix n ∈ Ω. Since Ωg−1 ⊂ ΩP, we may write

(4.1.3) gn−1 = pn

for some n ∈ Ω
−1

and p ∈ P . We thus compute that

(4.1.4) φ(g(f|z−1Nizn)) = φ(gn−1z−1(znf)|Ni
) = φ(pnz−1(znf)|Ni

)

= pz−1φ(znz−1(znf)|Ni
) = pz−1(znz−1)φ((znf)|Ni

)

= pnnφ(n−1z−1(znf)|Ni
) = gφ(n−1z−1(znf)|Ni

) = gφ(f|z−1Nizn).

Here the first and last equalities follow from the formula

f|z−1Nizn = n−1z−1(znf)|Ni
,
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the second and second-last equalities follow from (4.1.3), and the third and third-
last equalities follow from the P -equivariance of φ. The middle equality of (4.1.4)
follows from the g-equivariance of φ, the fact that (znf)|Ni

(which lies in Xi, since
(nf)|Ni

does, and since Xi is Z−M -invariant) is Hi-analytic, and so also Hj-analytic,
the fact that all the elements of φ(Xi) are Hj-analytic, and the containment znz−1 ∈
N j ⊂ Hj (since n ∈ Ω

−1
). We now write Ω as a disjoint union of left z−1Niz-cosets,

say Ω =
∐m

l=1 z
−1Niznl, and compute that

φ(gf) = φ(g
∑

f|z−1Niznl
) =

∑
φ(gf|z−1Niznl

)

=
∑

gφ(f|z−1Niznl
) = gφ(

∑
f|z−1Niznl

) = gφ(f)

(the third equality following from (4.1.4)), as required. �

Theorem 4.1.5. If V is an LB-space equipped with a locally analytic action of G,
then (4.1.1) is an isomorphism.

Proof. Since X(N) generates X as a G-representation, we see that the map (4.1.1)
is an injection. We must show that is is also surjective.

Let φ be an element of the target of (4.1.1). Since V is endowed with a G-action,
we see that φ induces a natural map

(4.1.6) K[G]⊗K X(N) → V.

We will show that (4.1.6) factors through the map (2.4.12) (with Ω taken to be N).
Since (2.4.12) is a strict surjection, by Lemma 2.4.13, this will imply that (4.1.6)
factors through a continuous G-equivariant map X → V , which will then be an
element in the source of (4.1.1) that maps under (4.1.1) to φ.

Thus we must prove the following claim: if g1, . . . , gl is a finite sequence of
elements of G, and f1, . . . , fl a finite sequence of elements of X(N), such that

(4.1.7)
l∑

i=1

gifi = 0 in X,

then

(4.1.8)
l∑

i=1

giφ(fi)
?= 0 in V.

Since X is local, it suffices to show that each point x of P\G has a compact open
neighbourhood Ωx such that for any neighbourhood Ω′x ⊂ Ωx of x we have

(4.1.9)
l∑

i=1

giφ(fi|Ω′xgi
) ?= 0.

Indeed, we can then partition P\G into a finite disjoint union of such neighbour-
hoods, say P\G =

∐s
j=1 Ω′xj

, and writing

gifi =
s∑

j=1

(gifi)|Ω′xj
=

s∑
j=1

gifi|Ω′xj
gi
,
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so that

fi =
s∑

j=1

fi|Ω′xj
gi
,

we conclude that if (4.1.9) holds, then so does (4.1.8).
If x = Pg for some g ∈ G, then replacing (g1, . . . , gl) by (gg1, . . . , ggl), we see

that it suffices to treat the case when x equals the identity coset, which we identify
with the identity e of N under the open immersion (2.3.2). Let Ωe be a compact
open neighbourhood of e in N , chosen so that Ωegi ⊂ N (as open subsets of P\G)
for all i for which gi ∈ PN , and so that Ωegi (regarded as an open subset of P\G)
is disjoint from the support of fi for all other i. It follows from (4.1.7) that

(4.1.10)
l∑

i=1

(gifi)|Ωe
=

l∑
i=1

gifi|Ωegi
= 0 in X(N).

Applying the map φ to the second equality of (4.1.10) (which is an equation involv-
ing elements of X(N), since f|Ωegi

= 0 if gi 6∈ N , by virtue of our choice of Ωe), and
taking into account Lemma 4.1.2, we deduce that indeed

∑l
i=1 giφ(fi|Ωegi

) = 0,
and we are done. �

(4.2) We maintain the notation and assumptions of Subsection 4.1. We fur-
thermore assume that the given local closed G-invariant subspace X of IndG

P
U is

polynomially generated, in the sense of Definition 2.7.15.
Taking Ω to be N and N0 in turn in (2.7.6) yields continuous injections

(4.2.1) X lp(N) → X(N)

and

(4.2.2) X lp(N0) → X(N0)

which sit in the Cartesian diagram

(4.2.3) X lp(N0) //

��

X(N0)

��
X lp(N) // X(N),

whose vertical arrows are given by extension by zero. The injection (4.2.1) is (g, P )-
equivariant. If P+ denotes the submonoid of P generated by N0 and M+, then
one immediately checks that X(N0) is a (g, P+)-invariant subspace of X(N). Thus
X lp(N0) is a (g, P+)-invariant subspace of X lp(N), and the map (4.2.2) is (g, P+)-
equivariant.

Note that the N -actions on X(N) and on X lp(N) induce isomorphisms

(4.2.4) K[N ]⊗K[N0] X(N0)
∼−→ X(N)

and

(4.2.5) K[N ]⊗K[N0] X
lp(N0)

∼−→ X lp(N).
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Fix i, j ≥ 0. Let Tj denote the preimage of X(N0) under (2.2.9), and let Ti,j

denote the preimage of Tj under (2.2.7) (or equivalently, the preimage of X(N0)
under (2.2.10)). The isomorphisms (2.2.8) and (2.2.11) give rise to a continuous
bijection

(4.2.6) lim
−→

i

Ti,j
∼−→ Tj

and an isomorphism

(4.2.7) lim
−→
i,j

Ti,j
∼−→ X(N0)

respectively. If T j is the ultrabornologicalization of Tj , then the continuous bijec-
tion (4.2.6) induces an isomorphism

lim
−→

i

Ti,j
∼−→ T j .

For any d, i, j ≥ 0, let Sd
j denote the preimage of X lp,≤d(N0) under (2.2.9), and

let Sd
i,j denote the preimage of Sd

j under (2.2.7) (or equivalently, the preimage of
X lp,≤d(N0) under (2.2.10). The isomorphisms (2.2.8) and (2.2.11) give rise to a
continuous bijection

(4.2.8) lim
−→

i

Sd
i,j

∼−→ Sd
j

and an isomorphism

(4.2.9) lim
−→
i,j

Sd
i,j

∼−→ X lp,≤d(N0)

respectively. If S
d

j is the ultrabornologicalization of Sd
j , then the continuous bijec-

tion (4.2.8) induces an isomorphism

lim
−→

i

Si,j
∼−→ S

d

j .

Since the ZM -action on U induces a ZM -action on each Uj , the N0Z
+
M -action on

Cla(N0, U) induces an N0Z
+
M -action on Cla(N0, Uj), and each of the subspaces Tj

and Sd
j is N0Z

+
M -invariant.

Since X lp,≤d(N0) is a closed subspace of X(N0), we find that Sd
j is a closed

subspace of Tj for each d, j ≥ 0. As in Subsection 3.1, the closed embedding of Sd
j

in Tj induces a N0Z
+
M -equivariant continuous injection

(4.2.10) S
d

j → T j .

The isomorphisms (4.2.7) and (4.2.9) give rise to N0Z
+
M -equivariant isomor-

phisms

(4.2.11) lim
−→

j

T j
∼−→ X(N0),

(4.2.12) lim
−→

j

S
d

j
∼−→ X lp,≤d(N0),

and (as a consequence of (4.2.12))

(4.2.13) lim
−→
j,d

S
d

j
∼−→ X lp(N0).
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Lemma 4.2.14. If W is a K-Banach space equipped with a continuous N0Z
+
M -

action, and if we fix j ≥ 0, then the map

(4.2.15) LN0Z+
M

(T j ,W ) ∼−→ LN0Z+
M

(S
d

j ,W )

given by pulling back via (4.2.10) is a natural isomorphism provided d is sufficiently
large (in a manner possibly depending on j).

Proof. We will prove the lemma via an application of Theorem 3.1.11. We fix j, and
take the Banach V of Subsection 3.1 to be Uj ; thus the spaces Bi of Subsection 3.1
correspond to the spaces Bi,j of Subsection 2.2. As in Subsection 3.1, fix norms
|| – ||Uj and || – ||W defining the topologies of Uj and W respectively.

We take the spaces S and T of Subsection 3.1 to be Sd
j and Tj . It is clear from

the definition of Sd
j and Tj that the conditions of Lemma 3.1.13 hold for both of

them, and thus that the closed embeddings (3.1.6) and (3.1.7) are isomorphisms.
We write X := (Xe)pol, and use the notation introduced in Subsection 2.7, follow-

ing Definition 2.7.11. Note that our assumption that X is polynomially generated
implies in particular that Xe = X̂. In terms of that notation, we may write

Ti,j =
⊕

n∈Ni\N0

nX̂i,j

and
Sd

i,j =
⊕

n∈Ni\N0

nX≤d
i,j =

⊕
n∈Ni\N0

⊕
d′≤d

nXd′

i,j .

We define
Sd,⊥

i,j =
⊕

n∈Ni\N0

nX>d
i,j =

⊕
n∈Ni\N0

⊕̂
d′>d

nXd′

i,j

(where the completed direct sum is taken with respect to the norms || – ||d′i,j on the
Banach spaces Xd′

i,j). Let π d ,⊥
i,j denote the projection onto the second factor of the

isomorphism
Ti,j

∼−→ Sd
i,j

⊕
S⊥,d

i,j .

If f ∈ Ti,j , write f =
∑

n∈Ni\N0
nfn, where fn =

∑∞
d′=0 fn,d′ ∈ X̂i,j with

fn,d′ ∈ Xd
i,j . Then

||π d ,⊥
i′,j (f) ||i′,j = max

n∈Ni\N0

sup
d′>d

|| fn,d′ ||d
′

i′,j

= max
n∈Ni\N0

sup
d′>d

|p|d
′(i′−i)|| fn,d′ ||d

′

i,j

≤ max
n∈Ni\N0

sup
d′≥0

|p|(d+1)(i′−i)|| fn,d′ ||d
′

i,j

= |p|(d+1)(i′−i)|| f ||i,j .

(The second equality follows from the formula of Lemma 2.5.16.) Since |p|d+1 → 0
as d → ∞, we see that if we choose d large enough, then condition (3.1.12) will
be satisfied if we take ε = |p|d+1. It now follows from Theorem 3.1.11 that pulling
back along the map S

d

j → T j induces an isomorphism

LN0Z+
M

(T j ,W ) ∼−→ LN0Z+
M

(S
d

j ,W ),

as claimed. �
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Theorem 4.2.16. If W is any K-Banach space equipped with a continuous P+-
action, then pulling back via (4.2.2) induces a natural isomorphism

LP+(X(N0),W ) ∼−→ LP+(X lp(N0),W ).

Proof. Passing to the projective limit over d and j of the maps (4.2.15), and tak-
ing into account the statement of Lemma 4.2.14 and the isomorphisms (4.2.11)
and (4.2.13), we find that the map

(4.2.17) LN0Z+
M

(X(N0),W ) → LN0Z+
M

(X lp(N0),W )

given by pulling back via (4.2.2) is also an isomorphism. Since (4.2.2) has dense
image, we find that a map in the source of (4.2.17) is M+-equivariant if and only if
this is true of its pull-back via (4.2.2). Thus (4.2.17) restricts to the isomorphism
in the statement of the theorem. �

Corollary 4.2.18. If X is polynomially generated by bounded degrees, then for any
K-Banach space W equipped with a continuous G-action, pulling back via (4.2.1)
induces a natural isomorphism

L(g,P )(X(N),Wla)
∼−→ L(g,P )(X lp(N),Wla).

Proof. Since P is generated by P+ as a group, and since we have the isomor-
phisms (4.2.4) and (4.2.5), it suffices to prove that the map

(4.2.19) L(g,P+)(X(N0),Wla)
∼−→ L(g,P+)(X lp(N0),Wla)

given by pulling back via (4.2.2) is an isomorphism. It follows from Theorem 4.2.16
that (4.2.19) is an injection, and that any map in the target may be extended to
a continuous P+-equivariant map X(N0) → W . Thus to prove the corollary, it
suffices to show that any continuous map X(N0) → W with the property that its
composite with (4.2.2) factors through a continuous g-equivariant map X lp(N0) →
Wla itself necessarily factors through a continuous g-equivariant mapX(N0) →Wla.

The isomorphism (2.2.11) induces an isomorphism

lim
−→

i

Ti,i
∼−→ X(N0).

If Y denotes the image of (4.2.2), then the preimage Yi of Y in Ti,i is dense in
Ti,i. Furthermore, this preimage contains the closed Banach subspace Sd

i,i of Ti,i

for all d ≥ 0, and by assumption, if d is sufficiently large this subspace generates
Yi as a g-representation. The corollary now follows from Proposition 1.2.23, once
we note that the g-action on Ti,i is locally integrable (by Proposition 1.2.19 and
Lemma 2.3.14, since Ti,i is a closed g-invariant subspace of Bi,i). �

(4.3) We maintain the notation introduced in Subsection 4.1. The closed em-
bedding of X(N) into X, when composed with (4.2.1), yields a map

(4.3.1) X lp(N) → X.
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Theorem 4.3.2. Suppose that X is polynomially generated by bounded degrees. If
W is a K-Banach space equipped with a continuous G-representation, then (4.3.1)
induces an isomorphism

LG(X,Wla)
∼−→ L(g,P )(X lp(N),Wla).

Proof. Theorem 4.1.5 and Corollary 4.2.18 show that we have isomorphisms

LG(X,Wla)
∼−→ L(g,P )(X(N),Wla)

∼−→ L(g,P )(X lp(N),Wla),

proving the theorem. �

Corollary 4.3.3. Suppose that X is polynomially generated by bounded degrees.
If V is a very strongly admissible locally analytic G-representation (in the sense of
Definition 0.12), then (4.3.1) induces an isomorphism

LG(X,V ) ∼−→ L(g,P )(X lp(N), V ).

Proof. By assumption we may find a continuous G-equivariant injection V → W ,
where W is a Banach space equipped with a continuous admissible G-action. Since
the G-action on V is locally analytic, this continuous injection factors through a
continuous map V → Wla. Since V and Wla are both admissible locally analytic
G-representations (the latter by [6, Prop. 6.2.4] or [16, Thm. 7.1 (ii)]), this map is
furthermore a closed embedding [16, Prop. 6.4 (ii)].

Theorem 4.3.2 yields an isomorphism

( 4.3.4) LG(X,Wla)
∼−→ L(g,P )(X lp(N),Wla).

Since X is topologically generated as a G-representation by the image of (4.3.1),
and since V is closed in Wla, we see that a map in the source of (4.3.4) takes values
in V if and only the same is true of the corresponding map in the target. �

We are now ready to prove Theorem 0.13.

Proof of Theorem 0.13. Let U be an allowable object of Repz
la.c(M). Proposi-

tion 2.8.10 shows that IG
P

(U) is a local closed G-subrepresentation that is poly-
nomially graded and generated by degree zero (and so in particular by bounded
degrees). Corollary 4.3.3 thus yields an isomorphism

LG(IG
P

(U), V ) ∼−→ L(g,P )(IG
P

(U)lp(N), V ),

while by Lemma 0.18, passing to Jacquet modules induces an isomorphism

L(g,P )(IG
P

(U)lp(N), V ) ∼−→ LM (U(δ), JP (V ))bal.

This proves Theorem 0.13. �
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5. Examples, complements, and applications

(5.1) We maintain the notation introduced in Subsection 2.2. We furthermore
suppose that G is quasi-split, and we take P to be a Borel subgroup of G. Thus P
is an opposite Borel to P , and the Levi factor M = P

⋂
P is a maximal torus in G.

Proposition 5.1.1. If U is an object of Repz
la.c(M), then the inclusion IG

P
(U) ⊂

IndG
P
U induces an equality of n-invariants IG

P
(U)n = (IndG

P
U)n.

Proof. Fix an element f ∈ (IndG
P
U)n. We may find a partition P\G =

∐
iXi of

P\G into a finite disjoint union of charts, where each chart Xi is of the form Yigi,
for some chart Yi of N and some gi ∈ G, and where f is rigid analytic on the rigid
analytic polydisk Xi underlying Xi. Since f =

∑
i f|Xi

, it suffices to prove that

(5.1.2) f|Xi

?
∈ IG

P
(U)n

for each value of i.
Let W be the Weyl group of M in G. We recall the Bruhat decomposition

(5.1.3) P\G =
∐

w∈W

wN.

(Here, for each w ∈ W , we use the same letter to denote the image of w in P\G.)
Each chart Xi must have non-empty intersection with at least one of the strata
of the Bruhat decomposition, and thus we may choose ni ∈ N and wi ∈ W such
that wini ∈ Xi. We may also write wini = n′igi for some n′i ∈ Yi. Translating
the putative inclusion (5.1.2) by wini, and noting that Xi(wini)−1 = Yi(n′i)

−1, and
also that Adwini(n) = Adwi(n), we find that it suffices to prove the containment

winif|Xi
∈ IG

P
(U)(Yi(n′i)

−1)Adwi
(n)

for each value of i. Note that Yi(n′i)
−1 is a chart of N containing e, and that

winif|Xi
is rigid analytic on the polydisk underlying Yi(n′i)

−1. Thus, to simply
notation, we now let Y denote an arbitrary chart of N containing e, and let f
denote an element of (IndG

P
U)(Y )Adw(n) which is rigid analytic on the polydisk Y

underlying Y . We will prove that f ∈ IG
P

(U)(Y )Adw(n) (which by the preceding
discussion suffices to establish the proposition).

Choose j ≥ 0 such that f takes values in the BH-subspace Uj of U . We may re-
gard f as an element of Can(Y, Uj), and then via the isomorphism of Lemma 2.5.13,
write f =

∑∞
d=0 fd, where fd ∈ Cpol,d(N,Uj). The action of Adw(n) on Cpol(N,Uj)

is a graded action, and thus if f is annihilated by Adw(n), so are each of its com-
ponents fd. Since IG

P
(U)(Y ) is closed, it suffices to show that fd ∈ IG

P
(U)(Y )Adw(n)

for each d. In other words, we may assume that f , when thought of as an element
of Can(Y, Uj), in fact lies in Cpol(N,Uj). The isomorphism of (2.5.7), together with
Lemma 1.5.1 (which we may apply after making an extension of scalars so as to
split G), then shows that f lies in the g-subrepresentation of Cpol(N,U) generated
by Cpol(N,U)n, and thus in IG

P
(U), as required. �
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Corollary 5.1.4. If U is an object of Repz
la.c(M), then the inclusion IG

P
(U) ⊂

IndG
P
U includes an isomorphism JP (IG

P
(U)) ∼−→ JP (IndG

P
U).

Proof. This follows from the very definition of the functor JP [7, Def. 3.4.5], to-
gether with Proposition 5.1.1. �

Proposition 5.1.5. If U is a finite dimensional locally analytic representation of
M , then JP (IndG

P
U) is a finite dimensional M -representation.

Proof. Extending scalars, we may assume that U is filtered by one dimensional
representations of M . Since the formation of IndG

P
U is exact, while JP is left

exact, we may thus suppose that U is equal to some locally analytic character ψ
of M . Extending scalars again, if necessary, we may and do assume that G splits
over K.

Let M̂ denote the rigid analytic space over K that parameterizes the locally
analytic characters of M (as constructed in [6, §6.4]). Proposition 2.1.2 shows
that the locally analytic induction IndG

P
ψ is a strongly admissible locally analytic

G-representation, and so by [7, Thm. 0.5], the Jacquet module JP (IndG
P
ψ) is an

essentially admissible M -representation. Hence its dual space is identified with the
space of sections of a rigid analytic coherent sheaf F on M̂ . The claim of the
proposition is equivalent to showing that F is supported on a finite subset of M̂ .
If χ ∈ M̂(K) (where K denotes an algebraic closure of K), with field of definition
Eχ (a finite extension of K), then the fibre of F at χ is dual to the χ-eigenspace
Jχ

P (Eχ ⊗K IndG
P
ψ) of JP (Eχ ⊗K IndG

P
ψ) (= Eχ ⊗K JP (IndG

P
ψ)). Thus to prove

the proposition, it suffices to prove that Jχ
P (Eχ ⊗K IndG

P
ψ) is non-zero for only a

finite number of χ ∈ M̂(K).
Thus we fix an element χ ∈ M̂(K), and suppose that Jχ

P (Eχ⊗K IndG
P
ψ) 6= 0. To

simplify our notation, we extend scalars if necessary so as to assume that Eχ = K.
We will show that χ belongs to a certain finite set of characters that depends only
on ψ.

As in the proof of Proposition 5.1.1, we let W denote the Weyl group of M in
G. Choose a labelling {wi | 1 ≤ i ≤ |W |} of the elements of W , with the property
that if 1 ≤ i ≤ j ≤ |W | then the length of wi is less than or equal to that of wj .
For any 1 ≤ i ≤ |W |, we write Bi :=

⋃
j≤i wjN ⊂ P\G. From the theory of the

Bruhat decomposition (5.1.3), it is known that each Bi is an open subset of P\G,
and that B|W | = P\G. If we write Vi = (IndG

P
ψ)(Bi), then

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V|W | = IndG
P
ψ

is an increasing and exhaustive filtration of IndG
P
ψ by closed P -invariant subspaces,

inducing a corresponding filtration

0 = Jχ
P (V0) ⊂ Jχ

P (V1) ⊂ Jχ
P (V2) ⊂ · · · ⊂ Jχ

P (V|W |) = Jχ
P (IndG

P
ψ)

of Jχ
P (IndG

P
ψ). By [7, Prop. 3.4.9], we may (and do) identify Jχ

P (Vi) (for each
i ∈ {1, . . . , |W |}) with the subspace of V N0

i on which the Hecke operators πN0,m

(for m ∈M+) act via the eigenvalues χ(m).
Claim 5.1.6: For each i ∈ {1, . . . , |W |}, the map f 7→ stwi

f ∈ (IndG
P
ψ)wi

induces
an injection

(5.1.7) Jχ
P (Vi)/J

χ
P (Vi−1) → ((IndG

P
ψ)wi

)n.
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To see this, let f ∈ JP (Vi), and let Ω ⊂ Bi denote the support of f . Since
πN0,mf = χ(m)f for all m ∈M+, one easily deduces (taking into account the fact
that wiN = Bi \Bi−1 is a closed subset of Bi, so that Ω

⋂
wiN is compact) either

that Ω
⋂
wiN = ∅ (in which case f is supported in Bi−1, and so lies in JP (Vi−1))

or else that Ω
⋂
wiN = wiN0. In any case, the germ of f at any point of wiN0 is

evidently determined by the germ of f at wi (since f is N0-invariant), establishing
the claim.

Before drawing conclusions from the claim, we require some computations. We
first compute the action of M on the target of (5.1.7). Translation by wi induces
the first isomorphism in the sequence of isomorphisms

(IndG
P
ψ)wi

∼−→ (IndG
P
ψ)e

∼−→ Cω(N,ψ)e,

the second being provided by Corollary 2.3.4. Let dψ : m → K denote the derivative
of the character ψ. Note that M acts on (Cω(N,ψ)e)n via ψ, and thus that m acts
on this space via dψ. Lemma 1.5.1 shows that (Cω(N,ψ)e)wi(n) vanishes unless
dψ(Hr) is a non-negative integer for each r ∈ ∆wi . If this condition holds, write
kr := dψ(Hr). Lemma 1.5.1 then implies that

(Cω(N,ψ)e)wi(n) ⊂ X
kr1
−r1 · · ·X

krl
−rl

(Cω(N,ψ)e)n

for an appropriately chosen ordering r1, . . . , rl of the elements of ∆wi . Thus M acts
on (Cω(N,ψ)e)wi(n) via the character r−k1

1 · · · r−kl

l ψ. (In this last expression we are
regarding the roots as characters of M rather than m, and hence use multiplicative
rather than additive notation.) Applying the isomorphism of Corollary 2.3.4 and
then translating by w−1

i , we find that M acts on ((IndG
P
ψ)wi)

n via the character

ψi := rk1
1 · · · rkl

l ψ
wi

(where ψwi(m) := ψ(wimw
−1
i )).

We next compute stwi
(πN0,mf) in terms of stwi

(f), for f ∈ Jχ
P (Vi) and m ∈M+.

Recall that

πN0,mf = mπm−1N0mf = mδ(m)
∑

n′∈m−1N0m/N0

n′f,

where δ(m) = [N0 : mN0m
−1]−1. We also define a variant of the modulus function

for m ∈M , namely

δi(m) :=
[N0

⋂
w−1

i Nwi : mN0m
−1

⋂
w−1

i Nwi]
[N0 : mN0m−1]

.

We now compute:

stwi
(πN0,mf) = stwi

(mδ(m)
∑

n′∈m−1N0m/N0

n′f)

= ψi(m)δ(m)
∑

n′∈m−1N0m/N0

stwi(n
′f)

= ψi(m)δ(m)
∑

n′∈m−1N0m/N0

n′stwi(n′)−1(f)

= ψi(m)δ(m)
∑

n′∈(m−1N0m
T

w−1
i Nwi)/(N0

T
w−1

i Nwi)

stwi(f)

= ψi(m)δi(m)stwi
(f)
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(where the second equality follows from the result of the preceding paragraph, while
the second to last equality follows from the following observations: the stabilizer
in G of (the P -coset of) wi is w−1

i Pwi, the intersection of the support of f and
wiN is contained in wiN0, and stwi

(f) is fixed by n, and hence by the elements of
N

⋂
w−1

i Nwi, since the action of w−1
i Nwi on (IndG

P
ψ)wi

is w−1
i Nwi-analytic, by

Lemmas 2.3.5 (iii) and 2.3.16).
Combining this computation with Claim 5.1.6, we find that Jχ

P (Vi)/J
χ
P (Vi−1)

vanishes unless χ = ψiδi. Consequently Jχ
P (IndG

P
ψ) vanishes unless χ = ψiδi for

some i ∈ {1, . . . , |W |}. This proves the proposition. �

Remark 5.1.8. Suppose that ψ is a locally dominant algebraic character of M ,
i.e. that ψ = θλ where θ is smooth (i.e. locally constant) and λ is an algebraic
character of M that is dominant (with respect to P ). Let W be the irreducible
algebraic representation of G of highest (with respect to P ) weight λ. The reader
can easily check that there is an isomorphism

IG
P

(ψ) ∼−→ (IndG
P
θ)sm ⊗K W

(where the first factor denotes the smooth parabolic induction of θ). Corollary 5.1.4
and [7, Prop. 4.3.6] taken together then show that

JP (IndP ψ) ∼−→ JP (IG
P

(ψ)) ∼−→ ((IndG
P
θ)sm)N ⊗K λ.

Combining this with [5, Thm. 6.3.5] (applied with PΘ = PΩ = P ) yields a precise
description of the semi-simplification of the finite dimensional M -representation
JP (IndP ψ).

One can obtain an analogous description of (the semi-simplification of) the fi-
nite dimensional M -representation JP (IndP ψ) in general. To see this, note first
that Claim 5.1.6 can be strengthened slightly: it evidently holds true if we re-
place Jχ

P (Vi)/J
χ
P (Vi−1) by Jgen−χ

P (Vi)/J
gen−χ
P (Vi−1), where the notation “gen− χ”

denotes the generalized χ-eigenspace. The argument in the proof of the proposi-
tion then shows that Jgen−χ

P (Vi)/J
gen−χ
P (Vi−1) vanishes except under the following

conditions: kr := dψ(Hr) ∈ Z≥0 for each root r that appears in Adwi
(n)

⋂
n,

and χ = rk1
1 · · · rkl

l ψ
wiδi, in which case its dimension is at most one. In fact, in

this latter case, one can show that Jgen−χ
P (Vi)/J

gen−χ
P (Vi−1) has dimension exactly

one. Thus (for any given choice of character ψ), we can compute the dimension
of Jgen−χ

P (IndG
P
ψ) precisely for each of the finitely many characters χ which may

appear in JP (IndG
P
ψ), and hence determine precisely the semi-simplification of

JP (IndG
P
ψ). (We leave it to the reader to check that this general description of

JP (IndG
P
ψ) is consistent with the description already given in the case when ψ is

locally dominant algebraic.)

Example 5.1.9. Suppose that L = Qp and that G = SL2(Qp). Take P (respec-
tively P ) to be the Borel subgroup of upper triangular (respectively lower triangular
matrices), so that M = P

⋂
P is the subgroup of diagonal matrices. The coroot

α : a 7→
(
a 0
0 a−1

)
yields an isomorphism Q×

p
∼−→M , and hence yields an isomor-

phism

(5.1.10) K
∼−→ m
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via k 7→ k∂α (where as in Subsection 2.6, we denote by ∂α the pushforward under
α of the element dt/t in the Lie algebra of Q×

p ). We let w : m → K denote the
inverse of the isomorphism (5.1.10); thus w generates the weight lattice of M . If r
denotes the (unique) root of M acting on n, then r = w2, while α coincides with the
coroot ř associated to r (and so also ∂α and Hr coincide). The Weyl group W =

{1, w} has order two (one can take w =
(

0 1
−1 0

)
), and the Bruhat decomposition

decomposes P\G (which is isomorphic to the Qp-points of the projective line) into
the union of N (the affine line) and a point (the P -coset of w, or the point at
infinity).

Let ψ : M → K× be a locally analytic character, and write dψ = kw. Using
the notation of the proof of Proposition 5.1.5, we see that V1 = (IndG

P
ψ)(N) ∼−→

Cla
c (N,ψ) (the isomorphism being given by Lemma 2.3.6), that V2 = IndG

P
ψ, and

that taking stalks at w induces an isomorphism

V2/V1
∼−→ (IndG

P
ψ)e.

The proof of Proposition 5.1.5 shows that JP (V2)/JP (V1) = 0 unless k ∈ Z≥0, that
is, unless ψ is locally dominant algebraic.

Thus if ψ is not locally dominant algebraic, we find that

JP (IndG
P
ψ) = JP (Cla

c (N,ψ)) = ψδ.

Note also that in this case IG
P

(ψ) = IndG
P
ψ, as follows from Proposition 2.8.10 and

the fact that Cpol(N,ψ) is an irreducible g-representation when dψ is not dominant
integral. (Alternatively, one might note IndG

P
ψ itself is topologically irreducible

[13, Thm. 6.1].)
Suppose on the other hand that ψ is locally dominant algebraic, and write ψ =

θwk, with θ smooth. As was noted in the preceding remark,

IG
P

(ψ) ∼−→ (IndG
P
θ)sm ⊗K (Symk K2)

(recall that Symk K2 has highest weight equal to wk) and so

JP (IndG
P
ψ) = JP (IG

P
(ψ)) = JP ((IndG

P
θ)sm)⊗wk.

Applying [5, Thm. 6.3.5], we find that JP ((IndG
P
θ)sm) is a two dimensional M -

representation, whose Jordan-Hölder constituents are θδ and θw. Thus JP (IndG
P
ψ)

is a two dimensional M -representation, with Jordan-Hölder factors ψδ and ψwrk.
Finally, we note that there is an is a short exact sequence

0 → IG
P

(ψ) → IndG
P
ψ → IndG

P
ψr−(k+1) → 0.

(This is the short exact sequence (∗) on p. 123 of [14].) Taking Jacquet modules
yields the exact sequence

0 // JP (IG
P

(ψ)) ∼ // JP (IndG
P
ψ) // JP (IndG

P
ψr−(k+1)).



64 MATTHEW EMERTON

Since the final object in this sequence is non-zero, we see that the sequence is not
exact on the right, and thus that JP is not an exact functor.

(5.2) As in the preceding section we suppose that G is quasi-split, and we take
P to be a Borel subgroup of G. In general, if V →W is a G-equivariant continuous
surjection of admissible locally analytic G-representations, then the induced map
JP (V ) → JP (W ) need not be surjective. This is the case even when V is of the form
IndG

P
ψ for some locally analytic character ψ of M , as Example 5.1.9 shows. The

main result of this section is Theorem 5.2.18, which shows by contrast that when
V = IG

P
(ψ), any surjection V → W does induce a surjection on the corresponding

Jacquet modules.

Definition 5.2.1. We say that a g-equivariant surjection of g-modules V → W
is locally split if for any finitely generated g-subrepresentation W1 of W , with
preimage V1 in V , the induced surjection V1 →W1 is g-equivariantly split.

Lemma 5.2.2. If V → W is a continuous G-equivariant surjection of admissible
locally analytic G-representations that is locally split as a surjection of g-modules,
then the induced map JP (V ) → JP (W ) is surjective.

Proof. As in the proof of Proposition 5.1.5, let M̂ denote the rigid analytic space
over K that parameterizes the locally analytic characters of M . For any χ ∈ M̂(K),
let Idχ denote the kernel of the composite homomorphism U(p) → U(m) → K, in
which the first arrow is induced by the projection p → m, and the second arrow
is induced by the character dχ : m → K (the derivative of χ). Similarly, for each
i ≥ 0 we let Iχ,i denote the kernel of the composite K[Pi] → K[Mi] → K, in which
K[Pi] and K[Mi] denote the group rings over K of Pi and Mi respectively, the first
arrow is induced by the projection Pi → Mi, and the second arrow is induced by
χ|Mi. For any i, r ≥ 0, we let V (Idχ)r,n denote the P -invariant closed subspace
of V annihilated by both the ideal (Idχ)r ⊂ U(p) and the lie algebra n, and let
V (Iχ,i)

r,Ni denote the Pi-invariant closed subspace of V annihilated by both the
ideal (Iχ,i)r ⊂ K[Pi] and the group Ni. We employ similar notation with W in
place of V .

The assumption that the surjection V →W is locally split as a map of g-modules
implies that the induced map

(5.2.3) V (Idχ)r,n →W (Idχ)r,n

is also surjective. Since the P -actions on V and W are locally analytic, we have
an equality V (Idχ)r,n =

⋃
i≥0 V

(Iχ,i)
r,Ni , and similarly with W in place of V . Av-

eraging over right Pi-cosets in P0 induces projections V (Iχ,i)
r,Ni → V (Iχ,0)

r,N0 and
W (Iχ,i)

r,Ni →W (Iχ,0)
r,N0 for any i, r ≥ 0. Applying these projection to the source

and target of (5.2.3), we find that the induced map

(5.2.4) V (Iχ,0)
r,N0 →W (Iχ,0)

r,N0

is surjective.
Since M = ZM , we write M+ := Z+

M . Any element m ∈ M+ induces a Hecke
operator πN0,m on V N0 (respectively WN0) [7, Def. 3.4.2]. These operators induce
an action of the monoid ring K[M+] on V N0 and WN0 [7, Lem. 3.4.4]. The space
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V (Iχ,0)
r,N0 (respectively W (Iχ,0)

r,N0) is a K[M+]-submodule of V N0 (respectively
WN0), and the map (5.2.4) is M+-equivariant. We let Iχ denote the kernel in
K[M+] of the homomorphism K[M+] → K induced by χ|M+, and let V N0,I∞χ (re-
spectively V (Iχ,0)

r,N0,I∞χ , respectively W (Iχ,0)
r,N0,I∞χ ) denote the subspace of V N0

(respectively V (Iχ,0)
r,N0 , respectively W (Iχ,0)

r,N0) consisting of vectors annihilated
by some power of Iχ.

It was shown in the proof of [7, Prop. 4.2.33] that the Hecke operator πN0,z0 acts
as a compact operator on each of the πN0,z0-invariant subspaces V (Iχ,0)

r,N0 and
W (Iχ,0)

r,N0 . It follows from the theory of compact operators that the generalized
χ(z0)-eigenspace of πN0,z0 on each of V (Iχ,0)

r,N0 and W (Iχ,0)
r,N0 is finite dimen-

sional, and that the surjection (5.2.4) induces a surjection on generalized χ(z0)-
eigenspaces. Consequently each of the spaces V (Iχ,0)

r,N0,I∞χ and W (Iχ,0)
r,N0,I∞χ are

finite dimensional, and the surjection (5.2.4) induces a surjection V (Iχ,0)
r,N0,I∞χ →

W (Iχ,0)
r,N0,I∞χ . Letting r tend to infinity, we obtain a surjection

(5.2.5) V N0,I∞χ →WN0,I∞χ .

The Jacquet module JP (V ) is an essentially admissible locally analytic M -
representation [7, Thm. 0.5]. Thus the dual space JP (V )′ is naturally isomorphic
to the space of global sections of a coherent sheaf E on M̂ . Similarly, JP (W )′ is
naturally isomorphic to the space of global sections of a coherent sheaf F on M̂ ,
and the induced map JP (V ) → JP (W ) corresponds to a map of coherent sheaves

(5.2.6) F → E .

If we complete this morphism at the point χ of M̂ , we obtain a morphism

(5.2.7) F̂χ → Êχ

which is naturally identified with the topological dual to (5.2.5) (as follows from
the definition of the Jacquet module [7, Def. 3.2.5]; compare [7, Prop. 3.4.9]).
Since (5.2.5) is surjective, we see that (5.2.7) is injective.

Applying the above reasoning to the base-change of the map V →W over arbi-
trary finite extensions of K, we find that the morphism (5.2.6) becomes injective
after being completed at arbitrary K-valued points of M̂ (where K denotes an al-
gebraic closure of K). Thus (5.2.6) is itself injective. Passing to global sections and
dualizing again, we find that the map JP (V ) → JP (W ) is surjective, as claimed. �

The following result allows one to verify the hypothesis of the preceding lemma.

Lemma 5.2.8. Let V → W be a G-equivariant continuous surjection of admissi-
ble locally analytic G-representations. If there is a cofinal sequence {Hi} of good
analytic open subgroups of G such that, for each value of i, the space VH◦i−an is
topologically isomorphic, as an H◦

i -representation, to a finite direct sum of topolog-
ically irreducible H◦

i -representations, then V →W is locally split as a surjection of
g-modules.

Proof. Since any finitely generated g-subrepresentation of W embeds into WH◦i−an

for sufficiently large i, it suffices to show that the induced map VH◦i−an → WH◦i−an

is a split surjection of H◦
i -representations for all i. That this map is a surjection
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follows from Corollary A.13 of the appendix. Dualizing, we find that the induced
map

(5.2.9) (WH◦i−an)′b → (VH◦i−an)′b

is a closed embedding of Dan(H◦
i ,K)-modules, these modules being finitely pre-

sented, by Corollary A.14 of the appendix. It suffices to show that the embed-
ding (5.2.9) is split.

Our assumption on VH◦i−an implies that (VH◦i−an)′b is topologically semi-simple
as a Dan(H◦

i ,K)-module (i.e. is a direct sum of topologically irreducible submod-
ules). That the embedding (5.2.9) is split now follows from standard properties
of semi-simple objects in abelian categories, together with Proposition A.10 of the
appendix. �

As usual, we regard N as an open subset of P\G via the open immersion (2.3.2).
In particular, we regard the identity e ∈ N as a point of P\G.

Lemma 5.2.10. Let H be a good analytic open subgroup of G for which the locally
analytic open immersion H → G underlies a rigid analytic open immersion H → G.
Let r ∈ (0, 1)

⋂
|L×|, and write P r := Hr

⋂
P . Let Pr denote the rigid analytic

Zariski closure of P r in Hr. If the orbit of H on e (via the right action of H on
P\G) is contained in N , then Pr\Hr is an affinoid polydisk, and the locally analytic
open immersion P r\Hr

∼−→ e ·Hr ⊂ N underlies a rigid analytic open immersion
Pr\Hr → N.

Proof. In the course of the proof it will be necessary to distinguish between various
rigid analytic spaces, and their underlying locally analytic manifolds of L-valued
points. Thus we begin by introducing some additional notation for this purpose.

Let g (respectively n) denote the rigid analytic affine space whose underlying
locally analytic set of L-valued points is equal to the Lie algebra g (respectively
n). As usual, let h denote the OL-Lie sublattice of g from which H is obtained by
exponentiation. This sublattice defines a norm on g, the gauge of h, and we let
hr denote the rigid analytic closed polydisk in g of radius r with respect to this
gauge. We let hr denote the set of L-valued points of hr. The exponential map
defines a rigid analytic isomorphism exp : hr

∼−→ Hr. Also, since n is a nilpotent Lie
algebra, the exponential map defines a rigid analytic isomorphism exp : n

∼−→ N. Of
course, these isomorphisms induce isomorphisms of the underlying locally analytic
manifolds of L-valued points. Finally, we note that since the H-orbit of e in P\G
is contained in N , we have the inclusion H ⊂ PN as open subsets of G, and hence
a rigid analytic open immersion H ⊂ PN.

Consider the diagram

hr //

∼ exp

��

g //// n

∼ exp

��
Hr

// PN // N

of maps of rigid analytic spaces (in which the upper right horizontal arrow is induced
by the projection g → p\g ∼−→ n, and the lower right horizontal arrow is induced
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by the projection PN → N), as well as the corresponding diagram

hr
//

∼ exp

��

g // // n

∼ exp

��
Hr

// PN // N,

obtained from it by passing to L-valued points. One sees that the first diagram is
commutative (by rigid analytic continuation, since it is evidently so if we replace hr

by a sufficiently small OL-Lie sublattice), and thus so is the second diagram. This
establishes the lemma. �

Proposition 5.2.11. Let H be a good analytic open subgroup of G, and let Ω
denote the H◦-orbit of e ∈ P\G. If Ω is contained in N , then for any locally analytic
K-valued character ψ of M , the H◦-representation IG

P
(ψ)(Ω)H◦−an is topologically

irreducible.

Proof. For each r ∈ (0, 1)
⋂
|L×|, let Ωr denote the Hr-orbit of e, so that in the

notation of the preceding lemma, Ωr := P r\Hr. We have an isomorphism

IG
P

(ψ)(Ω)H◦−an
∼−→ lim

←−
1>r

IG
P

(ψ)(Ωr)Hr−an.

Thus if V is a closed subspace of IG
P

(ψ)(Ω)H◦−an, and if Vr denotes the closure
of V in IG

P
(ψ)(Ωr)Hr−an for each 1 > r > 0, then the induced map V → lim

←−
1>r

Vr

is an isomorphism. Hence it suffices to show that IG
P

(ψ)(Ωr)Hr−an is a topolog-
ically irreducible Hr-representation, or equivalently, a topologically irreducible g-
representation, for each 1 > r > 0.

The preceding lemma yields a closed embedding IG
P

(ψ)(Ωr)Hr−an → Can(Y, ψ)
for some open affinoid polydisk Y in N. If (IG

P
(ψ)(Ωr)Hr−an)pol denotes the preim-

age under this isomorphism of Cpol(N,ψ) ⊂ Can(Y, ψ), then (IG
P

(ψ)(Ωr)Hr−an)pol

is a g-invariant subspace of IG
P

(ψ)(Ωr)Hr−an. In order to show that this latter
space is topologically irreducible as a g-representation, it suffices, by Lemma 2.6.1
and Proposition 2.6.4, to show that (IG

P
(ψ)(Ωr)Hr−an)pol is irreducible as a g-

representation. From the construction of IG
P

(ψ), one sees that this space coincides
with the image of the natural g-equivariant map

U(g)⊗U(p) K(ψ) → HomU(p)(U(g),K(ψ)).

(HereK(ψ) denotes the one dimensionalM -representation given by the character ψ,
and the map is obtained by composing (2.8.6) with the isomorphism (2.5.7), taking
U to be K(ψ).) This image is well-known from the theory of Verma modules to be
an irreducible g-representation. �

Lemma 5.2.12. Let H be a subgroup of G, let x be a point of P\G, and let
Ω = xH denote the H-orbit of x. If there exists g ∈ G such that x = Pg and such
that Ω ⊂ Ng (where Ng denotes the translate of N ⊂ P\G by g), then for every
point x′ ∈ Ω, we may find g′ ∈ G such that x′ = Pg′ and such that Ω ⊂ Ng′.

Proof. We may write x′ = Pgh for some h ∈ H, and take g′ = gh. Since Ω ⊂ Ng,
translating on the right by h, and using the fact that Ω = xH is an H-orbit, we
find that also Ω ⊂ Ngh = Ng′, as required. �
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Lemma 5.2.13. If {Hi} is a cofinal sequence of open subgroups of G, then we may
find a natural number i0, such that for any fixed i ≥ i0 there exists a finite subset
{g1, . . . , gm} ∈ G with the property that, if we write Ωj to denote the Hi-orbit of
Pgj in P\G, then P\G is the disjoint union of the Hi-orbits Ωj, and there is an
inclusion Ωj ⊂ Ngj for each j = 1, . . . ,m.

Proof. Since N is an open subset of P\G, and since Pg lies in Ng for each g ∈ G,
we may choose for each g ∈ G an index ig such that the Hig

-orbit of Pg lies in
Ng. Since P\G is compact, we may cover P\G by a finite number of these orbits,
associated to the elements g1, . . . , gl say. Let i0 be the maximum of the indices igj

for 1 ≤ j ≤ l.
Fix i ≥ i0, and choose {x1, . . . , xm} ⊂ P\G such that P\G is the disjoint union

of the Hi-orbits Ωj′ := xj′Hi for 1 ≤ j′ ≤ m. (This is possible, since P\G is
compact.) For each 1 ≤ j′ ≤ m, we may find 1 ≤ j ≤ l such that xj′ lies in the
Higj

-orbit of Pgj . By the choice of igj
, this orbit is contained in Ngj . Lemma 5.2.12

allows us to find g′j′ such that xj′ = Pg′j′ , and such that this Higj
-orbit is contained

in N ′gj′ . Since i ≥ i0 ≥ igj , we see that Hi ⊂ Higj
, and thus that Ωj′ ⊂ Ngj′ .

Relabelling {g′1, . . . , g′m} as {g1, . . . , gm} completes the proof of the lemma. �

Corollary 5.2.14. We may find a cofinal sequence of good analytic open subgroups
{Hi} of G so that for any locally analytic character ψ of M , and any value of i,
the H◦

i -representation IG
P

(ψ)H◦i−an is topologically isomorphic to a finite direct sum
of topologically irreducible H◦

i -representations.

Proof. Fix a cofinal sequence {Hi} of good analytic open subgroups of G. Apply
Lemma 5.2.13 to the cofinal sequence {H◦

i }. If i ≥ i0, then we may find a finite
subset {g1, . . . , gm} ⊂ G such that P\G is the disjoint union of the H◦

i -orbits Ωj

of the points Pgj , and such that

(5.2.15) Ωj ⊂ Ngj

for each 1 ≤ j ≤ m. We then have a topological isomorphism of H◦
i -representations

IG
P

(ψ) ∼−→
m⊕

j=1

IG
P

(ψ)(Ωj),

which induces an isomorphism

(5.2.16) IG
P

(ψ)H◦i−an
∼−→

m⊕
j=1

IG
P

(ψ)(Ωj)H◦i−an

upon passing to H◦
i -analytic vectors. Translating by gj induces a topological iso-

morphism

(5.2.17) IG
P

(ψ)(Ωj)H◦i−an
∼−→ IG

P
(ψ)(Ωjg

−1
j )gjH◦i g−1

j −an

for each 1 ≤ j ≤ m, which is compatible with the H◦
i -action on the source, the

gjH
◦
i g
−1
j -action on the target, and the isomorphism H◦

i
∼−→ gjH

◦
i g
−1
j induced by

conjugation by gj .
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Now Ωjg
−1
j is the gjH

◦g−1
j -orbit of e ∈ N , and (5.2.15) implies that Ωjg

−1
j ⊂ N.

It follows from Proposition 5.2.11 (applied to the good analytic open subgroup
gHig

−1) and from the isomorphism (5.2.17) that IG
P

(ψ)(Ωj)H◦i−an is a topologically
irreducible H◦

i -representation. Taking into account the isomorphism (5.2.16), we
conclude that IG

P
(ψ)H◦i−an is topologically isomorphic as an H◦

i -representation to a
finite direct sum of topologically irreducible representations. The proposition fol-
lows upon taking the sequence of good analytic open subgroups to be {Hi}i≥i0 . �

Theorem 5.2.18. If U is a finite dimensional locally analytic representation of
M , then any G-equivariant surjection IG

P
(U) → W of admissible locally analytic

G-representations induces a surjection of Jacquet modules JP (IG
P

(U)) → JP (W ).

Proof. We may verify the assertion of the theorem after making a finite extension of
scalars, and thus may assume that U is a direct sum of locally analytic characters.
The theorem thus follows from Lemmas 5.2.2 and 5.2.8 and Corollary 5.2.14. �

(5.3) In this subsection we prove Corollaries 0.14 and 0.15.

Proof of Corollary 0.14. Since JP (V ) is a non-zero object of Repes(M), we may find
a character χ ∈ M̂(E) for some finite extension E of K for which the χ-eigenspace
of JP (V ⊗K E) is non-zero. Taking U to be χδ−1, we let W denote the image of
the map U(g)⊗U(p) Csm

c (N,U) → V ⊗K E corresponding via (0.17) to the inclusion
of U(δ) into JP (V ⊗K E). If dχ denotes the derivative of χ (regarded as a weight
of the Lie algebra m of M) then Csm

c (N,U) is isomorphic to a direct sum of copies
of dχ as a U(p)-module, and so W is a direct sum of copies of a quotient of the
Verma module U(g)⊗U(p) dχ.

The space of n-invariants W n decomposes as a direct sum of weights of m. Fur-
thermore, for every weight λ of m that appears, there is a corresponding character χ̃
appearing in JP (V ⊗KE) for which dχ̃ = λ. (Compare the proof of [7, Prop. 4.4.4].)
The theory of Verma modules shows that we may find a weight λ of m appearing in
W n such that λ−µ does not appear in W n for any element µ in the positive cone of
the root lattice of m. Let χ̃ be a character of M appearing in JP (V ⊗KE) for which
λ = dχ̃, and set Ũ = χ̃δ−1. Our choice of λ ensures that the resulting inclusion
Ũ(δ) → JP (V ⊗K E) is balanced, and so Theorem 0.13 yields a non-zero E-linear
and G-equivariant map IG

P
(Ũ) → V ⊗K E. Forgetting the E-linear structure, and

regarding the source and target of this maps simply as K-linear representations
of G, we see that the target is isomorphic to a finite direct sum of copies of the
topologically irreducible representation V . Since the map is non-zero, the projec-
tion onto at least one of these direct summands must again be non-zero, and so we
obtain a K-linear and G-equivariant map IG

P
(Ũ) → V, as required. �

Proof of Corollary 0.15. The functor JP is left exact (see [7, Thm. 4.2.32]), and so
it suffices to prove the result when V is a topologically irreducible very strongly ad-
missible locally analytic G-representation. If JP (V ) is non-zero then Corollary 0.14
yields a surjection IG

P
(U) → V for some finite dimensional locally analytic represen-

tation of M . Theorem 5.2.18 shows that the induced map JP (IG
P

(U)) → JP (V ) is
surjective. Proposition 5.1.5 shows that the source of this map is finite dimensional,
and thus so is its target. �
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Appendix

In this appendix we derive some results concerning admissible locally analytic
representations, based on the results of [6, §5].

Proposition A.1. If V is an admissible locally analytic representation of G, and
if H is a good analytic open subgroup of G, then there is a natural isomorphism

Dan(H◦,K)b ⊗̂
Dla(H◦,K)b

V ′b
∼−→ (VH◦−an)′b.

Proof. We will use the notation introduced in the proof of [6, Prop. 5.3.1]. Choose
a real number 0 < r < 1 such that r ∈ |L×|. There are isomorphisms

(A.2) Dla(H◦,K)b
∼−→ lim

←−
n

D(H◦
rn ,H◦)

and

(A.3) V ′b
∼−→ lim

←−
n

(VH◦
rn−an)′b.

Since furthermore the natural map

(A.4) Dla(H◦,K)b → D(H◦
rn ,H◦)

induced by (A.2) has dense image, tensoring (A.2) and (A.3) induces the first of
the sequence of isomorphisms

Dan(H◦,K)b ⊗̂
Dla(H◦,K)b

V ′b
∼−→ lim

←−
n

Dan(H◦,K)b ⊗̂
D(H◦

rn ,H◦)
(VH◦

rn−an)′b

∼−→ lim
←−
n

(VH◦−an)′b
∼−→ (VH◦−an)′b.

The second isomorphism is provided by [6, (6.1.15)] (which [6, Cor. 6.1.19] shows
to be indeed an isomorphism), while the third isomorphism is tautological, since
its source is the projective limit of a constant projective system. Composing these
isomorphisms gives the isomorphism of the proposition. �

In order to apply the preceding result, it will be useful to establish some facts
concerning topological modules overDan(H◦,K)b. The key property ofDan(H◦,K)b

is the isomorphism of topological algebras

(A.5) Dan(H◦,K)b
∼−→ lim

−→
m

Dan(H◦,K)(m)
b

provided by [6, Prop. 5.2.3], which shows that Dan(H◦,K)b is coherent, and of
compact type.
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Lemma A.6. Suppose that {Am} is an inductive sequence of Noetherian Banach
algebras, for which the transition maps Am → Am+1 are injective, compact (as
maps between Banach spaces), and flat homomorphisms of K-algebras, and let A :=
lim
−→
m

Am be the inductive limit algebra (which is thus of compact type). If Mm is a

finitely generated Am-Banach module, for some value of m, then A⊗Am
Mm is of

compact type (in particular it is Hausdorff and complete), and is a finitely presented
A-module.

Proof. For each m′ ≥ m, write Mm′ := Am′ ⊗Am
Mm, so that Mm′ is a finitely

generated Am′ -Banach module (by [6, Prop. 1.2.5] and the remark following its
proof). The natural map Am′ → A induces a map

(A.7) Mm′ → A⊗Am Mm

for each m′ ≥ m.
Our convention is that A ⊗Am

Mm is equipped with the quotient topology ob-
tained by regarding it as a quotient of A⊗K,πMm. Since A is of compact type, and
Mm is a Banach space, [6, Prop. 1.1.31] shows that this topology coincides with the
topology obtained by regarding A⊗Am Mm as a quotient of A⊗K,ı Mm. A similar
remark applies to each of the tensor products Mm′ = Am′ ⊗Am Mm (for m′ ≥ m),
since Am′ and Mm are both Banach spaces. From these remarks, together with [6,
Lem. 1.1.30], one easily deduces that the natural map

(A.8) lim
−→

m′≥m

Mm′ → A⊗Am
M

induced by the maps (A.7) is an isomorphism.
For m′ ≥ m, let Nm′ be the quotient of Mm′ by the kernel of the map (A.7). We

may then rewrite the isomorphism (A.8) as an isomorphism

(A.9) lim
−→

m′≥m

Nm′
∼−→ A⊗Am M,

where the transition maps in this inductive limit are injective. Since Am′ is Noe-
therian and Mm′ is finitely generated over Am′ , [6, Prop. 1.2.4] implies that the
kernel of (A.7) is a closed subspace of Mm′ , and thus that each Nm′ is a Banach
space. Since each Nm′ is finitely generated over Am′ , and since the transition maps
between the Am′ are compact, we see that the transition maps in the inductive limit
of (A.9) are furthermore compact. Thus (A.9) presents A ⊗Am M as an inductive
limit of a sequence of Banach spaces with compact and injective transition maps.
This proves the first claim of the lemma. The claim of finite presentability follows
directly from the fact that Mm is finitely generated over the Noetherian Banach
algebra Am, and hence in fact finitely presented. �

In the context of the preceding lemma, the ring A is coherent (being the induc-
tive limit of a sequence of Noetherian rings via flat transition maps). Thus the
category of finitely presented A-modules (i.e the full subcategory of the category
of A-modules whose objects are the finitely presented A-modules) is abelian (and
the formation of kernels, cokernels, and images in this category coincide with the
corresponding constructions in the category of all A-modules). The following result
provides some useful functional analytic information about the category of finitely
presented A-modules.
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Proposition A.10. Let {Am} and A be as in the statement of Lemma A.6.
(i) Every finitely presented A-module has a unique structure of compact type

space making it a topological A-module.
(ii) If f : M → N is an A-linear morphism between finitely presented A-modules,

then f is continuous and strict with respect to the topologies on M and N given
by (i).

Proof. If M is a finitely generated A-module, then we may find a surjection of
A-modules Ar → M for some r ≥ 0. If M is furthermore equipped with a locally
convex topology with respect to which it becomes a topological A-module, then this
map is necessarily continuous. If the topology on M is of compact type, then the
open mapping theorem shows that this surjection is a strict map of convex spaces,
and the so the topology on M coincides with the topology it inherits as a quotient
of Ar. This proves the uniqueness statement of (i).

Suppose now that M is finitely presented. It is a standard (and easily verified)
fact that we may write M ∼= A⊗Am Mm for some value of m, and some finitely gen-
erated Am-module Mm. From [6, Prop. 1.2.4 (i)], we see that Mm may be equipped
with a canonical Am-Banach module structure, and Lemma A.6 then shows that the
tensor product topology on M (which certainly makes M a topological A-module)
endows M with a compact type space structure. This establishes the existence
claim of (i).

Suppose now that M → N is an A-linear morphism of finitely presented A-
modules. We may fit this morphism into a commutative diagram of A-linear mor-
phisms

Ar //

��

As

��
M // N,

for some r, s ≥ 0. If we endow each of M and N with the topological A-module
structure given by part (i), then we have already observed that the vertical arrows
must be strict, while the upper horizontal arrow is certainly continuous (since A is
a topological algebra). Thus the lower horizontal arrow must be continuous. This
proves the continuity claim of (ii).

Now consider a short exact sequence of finitely presented A-modules

0 →M → N → P → 0.

If we endow each of these modules with the topological A-module structure given
by part (i), then the result of the preceding paragraph shows that the morphisms
in this sequence are necessarily continuous. Since the topologies on M , N , and
P are of compact type, the open mapping theorem shows that the morphisms are
furthermore necessarily strict.

As was noted above, the kernel or cokernel of a morphism of finitely presented
A-modules is again finitely presented (since A is coherent), and so any injection or
surjection of finitely presented A-modules may be fitted into a short exact sequence
of finitely presented A-modules. The result of the preceding paragraph thus implies
the strictness claim of (ii) for injections and surjections of finitely presented A-
modules.
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Any morphism of finitely presented A-modules may be factored as the composite
of a surjection of its source onto its image, and an injection of its image into its
target. Furthermore, as was noted above, this image is again finitely presented
(since A is coherent). The strictness claim of (ii) (in full generality) thus follows
from the result for injections and surjections already established. �

The isomorphism (A.5) and [6, Prop. 5.3.11] allow us to apply the preceding
results in the particular context when A = Dan(H◦,K)b and Am = Dan(H◦,K)(m)

b

for m ≥ 0.

Lemma A.11. If H is a good analytic open subgroup of G, then Dan(H◦,K)b is
flat over Dla(H◦,K)b, and the natural map

(A.12) Dan(H◦,K)b ⊗Dla(H◦,K)b
M → Dan(H◦,K)b ⊗̂

Dla(H◦,K)b

M

is an isomorphism for any coadmissible Dla(H◦,K)b-module M . Furthermore, the
topological tensor product Dan(H◦,K)b ⊗Dla(H◦,K)b

M is of compact type, and is
finitely presented as a Dan(H◦,K)b-module.

Proof. We employ the same notation as in the proof of Proposition A.1. From [6,
Prop. 5.2.3] we obtain an isomorphism Dan(H◦,K)b

∼−→ lim
−→
m

Dan(H◦,K)(m)
b , and

[6, Prop. 5.3.18] implies that the map (A.4) (for n = 1) factors as

Dla(H◦,K)b → D(H◦
r ,H

◦) → Dan(H◦,K)(m)
b → Dan(H◦,K)b

for m sufficiently large. The second and third of these maps are flat, by [6,
Prop. 5.3.18] and [6, Prop. 5.3.11 (ii)] respectively, and the first is flat, by [16,
Rem. 3.2]. Thus Dan(H◦,K)b is indeed a flat Dla(H◦,K)b-module.

It follows from [6, Prop. 5.3.11 (i)] that Dan(H◦,K)(m)
b is a Noetherian Banach

algebra for any value of m. As was observed in the proof of [6, Thm. 1.2.11], the
tensor product Dan(H◦,K)(m)

b ⊗Dla(H◦,K)b
M is a finitely generated Dan(H◦,K)(m)

b -
Banach module, and hence the natural map

Dan(H◦,K)(m)
b ⊗Dla(H◦,K)b

M → Dan(H◦,K)(m)
b ⊗̂

Dla(H◦,K)b

M

is an isomorphism for any m. Since the natural maps

Dan(H◦,K)b ⊗Dan(H◦,K)(m) (Dan(H◦,K)(m) ⊗Dla(H◦,K)b
M)

→ Dan(H◦,K)b ⊗Dla(H◦,K)b
M

and

Dan(H◦,K)b ⊗̂
Dan(H◦,K)(m)

(Dan(H◦,K)(m) ⊗̂
Dla(H◦,K)b

M)

→ Dan(H◦,K)b ⊗̂
Dla(H◦,K)b

M

are also both isomorphisms, it thus follows from Lemma A.6 that (A.12) is indeed
an isomorphism, and also that Dan(H◦,K)b ⊗Dla(H◦,K)b

M is finitely presented as
a Dan(H◦,K)-module. �
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Corollary A.13. If H is a good analytic open subgroup of G, then the functor
V 7→ VH◦−an on the category of admissible locally analytic G-representations is exact
(in the strong sense that it takes an exact sequence of admissible locally analytic
representations to a strict exact sequence of nuclear Fréchet spaces).

Proof. By Proposition A.1 (and the fact that passing to duals is exact, by the
Hahn-Banach theorem), to prove the corollary it suffices to show that the functor

M 7→ Dan(H◦,K)b ⊗̂
Dla(H◦,K)b

M

is an exact functor on the category of coadmissible Dla(H◦,K)b-modules.
If 0 →M → N → P → 0 is a short exact sequence of coadmissible Dla(H◦,K)b-

modules, then it follows from Lemma A.11 that

0 → Dan(H◦,K)b ⊗Dla(H◦,K)b
M → Dan(H◦,K)b ⊗Dla(H◦,K)b

N

→ Dan(H◦,K)b ⊗Dla(H◦,K)b
P → 0

is a sequence of continuous morphisms of finitely presented compact type topological
Dan(H◦,K)b-modules, which is short exact in the algebraic sense (i.e. ignoring
topologies). Proposition A.10 then implies that the maps are strict. �

Corollary A.14. If V is an admissible locally analytic representation of G, and
if H is a good analytic open subgroup of G, then (VH◦−an)′ is finitely presented as
a Dan(H◦,K)-module.

Proof. This was noted in the proof of the preceding corollary. �
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