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1. Introduction

The aim of this paper is to establish (under certain technical hypotheses) the
local-global compatibility conjecture introduced in [38]. As one application, we
obtain results related to the Fontaine–Mazur conjecture on two-dimensional Galois
representations.

1.1. The local-global compatibility conjecture. In [38] we made the following
local-global compatibility conjecture (Conjecture 1.1.1 of that reference):

1.1.1. Conjecture. If V is an odd irreducible continuous two-dimensional represen-
tation of GQ, defined over a finite extension E of Qp, and unramified outside of a
finite set of primes, then the GL2(Af )-representation HomE[GQ](V, Ĥ1

E) decomposes
as a restricted tensor product

HomE[GQ](V, Ĥ1
E) ∼−→ B(V |GQp

)⊗
⊗
` 6=p

′ π`(V ).

In the statement of the conjecture, Ĥ1
E denotes the p-adically completed coho-

mology of the tower of modular curves (as defined in [35]; see also Subsection 5.1
below), B(V |GQp

) denotes the admissible unitary Banach space representation of
GL2(Qp) associated to V |GQp

via the p-adic local Langlands correspondence, and
for each prime ` 6= p, π`(V ) is the admissible smooth representation of GL2(Q`)
associated to V |GQ`

via (a modified version of) the classical local Langlands corre-
spondence. (The representation that we here denote π`(V ) was denoted by πm

` (V )
in [38]. It coincides with the representation attached to V |GQ`

by the classical local
Langlands correspondence with respect to the Tate normalization, except in those
cases in which the latter representation is not generic (i.e. not infinite-dimensional).
See Subsection 4.2 below for a precise specification of π`(V ).)

1.1.2. Remark. In fact, Conjecture 1.1.1 is likely false as stated in one particular
case — namely, when the local Galois representation V |GQp

is a twist of an extension
of the cyclotomic character by the trivial character; see Remark 6.1.23 below.

At the time that [38] was written, the existence of a p-adic local Langlands corre-
spondence for two-dimensional p-adic representations of GQp was still conjectural.
However, such a correspondence has now been constructed by Colmez and Kisin
[25, 61]. We rely heavily on the deformation-theoretic formulation of the corre-
spondence due to Kisin [61], not only to give Conjecture 1.1.1 a precise sense, but
also as a key tool in our arguments. For our application to the Fontaine–Mazur
conjecture, we also rely crucially on Colmez’s results on the non-vanishing of locally
algebraic vectors [25, Thm. VI.6.18].
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1.2. Statement of results. We work in the context of promodular Galois rep-
resentations. Let E be a finite extension of Qp, with ring of integers O, residue
field k, and uniformizer $. Recall that a continuous irreducible two-dimensional
representation V of GQ over E is called promodular if it is isomorphic to the Galois
representation attached to a cuspidal p-adic modular eigenform of some (possibly
non-integral) weight, or equivalently, if the pseudo-representation attached to V
lies in the Zariski closure, in an appropriate deformation space, of the set of p-adic
pseudo-representations attached to classical cuspforms. (See e.g. [38, §7.3].)

The following theorem is our main result in the direction of Conjecture 1.1.1. It
is proved in Subsection 6.2 below.

1.2.1. Theorem. Let V be a continuous, irreducible, promodular two-dimensional
representation of GQ over E, unramified outside of a finite set of primes. Let V
denote the residual representation attached to V , and assume that the following
conditions are satisfied:

(a) V is absolutely irreducible.

(b) V |GQp
6∼ χ⊗

(
1 ∗
0 ε

)
for any k-valued character χ of GQp (where ∗ may

or may not be zero, and ε denotes the mod p cyclotomic character).
The following conclusions then hold:

(1) For some finite set of primes Σ containing the primes at which V is ram-
ified, together with p, there is a non-zero GL2(Qp)×GL2(AΣ

f )-equivariant
map

B(V |GQp
)⊗

⊗
` 6∈Σ

′ π`(V ) → HomE[GQ](V, Ĥ1
E).

If, furthermore, V |GQp
is neither the direct sum of two characters, nor an

extension of a character by itself, then any such map is an embedding.

(2) If V is p-distinguished, i.e. V |GQp
6∼ χ⊗

(
1 ∗
0 1

)
for any k-valued char-

acter χ of GQp
(where ∗ may or may not be zero), then there is a GL2(Af )-

equivariant isomorphism

B(V |GQp
)⊗

⊗
` 6=p

′ π`(V ) ∼−→ HomE[GQ](V, Ĥ1
E).

In fact, in the situation of part 2 of the theorem, we prove a stronger result, which
describes not only the multiplicity spaces HomE[GQ](V, Ĥ1

E) for those V lifting V ,
but the structure of the summand of Ĥ1

E itself (and even its unit ball Ĥ1
O) obtained

by localizing at V . (See Theorem 6.2.13 below for the precise statement.) As well
as the p-adic local Langlands correspondence of [25, 61], this description involves
the local Langlands correspondence in families developed in [43] (and recalled in
Section 4 below).

As explained in [38], Theorem 1.2.1 has the following corollary (proved in detail
as Theorems 7.1.1 and 7.2.1 below). It is here that we use Colmez’s result on the
non-vanishing of locally algebraic vectors, a result which was stated as one of the
conjectural properties of the p-adic local Langlands correspondence in [38].

1.2.2. Corollary. Let V be a continuous, irreducible, promodular two-dimensional
representation of GQ over E, unramified outside of a finite set of primes. Let V
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denote the residual representation attached to V , and assume that the following
conditions are satisfied:

(a) V is absolutely irreducible.

(b) V |GQp
6∼ χ⊗

(
1 ∗
0 ε

)
for any k-valued character χ of GQp (where ∗ may

or may not be zero).
The following conclusions then hold:

(1) If V |GQp
is trianguline, then V is a twist of the Galois representation at-

tached to an overconvergent p-adic cuspidal eigenform of finite slope.
(2) If V |GQp

is de Rham with distinct Hodge–Tate weights, and if V |GQp
is not

the direct sum of two characters that have isomorphic reductions modulo $,
then V is a twist of the Galois representation attached to a classical cuspidal
eigenform of weight k ≥ 2.

Our requirement that V be promodular is little restriction, in light of the fol-
lowing theorem, which is a consequence of the results and methods of the papers
[4, 31, 53, 54, 55, 60]. (See Subsection 7.3 below for the proof.)

1.2.3. Theorem (Böckle, Diamond–Flach–Guo, Khare–Wintenberger, Kisin).
Let V be a continuous, irreducible, odd, two-dimensional representation of GQ
over E, unramified outside of a finite set of primes Σ. Assume that the follow-
ing conditions hold:

(a) p > 2.

(b) V |GQ(ζp)
is absolutely irreducible.

(c) V |GQp
6∼ χ ⊗

(
1 ∗
0 1

)
or χ ⊗

(
1 ∗
0 ε

)
, for any k-valued character χ

of GQp (where ∗ may or may not be zero).
Then V is promodular, of tame level divisible only by the primes in Σ \ {p}.

Combining this result with corollary 1.2.2, we obtain the following result.

1.2.4. Theorem. Let V be a continuous, irreducible, odd, two-dimensional repre-
sentation of GQ over E, unramified outside of a finite set of primes, with associated
residual representation V . Assume that the following conditions hold:

(a) p > 2.

(b) V |GQ(ζp)
is absolutely irreducible.

(c) V |GQp
6∼ χ ⊗

(
1 ∗
0 1

)
or χ ⊗

(
1 ∗
0 ε

)
, for any k-valued character χ

of GQp
(where ∗ may or may not be zero).

The following conclusions then hold:
(1) If V |GQp

is trianguline, then V is a twist of the Galois representation at-
tached to an overconvergent p-adic cuspidal eigenform of finite slope.

(2) If V |GQp
is de Rham with distinct Hodge–Tate weights, then V is a twist

of the Galois representation attached to a classical cuspidal eigenform of
weight k ≥ 2.

The first of these results confirms (under the given hypotheses) a conjecture of
Kisin. (See [56, Conj. 11.8], as well as the discussion in note (2) on p. 450 of the
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same paper.) The second of these results confirms (again for V satisfying the given
hypotheses) a conjecture of Fontaine and Mazur [46, Conj. 3c].

1.2.5. Remark. A result similar to part 2 of Theorem 1.2.4, but with slightly differ-
ent hypotheses on V , has been proved by Kisin [59]. In Kisin’s result, hypothesis (c)

is replaced by the condition that V |GQp
6∼ χ⊗

(
ε ∗
0 1

)
for any k-valued character

χ of GQp (where ∗ may or may not be zero). As a corollary of his result, Kisin has
deduced Conjecture 11.8 of [56] (under the same set of hypotheses on V ), a result
which is related to, but somewhat weaker than, part 1 of our Theorem 1.2.4.

In fact, what Kisin established in [59] is that the Fontaine–Mazur conjecture for
two-dimensional representations of GQ (under the additional technical hypotheses
just described) follows from the existence of a p-adic local Langlands correspon-
dence for two-dimensional de Rham representations of GQp

with distinct Hodge–
Tate weights, provided that this correspondence is compatible in a suitable manner
with the classical correspondence. Such a correspondence, satisfying the requisite
compatibility, had already been constructed by Berger and Breuil in the crysta-
belline setting [3] and by Colmez in the semi-stable (up to a twist) setting [22].
As we have already remarked, the p-adic local Langlands correspondence for two-
dimensional representations of GQp

has now been constructed in full generality by
Colmez and Kisin. In the case of two-dimensional representations that are po-
tentially crystalline, but not crystabelline, we establish the compatibility with the
classical correspondence in Theorem 3.3.22 below, building on Colmez’s results
in [25]. This completes the proof of the properties of the p-adic local Langlands
correspondence required to deduce the Fontaine–Mazur conjecture in such cases
(i.e. potentially crystalline, but not crystabelline, locally at p) via the arguments
of [59].

Some further discussion of the relationship between our approach and Kisin’s
approach to the Fontaine–Mazur conjecture is given in Subsection 1.4 below.

Our local-global compatibility result (in the strong form provided by Theo-
rem 6.2.13) has as a corollary the following theorem, which describes the multi-
plicities with which a mod p Galois representation can appear in the mod p étale
cohomology of a modular curve of arbitrary level.

Write H1
k := lim

−→
N

H1
ét(Y (N), k), the inductive limit over all levels N of the étale

cohomology, with coefficients in k, of the full (geometrically disconnected) modular
curve of level N . This is naturally a representation of GQ ×GL2(Af ).

1.2.6. Theorem. Let ρ : GQ → GL2(k) be absolutely irreducible and modular (or
equivalently, odd [53, 54, 55, 60]). Suppose furthermore that p > 2, and that ρ |GQp

is

not equivalent to either χ⊗
(

1 ∗
0 1

)
or χ⊗

(
1 ∗
0 ε

)
, for any k-valued character

χ of GQp (where ∗ may or may not be zero). Then there is a k-linear and GL2(Af )-
equivariant isomorphism

π ⊗
⊗
` 6=p

′ π(ρ |GQ`
) ∼−→ Homk[GQ](ρ,H1

k),
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where the representation π of GL2(Qp) is attached to ρ |GQp
via the mod p local

Langlands correspondence of Theorem 3.3.2 below, and for each ` 6= p, the repre-
sentation π(ρ |GQ`

) of GL2(Q`) is attached to ρ |GQ`
via the mod p local Langlands

correspondence for GL2(Q`) given in [43] (and recalled in Theorem 4.3.1 below).

1.2.7. Remark. I expect the same result to hold when p = 2, but our imperfect
understanding of the mod 2 and 2-adic local Langlands correspondence for GL2(Q`)
(` 6= 2) leads to a less definitive result in this case; see Remark 6.1.21.

1.2.8. Remark. Theorem 1.2.6 is related to, and indeed generalizes, classical “mod
p multiplicity one” results due to Mazur, Ribet, Wiles, and others (see e.g. [64, 72,
65, 48, 33, 86]). These results describe the multiplicity with which ρ appears in the
cohomology of modular curves of level Γ1(N), when N is prime-to-p, or divisible
by at most a single power of p. They may be recovered from Theorem 1.2.6 (for
those ρ to which the theorem applies) by passing to the invariants under a suitably
chosen compact open subgroup of GL2(Af ); we should point out, though, that
these results are among the tools that we use in the proof of Theorem 1.2.6. (Note,
however, that we only use the more straightforward results of [64, 72, 65, 48, 33];
we do not use either the existence of companion forms [48] or [86, Thm. 2.1 (ii)]
in the more difficult case when (in the notation of that reference) ∆(p) is trivial
mod m. Indeed, Theorem 1.2.6 gives a new proof of these results, for those ρ to
which it applies; see Remark 6.2.15 below.)

1.2.9. Remark. We conjecture that Theorem 1.2.6 continues to hold in the case

when ρ |GQp
is equivalent to χ ⊗

(
1 ∗
0 1

)
, for some k-valued character χ of GQp

(with p > 3, so that ρ |GQp
is not equivalent to χ ⊗

(
1 ∗
0 ε

)
, for any k-valued

character χ of GQp
). In the remaining cases, when ρ is equivalent to χ⊗

(
1 ∗
0 ε

)
,

for some k-valued character χ of GQp
, we also expect an analogous result to hold.

However, the correct definition of π in this case is more problematic (and in par-
ticular, is not provided by Theorem 3.3.2 below). See Remark 6.1.23 below for a
further discussion of this point.

1.2.10. Remark. In the paper [79] Serre stated his conjecture that any odd con-
tinuous irreducible representation ρ : GQ → GL2(k) should be modular, of minimal
weight and prime-to-p level determined by the local properties of ρ at p and away
from p respectively. This conjecture has now been proved [53, 54, 55, 60]. In the
same paper, Serre raised the question as to whether his conjecture might admit a
reformulation in terms of the mod p representation theory of the adèlic GL2 [79,
Question 3.4 (2)]. The preceding theorem gives a positive answer to Serre’s ques-
tion (for those ρ to which it applies). Indeed, from this representation-theoretic
statement one can determine the minimal weight of ρ (which is determined by
the socle of π as a GL2(Zp)-representation — see Lemma 3.5.5 below, as well as
the discussion in the proof of [14, Thm. 3.15]) as well as the minimal prime-to-p-
level of ρ (which is equal to the conductor of the smooth GL2(Ap

f )-representation⊗
` 6=p π(ρ |GQ`

)).

As was already intimated in the discussion of Remark 1.2.5, as another ap-
plication of our results we prove Theorem 3.3.22 below, which for any de Rham
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representation with distinct Hodge–Tate weights V of GQp
over E, gives a precise

description of the locally algebraic vectors in the Banach space representation B(V )
of GL2(Qp) associated to V via the p-adic local Langlands correspondence. This
completes the results of Colmez in [25, §§VI.6], where this question is investigated,
and completely solved in the case when V becomes crystalline or semi-stable over
an abelian extension of Qp.

1.3. The organization of the paper. In Section 2 we introduce some notation
which will be in force throughout the paper. The next three sections are prepara-
tory in nature. In Section 3 we recall various recent results (primarily due to
Colmez and Kisin) that construct the mod p and p-adic local Langlands corre-
spondences, and establish some additional related results. In Section 4, we recall
some of the results of [43] regarding the local Langlands correspondence at primes
` 6= p in characteristic p or over complete local rings of residue characteristic p. In
Section 5 we recall the construction of (and introduce notation for) the p-adically
completed cohomology of modular curves, as well as some related constructions
and results (in particular, for the mod p cohomology of modular curves). We give
representation-theoretic interpretations of several results from the literature in this
context, including the mod p multiplicity one results of [64, 72, 65, 48, 33], as well
as some of the results from the theory of p-adically ordinary modular forms.

Section 6 presents our main results. As already noted above, in addition to
Theorem 1.2.1, which describes the multiplicities with which various Galois repre-
sentations appear in p-adically completed cohomology, we prove (in many cases) a
stronger result (Theorem 6.2.13), which gives a complete description (as a repre-
sentation of GQ ×GL2(Af )) of the space of p-adically completed cohomology itself
(after localizing at an appropriately chosen two-dimensional mod p Galois repre-
sentation). Finally, in Section 7, we deduce the various modularity results stated
above.

In the appendices we develop some basic functional analysis that is required in
the main body of the text.

1.3.1. Remark. It may be useful, for those readers who are primarily interested
in the proof of Theorem 1.2.4, to indicate those parts of the paper that are nec-
essary for the proof of this result. The proof of the theorem (other than part 2
of the theorem in the case when V|GQp

is the direct sum of two characters) re-
quires the material of Subsections 3.1–3.4 and 5.1–5.4; the following material from
Section 6: Definition 6.1.1, Theorem 6.2.1, Proposition 6.2.2, the proof of Theo-
rem 1.2.1 (which is given in Subsection 6.2), Subsection 6.3 up to and including
Corollary 6.3.17 (always taking θ = πm

Σ ), and Subsection 6.4 up to Remark 6.4.3;
Subsections 7.1–7.3; and the material of the appendices. The same material (but
substituting Subsection 7.4 in place of Subsections 7.1–7.3) serves to give the proof
of Theorem 3.3.22.

The remainder of the paper (including all the material in Section 4) is devoted
to proving the precise local-global compatibility of Theorem 1.2.1 (2). The most
difficult case of the argument is when V |GQp

is a direct sum of two characters,
and a large part of the paper is devoted solely to dealing with this case; this is
true in particular of Subsections 3.6, 3.7, 5.5, 5.6, and 6.5. Our proof of part 2 of
Theorem 1.2.4 (i.e. the Fontaine–Mazur conjecture) in the case when V|GQp

is the
direct sum of two characters requires the full strength of all this material; on the
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other hand, from the point of view of the Fontaine–Mazur conjecture (as opposed to
local-global compatibility), this case is little interest, since Skinner and Wiles have
proved much stronger results in the direction of the Fontaine–Mazur conjecture in
the ordinary case [80, 81].

1.4. Background and additional remarks. In this section we describe some
of the previous work on the problems considered in this paper, and compare our
approach to that of the earlier work. We will begin by discussing the Fontaine-
Mazur conjecture [46, Conj. 3c]. In fact, the version of the conjecture that we
address in this paper is the following:

1.4.1. Conjecture. If V is an odd irreducible continuous two-dimensional repre-
sentation of GQ, defined over a finite extension E of Qp, unramified outside of
a finite set of primes, and de Rham at p with distinct Hodge–Tate weights, then
V is a twist of the Galois representation attached to a classical modular form of
weight k ≥ 2.

1.4.2. Remark. It is believed that the condition of being odd can be omitted
from this conjecture, i.e. that it is a consequence of the other hypotheses (see [46,
Conj. 3c]). Recently, this has been verified by Calegari [15] in the case when V is
ordinary at p (under the technical assumptions that p ≥ 7, and that the associated
residual representation has image containing SL2(Fp)).

The original breakthrough in the direction of Conjecture 1.4.1 was made in the
work of Wiles [86] and Taylor–Wiles [83]. Further progress was made in the papers
[30], [26], [11], [32], [31], [82], [57], [58], [59], [60]. Each of these papers, other
than [59], establishes a result in the direction of Conjecture 1.4.1 of the following
form: if V is as in the statement of the theorem, and if furthermore p > 2 (except
in [32, 60], which treat the case p = 2), V is modular and V |GQ(ζp)

is irreducible
(where V denotes the residual Galois representation attached to V ),1 and V satisfies
some additional restrictions, both on the Hodge–Tate weights of V |GQ(ζp)

and (with
the exception of [57] and [60]) on the amount of ramification occurring in the type
of the de Rham representation V |GQp

, then V is modular.2 (For a discussion of the
result of [59], see Remark 1.2.5 above, as well as the remarks below.) Each of these
papers also follows (in broad outline) the strategy originally implemented in [86]
and [83], namely, to consider a deformation ring R parametrizing deformations of
V of the same Hodge–Tate weights and type as V , as well as a Hecke algebra T
parametrizing modular deformations of V of these weights and type, and then to
prove that the natural map R→ T is an isomorphism.

In their paper [47], Gouvêa and Mazur prove that, under sufficiently strong
hypotheses on V , every deformation of V is promodular, i.e. is attached to a p-
adic modular form. More precisely, Gouvêa and Mazur considered an unrestricted

1In each of the papers [32] and [60], both of which consider the case p = 2, the irreducibility

condition on V |GQ(ζp)
— the so-called Taylor–Wiles non-degeneracy condition — is replaced by

a slight variant.
2We should mention that in the case when V is assumed to be ordinary, or nearly ordinary,

at p, it is not necessary to impose any restrictions on the Hodge–Tate weights of V , essentially
because Hida theory [50] provides a very tight link between the p-ordinary eigenforms in an
arbitrary weight k ≥ 2 and the p-ordinary eigenforms in weight 2. The papers [80] and [81] prove
very strong results in the direction of Conjecture 1.4.1 in the p-ordinary case; in particular, they
succeed in eliminating the Taylor–Wiles non-degeneracy condition in this case.
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deformation ring R associated to V , as well as a Hecke algebra T acting on an ap-
propriate space of p-adic modular forms, and proved that the natural map R→ T
is an isomorphism. A little later, Böckle [4] was able to combine the results of
[86, 83, 30] with the argument of [47] to prove in some generality that an arbitrary
deformation of a modular V is necessarily pro-modular. (Theorem 1.2.3 above pro-
vides a generalization of Böckle’s result.) The results of [47] and [4] are sometimes
called “big R equals big T” theorems, to distinguish them from the “small R equals
small T” theorems discussed in the preceding paragraph.

When they were first proved, the “big R equals big T” result of [47, 4] appeared
to have no bearing on Conjecture 1.4.1, since one seemed no closer to proving that
conjecture in the case of V associated to p-adic modular forms than in the case
of arbitrary V .3 However, in [38] we showed that Conjecture 1.1.1 for V implies
Conjecture 1.4.1 for V , provided that the p-adic local Langlands correspondence
exists, and has sufficiently nice properties. This suggested the approach to Con-
jecture 1.4.1 that we take in this paper, namely to prove Conjecture 1.1.1 for all
promodular deformations of a given modular V , and then to combine this result
with a “big R equal big T” theorem to deduce Conjecture 1.4.1 for all deformations
of V . In fact, one can hope to implement this strategy for any odd V , since, as we
recalled above, Serre’s celebrated conjecture on the modularity of such a V [79] has
now been proved [53, 54, 55, 60].

Of course, this strategy depends on the existence of a p-adic local Langlands
correspondence with the required properties. The original idea of the p-adic local
Langlands correspondence for two-dimensional representations of GQp is due to
Breuil [9], who conjectured the form that such a correspondence should take in the
case of de Rham representations with distinct Hodge–Tate weights. In [10], Breuil
also formulated a version of Conjecture 1.1.1, for those V associated to classical
modular forms of weight k ≥ 2. Some results in the direction of this conjecture
were obtained in [10], [12], and [38].

To the best of my knowledge, the suggestion that the p-adic local Langlands
correspondence should exist for arbitrary two-dimensional representations of GQp

(rather than just de Rham representations with distinct Hodge–Tate weights, as
considered by Breuil) was first made by Colmez (in his talk at the Durham sympo-
sium in the summer of 2004). This in turn suggested our generalization of Breuil’s
local-global compatibility conjecture (i.e. Conjecture 1.1.1).

Prior to the workshop on p-adic representations held in Montréal in Septem-
ber 2005, Conjecture 1.1.1 seemed inaccessible; indeed, the p-adic local Langlands
correspondence was not yet defined in general. After the Montréal workshop, the
situation changed completely. Colmez, in his talk at the workshop, explained the
construction of a functor from admissible smooth GL2(Qp)-representations over Ar-
tinian Zp-algebras to (ϕ,Γ)-modules (and hence to local Galois representations); see
[25] and Subsection 3.2 below. Soon after the workshop, Kisin explained to Colmez
how his functor could be used to provide a deformation-theoretic construction of the
p-adic local Langlands correspondence for GL2(Qp), provided that a certain map
on Exts was injective. Colmez quickly saw how to prove this injectivity result [25]

3The only prior result that we are aware of that considers Conjecture 1.4.1 specifically for Galois
representations arising from p-adic modular forms is the paper [56] of Kisin, which essentially
proves the conjecture in the case of representations associated to overconvergent p-adic eigenforms
of finite slope.
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(which has since been proved in greater generality by Paškūnas [67]), and as a conse-
quence he and Kisin were able to construct the previously hypothetical p-adic local
Langlands correspondence. After learning of this construction of Colmez and Kisin,
I realized that using it (and especially, exploiting its deformation-theoretic formu-
lation), one could deduce (many cases of) local-global compatibility for promodular
Galois representations (i.e. Theorem 1.2.1 above), and hence Theorem 1.2.4 in the
direction of the Fontaine–Mazur conjecture.

Already in his talk at the Montréal conference, Kisin had announced a result
on the Fontaine–Mazur conjecture, essentially identical to part 2 of Theorem 1.2.4
above, in the case when V |GQp

is absolutely irreducible and V |GQp
is crystabelline.

His argument also relied on results from the p-adic local Langlands correspondence,
in particular, the results of [3]. Indeed, as we already noted in Remark 1.2.5, it
is not the triangulanity of V |GQp

which is crucial to Kisin’s method, but rather
the compatibility between the p-adic and classical local Langlands correspondences
for V |GQp

, which at the time of the Montréal conference was known only in the
trianguline context [3, 22]. Soon after the conference, Kisin was able to simplify
his arguments through the use of Colmez’s functor, while simultaneously general-
izing them so as to include the case when V |GQp

is reducible and (now that the
compatibility between the p-adic and classical local Langlands for two-dimensional
representations of GQp has been completely proved) V |GQp

is not necessarily trian-
guline. (See [59, Thm., p. 642] and the discussion following the statement of that
theorem.)

Despite the similarity of several ingredients, the approach to the Fontaine–Mazur
conjecture taken in this paper is quite different from that of [59]. The argument
of [59] involves a “small R equals small T” theorem in the spirit of the original
approach of Wiles [86] and Taylor–Wiles [83]; Colmez’s functor and the p-adic local
Langlands correspondence appear as tools for obtaining control over the compli-
cated singularities of the deformation spaces that can arise when one makes no
restrictions on the weight and type. On the other hand, the argument of this paper
relies on a “big R equals big T” theorem. It is local-global compatibility, rather
than a Taylor–Wiles-type argument, that then allows one to characterize the clas-
sical points among the promodular ones in terms of their p-adic Hodge theoretic
properties.

1.5. Acknowledgments. The debt that this paper owes to the ideas of Christophe
Breuil, Pierre Colmez, and Mark Kisin regarding the p-adic local Langlands cor-
respondence will be evident to the reader. In particular, I would like to thank
Pierre Colmez and Mark Kisin for sharing their ideas and results with me. I would
also like to thank Mark Kisin, as well as Christophe Breuil, Kevin Buzzard, Frank
Calegari, Brian Conrad, Toby Gee, James Newton, and Robert Pollack, for their
helpful conversations and correspondence related to this article.

I gave lectures on some of the results of this article at a workshop at the Amer-
ican Institute of Mathematics in February 2006, and at the special semester on
eigenvarieties at Harvard in April 2006. I would like to thank both institutions, as
well as Kiran Kedlaya and David Savitt (who organized the AIM workshop) and
Barry Mazur (who organized the special semester on eigenvarieties at Harvard).
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Finally, I would like to thank Adrian Iovita and Henri Darmon, as well as the
Centre de Recherches Mathématiques at the University of Montréal, for organizing
and hosting the wonderful workshop on p-adic representations in September 2005.

2. Notation and conventions

Throughout the paper, we fix a prime p, as well as a finite extension E of Qp,
with ring of integers O. We let k denote the residue field of O, and $ a choice
of uniformizer of O. Let Art(O) denote the category of local Artinian O-algebras
whose residue fields are a finite extension of k (or equivalently, which are of finite
length asO-modules), and let Comp(O) denote the category of complete Noetherian
local O-algebras whose residue fields are a finite extension of k.

We let Q denote the algebraic closure of Q in C, and for each prime ` we choose an
algebraic closure Q`. As usual, we write GQ to denote the Galois group Gal(Q/Q)
and GQ`

to denote the Galois group Gal(Q`/Q`). For each prime ` we also fix
an isomorphism C ∼−→ Q` (whose choice, however, will play no overt role). This
determines an embedding Q ↪→ Q`, and hence an embedding GQ`

↪→ GQ, via which
we identify GQ`

with a decomposition group at ` in GQ. We also fix an embedding
E ↪→ Qp (the choice of which, again, will play no overt role). Given this choice,
together with our choice of isomorphism C ∼−→ Qp, it makes sense to speak of
modular forms being defined over E, or of a C-linear representation of a group
being defined over E.

We let Ẑ denote the profinite completion of Z, so Ẑ ∼−→
∏

` prime Z`. We let Af

denote the ring of finite adèles over Q; so Af = Q ⊗Z Ẑ. More generally, for any
finite set of primes Σ we write ẐΣ :=

∏
` 6∈Σ Z` and AΣ

f := Q⊗Z ẐΣ.
We will frequently employ the following notation related to finite sets of primes:

we will let Σ0 denote a finite set of primes that does not contain p, and then write
Σ := Σ0 ∪ {p}.

For each prime `, local class field theory gives an embedding Q×
` ↪→ Gab

Q`
(the

local Artin map), which we normalize by mapping ` to a lift of geometric Frobenius.
Global class field theory gives an isomorphism

Ẑ× ∼−→ Q×
>0\A

×
f

∼−→ Gab
Q

(the first isomorphism being induced by the embedding Ẑ× ↪→ A×f ), which we
normalize to be compatible with our chosen normalization of the local Artin maps.

We let ε : GQp → Z×p denote the p-adic cyclotomic character, and ε : GQp → F×p
the mod p cyclotomic character (i.e. the mod p reduction of ε). We also regard ε
and ε as characters of Q×

p , via local class field theory.
For any prime ` we let | |` denote the `-adic absolute value on Q`, normalized

so that |`|` = `−1. Note that the if ` 6= p, then the p-adic cyclotomic character of
GQ`

corresponds to the character | |` of Q×
` via local class field theory.

If V is any GQp-representation, then we write V ab to denote the maximal subrep-
resentation of V on which GQp acts through its maximal abelian quotient. In other
words, V ab denotes the set of fixed points of the commutator subgroup of GQp .

We say that a continuous finite-dimensional representation ofGQp is crystabelline
if it becomes crystalline after restricting to the Galois group of an abelian extension
of Qp.
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We write G := GL2(Qp). If Σ0 is a finite set of primes not containing p, then we
write GΣ0 :=

∏
`∈Σ0

GL2(Q`). We let T denote the diagonal torus in G, namely

T :=
{ (

a 0
0 d

)
| a, d ∈ Q×

p

}
⊂ G,

and let S denote the following subtorus of T :

S :=
{ (

a 0
0 1

)
| a ∈ Q×

p

}
⊂ T.

We will identify S with Q×
p in the evident manner, i.e. via the isomorphism Q×

p 3

a 7→
(
a 0
0 1

)
∈ S. We let B denote the upper triangular Borel subgroup of G, with

unipotent radical N (so B = TN), and we write P = SN ⊂ B. We let B denote
the lower triangular Borel subgroup of G, with unipotent radical N (so B = TN,
and T = B

⋂
B). We typically denote a character of T via χ1 ⊗ χ2, where the χi

are characters of Q×
p (and χ1 ⊗ χ2 :

(
a 0
0 d

)
7→ χ1(a)χ2(d)).

If H is any locally compact group, and A is a ring, then we say that a repre-
sentation of H on an A-module M is smooth if every element m ∈ M is fixed by
some open subgroup of H. We say that the representation is smooth admissible if
for every open subgroup H ′ of H, the A-submodule MH′ of M , consisting of H ′-
invariant elements, is finitely generated. In the case when H = G (:= GL2(Qp)), we
will apply some additional terminology in the case of non-smooth representations,
based in part on that of [39]. For precise definitions and terminology, the reader is
referred to Subsection 3.1.

For any profinite group H, and any object A of Comp(O), having maximal ideal
m, we let A[[H]] denote the completed group ring

A[[H]] := lim
←−
H′
A[H/H ′],

where H ′ runs over the open subgroups of H, each of the rings A[H/H ′] is equipped
with its m-adic topology, and A[[H]] is equipped with the projective limit topology.
The ring A[[H]] is then a profinite topological ring.

If V is any E-vector space, by a lattice (or O-lattice) in v, we will always mean
a $-adically separated O-submodule of V that spans V over E. Note that if V is
an E-Banach space, then an O-submodule of V is $-adically separated if and only
if it is bounded, and is furthermore $-adically complete if and only if it is closed
in V (or equivalently, open, since any Banach space is barrelled).

If V is a representation of G, then we let Vl.alg denote the G-subrepresentation
of V consisting of the locally algebraic vectors (as defined in [34, Prop.-Def. 4.2.6]).
If we let Ĝ denote the set of isomorphism classes of irreducible finite-dimensional
algebraic representations of G over E, then Vl.alg is the image of the natural evalua-
tion map

⊕
W∈Ĝ lim

−→
H

HomH(W,V )⊗EW → V (the inductive limit being taken over

the directed set of all open subgroups H of G); see [34, Prop. 4.2.4, Cor. 4.2.7]. If
H is a fixed open subgroup of G, then we write VH−alg to denote the E-subspace of
V consisting of H-algebraic vectors, which we define to be the image of the natural
evaluation map

⊕
W∈Ĝ HomH(W,V )⊗E W → V .

We normalize the local Langlands correspondence for GL2(Q`) (for any prime `)
in the following way: if π = IndG

B
χ1 ⊗ χ2 is an irreducible parabolically induced
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representation (with the χi being smooth characters of Q×
p with values in the mul-

tiplicative group of some characteristic zero field), then we define WD(π), the as-
sociated Weil–Deligne representation (which in the case is simply a representation
of the Weil group) to be χ1⊕χ2| |−1

` , where we now regard the χi as characters of
Wp, via the reciprocity isomorphism Q×

p
∼−→ Wab

p of local class field theory. (See
Subsection 4.2 for a further explication of our normalization.)

In Sections 5 and 6 below, we consider the action of GQ×GL2(Af ) on the induc-
tive limit of the cohomology of modular curves, and on its p-adic completion. We
follow the same conventions for this action as in the reference [38]. Unfortunately,
these conventions do not agree with those of [16]: if g ∈ GL2(Af ), then the auto-
morphism of the cohomology of modular curves induced by g that we consider in
this paper is equal to the automorphism induced by the inverse transposed element
(g−1)t under the action considered in [16].

3. Mod p and p-adic local Langlands

Our goal in this section is to describe certain relationships between, on the
one hand, the mod p and p-adic representation theory of G, and, on the other,
two-dimensional mod p and p-adic representations of the local Galois group GQp ,
relationships which are known respectively as the mod p and p-adic local Langlands
correspondence. In the remainder of these introductory remarks we briefly recall
the history of these two correspondences.

The semi-simple mod p local Langlands correspondence (so-called because it
does not take into account possible extension classes) was constructed by Breuil
[8, Déf 1.1]. The possible existence of a p-adic local Langlands correspondence was
originally suggested by Breuil in [8, 9]. Substantial progress on its development
was made in the papers [22, 3, 23, 2], after Colmez observed a relationship between
some of the constructions introduced by Breuil in [9] (in the context of the repre-
sentation theory of G) and certain constructions in the theory of (ϕ,Γ)-modules
(which provide a way of describing GQp

-representations).
In his talk at the Montréal conference in September 2005, Colmez further de-

veloped this relationship by defining an actual functor from G-representations to
GQp

-representations. Upon seeing Colmez’s talk, Kisin suggested that this functor
might be combined with a certain deformation-theoretic argument to construct the
p-adic local Langlands correspondence in general. Kisin’s suggestion was predicated
upon the construction of a mod p correspondence that enhanced the correspondence
considered in [8, 2] by taking extensions into account. Such an enhanced mod p
correspondence has now been constructed by Colmez (in most cases — see Theo-
rem 3.3.2 below), and building on this and Kisin’s deformation-theoretic strategy,
the p-adic local Langlands correspondence has now been constructed – see [25, 61],
as well as Theorem 3.3.13, Definition 3.3.15, and Remark 3.3.19 below.

In fact, in the paper [25] Colmez goes significantly further than he went in
his Montréal lecture, and as well as defining a functor from G-representations to
GQp-representations, he gives a construction going in the opposite direction, from
two-dimensional GQp

-representations to G-representations. In this way he is able to
construct the p-adic local Langlands correspondence without directly using defor-
mation theory (although the construction of the functor still employs a version of
Kisin’s deformation-theoretic strategy). However, for the purposes of this paper, we
require Kisin’s full-blown deformation-theoretic formulation of the correspondence.
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3.1. Representations of G. Let A be an object of Comp(O), with maximal
ideal m. In the paper [39], we introduced various categories of representations of
the group G over A.4 For the purposes of this paper, the most important of these
is the category of $-adically admissible G-representations over A, whose definition
we will recall here.

3.1.1. Definition. An A[G]-module π is called a $-adically admissible representa-
tion of G over A if the following conditions are satisfied:

(1) π is $-adically complete and separated.
(2) The O-torsion subspace π[$∞] is of bounded exponent, i.e. π[$i] = π[$∞]

for sufficiently large values of i.
(3) For any i ≥ 0, the induced A[G]-action on π/$iπ satisfies the following

condition: for any element v ∈ π/$iπ, there is some compact open sub-
group H of G and some j ≥ 0 such that v is fixed by H and annihilated
by mj .

(4) The A/m-vector space (π/$π)[m] forms an admissible smooth representa-
tion of G under the induced G-action.

We denote by Mod$−adm
G (A) the category of $-adically admissible represen-

tations of G over A. If A is in fact an object of Art(O), then an A[G]-module
is $-adically admissible if and only if it is a smooth admissible representation
of G in the usual sense, and hence we will also denote this category simply by
Modadm

G (A). Examples of objects in Mod$−adm
G (A) for non-Artinian A are pro-

vided by Lemma 3.1.16 below.

3.1.2. Caution. The reader who consults [39] should be aware that, in the case
when A is not Artinian, the definitions used in [39] of a smooth G-representation
over A, and of an admissible smooth G-representation over A, are not the standard
ones. Throughout this paper, we will always use the standard terminology, as
explained in Section 2.

If π is a$-adically admissible representation ofG over A, then the tensor product
E⊗O π has a natural structure of E-Banach space (given by taking the norm whose
unit ball is the image of π in E ⊗O π). The actions of each of A and G on E ⊗O π
will then be jointly continuous. (We equip A with its m-adic topology.)

3.1.3. Proposition. If π1 and π2 are two objects of Mod$−adm
G (A) and π1 → π2

is an A[G]-linear morphism, then the induced map on E-Banach spaces

(3.1.4) E ⊗O π1 → E ⊗O π2

necessarily has closed image.

Proof. Replacing π1 and π2 by their maximal O-torsion free quotients (which again
lie in the category Mod$−adm

G (A), by [39, Lem. 2.4.8]), we may assume that each
πi is O-torsion free, and via the natural map πi → E ⊗O πi, may identify πi with
the unit ball in the Banach space E ⊗O πi. Furthermore, replacing π1 by its image
in π2 (which lies in the category Mod$−adm

G (A), by [39, Prop. 2.4.12]), we may
assume that the map π1 → π2, and hence also the map (3.1.4), is injective. From
[39, Prop. 2.4.13] we see that the map π1 → π2 has closed image, and that the

4Although we will only apply the results of this subsection in the case when G = GL2(Qp), in

fact they make sense and are valid for any locally p-adic analytic group G.
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$-adic topology on π2 induces the $-adic topology on π1. This implies that the
map (3.1.4) has closed image, as required. �

3.1.5. Remark. In the case when A = O, the preceding proposition is a conse-
quence of the results of [77].

3.1.6. Lemma. If π1 and π2 are two object of Mod$−adm
G (A) that are torsion free

as O-modules, and if

(3.1.7) π1 → π2

is an A[G]-linear morphism for which the induced map on E-Banach spaces (3.1.4)
is injective, then the given map (3.1.7) is an isomorphism if and only if the map

(3.1.8) (π1/$π1)[m] → (π2/$π2)[m],

obtained by reducing (3.1.7) modulo $ and then passing to the m-torsion parts of
its source and target, is injective.

Proof. Clearly the given condition on (3.1.8) is necessary. We will show that it is
also sufficient.

The assumptions of the lemma imply that (3.1.7) is injective, with O-torsion
cokernel. If we denote this cokernel by π3, then since π1 and π2 are both $-adically
admissible smooth representations of G over A, it follows from [39, Prop. 2.4.13]
that the same is true of π3.

The map (3.1.7) sits in the short exact sequence

0 → π1 → π2 → π3 → 0,

which induces the exact sequence

(3.1.9) 0 → π3[$] → π1/$π1 → π2/$π2.

Since π3 is a $-adically admissible representation of G over A that is torsion as an
O-module, we see that every element of π3 is killed by some power of m. On the
other hand, if (3.1.8) is injective, then we see from a consideration of (3.1.9) that
π3[m] = π3[$,m] = 0. It then follows that in fact π3 = 0, and thus that (3.1.7) is
an isomorphism, as claimed. �

We next recall the definition of a finitely generated augmented representation of
G over A [39, §2.1].

3.1.10. Definition. By a finitely generated augmented representation of G over
A we mean an A[G]-module M equipped with a finitely generated A[[H]]-module
structure for some (equivalently, any) compact open subgroup H of G, such that
the two induced A[H]-actions (the first induced by the inclusion A[H] ⊂ A[[H]]
and the second by the inclusion A[H] ⊂ A[G]) coincide.

We let Modfg aug
G (A) denote the category of finitely generated augmented repre-

sentations of G over A, with morphisms being maps which are simultaneously A[G]-
linear and A[[H]]-linear. Each object of Modfg aug

G (A) is equipped with its canonical
topology [39, Prop. 2.1.2], making it a profinite topological A[[H]]-module for each
compact open subgroup H of G.

We now introduce introduce a class of representations that plays an important
role in the deformation theory of G-representations.
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3.1.11. Definition. We say that an A[G]-module π is an orthonormalizable admis-
sible representation of G over A if the following conditions are satisfied:

(1) π is an orthonormalizable A-module, in the sense of Definition B.1.
(2) The induced G-action on π/miπ makes this quotient an admissible smooth

representation of G over A/mi, for each i ≥ 0.

3.1.12. Proposition. The functor π 7→ HomA(π,A) induces an equivalence of cat-
egories between the category of orthonormalizable admissible representations of G
over A (with morphisms taken to be A[G]-linear maps), and the full subcategory
of Modfg aug

G (A) consisting of finitely generated augmented representations of G on
pro-free A-modules. (See Definition B.10 for the notion of a pro-free A-module.)

Proof. Proposition B.11 shows that π 7→ HomA(π,A) induces an equivalence of
categories between the category of orthonormalizable A-modules and the category
of pro-free profinite A-modules, and also that there is an isomorphism

HomA(π,A)/mi HomA(π,A) ∼−→ HomA/mi(π/miπ,A/mi),

for each i ≥ 0. From this isomorphism, one sees that if π is equipped with an
A-linear G-action, then this action induces an admissible smooth action on π/miπ
if and only if the contragredient action on HomA(π,A) makes HomA(π,A)/mi a
finitely generated augmented G-representation over A/mi. Since this latter condi-
tion holds for all i > 0 if and only if HomA(π,A) is a finitely generated augmented
G-representation over A, the proposition follows. �

We note for the record that there is a broader class of representations containing
the orthonormalizable ones, which we now define, although we will have no need to
consider representations in this class that are not orthonormalizable.

3.1.13. Definition. We say that an A[G]-module π is an m-adically admissible
representation of G over A if the following conditions are satisfied:

(1) π is m-adically complete.
(2) The action map G × π → π is continuous, when π is given its m-adic

topology. (Equivalently, the induced action of G on π/miπ is smooth for
each i ≥ 0.)

(3) The induced representation ofG on π/mi (which is smooth, by (2)) is admis-
sible. (It is in fact enough to assume this for π/mπ, since a smooth extension
of admissible representations is again admissible [39, Prop. 2.2.13].)

Related to this definition, we can define the class of admissible unitarizable
Banach representations of G on modules over certain localizations of A.

3.1.14. Definition. If p ∈ SpecA is a prime ideal of A, then an admissible unitary
Banach representation of G over Ap consists of a Banach module π over Ap (in
the sense of Definition A.3), equipped with an action of G, such that Ap admits a
choice of unit ball π0 which is G-invariant, and which is m-adically admissible as a
G-representation over A.

3.1.15. Remark. Other than in Subsection 3.6, we will have no cause to consider
the preceding definition other than in the case when A = O and p is the zero ideal,
so that Ap = E. In this case, the above definition reduces to the usual notion of
an admissible unitary Banach representation of G over E.

We close this subsection with some technical lemmas.
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3.1.16. Lemma. If π is an orthonormalizable admissible A[G]-module, and if X is
a cofinitely generated A-module (in the sense of Definition C.1), then π⊗̂AX is a
$-adically admissible G-representation over A.

Proof. Let M := HomA(π,A) be the object of Modfg aug
G (A) corresponding to

π under the anti-equivalence of Proposition 3.1.12. Proposition C.5 shows that
HomO(X,O) is finitely generated over A, and hence M ⊗A HomO(X,O) is again
an O-torsion free object of Modfg aug

G (A). It follows from [39, Prop. 2.4.11] and its
proof that the continuous O-dual of M ⊗A X is an object of Mod$−adm

G (A). One
easily verifies that this dual is isomorphic to π⊗̂AX. �

3.1.17. Lemma. If M is a finitely generated A-module, if π is an orthonormalizable
admissible A[G]-module, and if X is a cofinitely generated A-module (in the sense
of Definition C.1), then the natural map

HomA(M,X)⊗̂Aπ → HomA(M,X⊗̂Aπ)

is an isomorphism.

Proof. Part 3 of Lemma B.6 shows that the natural map

HomA(M,X)⊗A π → HomA(M,X ⊗A π)

is an isomorphism. Passing to $-adic completions, we obtain an isomorphism

HomA(M,X)⊗̂Aπ → HomA(M,X ⊗A π)̂ .

Thus it remains to show that the natural map

HomA(M,X ⊗A π)̂ → HomA(M,X⊗̂Aπ)

is an isomorphism.
If we choose a presentation As → Ar → M → 0 of A, then we may form the

diagram

(3.1.18) 0 // HomA(M,X ⊗A π) //

��

(X ⊗A π)r //

��

(X ⊗A π)s

��
0 // HomA(M,X⊗̂Aπ) // (X⊗̂Aπ)r // (X⊗̂Aπ)s

whose rows are exact. Thus it suffices to show that the bottom row is obtained from
the top row by passing to $-adic completions. Lemma 3.1.16 shows that X⊗̂Aπ
is a $-adically admissible G-representation over A, and so [39, Prop. 2.4.12] shows
that the O-torsion part of the cokernel of the upper right arrow in (3.1.18) has
exponent bounded independently of i. Since

(X ⊗A π)/$i(X ⊗A π) ∼−→ (X⊗̂Aπ)/$i(X⊗̂Aπ)

for any i, we conclude that the sequence

0 → HomA(M,X ⊗A π)/$i HomA(M,X ⊗ π) →
(
(X ⊗A π)/$i(X ⊗A π))r

→
(
(X ⊗A π)/$i(X ⊗A π))s

induced by the top row of (3.1.18) is exact modulo A-modules that are torsion
over O, of exponent bounded independently of i. Passing to the projective limit
in i, we thus obtain an exact sequence

0 → HomA(M,X ⊗A π)̂ → (X⊗̂Aπ)r → (X⊗̂Aπ)s,
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which must then coincide with the bottom row of (3.1.18). This completes the
proof of the lemma. �

3.1.19. Lemma. Suppose that A is finite and flat over O, and reduced, and that
π is an orthonormalizable admissible A[G]-module with the property that for every
minimal prime p of A, the tensor product κ(p) ⊗A π is an absolutely topologically
irreducible Banach space representation of G over κ(p). Then if M is any finitely
generated A-module that is flat over O, the natural map M → HomA[G](π,M ⊗A π)
is an isomorphism.

Proof. Lemma B.7 shows that the natural map

M ⊗A End(π) → HomA(π,M ⊗A π)

is an isomorphism, and hence so is the natural map

M ⊗A EndA[G](π) → HomA[G](π,M ⊗A π).

Thus it suffices to prove that A ∼−→ EndA[G](π).
Our assumption on π implies that E ⊗O A

∼−→ EndA[G]−cont(E ⊗A π) (where
the target denotes the space of continuous A[G]-module endomorphisms of the E-
Banach space E⊗A π). Since by Lemma B.8 we have A = E⊗O A

⋂
EndA(π) (the

intersection taking place in EndE⊗OA(E ⊗A π)), the present lemma follows. �

3.1.20. Lemma. If π is a smooth G-representation over A, then a finitely generated
A-submodule of π is B-invariant if and only if it is G-invariant.

Proof. Any finitely generated A-submodule of π is fixed by some compact open
subgroup H of G. Since H and B together generate G, the lemma follows. �

3.2. Colmez’s magical functor. Let A be an object of Art(O). As was already
mentioned, Colmez [25] has defined an exact functor

MF : full subcategory of Modadm
G (A) consisting of objects of finite length5

−→ category of continuous GQp-representations
on finitely generated A-modules.

We sketch the definition of MF; for more details, the reader should consult
[25, §IV]. (See also [41].) Let A be an object of Art(O), and let π be an object

of Modadm
G (A) which is of finite length. The action of

(
1 Zp

0 1

)
on π makes π

an A[[Zp]]-module, and hence (via the isomorphism A[[Zp]]
∼−→ A[[X]] defined

by
(

1 1
0 1

)
7→ X + 1) an A[[X]]-module. The actions of

(
p 0
0 1

)
and

(
Z×p 0
0 1

)
furthermore give π the structure of a (ϕ,Γ)-module over A[[X]].

Let W be a finitely generated A-submodule of π, which generates π over A[G],
and is invariant under GL2(Zp)Z. Then W is a Γ-invariant A[[X]]-submodule
of π, and we define M(V,W ) to be the minimal ϕ-invariant A[[X]]-submodule of

5Equivalently [39, Thm. 2.3.8], objects that are finitely generated as A[G]-modules.
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π containing W . (Equivalently, M(V,W ) is the minimal
(
p 0
0 1

)
- and

(
1 Zp

0 1

)
-

invariant subspace of π containing W .) We see that M(V,W ) is in fact a (ϕ,Γ)-
invariant A[[X]]-submodule of π.

The ϕ-action on M(V,W ) induces a Γ-equivariant, A[[X]]-linear map

(3.2.1) ϕ∗M(V,W ) →M(V,W ),

and one can show that the kernel and cokernel of this map are both finitely gener-
ated A-modules. If M(V,W )∗ denotes the Pontrjagin dual of M(V,W ), then we set
D(π) := A((X))⊗A[[X]]M(V,W )∗. We equip M(V,W )∗, and hence D(π), with the
contragredient Γ-action. The map (3.2.1) gives rise to a Γ-equivariant dual map

M(V,W )∗ → ϕ∗M(V,W )∗

whose source and target are again finitely generated over A. This latter map thus
induces a Γ-equivariant isomorphism

D(π) ∼−→ ϕ∗D(π).

The inverse of this isomorphism equips D(π) with an étale ϕ-structure, so that D(π)
becomes an étale (ϕ,Γ)-module over A((X)). One shows that D(π) is independent
(up to natural isomorphism) of the choice of W , and that it is finitely generated
over A((X)). It thus corresponds to a representation of GQp on a finitely generated
A-module. We define MF(π) to be the Pontrjagin dual of this GQp-representation.6

Note that with these definitions, the functor π 7→ D(π) is contravariant, while the
functor π 7→ MF(π) is covariant.

It follows directly from the definition of MF that there is an isomorphism of
(ϕ,Γ)-modules

(3.2.2) D(π) ∼−→ D(MF(π)∗).

From the construction of D(π), one also easily deduces the existence of a canonical
P -equivariant map

(3.2.3)
(
ψ−∞(D(π))

)∗ → π

(see [25, Prop. IV.3.2]7).

The functor MF is compatible with change of scalars. We give a table of values of
MF on the standard absolutely irreducible representations of G over k (as computed
in [25]):8

MF(χ ◦ det) = 0
MF((χ ◦ det)⊗ St) = χ

MF(IndG
B
χ1 ⊗ χ2) = χ1

MF
(
c−IndG

GL2(Zp)Z(Symrk)∨/T (c−IndG
GL2(Zp)Z(Symrk)∨)

)
= Ind

GQp

GQ
p2
ψ
−(r+1)
2

6The notation MF is chosen to stand for “magical functor”, “mysterious functor”, or “Montréal
functor”. Colmez denotes his functor by π 7→ V(π). Note, though, that the definition of V involves
a twist by the cyclotomic character (see [25, §IV.2.3]), which does not appear in the definition
of MF.

7We use the notation ψ−∞(D) of Colmez’s earlier papers, e.g. [22]. This corresponds to the
notation D] � Qp of [25].

8When comparing this table of values to the values of the functor V, as computed in [25], the
reader should remember that MF and V differ by a cyclotomic twist.
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(where, in the last line, ψ2 denotes a fundamental character of level 2, and 0 ≤
r ≤ p − 1). Furthermore, MF is compatible with twisting: if χ : Q×

p → A× is a
continuous character, and if π is a finite length object of Modadm

G (A), then there is
a natural isomorphism

MF(χ ◦ det⊗Aπ) ∼−→ χ⊗A MF(π)

(where, in the expression on the right hand side, χ is regarded as a character of GQp
,

via local class field theory).

Let A be an object of Comp(O). In the paper [39] we defined the functor
OrdB : Mod$−adm

G (A) → Mod$−adm
T (A) from $-adically admissible smooth G-

representations over A to $-adically admissible smooth T -representations over A,
right adjoint to the functor IndG

B
: Mod$−adm

T (A) → Mod$−adm
G (A) given by par-

abolic induction. (See [39, Thm. 4.3.2].)
Our next result describes the interaction between the functor OrdB and Colmez’s

functor MF. Let A be an object of Art(O). Note that, via our identification of S
with Q×

p , any finite-dimensional smooth representation of S over Amay be regarded
as such a representation of Q×

p over A, and hence, via local class field theory, as a
continuous representation of Gab

Qp
over A.

3.2.4. Proposition. If π is a finite length representation of G over some object A
of Art(O), then there is a natural A-linear Gab

Qp
-equivariant embedding

OrdB(π) |S ↪→ MF(π)ab.

(We regard the source of this embedding as a Gab
Qp

-representation in the manner
indicated above.) If, furthermore, π admits a central character, and contains no
G-invariant finitely generated A-submodules, then this embedding is in fact an iso-
morphism.

Proof. The adjointness property of OrdB yields a natural G-equivariant map

IndG
B

OrdB(π) → π,

whose kernel is finitely generated over A. Applying MF to this map thus yields a
GQp-equivariant injection

OrdB(π) |S ↪→ MF(π)

(where the source is regarded as a Gab
Qp

-representation in the manner indicated
above), which evidently factors through the inclusion

(3.2.5) MF(π)ab ⊂ MF(π),

yielding a GQp-equivariant injection

(3.2.6) OrdB(π) |S ↪→ MF(π)ab.

Conversely, the inclusion (3.2.5) gives rise to a surjection of Pontrjagin duals

MF(π)∗ → (MF(π)ab)∗,

which in turn gives rise to a P -equivariant map

ψ−∞(D(π)) ∼−→ ψ−∞(D(MF(π)∗)) → ψ−∞(D((MF(π)ab)∗))
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(the first isomorphism being provided by (3.2.2)). Passing once more to Pontrjagin
duals, we obtain a map(

ψ−∞(D((MF(π)ab)∗))
)∗ → (

ψ−∞(D(π))
)∗
.

Composing this with the canonical map (3.2.3) we obtain a P -equivariant map

(3.2.7)
(
ψ−∞(D((MF(π)ab)∗))

)∗ → π.

Lemma 3.2.8 below shows that the P -representation
(
ψ−∞(D((MF(π)ab)∗))

)∗ sits
in a short exact sequence of P -representations

0 → ε ◦ det⊗MF(π)ab →
(
ψ−∞(D((MF(π)ab)∗))

)∗ → Cc(Qp,MF(π)ab) → 0.

Suppose now that π admits a central character η. We extend the P -action on each
of the members of this short exact sequence to a B (= PZ)-action, by declaring that
Z acts via the character η. The map (3.2.7) is then B-equivariant. If we suppose in
addition that π contains no non-trivial finitely generatedG-invariant A-submodules,
then by Lemma 3.1.20 it similarly contains no non-trivial finitely generated B-
invariant A-submodules, and so the map (3.2.7) factors through Cc(Qp,MF(π)ab).
The resulting map Cc(Qp,MF(π)ab) → π corresponds to a map

MF(π)ab → OrdB(π),

via the adjunction formula of [39, Cor. 4.2.6], which is immediately checked to
provide an inverse to (3.2.6). This completes the proof of the theorem. �

3.2.8. Lemma. If V is a finitely generated A-module with a continuous action
of Gab

Qp
, then the P -representation

(
ψ−∞(D(V ))

)∗ sits in a short exact sequence of
P -representations

0 → (ε ◦ det)⊗ V ∗ →
(
ψ−∞(D(V ))

)∗ → Cc(Qp, V
∗) → 0.

(Here we regard the Gab
Qp

-representation V as a P -representation via the map P →
S

∼−→ Q×
p → Gab

Qp
, the first arrow being the canonical surjection and the third being

given by local class field theory.)

Proof. Choose n > 0 so that A is an O/$n-algebra. One easily verifies that
there is a P -equivariant isomorphism ψ−∞(D(V )) ∼−→ V ⊗O/$n ψ−∞(D(O/$n)),
where O/$n is equipped with the trivial GQp-action, and V is regarded as a P -
representation in the manner indicated in the statement of the lemma. Thus there
is an isomorphism

(
ψ−∞(D(V ))

)∗ ∼−→ V ∗ ⊗O/$n

(
ψ−∞(D(O/$n))

)∗
. Since there

is also an isomorphism Cc(Qp, V
∗) ∼−→ V ∗⊗O/$n Cc(Qp,O/$n), it suffices to verify

the lemma in the case when V = O/$n, i.e. to show that there is a short exact
sequence

(3.2.9) 0 → ε ◦ det⊗O/$n →
(
ψ−∞(D(O/$n))

)∗ → Cc(Qp,O/$n) → 0.

The inclusion D](O/$n) ⊂ D(O/$n) induces an isomorphism

ψ−∞(D](O/$n)) ∼−→ ψ−∞(D(O/$n))

(see [24, p. 6]), while it follows from [22, Ex. 4.32] that there is an exact sequence

0 → Cc(Qp,O/$n)∗ → ψ−∞(D](O/$n)) → ε−1 ◦ det⊗O/$n → 0.

The Pontrjagin dual of this sequence thus yields the required short exact se-
quence (3.2.9). �
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The following proposition is useful for comparing the structure of π and MF(π).

3.2.10. Proposition. If π is a finite length object of Modadm
G (A) admitting a central

character, and admitting no G-invariant subquotients that are finitely generated
over A, then MF induces an isomorphism between the lattice of G-invariant A-
submodules of π and the lattice of GQp-invariant A-submodules of MF(π).

Proof. Since MF is exact, it induces an order preserving map from the lattice of G-
invariant A-submodules of π to the lattice of GQp-invariant submodules of MF(π).
Suppose that π1, π2 ⊂ π are G-invariant A-submodules for which MF(π1) and
MF(π2) coincide, when regarded as subobjects of MF(π). If we write π3 = π1 +π2,
then the exactness of MF implies that MF(π3) = MF(π1)

(
= MF(π2)

)
. Again using

the exactness of MF, we see that MF(π3/π1) = 0. Since π admits no G-invariant
subquotients that are finitely generated over A, we see that π3/π1 = 0. Similarly,
π3/π2 = 0, and thus π1 = π2. Hence the map on lattices of subobjects induced by
MF is an injection.

We turn to proving that the map on subobjects given by MF is a surjection.
Let M be a GQp-invariant submodule of MF(π). Choose π′ ⊂ π maximally so that
MF(π′) ⊂M . Replacing π by π/π′ and M by M/MF(π′), we may assume that M
is a subobject of MF(π) with the property that if π′ ⊂ π is such that MF(π′) ⊂M,
then π′ = 0. Our goal is to show that M = 0. If in fact M is non-zero, then
it is clearly no loss of generality to replace M by an irreducible submodule, and
thus we may assume that M is irreducible. In particular, letting m denote the
maximal ideal of A, we may assume that M ⊂ MF(π)[m], the m-torsion submodule
of MF(π). Thus, replacing π by π[m], we may assume that A = k.

If k′ is a finite extension of k, and if π′ ⊂ k′⊗k π is such that MF(π′) ⊂ k′⊗kM,
then if we let k′ ⊗k π

′′ denote the smallest subspace of k′ ⊗k π defined over k
that contains π′, then π′′ is G-invariant, and MF(π′′) ⊂ M . Thus π′′, and hence
π′, vanishes. Consequently, it is no loss of generality to extend scalars. Let 0 =
π0 ⊂ π1 ⊂ · · · ⊂ πn−1 ⊂ πn = π be a Jordan–Hölder filtration of π. Extending
scalars if necessary, we may assume that each of the composition factors πi/πi−1

is absolutely irreducible. By assumption, each of these composition factors is also
infinite-dimensional over k, and thus a consideration of our table of values of MF
shows that for each i = 1, . . . , n, the GQp-representation MF(πi/πi−1) is absolutely
irreducible, of dimension one or two. In particular, 0 = MF(π0) ⊂ MF(π1) ⊂ · · · ⊂
MF(πn−1) ⊂ MF(πn) = MF(π) is a Jordan–Hölder filtration of MF(π), and so we
may assume that M is absolutely irreducible, of dimension one or two. Our goal is
to exhibit a G-subrepresentation π′ of π such that MF(π′) = M .

Suppose first that M is of dimension one, and that GQp acts on M through the
character χ. If η denotes the central character of π, then by Proposition 3.2.4,
together with the adjointness between OrdB and parabolic induction, we may find
a G-equivariant homomorphism IndG

B
χ ⊗ χ−1η → π with the property that, if

π′ denotes the image of this map, then MF(π′) = M. Suppose, on the other
hand, that M has dimension two. The inclusion M ⊂ MF(π) induces an injec-
tion

(
ψ−∞(D(M∗))

)∗ → (
ψ−∞(D(MF(π)∗))

)∗
, which, when composed with the

canonical map (3.2.3), yields a P -equivariant map

(3.2.11)
(
ψ−∞(D(M∗))

)∗ → π.

If we extend the P -action on the source of this map to a B-action, by requiring Z to
act via the central character η of π, then (3.2.11) becomes B-equivariant. Since M
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is absolutely irreducible of dimension two, the B-representation
(
ψ−∞(D(M∗))

)∗
is in fact the B-representation underlying an absolutely irreducible supersingular
representation of G over k [2, Thm. 2.2.1]. The map (3.2.11) is then necessarily
G-equivariant, by [67, Thm. 1.1]. Thus, if we denote its image by π′, then again π′

is a G-subrepresentation of π with the property that MF(π′) = M. This completes
the proof of the proposition. �

In the remainder of this subsection, we discuss how to extend the domain of MF
to certain G-representations over more general coefficient rings.

To being with, suppose that A is an object of Comp(O), with maximal ideal m.
If π is an m-adically admissible representation of G over A (in the sense of Def-
inition 3.1.13), with the additional property that π/mπ (and hence π/miπ for all
i ≥ 0) has finite length as a G-representation, then we define

MF(π) := lim
←−

i

MF(π/miπ).

Since MF is exact, it takes admissible smooth G-representations on free A/mi-
modules to GQp-representations on free A/mi-modules. Thus, with the preceding
definition, we see that MF provides an exact covariant functor

MF : {orthonormalizable admissible G-representations π over A

such that π/mπ has finite length}
−→ {GQp

-representations on finite rank free A-modules}.
We may extend the definition of MF further. Namely, let p ∈ SpecA be a prime

ideal of A, and suppose that π is an admissible unitary Banach representation of
G over Ap, in the sense of Definition 3.1.14, satisfying the following assumption:

3.2.12. Assumption. The representation π contains a G-invariant m-adically ad-
missible unit ball π0 with the additional property that π0/mπ0 is of finite length.

We then define
MF(π) := Ap ⊗A MF(π0);

this evidently depends on π0 only up to commensurability.
We will typically apply this construction in the case when A = O and p is the

zero ideal, so that Ap = E, and we are considering admissible unitary E-Banach
representations of G with the additional property that the reduction mod $ of a
G-invariant unit ball is of finite length.

However, in Subsection 3.6, we will have to consider a more general context, and
in fact will have to iterate the previous ind-pro extension of MF. Namely, let Âp

denote the p-adic completion of Ap, and suppose given a p-adically complete Âp-
module π, equipped with an action of G, with the property that for each i ≥ 0, the
quotient π/piπ is an admissible unitary Banach representation over Ap/p

iAp (note
that this quotient is isomorphic to the localization (A/pi)p, so that the notion
of admissible unitary Banach representation over this quotient is defined) which
satisfies Assumption 3.2.12. We then define

MF(π) := lim
←−

i

MF(π/piπ).

Finally, suppose that q is a prime ideal of Âp, and that we are given a Banach
module π over (Âp)q, equipped with a G-action, and admitting a unit ball π0 which
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is G-invariant, with the property that for each i ≥ 0, the quotient π0/piπ0 is an
admissible unitary Banach representation over Ap/p

iAp which satisfies Assump-
tion 3.2.12. We then define

MF(π) := (Âp)q ⊗ bAp
MF(π0).

This only depends on π0 up to commensurability.

3.3. Mod p and p-adic local Langlands. Let k be finite field of characteris-
tic p, and let ρ : GQp → GL2(k) be a continuous representation. Throughout this
subsection we make the following technical assumption regarding ρ:

3.3.1. Assumption. ρ is not equivalent to a representation of the form

χ⊗
(

1 ∗
0 ε

)
(for some k-valued character χ of GQp

, where ∗ may or may not be zero).

The following result is due to Colmez [24].

3.3.2. Theorem. If ρ satisfies Assumption 3.3.1, then there is a finite length object
π of Modadm

G (k), unique up to isomorphism, such that:
(1) MF(π) ∼= ρ.
(2) π has central character equal to det(ρ)ε.
(3) π has no finite-dimensional G-invariant subobject or quotient.

Since MF is compatible with extension of scalars, the same is true of the forma-
tion of π.

3.3.3. Remark. We briefly describe the structure of π (assuming that π is either
reducible or absolutely irreducible, a condition that can always be attained by
making a finite extension of scalars):

(1) Suppose that ρ ∼
(
χ1 0
0 χ2

)
, and that χ1χ

−1
2 6= ε±1. Then

π :=
(
IndG

B
χ1 ⊗ χ2ε

)
⊕

(
IndG

B
χ2 ⊗ χ1ε

)
.

Our assumption on χ1χ
−1
2 ensures that both direct summands are irre-

ducible.

(2) Suppose that ρ ∼
(
χ1 ∗
0 χ2

)
, where ∗ denotes a non-trivial extension. If

χ1χ
−1
2 6= ε±1, then π is an extension

0 → IndG
B
χ1 ⊗ χ2ε→ π → IndG

B
χ2 ⊗ χ1ε→ 0.

(Our hypothesis on χ1χ
−1
2 implies that each of these induced representa-

tions is irreducible.)

(3) Suppose that ρ ∼
(
χ ∗
0 χε−1

)
, where ∗ denotes a non-trivial extension.

Suppose also that p > 3, so that ε 6= ε−1. The π has a unique Jordan–
Hölder filtration

0 ⊂ π1 ⊂ π2 ⊂ π

such that π1
∼−→ (χ◦det)⊗St, π2/π1

∼−→ χ◦det, and π/π2
∼−→ IndG

B
χε−1⊗

χε. (Our assumption on p ensures that this induced representation is irre-
ducible.)
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(4) If ρ is absolutely irreducible, then π is an irreducible supersingular repre-
sentation of G.

3.3.4. Remark. Note that the semi-simplification of π (as a G-representation) co-
incides with the G-representation associated to ρ via (a suitably normalized version
of) the semi-simple mod p local Langlands correspondence of [8].

3.3.5. Remark. If ρ |Ip
is not the twist of an extension of 1 by itself or ε±1, then

another construction of the associated representation π is given in [13, §20]. In
this reference, π is not characterized by its behaviour under application of the
functor MF, but rather by the structure of its invariants under the principal con-
gruence subgroup of GL2(Zp) (together with the fact that it is generated by these
invariants).

Our goal now is to describe the deformation-theoretic approach to the con-
struction of the p-adic local Langlands correspondence (for two-dimensional GQp

-
representations lifting ρ) due to Colmez and Kisin.

3.3.6. Definition. We let Def(ρ) denote the following category fibred in groupoids
over Comp(O): for any object A of Comp(O), with maximal ideal m, the groupoid
Def(A) has as objects free rank two A-modules V equipped with a continuous action
of GQp

, as well as an A/m-linear and GQp
-equivariant isomorphism ı : V/mV ∼−→

A/m⊗k ρ, and as morphisms the A-linear and GQp-equivariant isomorphisms that
are compatible with the given maps ı.

We typically regard Def(ρ) as a groupoid-valued functor on Comp(O), and thus
refer to Def(ρ) as the deformation functor associated to ρ.

Let π be the object of Modadm
G (k) attached to ρ via Theorem 3.3.2.

3.3.7. Definition. We let Def(π) denote the following category fibred in groupoids
over Comp(O): for any object A of Comp(O), with maximal ideal m, the groupoid
Def(A) has as objects orthonormalizable admissible representations π of G over
A equipped with an A/m-linear and G-equivariant isomorphism ı : π/mπ ∼−→
A/m ⊗k π, and as morphisms the A-linear and G-equivariant isomorphisms that
are compatible with the given maps ı.

As with Def(ρ), we typically regard Def(π) as a groupoid-valued functor on
Comp(O), and thus refer to Def(π) as the deformation functor associated to π.

The functor MF induces a natural morphism of deformation functors

(3.3.8) MF : Def(π) → Def(ρ).

(as follows from the exactness of MF; see [61, §2.2]).
We next introduce some subgroupoids of Def(π) and Def(ρ), and some variants

of the morphism (3.3.8).

3.3.9. Definition. We define Def∗(π) to be the subgroupoid of Def(π) consisting
of those deformations π such that the centre of G acts on π via the A×-valued
character det

(
MF(π)

)
ε (where we regard det

(
MF(π)

)
ε as a character of Q×

p via
local class field theory).

The morphism (3.3.8) induces a morphism

(3.3.10) MF : Def∗(π) → Def(ρ).
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3.3.11. Definition. We define Defcrys(ρ) to be the full subgroupoid of Def(ρ) ob-
tained as the Zariski closure in Def(ρ) of the set of crystalline points in the generic fi-
bre of Def(ρ). We define Defcrys(π) to be the fibre product of Def∗(π) and Defcrys(ρ)
over Def(ρ) (where the former maps to Def(ρ) via (3.3.10), and the latter maps to
Def(ρ) via the natural fully faithful embedding).

The map (3.3.10) induces a tautological map

(3.3.12) MF : Defcrys(π) → Defcrys(ρ).

We now state the p-adic local Langlands correspondence, in its deformation-
theoretic formulation due to Kisin [61].

3.3.13. Theorem. If ρ satisfies Assumption 3.3.1, then (3.3.10) is a fully faithful
embedding Def∗(π) ↪→ Def(ρ), while its restriction (3.3.12) is in fact an equivalence
of deformation functors Defcrys(π) ∼−→ Defcrys(ρ).

3.3.14. Remark. In this remark we discuss some results related to the preceding
definitions and theorem which, however, we won’t need in the present paper.

We first remark that whenever Assumption 3.3.1 holds, it is known that there is
an equality Defcrys(ρ) = Def(ρ). Indeed, if p > 3, or p = 3 and ρ Ip

is not isomorphic
to a twist of ω2

2 ⊕ ω6
2 , then this has been proved by Kisin [61, Cor. 1.11]; if p = 3

and ρ Ip
is isomorphic to a twist of ω2

2 ⊕ ω6
2 , this has been proved by Böckle (see

the discussion following the statement of [5, Thm. 1.1]); and if p = 2 this has been
proved by Chenevier (see footnote (7) on p. 292 of [25]). However, since we do not
need the equality of Defcrys(ρ) and Def(ρ) in this paper, and since the result for
p = 2 remains unpublished, we have decided to maintain the a priori distinction
between Defcrys(ρ) and Def(ρ) in this paper.

We also mention that if Def(ρ) and Def(π) are representable, i.e. if ρ and π
have only scalar endomorphisms (note that the functor MF induces an isomor-
phism between their endomorphism algebras [61, Lem. 2.1.2]), and if p ≥ 3 when
π is supersingular, then one finds that Def∗(π) = Def(π), and hence (taking into
account the discussion of the preceding paragraph) that (3.3.8) is actually an equiv-
alence Def(π) ∼−→ Def(ρ). This is most difficult to establish in the supersingular
case, where it is due to Paškūnas [69]. (Note that although Paškūnas’s results are
proved under the assumption that p ≥ 3, we expect the equality Def∗(π) = Def(π)
to continue to hold in the supersingular case when p = 2.) More generally, we
should mention that the complications caused by the central character in relating
the deformations of π and ρ were first observed by Paškūnas (see [69] and the
introduction to [61]).

3.3.15. Definition. Let VE be a two-dimensional E-vector space equipped with a
continuous representation of GQp , and suppose that VE contains a GQp-invariant
O-lattice V such that ρ := V/$V satisfies Assumption 3.3.1, and such that V
lies in Defcrys(ρ). Theorem 3.3.13 then yields a representation π of G on an or-
thonormalizable O-module lifting π such that MF(π) = V , and we define B(VE) :=
E ⊗O π. Thus B(VE) is an E-Banach space equipped with an admissible unitary
G-representation, which is easily seen to be independent of the choice of V (since
any two such choices are commensurable).

The association VE 7→ B(VE) is the p-adic local Langlands correspondence.

3.3.16. Remark. The preceding definition applies in particular to any VE which
is absolutely irreducible, provided that p > 3. Indeed in this case we have that
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Defcrys(ρ) = Def(ρ), while ε 6= ε−1, so that — applying a suitable analogue of [71,
Prop. 2.1] in the case when ρss is isomorphic to a twist of 1⊕ ε — we see that VE

contains a V satisfying the requirements of the definition.

3.3.17. Remark. In the paper [25], using his functor from two-dimensional GQp-
representations to G-representations, Colmez has defined the p-adic local Langlands
correspondence for every absolutely irreducible representation of GQp

.

3.3.18. Definition. We say that a continuous two-dimensional representation of
GQp over E is exceptional if it is a twist of a crystalline representation whose asso-
ciated Dieudonné module is not Frobenius semi-simple (or equivalently, for which
the characteristic polynomial of the Frobenius endomorphism on the associated
Dieudonné module has a double root).

3.3.19. Remark. Let VE be a two-dimensional E-vector space equipped with a
continuous representation of GQp which is absolutely irreducible and trianguline
in the sense of [23], and not exceptional in the sense of the preceding definition.
The constructions of [3, 22, 23] give rise to an admissible unitary Banach space
representation B(VE) of G associated to VE .9 It is an important aspect of the
p-adic local Langlands correspondence of Definition 3.3.15 that it coincides with
explicit correspondence of [3, 22, 23] in the case when both are defined. (Indeed,
this explicit correspondence is one of the tools used in the proof of Theorem 3.3.13,
and hence in the construction of the correspondence of Definition 3.3.15.)

3.3.20. Remark. In the case when VE is a reducible two-dimensional continuous
representation of GQp , there is an extensive discussion in [38, §6] of the expected
structure of the Banach space representation B(VE) of G that should be attached
to VE by the p-adic local Langlands correspondence. Using the results of [40] (and,
in particular, applying the methods of computation from §4 of that reference), it
is straightforward to verify the various conjectures of [38, §§6.2, 6.3, 6.4, 6.5], and
thus B(VE) can indeed be defined following the prescriptions of [38, §6]. We will
not do this here, however, since we do not need this for our purposes. Rather, in
Subsection 3.4 below we will establish some somewhat weaker results about B(VE)
in the the reducible case, using the deformation-theoretic view-point adopted here,
and the functor MF.

If VE is a reducible two-dimensional continuous representation of GQp which is
de Rham with distinct Hodge–Tate weights, then one expects that the associated
p-adic Banach representation B(VE) of G should have the properties originally
posited by Breuil in [8, 9]. In this direction, one has the following result, due to
Berger, Breuil, and Colmez in the non-exceptional trianguline case, and to Colmez
for those VE that are not trianguline.

3.3.21. Theorem. If VE is a continuous two-dimensional representation of GQp

over E and if VE is de Rham with distinct Hodge–Tate weights a > b, then B(VE)
contains non-zero locally algebraic vectors.

9When p > 2, Paškūnas [68] has shown that the results of [3] extend to cover the exceptional
cases, and it is expected that they will similarly extend to cover these cases when p = 2. Using
Paškūnas’s result would allow us to simplify some of the arguments of the present paper in the
case when p > 2, e.g. the proof of Theorem 6.4.7. However, since we wish to include the case
p = 2 in our arguments, we haven’t incorporated these simplifications.
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Proof. If VE is absolutely irreducible, trianguline, and not exceptional (in the sense
of Definition 3.3.18), then this follows from the explicit construction of B(VE) given
in [3, 22]. If VE is absolutely reducible, then one may describe B(VE) explicitly
(see e.g. the description of B(VE) that we give in Subsection 3.4 below), and so
verify the theorem. The theorem for arbitrary VE (satisfying the assumptions of
the theorem) has been proved by Colmez [25, Thm. VI.6.18] �

Colmez has shown that, conversely, if B(VE)l.alg is non-zero, then VE is de Rham
with distinct Hodge–Tate weights [25, Prop. VI.5.1, Thm. VI.6.13]. Furthermore,
we have the following strengthening of Theorem 3.3.21, which precisely describes
the locally algebraic vectors in B(VE) in the case when they are non-zero.

3.3.22. Theorem. If VE is a continuous two-dimensional representation of GQp

over E, and if VE is de Rham with distinct Hodge–Tate weights a > b, then there
is a G-equivariant isomorphism B(VE)l.alg

∼−→ Syma−b−1E2 ⊗E detb+1⊗Eπp(VE).
In particular, B(VE) contains non-zero locally algebraic vectors.

Proof. In the case when VE is crystabelline, or is the twist of a semi-stable repre-
sentation, this has been proved by Colmez [25, Thm. VI.6.50]. In the remaining
case (i.e. when VE is potentially crystalline but not crystabelline), it follows from
[25, Thm. VI.6.42], together with a global calculation using the theory developed
in this paper. The proof is presented in Subsection 7.4 below. �

3.3.23. Remark. In fact Colmez has already shown in [25, Prop. VI.5.1] that if
VE is de Rham with distinct Hodge–Tate weights a > b, then the locally algebraic
vectors of B(VE) are necessarily isomorphic (as a G-representation) to the tensor
product of Syma−b−1E2 ⊗E detb+1 with a smooth representation of G. The point
of the preceding theorem is that it gives a precise description of the smooth factor
in this tensor product.

The following result is also important in applications. (In [25], Colmez has given
a proof of this result using his functor from two-dimensional GQp-representations
to G-representations; see [25, Thm. 0.17 (ii)]. We give a proof here using just the
properties of the functor MF.)

3.3.24. Proposition. If VE is a continuous two-dimensional representation of GQp

for which B(VE) is defined, and if VE is (absolutely) irreducible, then B(VE) is also
(absolutely) topologically irreducible.

Proof. Suppose that VE is irreducible. Choose a G-invariant bounded open lattice
π in B(VE) which deforms a representation π satisfying the conditions of Theo-
rem 3.3.2. Let W ⊂ B(VE) be a closed subrepresentation, and write W0 = π

⋂
W .

Since W0 is saturated in π, we see that MF(W0) is saturated in MF(π) (since MF
is exact). Combining this with the fact that E ⊗O MF(π) ∼= VE is irreducible, we
see (again using the exactness of MF) that either MF(W0) = 0 or MF(π/W0) = 0.
Thus either W0 is a finitely generated O-submodule of π, or else π/W0 is a finitely
generated O-quotient module of π. However, since π admits no finite-dimensional
G-invariant subrepresentations or quotient representations, we see that one of W0

or π/W0 must vanish. Thus either W = 0 or else W = B(VE), and so B(VE) is
topologically irreducible, as claimed. Since the formation of B(VE) is compatible
with extending scalars, we conclude that if VE is absolutely irreducible, then B(VE)
is absolutely topologically irreducible. �
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3.4. The reducible case. If VE is a continuous reducible two-dimensional repre-
sentation of GQp over E satisfying the conditions of Remark 3.3.19 (i.e. containing
an O-lattice V in VE whose reduction V satisfies Assumption 3.3.1), then as in
Remark 3.3.19, we may associate a Banach space representation B(VE) of G to VE .
In this subsection we will establish some results regarding the structure of B(VE)
in this situation. (By employing the methods of [40, §4], it is possible in fact to
verify all the conjectures related to the structure of B(VE) that we made in [38].
We won’t do this here, however, since the somewhat weaker statements that we
establish below will suffice for our present purposes.)

Write VE as an extension

(3.4.1) 0 → χ1 → VE → χ2 → 0,

where each χi : GQp
→ O× ⊂ E× is a continuous character.

3.4.2. Proposition. If χ1χ
−1
2 6= ε, then B(VE) is an extension

0 → IndG
B
χ1 ⊗ χ2ε→ B(VE) → IndG

B
χ2 ⊗ χ1ε→ 0,

which is split or not according to whether or not (3.4.1) is. Furthermore, the G-
representations IndG

B
χ1 ⊗ χ2ε and IndG

B
χ2 ⊗ χ1ε are topologically irreducible.

Proof. Choose a GQp
-invariant lattice V in VE whose reduction V satisfies Assump-

tion 3.3.1. Theorem 3.3.13 shows that we may find a lift π of π over O, with central
character equal to χ1χ2ε, and such that MF(π) ∼−→ V. Since π contains no finite-
dimensional G-invariant subspaces, we see that π contains no finitely generated
G-invariant O-submodules. Proposition 3.2.4 (and the known value of the central
character of π) thus yields an embedding

χ1 ⊗ χ2ε ↪→ OrdB(π),

which in turn, by virtue of the adjointness property of OrdB , gives rise to a G-
equivariant map

(3.4.3) IndG
B
χ1 ⊗ χ2ε→ π.

Since χ1 6= χ2ε, by assumption, the source of this map becomes topologically
irreducible after tensoring with E over O. Consequently, (3.4.3) must be injective.
If we let π1 denote the saturation in π of its image, then π1 contains this image
with finite index, and consequently

MF(π1)
∼−→ MF(IndG

B
χ1 ⊗ χ2ε) = χ1.

Thus, writing π2 = π/π1, we compute that MF(π2)
∼−→ MF(π)/MF(π1)

∼−→
V/χ1 = χ2. Since π contains at most one finite-dimensional Jordan–Hölder factor,
of dimension one if it exists at all, we see that either π2 contains no finitely generated
G-invariant O-submodules, or else that it contains such a submodule of rank one,
the quotient of π2 by which then contains no such submodules. Letting π3 = π2 in
the first case, or the quotient of π2 by the rank one G-invariant submodule in the
second case, we see that

MF(π3)
∼−→ MF(π2) = χ2.

We thus deduce from Proposition 3.2.4 an isomorphism

OrdB(π3)
∼−→ χ2,
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and hence a map

(3.4.4) IndG
B
χ2 ⊗ χ1ε→ π3.

Again by assumption we have that χ2 6= χ1ε, and thus this map must be an
embedding. If we let π4 denote the cokernel of this embedding, then MF(π4) = 0.
Thus if we write π4 := π4/$π4, then π4 is a G-invariant quotient of π for which
MF(π4) = 0. On the other hand, π has no finite-dimensional G-invariant quotient.
We conclude that π4 = 0, and thus that π4 = 0. Thus we conclude that (3.4.4) is
an isomorphism.

Now the Jordan–Hölder factors of π are precisely the union of those of IndG
B
χ1⊗

χ2ε and those of IndG
B
χ2 ⊗ χ1ε. Also, π1 := π1/$π1 and IndG

B
χ1 ⊗ χ2ε have

the same Jordan–Hölder factors. Combining this observation with the isomor-
phism (3.4.4), we conclude that the Jordan–Hölder factors of π are precisely the
union of those of π1 and those of π3 := π3/$π3. Consequently it must be the case
that π2 = π3, and thus that π is an extension of π3(

∼−→ IndG
B
χ2 ⊗ χ1ε) by π1.

Tensoring with E over O (and recalling that π1 contains the image of (3.4.3) with
finite index), we find that B(VE) is an extension of the required form.

Clearly if B(VE) is a split extension, then the isomorphism VE
∼−→ E⊗OMF (π)

shows that VE is itself split. On the other hand, if VE is split, then we may reverse
the roles of χ1 and χ2, and, obtaining a corresponding description of B(VE) as
an extension of IndG

B
χ1 ⊗ χ2ε by IndG

B
χ2 ⊗ χ1ε, conclude in turn that B(VE) is

isomorphic to the direct sum of these two representations. This completes the proof
of the proposition. �

3.4.5. Proposition. If χ1χ
−1
2 = ε, i.e. χ2 = χ1ε

−1, then B(VE) admits a unique
three step Jordan–Hölder filtration (in the category of admissible Banach represen-
tations of G) 0 = B0 ⊂ B1 ⊂ B2 ⊂ B3 = B(VE), such that:

(1) B1
∼= (χ1 ◦ det)⊗ Ŝt;

(2) B2/B1
∼= χ1 ◦ det;

(3) B3/B1
∼= IndG

B
χ1ε

−1 ⊗ χ1ε
(∼= (χ1 ◦ det)⊗ (IndG

B
ε−1 ⊗ ε)

)
.

Proof. The proof of this result is similar to that of the preceding proposition. As
in that proposition we choose lattices V in VE and π in B(VE), related by an
isomorphism

MF(π) ∼−→ V,

and we obtain a map

(3.4.6) IndG
B
χ1 ⊗ χ2ε→ π.

Now χ1 = χ2ε by assumption, and thus IndG
B
χ1 ⊗ χ2ε = IndG

B
χ1 ⊗ χ1 is not

irreducible, but rather is an extension of (χ1 ◦det)⊗ Ŝt by χ1 ◦det. Since π contains
no finite-dimensional G-invariant subspaces, we see that (3.4.6) must factor to yield
an embedding

(3.4.7) Ŝt ↪→ π.

Also, since St(= Ŝt/$Ŝt) is irreducible, the image of this embedding is saturated.
Let π2 denote the cokernel of (3.4.7). We see that MF(π2) = χ1 ⊗ ε, and (using

the known structure of π, namely that is an extension by (χ1◦det)⊗St of a non-split
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extension of IndG
B
χ1ε⊗χ1ε

−1 by χ1 ◦ det) we see that π2 := π2/$π2 is a non-split
extension

(3.4.8) 0 → χ1 ◦ det → π2 → IndG
B
χ1ε⊗ χ1ε

−1 → 0.

If we let π3 denote the quotient of π2 by its maximal finitely generated G-invariant
O-submodule (the latter is of rank at most one), then we conclude as in the proof
of the preceding proposition that

IndG
B
χ1ε

−1 ⊗ χ1ε
∼−→ π3,

and thus that
π3 := π3/$π3

∼−→ IndG
B
χ1ε

−1 ⊗ χ1ε.

A comparison with (3.4.8) shows that π2 must be an extension of π3 by a rank one
G-invariant O-module. Tensoring with E over O, we conclude that B(VE) has a
Jordan–Hölder filtration of the type described in the statement of the proposition.
The uniqueness of this filtration follows from the uniqueness of the Jordan–Hölder
filtration of π. �

3.4.9. Remark. In the situation of Proposition 3.4.5, one can show that the one-
dimensional representation B2/B1 is necessarily isomorphic to the character χ1◦det.
Indeed, as already mentioned, one can confirm the speculations of the discussion of
[38, §6.5], namely that the extension B2 of χ1 ◦ det by (χ1 ◦ det)⊗ Ŝt that embeds
as a closed subrepresentation of B(VE) is isomorphic to (χ1 ◦ det)⊗B(2,L), where
L is the L-invariant of the extension

0 → χ1 → VE → χ1ε
−1 → 0.

3.5. Weights. In this subsection we recall the notion of Serre weights and its
relation to the mod p local Langlands correspondence.

3.5.1. Definition. A Serre weight is an (isomorphism class of) irreducible rep-
resentation(s) of GL2(Fp) over k. The Serre weights are precisely the (isomor-
phism classes of the) representations (Symrk2)∨ ⊗k dets, where 0 ≤ r ≤ p− 1, and
0 ≤ s ≤ p− 2.

3.5.2. Definition. If V is a Serre weight, then we write

H(V ) := EndG(c−IndG
GL2(Zp) V ).

It follows from [1] that H(V ) = k[T,Z, Z−1], where T is the endomorphism cor-

responding to the double coset
(p 0
0 1

)
, while Z is the element

(p 0
0 p

)
lying in the

centre of G.

3.5.3. Remark. If π is any smooth representation of G over k, then there is a
canonical isomorphism HomGL2(Zp)(V, π) ∼−→ HomG(c−IndG

GL2(Zp) V, π), and thus
HomGL2(Zp)(V, π) is endowed with a canonical action of H(V ).

To any continuous representation ρ : GQp → GL2(k) we may attach a set W (ρ)
of Serre weights, as follows. (We essentially follow the recipe of [14, §3], but use a
cohomological normalization.)

If ρ is absolutely irreducible, then (k ⊗k ρ) |Ip

∼−→ ψa+pb
2

⊕
ψpa+b

2 , for some
uniquely determined 0 ≤ b < a ≤ p− 1, and we set

W (ρ) := {(Syma−b−1k2)∨ ⊗k deta, (Symp−a+bk2)∨ ⊗k detb+1}.
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Thus W (ρ) is a set of two weights.
If ρ is absolutely reducible, then the definition of W (ρ) is given via a slightly

more involved rule: If 0 < r ≤ p − 1, and 0 ≤ s < p − 1, then the representation
(Symrk2)∨ ⊗k dets lies in W (ρ) if and only if ρ |Ip

sits in a short exact sequence of
the form

0 → εs → ρ |Ip
→ εs−1−r → 0,

while dets lies in W (ρ) if and only if ρ |Ip
sits in a short exact sequence of the form

0 → εs → ρ |Ip
→ εs−1 → 0

for which the extension class is furthermore peu ramifiée in the sense of [79].
Thus, if ρ is reducible, then W (ρ) consists of one, two, three or even (in some

cases when p = 3) four weights. (See the table in the proof of [14, Thm. 3.15].)

3.5.4. Definition. If V ∈W (ρ), then we define an H(V ) module m(V, ρ) as follows:
(1) If ρ is absolutely irreducible, then we define m(V, ρ) to be one dimensional,

with T acting by 0 and Z acting by det(ρ)(p). (Here we think of det(ρ) as
a homomorphism Gab

Qp
→ k×, and hence as a homomorphism Q×

p → k×, by
local class field theory.)

(2) If ρ is absolutely reducible, and V = (Symrk2)∨ ⊗k dets, then we set
m(V, ρ) := HomIp

(εs, ρ) as a k-vector space. Note that HomIp
(εs, ρ) is

naturally a representation of the quotient group GQp/Ip, and so in par-
ticular is equipped with an action of the geometric Frobenius at p. We
equip m(V, ρ) with an H(V )-module structure by declaring that T act via
geometric Frobenius, and that Z act via the scalar det(ρ)(p).

Suppose now that ρ satisfies Assumption 3.3.1, and let π denote the smooth
G-representation over k attached to ρ via Theorem 3.3.2. If V is a Serre weight,
then, by Remark 3.5.3, the space HomGL2(Zp)(V, π) is naturally an H(V )-module.

3.5.5. Lemma. (1) If V 6∈W (ρ), then HomGL2(Zp)(V, π) = 0.
(2) If V ∈ W (ρ), then there is an isomorphism of H(V )-modules m(V, ρ) ∼=

HomGL2(Zp)(V, π).

Proof. This is relatively straightforward, based on the explicit description of π given
in Remark 3.3.3, or in [25]. In the case when ρ |Ip

is not the twist of an extension
of 1 by either itself or ε±1, it is an immediate consequence of the description of π
given in [13, §20]. �

3.6. Lattices. This subsection is devoted to the proof of two technical, but impor-
tant, propositions. To begin with we suppose that ρ : GQp → GL2(O) is continuous,
that ρE := E ⊗O ρ is irreducible, and that ρss = χ1 ⊕ χ2, where χ1χ

−1
2 6= 1, ε±1.

Let π be the object of Modadm
G (A) associated to ρ via Theorem 3.3.2, and let π

be the deformation of π associated to the deformation ρ of ρ via Theorem 3.3.13.
Following the notation of Remark 3.3.19, we write B(ρE) := E⊗O π. Our first goal
in this subsection is establish a proposition that allows us to distinguish π among
the various $-adically complete and separated, G-invariant O-lattices in B(ρE).

Before stating the stating the proposition, we will make a definition. Note that
the composite of the isomorphism S

∼−→ Q×
p with the local Artin map defines an

injection S ↪→ Gab
Qp

, and hence an anti-diagonal embedding

(3.6.1) S ↪→ Gab
Qp
× S
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(defined as the local Artin map on the first factor, and the map s 7→ s−1 on the
second factor).

3.6.2. Definition. If V is a representation of GQp × S, and if V ab denote the
maximal subobject of V on which GQp acts through its maximal abelian quotient
Gab

Qp
(note that V ab is a GQp ×S-subrepresentation of V ), then we let V ab,S denote

the subspace of V ab consisting of S-fixed vectors, where S acts through the anti-
diagonal embedding (3.6.1) and the action of Gab

Qp
× S-on V ab.

We can now state and prove our first proposition.

3.6.3. Proposition. If π0 is a G-invariant, $-adically complete and separated, G-
invariant lattice in B(ρE), with the property that, for each n > 0, the action of GQp

on the quotient
(ρ/$nρ)⊗O/$n OrdB(π0/$

nπ0)(
(ρ/$nρ)⊗O/$n OrdB(π0/$nπ0)

)ab,S

factors through Gab
Qp

, then π0 is equal to a scalar multiple of π.

Proof. According to Proposition 3.2.10, the functor MF induces a bijection between
the set of $-adically complete and separated, G-invariant lattices in B(ρE), and
the set of GQp-invariant lattices in ρE . Thus it similarly induces a bijection between
the set of $-adically complete and separated, G-invariant lattices in B(ρE), modulo
scaling, and the set of GQp-invariant lattices in ρE , modulo scaling.

Denote these latter two sets by Lπ and Lρ. Since χ1 and χ2 are distinct, and ρE

is irreducible, the set Lρ is a finite (positive) length segment in the tree of all (not
necessarily G-invariant) lattices in ρE . We let ρ1 and ρ2 denote the two endpoints
of this segment, the labelling chosen so that ρ1 is a non-split extension of χ2 by
χ1, while ρ2 is a non-split extension of χ1 by χ2. If ρ0 is any (lattice representing
an) element of Lρ, then we write d1(ρ0) (resp. d2(ρ0)) to denote the distance of
ρ0 from ρ1 (resp. ρ2). Note that d1(ρ0) + d2(ρ0) is constant (i.e. independent
of ρ0), equal to the length d of the segment Lρ. For i = 1, 2, the natural number
di(ρ0) admits the following characterization: for any n ≥ 0, the quotient ρ0/$

nρ0

contains a (necessarily abelian) GQp-subrepresentation χ̃i(ρ0)n which is a successive
extension of min(di(π0), n) copies of χi, and no longer such subrepresentation (i.e.
no subrepresentation which is a successive extension of more than this many copies
of χi). The representations χ̃i(ρ0)n are compatible in an evident way if n varies,
namely: if m ≤ n, then χ̃i(ρ0)n/$

mχ̃i(ρ0)n
∼−→ χ̃i(ρ0)m. Note also that χ̃i(ρ0)n

is annihilated by $di(ρ0), for any value of n, and so χ̃i(ρ0)n
∼−→ χ̃i(ρ0)di(ρ0) for

any n ≥ di(ρ0). If n ≤ di(π0), then the quotient (ρ0/$
nρ0)/χ̃i(ρ0)n is an abelian

representation of GQp (it is a successive extension of n copies of χ3−i), while if
n > di(π0) then it is not (it contains a non-split extension of χi by χ3−i).

Now choose ρ0 = MF(π0). Proposition 3.2.4 gives rise to a Q×
p -equivariant

embedding
χ̃1(ρ0)d ⊕ χ̃2(ρ0)d ↪→ OrdB(π0/$

dπ0),

and thus to an embedding(
(ρ/$d1(ρ0)ρ)⊗O/$d1(ρ0)O χ̃1(ρ0)d

)
⊕

(
(ρ/$d2(ρ0)ρ)⊗O/$d2(ρ0)O χ̃2(ρ0)d

)
↪→ (ρ/$dρ)⊗O/$d OrdB(π0/$

dπ0).
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Taking n = d in the hypothesis of the theorem, we find that for each choice of
i = 1, 2, the cokernel of the map(

(ρ/$di(ρ0)ρ)⊗O/$di(ρ0) χ̃i(ρ0)d

)ab,S
↪→ (ρ/$di(ρ0)ρ)⊗O/$di(ρ0) χ̃i(ρ0)d

is again an abelian representation of GQp .
Now (ρ/$di(ρ0)ρ)ab = χ̃1(ρ)di(ρ0) ⊕ χ̃2(ρ)di(ρ0), and so(

(ρ/$di(ρ0)ρ)⊗O/$di(ρ0) χ̃i(ρ0)d

)ab,S = χ̃i(ρ)di(ρ0) ⊗O/$di(ρ0) χ̃i(ρ0)d.

Thus we conclude that the action of GQp
on the quotient (ρ/$di(ρ0)ρ)/χ̃i(ρ)di(ρ0)

is abelian. This implies that di(ρ0) ≤ di(ρ) for i = 1, 2. However, since d1(ρ0) +
d2(ρ0) = d1(ρ) + d2(ρ) = d, we conclude that di(ρ0) = di(ρ) for i = 1, 2, and thus
that ρ0 is a scalar multiple of ρ. Consequently, π0 is a scalar multiple of π, as
claimed. �

Our next result is a variant of the preceding one, in which we work with more
general coefficients, but draw a weaker conclusion. To this end we suppose that
A is an object of Comp(O) that is reduced and flat over O, and that ρ : GQp →
GL2(A) is a continuous representation. If p is a point of SpecA[1/p] then we write
ρ(p) := κ(p)⊗A ρ, where κ(p) is the residue field of p.

We assume that ρ is generically irreducible, i.e. is such that ρ(a) is irreducible
for each minimal prime a of A. We also suppose given an orthonormalizable ad-
missible representation θ of G over A, with the property that the characters of
E ⊗O MF(θ/pθ) and ρ(p) coincide for any closed point p ∈ SpecA[1/p]. This im-
plies that, if ρ(p) is irreducible, then it is isomorphic to E⊗O MF(θ/pθ). The point
of the following proposition is to provide a criterion for such an isomorphism in
certain cases when ρ(p) is reducible.

3.6.4. Proposition. Suppose that p is a closed point of SpecA[1/p] with the prop-
erty that ρ(p)ss = χ1 ⊕ χ2, where χ1, χ2 are characters χi : GQp

→ κ(p)× such
that χ1χ

−1
2 6= 1, ε±1, and such that E ⊗O (θ/pθ) contains no finite-dimensional G-

invariant subquotients. If there exists a faithful cofinitely generated A-module (in
the sense of Definition C.1) such that, for each n > 0, the action of GQp

on the
quotient

(ρ/pnρ)⊗A/pn OrdB

(
(θ/pnθ)⊗A/pn Y [ pn]

)(
(ρ/pnρ)⊗A/pn OrdB

(
(θ/pnθ)⊗A/pn Y [ pn]

))ab,S

factors through Gab
Qp

, then E ⊗O MF(θ/pθ) ∼= ρ(p).

Proof. We wish to reduce ourselves to the consideration of lattices in a represen-
tation over a discrete valuation ring, as in the context of the preceding proposi-
tion. To this end, we choose a finite morphism A → A′, where A′ is an object of
Comp(O) that is normal of dimension two, containing a prime p′ which maps to
p under the induced map SpecA′ → SpecA. We furthermore can and do choose
A′ so that ρ′ := A′ ⊗A ρ is generically irreducible. We write θ′ := A′ ⊗A θ, and
note that it suffices to prove that E ⊗O MF(θ′/p′θ) ∼= κ(p′) ⊗A′ ρ

′. Indeed, there
are natural isomorphisms E ⊗O MF(θ′/p′θ) ∼−→ κ(p′)⊗κ(p)

(
E ⊗O MF(θ/pθ)

)
and

κ(p′) ⊗A′ ρ
′ ∼−→ κ(p′) ⊗κ(p) ρ(p). Thus E ⊗O MF(θ/pθ) and ρ(p) are representa-

tions of GQp over κ(p) that become isomorphic over κ(p′), and hence are themselves
isomorphic.
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We now set Y ′ := HomA(A′, Y ); note that Y ′ is cofinitely generated over A′, by
Proposition C.13 (1). For any n > 0, there are natural isomorphisms

(θ′/p′nθ′)⊗A′/p′n Y
′[p′n] ∼−→ (θ/pnθ)⊗A/pn Y ′[pn]

and
Y ′[pn] ∼−→ HomA(A′/p′n, Y [pn]),

and hence (e.g. by Lemma 3.1.17, applied with A taken to be A/pn, π taken to be
θ/pnθ, which is orthonormalizable over A/pn by Lemma B.6 (4), and M taken to be
A′/p′n; note that there is no need to pass to completed tensor products, since A/pn

is finite over O, so that the usual tensor products are already $-adically complete)
a natural isomorphism

(θ′/p′nθ′)⊗A′/p′n Y
′[p′n] ∼−→ HomA

(
A′/p′n, (θ/pnθ)⊗A/pn Y [ pn]

)
.

There are evident isomorphisms

(ρ′/p′nρ′)⊗A′/p′n OrdB

(
HomA

(
A′/p′n, (θ/pnθ)⊗A/pn Y [ pn]

))
∼−→ HomA

(
A′/p′n,OrdB

(
(ρ/pnρ)⊗A/pn (θ/pnθ)⊗A/pn Y [ pn]

))
and(

(ρ′/p′nρ′)⊗A′/p′n OrdB

(
HomA

(
A′/p′n, (θ/pnθ)⊗A/pn Y [ pn]

)))ab,S

∼−→ HomA

(
A′/p′n,

(
(ρ/pnρ)⊗A/pn OrdB

(
(θ/pnθ)⊗A/pn Y [ pn]

))ab,S)
.

Since HomA(A′/p′n, –) is a left-exact functor, we deduce from the hypothesis of the
theorem that for each n > 0, the action of GQp on the quotient

(ρ′/p′nρ′)⊗A′/p′n OrdB

(
(θ′/p′nθ′)⊗A′/p′n Y

′[p′n]
)(

(ρ′/p′nρ′)⊗A′/p′n OrdB

(
(θ′/p′nθ′)⊗A′/p′n Y ′[p′n]

))ab,S

factors through Gab
Qp

. Note also that since A′ is reduced (being normal), the module
Y ′ is faithful over A′, by Proposition C.13 (2). Combining this with the conclusion
of the preceding paragraph, we see that we may replace A, p, ρ, and θ by A′, p′, ρ′,
and θ′, and hence assume that A itself is normal of dimension two.

Let Yctf denote the maximal cotorsion free cofinitely generated A-submodule of Y
(as in Definition C.39, with Γ taken to be the trivial group). Proposition C.40 shows
that Yctf is a faithful A-module. For any n > 0, the embedding Yctf [pn] ↪→ Y [pn]
induces a map

(θ/pnθ)⊗A/pn Yctf [pn] ↪→ (θ/pnθ)⊗A/pn Y [pn]

which is again an embedding (by Lemma B.6 (1), applied to the orthonormalizable
A/pn-module θ/pnθ), and it follows that the action of GQp on the quotient

(ρ/pnρ)⊗A/pn OrdB

(
(θ/pnθ)⊗A/pn Yctf [ pn]

)(
(ρ/pnρ)⊗A/pn OrdB

(
(θ/pnθ)⊗A/pn Yctf [ pn]

))ab,S

factors through Gab
Qp

. Thus, replacing Y by Yctf , we may assume that Y is cotorsion
free. Then, since Y is cotorsion free and the localization Ap is a discrete valuation
ring (being normal and of dimension one), we find that E ⊗O Y [pn] is free as an
(Ap/p

nAp)-module, for any n > 0. (Indeed, if we write N := HomO(Y,O), then N
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is torsion free over A, by assumption. Applying Proposition C.11, with X taken to
be Y and M taken to be A/pn, we find that there is an isomorphism

(Ap/p
nAp)⊗A N

∼−→ HomO(E ⊗O Y [pn], E).

Since Ap⊗AN is finitely generated and torsion free, and hence free, over the discrete
valuation ring Ap, we see that the source of this isomorphism is free over Ap/p

nAp,
and hence so is the source. Passing to E-duals, we find that E ⊗O Y [pn] is itself
free over (Ap/p

nAp), as claimed.) Thus we conclude that the GQp
-action on

(ρ/pnρ)⊗A/pn OrdB(θ/pnθ)(
(ρ/pnρ)⊗A/pn OrdB(θ/pnθ)

)ab,S

factors through Gab
Qp

, for any n > 0.

Let Âp denote the completion of the localization Ap, let K denote the fraction
field of Âp, and consider θ̂ := Âp⊗̂Aθ, the p-adic completion of Ap⊗A θ (which may
also be described as the projective limit lim

←−
n

E ⊗O (θ/pnθ)), as well as K⊗ bAp
θ̂. We

are in the context of the discussion at the end of Subsection 3.2, and we observe that
MF(θ̂) is an Âp-lattice in MF(K ⊗ bAp

θ̂) ∼= K ⊗A ρ. Since Âp is a complete discrete

valuation ring, and since by assumption θ̂/pθ̂ ∼= E ⊗O θ/pθ contains no finite-
dimensional G-invariant subquotients, we may apply the same argument as that
used to prove Proposition 3.6.3 above to conclude that MF(θ̂) is a scalar multiple
(in K ⊗ bAp

ρ) of Âp ⊗A ρ, and so in particular that MF(θ̂) ∼= Âp ⊗A ρ. Reducing
this isomorphism modulo p, we find that E ⊗O MF(θ/pθ) ∼= ρ(p), as claimed. �

3.7. Deformations. In this subsection we prove some technical results which will
allow us to construct certain deformations of G-representations. These results will
be applied only in the proof of Proposition 6.5.11.

We suppose that A is a finite, flat, reduced, local O-algebra, with maximal
ideal m. Let p be a minimal prime ideal of A such that O ∼−→ A/p, and let J
denote the intersection of the minimal primes of A that are distinct from p. Thus
J is a saturated ideal of A (i.e. A/J is flat over O), and J ∩ p = 0. There is a short
exact sequence

(3.7.1) 0 −→ A
a7→(a mod p,a mod J)−→ A/p×A/J

(a1,a2) 7→a1−a2−→ A/(p + J) −→ 0.

Let s > 0 be such that O/$sO ∼−→ A/(J + p). If we let ı : A/J → O/$sO
denote the composition of the surjection A/J → A/(J + p) with the inverse of this
isomorphism, then a consideration of the short exact sequence (3.7.1) shows that
there is an isomorphism

(3.7.2) A
∼−→ {(x, y) ∈ A/J ×O | ı(x) ≡ y mod $s}.

We may use this description of A to construct orthonormalizable A-modules by
gluing together orthonormalizable modules over O and A/J . Suppose to begin with
that X is an orthonormalizable A-module. Write XJ := X/JX and Xp := X/pX.
It follows from Lemma B.6 (4) that XJ is an orthonormalizable A/J-module, while
Xp is an orthonormalizable O-module. The transitivity of tensor products shows
that there are canonical isomorphisms

XJ/pXJ
∼−→ X/(p + J)X



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 37

and
Xp/$

sXp
∼−→ X/(p + J)X,

and we define
φ : Xp/$

sXp
∼−→ XJ/pXJ

to be the composite of the second of these with the inverse of the first.

3.7.3. Lemma. There is a natural isomorphism

X
∼−→ {(u, v) ∈ Xp ×XJ |φ(u) = v}.

Proof. This follows by tensoring the short exact sequence (3.7.1) with X over A,
taking into account the flatness of X over A (Part 1 of Lemma B.6). �

Conversely, we now suppose given an orthonormalizable O-module Xp, an or-
thonormalizable A/J-module XJ , and an isomorphism

φ : Xp/$
sXp

∼−→ XJ/pXJ .

Define

(3.7.4) X := {(u, v) ∈ Xp ×XJ |φ(u) = v}.

3.7.5. Lemma. The A-module X is orthonormalizable, and there are natural iso-
morphisms X/pX ∼−→ Xp and X/JX ∼−→ XJ .

Proof. Choose a basis {ei}i∈I of Xp/$
sXp, and lift {ei}i∈I (resp. {φ(ei}i∈I to

an orthonormal basis {ep
i }i∈I of Xp (resp. an orthonormal basis {eJ

i }i∈I of XJ).
One easily verifies, taking into account the isomorphism (3.7.2), that {(ep

i , e
J
i )}i∈I

forms an orthonormal basis for X. We leave the (easy) verification of the claimed
isomorphisms to the reader. �

We now present a variant of the gluing procedure just discussed. To begin with,
write A′ := HomO(A,O) (and define (A/J)′ analogously). The description (3.7.2)
of A gives rise to a corresponding description of A′. Before stating it, note that

(3.7.6)
( 1
$s

(A/J)′/(A/J)′
)
[p] ∼−→

(
A/(p + J)

)∨ ∼−→ 1
$s

O/O.

The inverse of this isomorphism gives an embedding

 :
1
$s

O/O ∼−→
( 1
$s

(A/J)′/(A/J)′
)
[p] ↪→ 1

$s
(A/J)′/(A/J)′,

and we have the isomorphism

A′
∼−→ {(u′, v′) ∈ 1

$s
O × 1

$s
(A/J)′ | (u′ mod O) ≡ v′ mod (A/J)′};

if we regard A as a subring of O×A/J via (3.7.2), then the pairing between A and
A′ is defined via

〈(u, v), (u′, v′)〉 := 〈u, u′〉 − 〈v, v′〉.
We may re-express the preceding isomorphism via the following exact sequence:

(3.7.7) 0 −→ A′ −→ 1
$s

O × 1
$s

(A/J)′
(u′,v′) 7→(u′)−v′−→ 1

$s
(A/J)′/(A/J)′.

Suppose now that we are given an orthonormalizable A/J-module XJ . If we
define VJ := (A/J)′ ⊗A/J XJ , then the isomorphism (3.7.6) gives rise to a natural
isomorphism

(
1
$s

VJ/VJ)[p] ∼−→ (
1
$s

XJ)/p(
1
$s

XJ).
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Thus if we are given an orthonormalizable O-module Xp and an isomorphism φ :
Xp/$

sXp
∼−→ XJ/pXJ , we may equally well regard φ an an isomorphism

φ :
1
$s

Xp/Xp
∼−→ (

1
$s

VJ/VJ)[p] ⊂ 1
$s

VJ/VJ .

3.7.8. Lemma. In the context of the preceding discussion, if we write

V := {(u, v) ∈ 1
$s

Xp ×
1
$s

VJ |φ(u mod Xp) = v mod VJ},

then there is an isomorphism A′ ⊗A X
∼−→ V, for some orthonormalizable A-

module X.

Proof. If we define the A-module X via (3.7.4), then Lemma 3.7.5 shows that X is
orthonormalizable. Now tensoring X over A with the exact sequence (3.7.7), and
taking into account the flatness of X over A (Lemma B.6 (1), and the isomorphisms
X/pX

∼−→ Xp and X/JX ∼−→ XJ of Lemma 3.7.5, we obtain an exact sequence

0 → A′ ⊗A X → 1
$s

Xp ×
1
$s

VJ →
1
$s

VJ/VJ ,

where the third arrow is defined by (u, v) 7→ φ(u)− v. The lemma follows. �

The next result gives a characterization of those A-modules of the type con-
structed in the preceding lemma. Before stating it, we note that passing to trans-
poses induces a natural isomorphism

A = HomA(A,A) ∼−→ HomA(A′, A′).

Thus if X is any orthonormalizable A-module, it follows from Lemma B.6 (3) that
there is a natural isomorphism

(3.7.9) X
∼−→ HomA(A′, A′ ⊗A X).

3.7.10. Lemma. If V is an A-module, then the following are equivalent:
(1) There exists an orthonormalizable A-module X and an isomorphism

A′ ⊗A X
∼−→ V.

(2) HomA(A′, V ) is an orthonormalizable A-module, and the natural map

A′ ⊗A HomA(A′, V ) → V

is an isomorphism.
Furthermore, any isomorphism as in 1 induces an isomorphism

X
∼−→ HomA(A′, V ).

Proof. Obviously 2 implies 1. Conversely, any isomorphism as in 1 induces the
second in the sequence of isomorphisms

X
∼−→ HomA(A′, A′ ⊗A X) ∼−→ Hom(A′, V ),

the first being the isomorphism (3.7.9). Thus 1 implies 2, and the final statement
of the lemma also holds. �

We are finally ready to explain how the previous results can be used to construct
certain deformations of G-representations.

3.7.11. Proposition. Let V be a G-representation on an m-adically complete A-
module, and let π be a semi-simple object of Modadm

G (A). Suppose that:
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(1) There exists a deformation XJ of π over A/J such that (A/J)′⊗A/JXJ
∼−→

V [J ].
(2) V [p] is a deformation of π over O.
(3) For each Serre weight U , the embedding π ∼−→ (VJ/$VJ)[m] ↪→ (V/$V )[m]

induces an isomorphism

socH(U) HomGL2(Zp)(U, π) ∼−→ socH(U) HomGL2(Zp)

(
U, (VJ/$VJ)[m]

)
.

(We refer to Definition 3.5.1 for the definition of Serre weight, to Defini-
tion 3.5.2 for the definition of H(U), and to Remark 3.5.3 for the definition
of the action of H(U) on the functor HomGL2(Zp)(U, – ). If W is a GL2(Qp)-
representation, then we write socH(U) HomGL2(Zp)(U,W ) to denote the socle
of HomGL2(Zp)(U,W ) as a H(U)-representation.)

Then there is a deformation X of π over A and a G-equivariant A-linear isomor-
phism A′ ⊗A X

∼−→ V.

Proof. Write C to denote the cokernel of the inclusion V [J ] ↪→ V, so that we have
a short exact sequence

(3.7.12) 0 → V [J ] → V → C → 0

of A[G]-modules. Since
O/$r ∼−→ A/(p + J),

it follows that the class in Ext1A[G](C, V [J ]) represented by (3.7.12) is annihilated
by multiplication by $s, and hence that there is a map of A[G]-modules φ : C →
L[J ]/$sL[J ] such that (3.7.12) is obtained by pulling back the short exact sequence

(3.7.13) 0 → V [J ] → 1
$s

V [J ] → 1
$s

V [J ]/V [J ] → 0

via φ.
Let K denote the kernel of φ. Note that K may also be described as the max-

imal submodule of C such that pull-back of (3.7.12) along the inclusion K ↪→ C
splits; this alternate description of K shows that surjection V → C restricts to an
isomorphism

(3.7.14) V [p] ∼−→ K.

Choose t to be maximal such that K ⊂ $tC; note that $sC ⊂ K, and thus
that s ≥ t. There is an embedding φ′ : $−tK/K ↪→ V [J ]/$tV [J ], defined as the
composite

$−tK/K
∼−→ (C/K)[$t]

φ
↪→ (V [J ]/$sV [J ])[$t]

∼−→ $s−tV [J ]/$sV [J ] ∼−→ V [J ]/$tV [J ].

Pulling back (3.7.12) via the inclusion $−tK ↪→ C yields a short exact sequence

(3.7.15) 0 → V [J ] →W → $−tK → 0,

obtained by pulling back the short exact sequence (3.7.13) along the embedding φ′.
Suppose now that s > t. We claim that (W/$W )[m] ∼−→ π ⊕ π, and (conse-

quently) that the exact sequence

0 → (V [J ]/$V [J ])[m] → (W/$W )[m] → ($−tK/$−t+1K)

is then in fact short exact (i.e. exact on the right as well), and split.
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To see this, suppose first that t = 0. In this case (3.7.15) is split, and the claim
is evident. Suppose next that s > t > 0. Write

(3.7.16) B
∼−→ {(x, y) ∈ A/J ×O | ı(x) ≡ y mod $t}.

It follows from Lemma 3.7.8 that there is an orthonormalizable B-module Y such
that B′ ⊗B Y

∼−→W. We then compute that

(W/$W )[m] ∼−→ (B/mB)∨ ⊗k (Y/mY ).

Since s > t, there is an isomorphism B/mB
∼−→ k ⊕ k. On the other hand,

Y/mY
∼−→ (Y/J)/m(Y/J) ∼−→ XJ/mXJ

∼−→ π.

This proves the claim when t > 0.
Continuing to suppose that s > t, we see that by virtue of our choice of t, the

map ($−tK/$−t+1K) → C/$C is not identically zero, and thus we find that the
image of the natural map (W/$W )[m] → (V/$V )[m] has a non-zero projection
into C/$C. Since π is semi-simple as a G-representation, so is (W/$W )[m], and
thus so is its image in (V/$V )[m]. Thus this image contains an irreducible G-
subrepresentation, say Y , which embeds into C/$C. If U is a Serre weight lying
in the GL2(Zp)-socle of Y , then the composite

socH(U) HomGL2(Zp)(U, Y ) ↪→ socH(U) HomGL2(Zp)

(
U, (V/$V )[m]

)
→ socH(U) HomGL2(Zp)(U,C/$C)

is injective, and consequently socH(U) HomGL2(Zp)(U, Y ) does not lie in the image
of the embedding

socH(U) HomGL2(Zp)

(
U, (VJ/$VJ)[m]

)
↪→ socH(U) HomGL2(Zp)

(
U, (V/$V )[m]

)
.

This contradicts the third hypothesis in the statement of the proposition, and hence
we conclude that necessarily s = t. Thus K = $sC, hence $−sK = C and φ′ = φ,
and so in fact W = V. The proposition now follows from Lemma 3.7.8. �

4. Local Langlands at primes ` 6= p

For any finite set Σ0 of primes distinct from p, write GΣ0 :=
∏

`∈Σ0
GL2(Q`).

This section is devoted to the representation theory of the groups GΣ0 with p-adic
and mod p coefficients, or more generally with coefficients in objects of Comp(O).
More precisely, after recalling the definition of the Kirillov functor, we describe
various aspects of the local Langlands correspondence in these contexts. Our main
reference is the paper [43].

4.1. The Kirillov functor. In this subsection we recall the definition of the Kir-
illov functor on smooth GΣ0-representations.

4.1.1. Definition. Write

P0 := {
(
a b
0 1

)
| a ∈

∏
`∈Σ0

Z×` , b ∈
∏

`∈Σ0

Z`} ⊂
∏

`∈Σ0

GL2(Z`) ⊂ GΣ0 .

For each ` ∈ Σ0, define the operator U` ∈ O[GL2(Q`)] ⊂ O[GΣ0 ] via the formula

U` =
`−1∑
i=0

(
` i
0 1

)
.
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IfX is a smooth representation ofGΣ0 over an object A of Comp(O), then one easily
checks that the operators U` preserve the A-submodule of P0-invariant vectors XP0 .
Define

FΣ0(X) = {x ∈ XP0 |U`x = 0 for each ` ∈ Σ0} ⊂ XP0 .

The formation of FΣ0(X) is evidently functorial in X (with values in the category
of A-modules), and we refer to FΣ0 as the Kirillov functor.

The following result summarizes the key properties of FΣ0 .

4.1.2. Theorem. (1) The functor FΣ0 is exact on the category of smooth GΣ0-
representations over A.

(2) If X is finitely generated over A[G], then FΣ0(X) is finitely generated
over A.

(3) If X is an absolutely irreducible representation of GΣ0 over k, then FΣ0(X)
is at most one-dimensional over k.

4.1.3. Definition. We say that a representation X of GΣ0 over k is generic if X
contains no non-zero subrepresentations W for which FΣ0(W ) = 0.

4.1.4. Lemma. Let f : W → X be a GΣ0-equivariant map from one smooth admis-
sible GΣ0-representation over k to another. Suppose that:

(1) W is generic.
(2) The map f induces an injection FΣ0(W ) ↪→ FΣ0(X) after applying the

Kirillov functor FΣ0 .
Then FΣ0 is injective.

Proof. Let U denote the kernel of f . Since FΣ0 is exact, we see from condition 2
that FΣ0(U) = 0. Condition 1 then implies that U = 0, as required. �

4.2. Classical local Langlands for GL2(Q`). Let A be an object of Comp(O).
Suppose that A is furthermore a domain, with field of fractions K, and that
K is of characteristic zero. Let ` 6= p be prime, and consider a representation
ρ` : GQ`

→ GL2(K) which is continuous, in the sense that it is obtained from a con-
tinuous representation GQ`

→ GL2(A) (the target being equipped with its m-adic
topology) via extension of scalars. In [43] we define a local Langlands correspon-
dence ρ` 7→ π(ρ`), where π(ρ`) is an admissible smooth representation of GL2(Q`)
over K. As usual, this correspondence is defined by first passing from the Ga-
lois representation ρ` to a Weil–Deligne representation (see [27, §8] and [43]), then
Frobenius semi-simplifying, and then applying a suitably normalized version of the
local Langlands correspondence relating Frobenius semi-simple Weil–Deligne rep-
resentations and admissible smooth GL2(Q`)-representations. There is one caveat
that we should draw attention to, however: in [43] we apply a generic version of this
correspondence. As a consequence, π(ρ`) is always generic, but in certain situations
is not irreducible.

To be clear, let us recall a more explicit description of the correspondence of [43]:
(1) If ρ` = χ1

⊕
χ2, labelled so that χ1χ

−1
2 6= | |−1

` , then

π(ρ`) := IndGL2(Q`)
B χ1| |` ⊗ χ2.

(This representation is irreducible if χ1χ
−1
2 6= | |`, and is a non-trivial

extension of χ1 ◦ det by (χ1 ◦ det)⊗ St otherwise.)
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(2) If ρ` is a non-split extension of χ2 by χ1, then either χ1 = χ2 = χ, in which
case

π(ρ`) := IndGL2(Q`)
B χ| |` ⊗ χ,

or else χ1χ
−1
2 = | |`, in which case

π(ρ`) := (χ1 ◦ det)⊗ St.

(3) If ρ` is absolutely irreducible, then π(ρ`) is a cuspidal representation, with
central character equal to det(ρ`)| |`.

Given ρ` as above, we let π̃(ρ`) denote the smooth contragredient representation
to π(ρ`).

4.3. Mod p local Langlands for GL2(Q`). In [43], we construct a mod p local
Langlands correspondence, whose key properties are summarized in the following
theorem:

4.3.1. Theorem. There is a map ρ` 7→ π(ρ`) from the set of isomorphism classes
of continuous representations ρ` : GQ`

→ GL2(k) to the set of isomorphism classes
of finite length admissible smooth GL2(Q`)-representations satisfying the following
conditions:

(1) For any ρ`, the associated GL2(Q`)-representation π(ρ`) is generic, in the
sense of Definition 4.1.3 (equivalently, π(ρ`) contains no finite-dimensional
subrepresentations).

(2) If K is any finite extension of Qp with residue field k, and if ρ` : GQ`
→

GL2(K) is a continuous representation lifting ρ` : GQ`
→ GL2(k), then

there is a GL2(Q`)-invariant integral lattice π(ρ`)◦ contained in π(ρ`) (the
admissible smooth GL2(Q`)-representation over K attached to ρ` via the
local Langlands correspondence of the preceding section), whose mod $ re-
duction π(ρ`)◦ admits a GL2(Q`)-equivariant embedding π(ρ`)◦ ↪→ π(ρ`).
Furthermore, the lattice π(ρ`)◦ is uniquely determined up to multiplication
by an element of K×.

(3) The representation π(ρ) is minimal with respect to satisfying conditions (1)
and (2), i.e. given any representation π of GL2(Q`) satisfying these two
conditions with respect to ρ, there is a GL2(Q`)-equivariant embedding
π(ρ) ↪→ π.

Furthermore, the correspondence ρ` 7→ π(ρ`) is characterized by these conditions.

Given ρ` as in the statement of the theorem, we let π̃(ρ`) denote the smooth
contragredient representation to π(ρ`).

4.4. Local Langlands in p-adic families for the groups GΣ0 . Let A be an
object of Comp(O) with maximal ideal m and suppose that A is reduced and flat
over O (so that every minimal prime of A has residue characteristic zero). For each
point p ∈ SpecA, let κ(p) denote the fraction field of A/p.

Let Σ0 be a finite set of primes not containing p, and suppose given a continuous
representation ρ : GQ → GL2(A). If p ∈ SpecA, then we write ρ(p) := κ(p) ⊗A ρ.
In the case of the maximal ideal m, we also write ρ := ρ(m) = k ⊗A ρ.

In [43] we prove the following result:

4.4.1. Theorem. There is (up to isomorphism) at most one coadmissible (in the
sense of Definition C.23) smooth GΣ0 :=

∏
`∈Σ0

GL2(Q`)-representation X satisfy-
ing the following conditions:
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(1) The GΣ0-representation (X/$X)[m] is generic, and furthermore the k-
vector space FΣ0

(
(X/$X)[m]

)
is at most one-dimensional.

(2) There is a Zariski dense subset of closed points Π ⊂ SpecA[1/p], such that:
(a) For each p ∈ Π, if for some ` ∈ Σ0, the Galois representation ρ(p)GQ`

is a non-generic principal series representation, then p is a minimal
prime of A.

(b) For each p ∈ Π, there is a κ(p)-linear, GΣ0-equivariant isomorphism

E ⊗O X[p] ∼−→
⊗
`∈Σ0

π(ρ(p) |GQ`
).

(c) The closure in X (in the sense of Definition C.28) of the saturation
in X (in the sense of Definition C.6) of

∑
p∈ΠX[p] coincides with X

itself.
Any such X satisfies the following additional conditions:

(3) X is cotorsion free as an A-module (in the sense of Definition C.37).
(4) For each minimal prime a of A, the tensor product κ(a)⊗AX̃ is κ(a)-linearly

and GL2(Q`)-equivariantly isomorphic to ⊗`∈Σ0 π̃(ρ`(a)).
(5) For every closed point p of SpecA[1/p], there is a GΣ0-equivariant embed-

ding
E ⊗O X[p] ↪→

⊗
`∈Σ0

π(ρ(p) |GQ`
).

4.4.2. Definition. If a coadmissible smooth representation X of GΣ0 over A satis-
fying the conditions of Theorem 4.4.1 exists, then we denote it by πΣ0(ρ), and we
let π̃Σ0(ρ) denote the smooth contragredient to πΣ0(ρ).

In the case when S = {`} consists of a single prime, we write π`(ρ) and π̃`(ρ)
rather than π{`}(ρ) and π̃{`}(ρ) (assuming that they exist). In [43] we prove that
πΣ0(ρ) exists if and only if π`(ρ) exists for each ` ∈ Σ0, and that π̃Σ0(ρ) may be
identified with the maximal A-torsion free quotient of ⊗`∈Σ0 π̃`(ρ).

The preceding discussion applies in particular to the case when A = O. In this
case, we have the following result.

4.4.3. Proposition. Suppose that ρ : GQ → GL2(O) is continuous, and write
ρE := E⊗Oρ for the associated E-valued representation. In this case the admissible
smooth GΣ0-representations πΣ0(ρ) does exist, and is an admissible smooth GΣ0-
representation over O, which is characterized by the following properties:

(1) There is an E-linear, G-equivariant isomorphism

E ⊗O πΣ0(ρ)
∼−→

⊗
`∈Σ0

π(ρE |GQ`
)

(where π(ρE |GQ`
) is the GL2(Q`)-representation over E attached to ρE |GQ`

via the local Langlands correspondence discussed in Subsection 4.2).
(2) The quotient πΣ0(ρ)/$πΣ0(ρ) is generic, in the sense of Definition 4.1.3.

Proof. For each ` ∈ Σ0, let π(ρE|GQ`
)◦ denote the GL2(Q`)-invariant O-lattice in

π(ρE|GQ`
) satisfying condition 2 of Theorem 4.3.1, and set

πΣ0(ρ) := ⊗`∈Σ0π(ρE |G`
)◦.
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The representation πΣ0(ρ) satisfies the conditions of Theorem 4.4.1 with respect to ρ
(taking Π to consist of the zero ideal of O). Thus πΣ0(ρ) exists. By construction, it
satisfies conditions 1 and 2 of the proposition, and is easily seen to be characterized
by those conditions. �

5. $-adically completed cohomology and Hecke algebras

In this section we recall the basic definitions and results related to the $-adically
completed cohomology of modular curves, and the associated $-adically completed
Hecke algebras. For further details the reader may consult [36] and [38].

5.1. Ĥ1
O and some related spaces. For any compact open subgroup Kf of the

adèlic group GL2(Af ), we let Y (Kf ) denote the modular curve

Y (Kf ) := GL2(Q)\
(
(C \ R)×GL2(Af )

)
/Kf .

As is well-known, Y (Kf ) admits a canonical model as an algebraic curve over Q,
which we again denote by Y (Kf ). We write

H1(Kf )A := H1
ét

(
Y (Kf )/ Q, A

)
,

where the subscript ét denotes étale cohomology, and where A denotes one of E, O,
or O/$sO for some s > 0. (Mostly we will have s = 1, in which case O/$O = k.)
There is a natural action of GQ on H1(Kf )A.

If Kp is some fixed compact open subgroup of GL2(Ap
f ), then we write

H1(Kp)A := lim
−→
Kp

H1(KpK
p)A,

where the inductive limit is taken over all compact open subgroups Kp of G :=
GL2(Qp), and where again A denotes one of E, O, or O/$sO. There are natural
commuting actions of G and GQ on H1(Kp)A.

For each s > 0 there is a natural G×GQ-equivariant isomorphism

(5.1.1) H1(Kp)O/$sH1(Kp)O
∼−→ H1(Kp)O/$sO.

We write

Ĥ1(Kp)O := lim
←−

s

H1(Kp)O/$sH1(Kp)O
∼−→ lim

←−
s

H1(Kp)O/$sO

to denote the $-adic completion of H1(Kp)O. Since the formation of $-adic com-
pletions is functorial, the GQ × G-action on Ĥ1(Kp)O extends to a $-adically
continuous GQ × G-action on Ĥ1(Kp)O. The G-action on Ĥ1(Kp)O makes it a
$-adically admissible G-representation over O, in the sense of Definition 3.1.1.
(See [36].) The isomorphisms (5.1.1) induce a natural GQ ×G-equivariant isomor-
phism

(5.1.2) Ĥ1(Kp)O/$sĤ1(Kp)O
∼−→ H1(Kp)O/$sO

for each s > 0.
We write

Ĥ1(Kp)E := E ⊗O Ĥ1(Kp)O.

This is an E-Banach space, having Ĥ1(Kp)O as unit ball, and equipped with a
continuous action of GQ ×G. The G-action makes it a unitary admissible Banach
space representation of G over E.
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If A is one of E or O, then we write

Ĥ1
A := lim

−→
Kp

Ĥ1(Kp)A,

and equip it with the O-linear inductive limit topology.10 It is also equipped with
a continuous action of GQ ×GL2(Af ). For any s > 0, we also write

H1
O/$sO := lim

−→
Kp

H1(Kp)O/$sO = lim
−→
Kf

H1(Kf )O/$sO

(the first inductive limit being taken over all compact open subgroups of GL2(Ap
f ),

and the second over all compact open subgroups of GL2(Af )). It is equipped
with a smooth action of GQ × GL2(Af ). (The case when s = 1, with coefficients
O/$O = k, will be of most interest.) The isomorphism (5.1.2) induces a natural
isomorphism

Ĥ1
O/$

sĤ1
O

∼−→ H1
O/$sO,

which is GQ ×GL2(Af )-equivariant.11

Suppose that Σ0 is a finite set of primes not containing p, write Σ := Σ0 ∪ {p},
and write GΣ0 :=

∏
`∈Σ0

GL2(Q`). Let KΣ
0 :=

∏
` 6∈Σ GL2(Z`). If KΣ0 is an open

subgroup of GΣ0 , then we write

Ĥ1(KΣ0)A := Ĥ1(KΣ0K
Σ
0 )A,

for A = E or O, and

H1(KΣ0)O/$sO := H1(KΣ0K
Σ
0 )O/$sO,

for any s > 0. In particular, when s = 1, we have

H1(KΣ0)k := H1(KΣ0K
Σ
0 )k.

We also write
Ĥ1

A,Σ := lim
−→

KΣ0

Ĥ1(KΣ0)A,

for A = E or O, and

H1
O/$sO,Σ := lim

−→
KΣ0

H1(KΣ0)O/$sO,

for s > 0. The modules Ĥ1
A,Σ are equipped with a continuous action ofGQ×G×GΣ0 ,

for A = E or O, while the modules H1
O/$sO,Σ are equipped with a smooth action

of the same group.
There are analogues of all the above constructions with compactly supported

cohomology in place of usual cohomology; we denote the resulting spaces by in-
cluding an extra subscript c (as usual), thus Ĥ1

c,O, etc. There are also analogues
with cohomology in degree zero rather than degree one, which we denote by Ĥ0

O,
etc. (See [36, §4] and [38, §7.2].)

We finish this section by noting the following lemma (which can already be found
in the proof of [38, Thm. 7.10.7]).

10I.e. we take as a basis of neighbourhoods of the origin in bH1
A those O-submodules U such

that U
T bH1(Kp)A is $-adically open in bH1(Kp)A for each tame level Kp. When A = E, this is

the usual locally convex inductive limit topology.
11As remarked in Section 2, the G and GL2(Af )-actions that we consider in this paper are

obtained from those considered in [16] by applying the automorphism g 7→ (g−1)t.
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5.1.3. Lemma. The space Ĥ1
E contains no one-dimensional G-subrepresentations.

Proof. If U is a one-dimensional G-invariant subspace of Ĥ1
E , then cupping U with

an appropriately chosen element of Ĥ0
E , if necessary, we may assume that the action

of GL2(Zp) on U is trivial, and hence in particular that U is locally algebraic. (Cf.
the proof of [38, Lem. 7.3.19].) However, it follows from [38, Thm. 7.4.2], together
with the fact that the local factor at p of the GL2(Af )-representation attached to a
modular newform is generic [51, p. 354], that Ĥ1

E cannot contain a one-dimensional
locally algebraic G-subrepresentation. This proves the lemma. �

5.1.4. Remark. Although we will not need the result in this paper, we note that
the proof of the preceding lemma extends to show that Ĥ1

E contains no non-zero
finite-dimensional G-subrepresentation. (Use the fact that any finite-dimensional
representation of SL2(Qp) over E is locally algebraic, as follows from [78, LG 5.42,
Thm. 2].)

5.2. Hecke algebras. Fix a compact open subgroup Kp of GL2(Ap
f ). If Kp is a

compact open subgroup of G, then we let T(KpK
p) denote the O-algebra of GQ×G-

equivariant endomorphisms of H1(KpK
p)E generated by the Hecke operators S`

and T` for those primes ` distinct from p and unramified in Kp. If K ′
p ⊂ Kp is

an inclusion of compact open subgroups of G, then there is a natural surjection
T(K ′

pK
p) → T(KpK

p).

5.2.1. Definition. We define T(Kp) := lim
←−
Kp

T(KpK
p), and we equip T(Kp) with its

projective limit topology, each of the O-algebras T(KpK
p) being equipped with its

$-adic topology.

The O-algebra T(Kp) is then topologically generated by the Hecke operators S`

and T`, and acts faithfully on Ĥ1(Kp)O, and so also on Ĥ1(Kp)E .12

The O-algebra T(Kp) is reduced, commutative, and complete with respect to its
natural topology, and in fact decomposes as the product of finitely many complete
local O-algebras, which are in bijection with the (finitely many) Galois conjugacy
classes of systems of Hecke eigenvalues arising from modular forms of level Kp

defined over k. Furthermore, its natural topology coincides with the product of the
m-adic topologies on each of its finitely many local factors, and so in particular, it is
a compact topological ring. (These claims are easily deduced from Definition 5.2.1.)

For any inclusion Kp′ ⊂ Kp, there is induced a continuous morphism T(Kp′) →
T(Kp) taking S` and T` in the source to S` and T` in the target, for ` 6= p and
unramified in Kp′, and compatible with respect to the natural closed embedding
Ĥ1(Kp)E ↪→ Ĥ1(Kp′)E and the action of T(Kp) (resp. T(Kp′)) on its source (resp.
target).

We now fix a continuous absolutely irreducible representation ρ : GQ → GL2(k),
and a finite set Σ0 of primes, not containing p, chosen so that ρ is unramified
outside Σ := Σ0 ∪ {p}. Assume that ρ is modular. (As conjectured by Serre, and
proved by Khare, Wintenberger, and Kisin [53, 54, 55, 60], this is implied by the

12The topological O-algebra T(Kp) admits the following alternative definition: namely, when

regarded as an algebra of endomorphisms of bH1(Kp)E , it coincides with the weakly closed O-

algebra of GQ ×G-equivariant endomorphisms of bH1(Kp)E topologically generated by the Hecke
operators S` and T` for those primes ` distinct from p and unramified in Kp. However, we won’t
need this interpretation in what follows.
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a priori weaker assumption that ρ is odd.) If KΣ0 is a compact open subgroup
of GΣ0 , and if KΣ

0 has the same meaning as in the preceding subsection, then we
write T(KΣ0) := T(KΣ0K

Σ
0 ).

5.2.2. Definition. We say that a compact open subgroup KΣ0 ⊂ GΣ0 is an allow-
able level for ρ if we may find a maximal ideal m of T(KΣ0), having residue field k,
which is associated to ρ in the usual sense, namely

T` mod m = trace
(
ρ(Frob`)

)
, `S` mod m = det

(
ρ(Frob`)

)
for ` 6∈ Σ (or equivalently, if there exists a newform of tame level KΣ0 whose
associated Galois representation lifts ρ).

If KΣ0 is an allowable level for ρ, then we write T(KΣ0)ρ := T(KΣ0)m to de-
note the completion of T(KΣ0) at m; note that T(KΣ0)ρ is simply a direct factor
of T(KΣ0), which by construction has residue field k. Since ρ is assumed to be
modular, any sufficiently small KΣ0 ⊂ GΣ0 is an allowable level for ρ.

5.2.3. Remark. The preceding claim merits some explanation. Indeed, if modular
is simply understood to mean that ρ arises from some modular form, then a priori
one could think that it might be necessary to enlarge Σ0 first. However, it is known
that ρ arises from a modular form of level equal to the Artin conductor of ρ, and so
in particular of level divisible only by primes in Σ. (This follows from the proof of
Serre’s conjecture in [53, 54, 55, 60]. Of course, for p > 2, and for most cases when
p = 2, it was known earlier, under the rubric “the weak Serre’s conjecture implies
the strong Serre’s conjecture” – see [74] and the references therein.)

As is well-known, for any allowable level KΣ0 , we may construct a deformation
ρ(KΣ0) : GQ → GL2(T(KΣ0)ρ) of ρ, unramified outside of Σ, uniquely determined
by the requirement

trace
(
ρ(KΣ0)(Frob`)

)
= T`, det

(
ρ(KΣ0)(Frob`)

)
= S`

for ` 6∈ Σ. (For example, for any compact open subgroup Kp of G, if we write
T(KpKΣ0)ρ := T(KΣ0)ρ ⊗T(KΣ0 ) T(KpKΣ0K

Σ
0 ), then [18, Thm. 3] constructs a

deformation ρ(KpKΣ0) : GQ → GL2(T(KpKΣ0)ρ), whose characteristic polynomial
on Frob` equals X2 − T`X + `S`, for ` 6∈ Σ. Since T(KΣ0)ρ := lim

←−
Kp

T(KpKΣ0)ρ (by

Definition 5.2.1), we may construct the deformation ρ(KΣ0) as the projective limit
of the deformations ρ(KpKΣ0).)

Let Rρ,Σ denote the complete local Noetherian O-algebra with residue field k
that parametrizes deformations of ρ, unramified outside of Σ, over complete local
O-algebras. Let ρu denote the universal deformation of ρ to a continuous represen-
tation ρu : GQ → GL2(Rρ,Σ). If we write

t` := trace
(
ρu(Frob`)

)
∈ Rρ,Σ, s` := `−1 det

(
ρu(Frob`)

)
∈ Rρ,Σ

(` 6∈ Σ), then Rρ,Σ is topologically generated by the elements t` [18]. For each
allowable level KΣ0 , the deformation ρ(KΣ0) of ρ determines, and is determined by,
a local O-algebra homomorphisms φ(KΣ0) : Rρ,Σ → T(KΣ0)ρ. This latter map is
uniquely determined by the requirement that φ(KΣ0)(t`) = T` for ` 6∈ Σ. One has
in addition that φ(KΣ0)(s`) = S`, and hence that φ(KΣ0) is surjective, since the
elements S` and T` topologically generate T(KΣ0)ρ. (And one concludes that in fact
T(KΣ0)ρ is topologically generated by the elements T` alone; this is well-known,
and also follows directly from the results of [18].)
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5.2.4. Lemma. (1) If K ′
Σ0

⊂ KΣ0 is an inclusion of allowable levels, then
the induced map T(K ′

Σ0
)ρ → T(KΣ0)ρ is a surjection of complete local

Noetherian O-algebras.
(2) If furthermore KΣ0 is a sufficiently small allowable level, then the induced

map T(K ′
Σ0

)ρ → T(KΣ0)ρ of part 1 is an isomorphism.

Proof. Claim 1 follows from the fact that the image of T(K ′
Σ0

)ρ in T(KΣ0)ρ is
closed (since T(K ′

Σ0
)ρ is compact) and contains a set of topological generators of

T(KΣ0)ρ (namely, the elements T`, for ` 6∈ Σ). (Alternatively, one may regard each
of T(KΣ0)ρ and T(K ′

Σ0
)ρ as quotients of Rρ,Σ — see diagram (5.2.6) below.) As

for claim 2, recall that, as is explained in [17] and [63], there is a positive integer
NΣ0 , divisible only by the primes in Σ0, with the property that for any modular lift
ρ of ρ, unramified away from Σ, the prime-to-p-part of the conductor of ρ divides
NΣ0 . Thinking of both T(K ′

Σ0
)ρ and T(KΣ0)ρ as quotients of Rρ,Σ, we thus see that

they coincide as quotients of Rρ,Σ, provided (for example) that KΣ0 is contained
in the congruence subgroup of level NΣ0 . �

5.2.5. Definition. We write Tρ,Σ = lim
←−

KΣ0

T(KΣ0)ρ, the projective limit being taken

over the allowable levels KΣ0 of GΣ0 . If ` 6∈ Σ, we write T` to denote the element
of Tρ,Σ uniquely determined by the requirement that it map to the element T` in
each of the algebras T(KΣ0)ρ.

Part 1 of Lemma 5.2.4 shows that the transition maps in the projective limit
defining Tρ,Σ are surjective, while part 2 of the lemma shows that they are eventu-
ally isomorphisms. In particular, we see that Tρ,Σ is a complete local Noetherian
O-algebra.

If K ′
Σ0
⊂ KΣ0 is an inclusion of allowable levels, then we obtain a commutative

diagram

(5.2.6) Rρ,Σ

φ(K′Σ0
)

��

φ(KΣ0 )

&&LLLLLLLLLL

T(K ′
Σ0

)ρ // T(KΣ0)ρ,

Passing to the limit over all KΣ0 , we obtain a local surjection of complete local
O-algebras φΣ : Rρ,Σ → Tρ,Σ, uniquely characterized by the requirement that
φΣ(t`) = T` for ` 6∈ Σ.

5.2.7. Definition. We let ρm
Σ denote the deformation of ρ over Tρ,Σ associated

to φΣ.

Referring again to Lemma 5.2.4, one sees that ρm
Σ coincides with ρ(KΣ0) for

sufficiently small KΣ0 .
As usual, for a point p ∈ Spec Tρ,Σ, we will write κ(p) to denote the residue field

of p. We recall in particular that if p is a closed point of Spec Tρ,Σ[1/p], then κ(p)
is a finite extension of E.

5.2.8. Definition. We say that a closed point p ∈ Spec Tρ,Σ[1/p] is a classical
closed point if the system of Hecke eigenvalues Spec Tρ,Σ[1/p] → κ(p) determined
by p arises from a classical cuspform of weight k ≥ 2.
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5.2.9. Definition. For any p ∈ Spec Tρ,Σ, we write ρ(p)◦ := ρm
Σ/pρ

m
Σ , and ρ(p) :=

κ(p)⊗Tρ,Σ ρ
m
Σ
∼= κ(p)⊗Tρ,Σ/p ρ(p)◦.

Thus ρ(p) is a two-dimensional representation of GQ over κ(p), and ρ(p)◦ is a
GQ-invariant lattice in ρ(p), free of rank two over the integral domain Tρ,Σ/p.

5.3. The ρ-part of Ĥ1
O. We continue to fix ρ, Σ0, and Σ := Σ0 ∪ {p} as in the

preceding subsection.

5.3.1. Definition. For each allowable level KΣ0 ⊂ GΣ0 , and for A = E or O,
we write Ĥ1(KΣ0)A,ρ := T(KΣ0)ρ ⊗T(KΣ0 ) Ĥ

1(KΣ0)A. Similarly, if Kp is a fixed
compact open subgroup of G, and if Kf = KpKΣ0K

Σ
0 , then we write H1(Kf )A,ρ :=

T(KΣ0)ρ ⊗T(KΣ0 ) H
1(Kf )A.

Since T(KΣ0)ρ is a direct factor of T(KΣ0), we see that Ĥ1(KΣ0)A,ρ is natu-
rally a direct summand of Ĥ1(KΣ0)A. Since the T(KΣ0)-action on Ĥ1(KΣ0)A is
GQ×G-equivariant, we see that Ĥ1(KΣ0)A,ρ is GQ×G-invariant. (Here, as in Defi-
nition 5.3.1, A = E or O.) If m denotes the maximal ideal in T(KΣ0) corresponding
to ρ (so that T(KΣ0)ρ is the m-adic completion of T(KΣ0)), then Ĥ1(KΣ0)O,ρ may
also be described as the m-adic completion of Ĥ1(O,KΣ0).

If K ′
Σ0

⊂ KΣ0 is an inclusion of allowable levels of GΣ0 , then the closed em-
bedding Ĥ1(KΣ0)A ↪→ Ĥ1(K ′

Σ0
)A restricts to a closed embedding Ĥ1(KΣ0)A,ρ ↪→

Ĥ1(K ′
Σ0

)A,ρ (again for A = E or O).

5.3.2. Definition. For A = E or O, write Ĥ1
A,ρ,Σ := lim

−→
KΣ0

Ĥ1(KΣ0)A,ρ, where the

inductive limit is taken over all allowable levels KΣ0 ⊂ GΣ0 .

One immediately sees that Ĥ1
A,ρ,Σ is a GQ ×G×GΣ0-invariant direct summand

of Ĥ1
A,Σ. The natural surjection Tρ,Σ → T(KΣ0)ρ (for each allowable level KΣ0 ⊂

GΣ0) allows us to regard Ĥ1(KΣ0)A,ρ as a Tρ,Σ-module, for any allowable level
KΣ0 ⊂ GΣ0 , and this structure is compatible with the embeddings Ĥ1(KΣ0)A,ρ ↪→
Ĥ1(K ′

Σ0
)A,ρ. Thus Ĥ1

A,ρ,Σ is also naturally a Tρ,Σ-module, and the GQ ×G×GΣ0-
action on Ĥ1

A,ρ,Σ is evidently Tρ,Σ-linear.
We also have a mod $s analogue of the preceding constructions for any s > 0,

which we denote by H1(KΣ0)O/$sO,ρ (for any allowable level KΣ0 ⊂ GΣ0) and
H1
O/$sO,ρ,Σ, defined in the evident manner. The isomorphism (5.1.2) gives rise to

an isomorphism

(5.3.3) Ĥ1(KΣ0)O,ρ/$
sĤ1(KΣ0)O,ρ

∼−→ H1(KΣ0)O/$sO,ρ,

and hence also an isomorphism

(5.3.4) Ĥ1
O,ρ,Σ/$

sĤ1
O,ρ,Σ

∼−→ H1
O/$sO,ρ,Σ,

for each s > 0. (In the particular case when s = 1, which will be of the most interest,
the preceding isomorphism may be written as Ĥ1

O,ρ,Σ/$Ĥ
1
O,ρ,Σ

∼−→ H1
k,ρ,Σ.)

5.3.5. Lemma. For any allowable level KΣ0 ⊂ GΣ0 for ρ, the module Ĥ1(KΣ0)O,ρ

is a $-adically admissible representation of G over Tρ,Σ.
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Proof. Since Ĥ1(KΣ0)O,ρ is a direct summand of Ĥ1(KΣ0)O, it is a $-adically
admissible representation of G over O. In order to prove the lemma, it then suffices
to observe (taking into account the isomorphism (5.3.3)) that for any i ≥ 0, each
element of Ĥ1

O,ρ,Σ/$
iĤ1

O,ρ,Σ is annihilated by some power of the maximal ideal
of Tρ,Σ. �

5.3.6. Lemma. Let KΣ0 ⊂ GΣ0 be an allowable level.
(1) The natural map

Ĥ1(KΣ0)E,ρ →
(
Ĥ1

E,ρ,Σ

)KΣ0

is an isomorphism.
(2) If Kp is a compact open subgroup of G, then, writing Kf := KpKΣ0K

Σ
0 ,

the natural map

H1(Kf )E,ρ →
(
Ĥ1(KΣ0)E,ρ

)Kp

is an isomorphism.

Proof. Claim 1 follows from [36, Prop. 2.2.13]. Claim 2 follows from the isomor-
phism [36, (4.3.4)], taking the representation W appearing there to be the trivial
representation. �

5.3.7. Definition. If τ ∈ C \ R, then let GL2(Q)τ denote the stabilizer of τ
in GL2(Q). We say that a compact open subgroup Kf of GL2(Af ) is neat if the
intersection GL2(Q)τ

⋂
gKfg

−1 = {1} for each τ ∈ C \ R and each g ∈ GL2(Af ).
(This condition ensures that GL2(Q) acts on (C \R)×GL2(Af )/Kf without fixed
points.)

5.3.8. Lemma. Let KΣ0 ⊂ GΣ0 be an allowable level.
(1) The natural map

Ĥ1(KΣ0)O,ρ →
(
Ĥ1
O,ρ,Σ

)KΣ0

is an isomorphism.
(2) If Kp is a compact open subgroup of G, and if Kf := KpKΣ0K

Σ
0 is neat,

then the natural map

H1(Kf )O,ρ →
(
Ĥ1(KΣ0)O,ρ

)Kp

is an isomorphism, as is the natural map

H1(Kf )O/$sO,ρ →
(
H1
O/$sO,ρ,Σ

)KpKΣ0 ,

for any s > 0.

Proof. We begin by putting ourselves in the situation of 2. Thus we choose a
compact open subgroup Kp ⊂ G, and write Kf := KpKΣ0K

Σ
0 . We furthermore

assume that Kf is neat. If K ′
p ⊂ Kp and K ′

Σ0
⊂ KΣ0 are normal open subgroups,

and if we write K ′
f := K ′

pK
′
Σ0
KΣ

0 , then the Hochschild–Serre spectral sequence
gives, for any s > 0, a short exact sequence

0 → H1
(
Kf/K

′
f ,H

0(Y (K ′
f ),O/$sO)

)
→ H1

(
Y (Kf ),O/$sO

)
→ H1

(
Y (K ′

f ),O/$sO
)Kf→ 0.



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 51

(Note that our assumption that Kf is neat implies that Kf/K
′
f acts freely on

Y (K ′
f ), so that we in a context to which the Hochschild–Serre spectral sequence

applies.) Since ρ is assumed to be irreducible, localizing at ρ yields an isomorphism

(5.3.9) H1(Kf )O/$sO,ρ
∼−→

(
H1(K ′

f )O/$sO,ρ

)Kf .

Passing to the inductive limit over K ′
p and K ′

Σ0
in (5.3.9), one obtains the second

of the isomorphisms in 2.
Taking K ′

p = Kp in (5.3.9), then passing to the inductive limit over Kp, and
then to the projective limit over s, one obtains an isomorphism

Ĥ1(KΣ0)O,ρ
∼−→

(
Ĥ1(KΣ′0

)O,ρ

)KΣ0 .

Passing to the inductive limit over K ′
Σ0

yields the isomorphism of part 1.
Passing to the inductive limit over K ′

p in (5.3.9), then to the projective limit
over s, and then to the inductive limit over K ′

Σ0
, one obtains an isomorphism

H1(Kf )O,ρ
∼−→

(
Ĥ1
O,ρ,Σ

)KpKΣ0 .

In combination with the isomorphism of part 1, this yields the first of the isomor-
phisms of part 2. �

5.3.10. Remark. A lemma of Carayol [17] shows that even when Kf is not neat,
claim 2 of the preceding result holds as long as ρ is not induced from a character
of GQ(

√
−1) or GQ(

√
−3).

5.3.11. Proposition. For any s > 0, the space H1
O/$sO,ρ,Σ0

is an admissible smooth
representation of G×GΣ0 over O/$sO.

Proof. This follows from part 2 of the preceding lemma, and the fact that the space
H1(Kf )O/$sO,ρ is finitely generated over O/$sO. �

5.3.12. Remark. In fact, the preceding proposition holds generally, without lo-
calizing at ρ ; i.e. H1

O/$sO,Σ0
is an admissible smooth representation of G × GΣ0 .

However, the analogue of Lemma 5.3.8 does not hold in general.

5.3.13. Proposition. If Kp is any compact open subgroup of G, then (Ĥ1
E,ρ,Σ)Kp

is finitely generated as an E[GΣ0 ]-module.

Proof. If ρ is any lift of ρ, then for any prime ` 6= p, the conductor of ρ at ` is
bounded in terms of the conductor of ρ of ` [17, 63]. Thus if we fix some power pn

of p, any classical lift ρ of ρ that is unramified outside Σ, and whose conductor at
p is bounded by pn, in fact has bounded conductor. It follows that there are only
finitely many such non-isomorphic lifts of any given weight k ≥ 2.

In particular, there are only finitely many lifts ρ of ρ that are classical of weight 2,
unramified away from Σ, and for which π(ρ |GQp

) (the representation of GL2(Qp)
associated to ρ |GQp

via the classical local Langlands correspondence at p) has non-
zero Kp-invariants. Replacing E by a finite extension, if necessary, we may assume
that all such lifts ρ are defined over E. It then follows from [38, Thm. 7.4.2] and
the main theorem of [16] that there is an isomorphism

(Ĥ1
E,ρ,Σ)Kp

∼−→
⊕

ρ

πp(ρ |GQp
)Kp ⊗ πΣ0(ρ),
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where the direct sum runs over all such lifts ρ. Since the direct sum is finite,
since each of the spaces πp(ρ |GQp

)Kp is finite-dimensional, and since each of the
GΣ0-representations πΣ0(ρ) is finitely generated, the proposition follows. �

5.3.14. Corollary. If Kp is any compact open subgroup of G, then (Ĥ1
k,ρ,Σ)Kp is

finitely generated as a k[GΣ0 ]-module.

Proof. It follows from Lemma 5.3.8 that reduction modulo $ induces an isomor-
phism

(Ĥ1
O,ρ,Σ)Kp/$(Ĥ1

O,ρ,Σ)Kp
∼−→ (H1

k,ρ,Σ)Kp .

Thus Proposition 5.3.13 shows that (H1
k,ρ,Σ)Kp is the reduction modulo $ of a

GΣ0-invariant O-lattice in a finitely generated admissible smooth representation of
GΣ0 over E. Since any such lattice is finitely generated over O[GΣ0 ], we conclude
that (H1

k,ρ,Σ)Kp is finitely generated over k[GΣ0 ], as required. �

5.3.15. Proposition. If Kp is a compact open subgroup of G, and if KΣ0 ⊂ GΣ0

is an allowable level, chosen so that KpKΣ0K
Σ
0 is neat, then, for each s > 0,

H1(KΣ0)O/$sO,ρ is injective as a smooth representation of Kp over O/$sO.

Proof. Let M be any finitely generated smooth representation of Kp over O/$sO,
and write M∨ := HomO/$sO(M,O/$sO) to denote the Pontrjagin dual of M .
Since KpKΣ0K

Σ
0 is neat, the representation M∨ induces a local system M∨ on

each of the modular curves Y (K ′
pKΣ0K

Σ
0 ), as K ′

p ranges over the normal open
subgroups of Kp. Since M is finitely generated and smooth, if K ′

p is sufficiently
small, then K ′

p acts trivially on M , and so M∨ is the constant local system. Thus,
if we write

H1(KΣ0)O/$sO
∼−→ lim

−→
K′p

H1(Y (K ′
pKΣ0K

Σ
0 ),O/$sO),

where K ′
p runs over all sufficiently small normal open subgroups of Kp, then we

find that

(5.3.16) HomKp

(
M,H1(KΣ0)O/$sO

)
∼−→ lim

−→
K′p

HomKp

(
M,H1(Y (K ′

pKΣ0K
Σ
0 ),O/$sO)

)
∼−→ lim

−→
K′p

H1
(
Y (K ′

pKΣ0K
Σ
0 ),M∨)Kp

.

On the other hand, the Hochschild-Serre spectral sequence yields, after passing to
the limit over all K ′

p, a short exact sequence

0 → lim
−→
K′p

H1
(
Kp/K

′
p,H

0(Y (KpKΣ0K
Σ
0 ),M∨)

)
→ H1

(
Y (KpKΣ0K

Σ
0 ),M∨)

→ lim
−→
K′p

H1
(
Y (K ′

pKΣ0K
Σ
0 ),M∨)Kp → 0,

which, when combined with (5.3.16), may be rewritten as the short exact sequence

0 → lim
−→
K′p

H1
(
Kp/K

′
p,H

0(Y (KpKΣ0K
Σ
0 ),M∨)

)
→ H1

(
Y (KpKΣ0K

Σ
0 ),M∨)

→ HomKp

(
M,H1(KΣ0)O/$sO

)
→ 0.
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If we localize at the maximal ideal in the Hecke algebra corresponding to ρ, the
H0 terms in this short exact sequence vanish, since ρ is absolutely irreducible by
assumption, and so we obtain a natural isomorphism

(5.3.17) H1
(
Y (KpKΣ0K

Σ
0 ),M∨)

ρ

∼−→ HomKp

(
M,H1(KΣ0)O/$sO,ρ

)
.

Now if 0 →M0 →M1 →M2 → 0 is any short exact sequence of finitely generated
smooth Kp-representations over O/$sO, then we obtain a corresponding short
exact sequence of sheaves

0 →M∨
2 →M∨

1 →M∨
0 → 0,

and hence a long exact sequence of cohomology

0 → H0
(
Y (KpKΣ0K

Σ
0 ),M∨

2

)
→ H0

(
Y (KpKΣ0K

Σ
0 ),M∨

1

)
→ H0

(
Y (KpKΣ0K

Σ
0 ),M∨

0

)
→ H1

(
Y (KpKΣ0K

Σ
0 ),M∨

2

)
→ H1

(
Y (KpKΣ0K

Σ
0 ),M∨

1

)
→ H1

(
Y (KpKΣ0K

Σ
0 ),M∨

0

)
→ 0.

Again, localizing at the maximal ideal associated to ρ annihilates the H0 terms,
and hence we obtain a short exact sequence

0 → H1
(
Y (KpKΣ0K

Σ
0 ),M∨

2

)
ρ
→ H1

(
Y (KpKΣ0K

Σ
0 ),M∨

1

)
ρ

→ H1
(
Y (KpKΣ0K

Σ
0 ),M∨

0

)
ρ
→ 0.

The natural isomorphism (5.3.17) then shows that the corresponding exact sequence
of Homs

0 → HomKp

(
M2,H

1(KΣ0)O/$sO,ρ

)
→ HomKp

(
M1,H

1(KΣ0)O/$sO,ρ

)
→ HomKp

(
M0,H

1(KΣ0)O/$sO,ρ

)
is also exact on the right. Thus HomKp

(
–,H1(KΣ0)O/$sO,ρ

)
is an exact functor

(on the category of finitely generated smooth Kp-representations over O/$sO,
and hence on the category of all smooth Kp-representations over O/$sO), and so
H1(KΣ0)O/$sO,ρ is indeed injective as a smooth Kp-representation over O. This
completes the proof of the proposition. �

5.3.18. Remark. The method of proof of the preceding proposition is a standard
technique in the study of the cohomology of sheaves on modular curves, which can
be summarized by the statement that H1 becomes an exact functor after localizing
at a non-Eisenstein maximal ideal of the Hecke algebra. The interpretation in terms
of injectivity is a useful way to express this technique (and its many consequences)
via a simple structural statement.

5.3.19. Corollary. If Kp is a pro-p open subgroup of G, and if KΣ0 ⊂ GΣ0 is an
allowable level, chosen so that KpKΣ0K

Σ
0 is neat, then, for some r > 0, there is an

isomorphism Ĥ1(KΣ0)O,ρ
∼= C(Kp,O)r of $-adically admissible Kp-representations

over O.

Proof. It suffices to show that there is an isomorphism of admissible smooth rep-
resentations of Kp over O,

(5.3.20) Ĥ1(KΣ0)O,ρ/$
sĤ1(KΣ0)O,ρ

∼= C(Kp,O/$sO)r,



54 MATTHEW EMERTON

for some r > 0, and each s > 0. It will then follow that r is independent of s, and we
can pass to the projective limit in s to establish the isomorphism in the statement
of the corollary.

Since Kp is a pro-p group, the completed group ring (O/$sO)[[Kp]] is a (non-
commutative) local ring. Thus, if M is any non-zero finitely generated projective
(O/$sO)[[Kp]]-module, then M is isomorphic to (O/$sO)[[Kp]]r for some r > 0.
Dualizing, we find that if π is a smooth admissible Kp-module over O/$sO that
is also injective, then there is an isomorphism π ∼= C(Kp,O/$sO)r of admissible
smooth representations of Kp over O, for some r > 0. Consequently, to obtain the
isomorphism (5.3.20), it suffices to show that Ĥ1(KΣ0)O,ρ/$

sĤ1(KΣ0)O,ρ is injec-
tive as an admissible smooth representation (or equivalently, by [40, Prop. 2.1.6],
simply as a smooth representation) of Kp over O/$sO. Taking into account the
isomorphism (5.3.3), we must equivalently show that H1(KΣ0)O/$sO,ρ is injective,
for each s > 0. This follows from the preceding proposition. �

5.4. A density result. Recall that for any G-representation V , we write Vl.alg

to denote the G-subrepresentation of V consisting of locally algebraic vectors, and
that VGL2(Zp)−alg denotes the subspace of V consisting of vectors which are algebraic
under the action of GL2(Zp).

5.4.1. Proposition. If KΣ0 ⊂ GΣ0 is an allowable level, then the space of GL2(Zp)-
algebraic vectors

(
Ĥ1(KΣ0)E,ρ

)
GL2(Zp)−alg

is dense in Ĥ1(KΣ0)E,ρ.

Proof. Let Kp be a compact open pro-p-subgroup of G, chosen to be normal in
GL2(Zp), and also chosen so small that KpKΣ0K

Σ
0 is neat. Corollary 5.3.19 then

shows that Ĥ1(KΣ0)E,ρ
∼= C(Kp, E)r for some r > 0, and hence that the topological

dual Ĥ1(KΣ0)
′
E,ρ is free as a module over E ⊗O O[[Kp]].

This implies in turn that Ĥ1(KΣ0)
′
E,ρ is projective as an E ⊗O O[[GL2(Zp)]]-

module. Indeed, we have a natural isomorphism of functors

HomE⊗OO[[GL2(Zp)]]

(
Ĥ1(KΣ0)

′
E,ρ, –

)
∼−→ HomE⊗OO[[Kp]]

(
Ĥ1(KΣ0)

′
E,ρ, –

)GL2(Zp)/Kp

(where the superscript indicates passage to invariants under the natural action of
GL2(Zp)/Kp on HomE⊗OO[[Kp]]

(
Ĥ1(KΣ0)

′
E,ρ, –

)
), the target of which is exact (by

virtue of the freeness of Ĥ1(KΣ0)
′
E,ρ over E⊗OO[[Kp]], together with the fact that

passage to invariants under the finite group GL2(Zp)/Kp is exact).
Since any projective module is a direct summand of a free module, undoing the

duality we find that Ĥ1(KΣ0)E,ρ may be GL2(Zp)-equivariantly embedded as a
topological direct summand of C

(
GL2(Zp), E

)s for some s > 0, and thus it suffices
to show that C

(
GL2(Zp), E)

)
GL2(Zp)−l.alg

is dense in C
(
GL2(Zp), E

)
GL2(Zp)−l.alg

.

The space C
(
GL2(Zp), E

)
GL2(Zp)−alg

is evidently equal to the space of polynomial
functions (with coefficients in E) on GL2(Zp) (regarded as the Zp-points of the
affine group scheme GL2). Since the theory of Mahler expansions shows that these
are dense in the space C

(
GL2(Zp), E

)
, the proposition follows. �

5.4.2. Remark. In fact the proceeding result remains true even without local-
izing at ρ. That is, for any compact open subgroup Kp of GL2(Ap

f ), the space
Ĥ1(Kp)E,GL2(Zp)−alg is dense in the E-Banach space Ĥ1(Kp)E . To see this, note
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that it suffices to prove the proposition after replacingKp by an open subgroupKp′,
since averaging over a set of coset representatives of Kp′ in Kp induces a continuous
projection from Ĥ1(Kp′)E onto Ĥ1(Kp)E which commutes with the G-action on
these spaces (by [36, Prop. 2.2.13] and its proof). Thus we may shrink Kp if neces-
sary so that Kf := GL2(Zp)Kp is neat. The proof of [36, Thm. 2.1.5] — together
with the fact that each modular curve Y (Kf ) is homotopic to a finite simplicial
complex of dimension one — shows that Ĥ1(Kp)E fits into a right exact sequence
of GL2(Zp)-representations on E-Banach spaces

C
(
GL2(Zp), E

)r → C
(
GL2(Zp), E

)s → Ĥ1(Kp)E → 0

(for some r, s ≥ 0), and the surjection C
(
GL2(Zp), E

)s → Ĥ1(Kp)E induces a map

C
(
GL2(Zp), E

)s

GL2(Zp)−alg
→ Ĥ1(Kp)E,GL2(Zp)−alg.

As we already observed in the preceding proof, the space C
(
GL2(Zp), E

)
GL2(Zp)−alg

is dense in C
(
GL2(Zp), E

)
, and so it follows that Ĥ1(Kp)E,GL2(Zp)−alg is indeed

dense in Ĥ1(Kp)E,GL2(Zp)−alg, as claimed.

5.4.3. Remark. The space Ĥ1(Kp)E may be regarded as a cohomological analogue
of the space of p-adic modular forms of tame level Kp with coefficients in E. The
preceding result is then analogous to the result of Katz [52, Thm. 2.1], which
shows that the space

⊕
k≥0Mk(Kp, E) is dense in the space of p-adic modular

forms. (Here Mk(Kp, E) denotes the space of weight k modular forms of level
GL2(Zp)Kp.)

We fix ρ, Σ0, and Σ := Σ0 ∪ {p} as in the preceding subsections.

5.4.4. Definition. If KΣ0 ⊂ GΣ0 is any allowable level for ρ, then we let C(KΣ0)
denote the subset of closed points p ∈ Spec T(KΣ0)ρ[1/p] that are classical and
whose associated Galois representations are crystalline locally at p. Similarly, we
let C denote the subset of closed points p ∈ Spec Tρ,Σ[1/p] that are classical and
whose associated Galois representations are crystalline locally at p.

5.4.5. Corollary. (1) If KΣ0 ⊂ GΣ0 is any allowable level for ρ, then the direct
sum

⊕
p∈C(KΣ0 ) Ĥ

1(KΣ0)E,ρ[p]l.alg is dense in Ĥ1(KΣ0)E,ρ.

(2) The direct sum
⊕

p∈C Ĥ
1
E,ρ,Σ[p]l.alg is dense in Ĥ1

E,ρ,Σ.

Proof. Proposition 5.4.1 shows that Ĥ1(KΣ0)E,GL2(Zp)−alg is dense Ĥ1(KΣ0)E .
Tensoring with T(KΣ0)ρ over T(KΣ0), we find that Ĥ1(KΣ0)E,ρ,GL2(Zp)−alg is dense
in Ĥ1(KΣ0)E,ρ. Thus E[G]Ĥ1(KΣ0)E,ρ,GL2(Zp)−alg (i.e. the E[G]-representation
generated by Ĥ1(KΣ0)E,ρ,GL2(Zp)−alg) is also dense in Ĥ1(KΣ0)E,ρ. From [38,
Thm. 7.4.2] we deduce that

E[G]Ĥ1(KΣ0)E,ρ,GL2(Zp)−alg =
⊕

p

Ĥ1(KΣ0)E,ρ[p]l.alg,

where the sum is taken over all classical closed points p ∈ Spec Tρ,Σ corresponding
to modular forms of weight k ≥ 2 and prime-to-p conductor. The main result of
[75] shows that the set of such p is precisely the set C(KΣ0), and so part 1 of the
corollary is proved. Part 2 then follows by passing to the inductive limit in KΣ0 . �
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The next corollary is a well-known result, which follows (for example) from the
result of Katz recalled in Remark 5.4.3. It is also easily deduced from the preceding
corollary.

5.4.6. Corollary. The set C is Zariski dense in Spec Tρ,Σ.

Proof. Suppose that t ∈
⋂

p∈C p. Then t annihilates
⊕

p∈C Ĥ
1
E,ρ,Σ[p]. The preceding

corollary shows that this subspace of Ĥ1
E,ρ,Σ (in fact, even its subspace of locally

algebraic vectors) is dense in all of Ĥ1
E,ρ,Σ. It follows that t thus annihilates all

of Ĥ1
E,ρ,Σ, and hence (since Tρ,Σ,ρ acts faithfully on Ĥ1

E,ρ,Σ, by virtue of its very
definition) that t = 0. �

The final result of this subsection gives a technical strengthening of the pre-
ceding result. Before stating it, we define an important class of closed points in
Spec Tρ,Σ[1/p].

5.4.7. Definition. We say that a closed point p ∈ Spec Tρ,Σ[1/p] is allowable if it is
a classical closed point for which the local representation ρ(p) |GQp

is crystabelline
and absolutely irreducible, and is not exceptional in the sense of Definition 3.3.18.

5.4.8. Remark. It is expected (and is a consequence of Tate’s conjecture [21]) that
in fact every point p of C for which ρ(p) |GQp

is absolutely irreducible is allowable.

We now state our result.

5.4.9. Lemma. (1) If KΣ0 ⊂ GΣ0 is any allowable level for ρ, then the set of
allowable points p ∈ Spec T(KΣ0)ρ[1/p] is Zariski dense in Spec T(KΣ0)ρ.

(2) The set of allowable points p ∈ Spec Tρ,Σ[1/p] is Zariski dense in Spec Tρ,Σ.

Proof. If p ∈ C(KΣ0) is not allowable, then the theory of the eigencurve allows us to
write it as the limit of a sequence of points pn ∈ C(KΣ0) which are allowable. The
first claim of the lemma follows from this observation together with the preceding
corollary. The second claim follows from the first and the fact that T(KΣ0)ρ

∼−→
Tρ,Σ for a sufficiently small choice of KΣ0 . �

5.5. The Galois action on Ĥ1
O,ρ,Σ. We continue to fix ρ, Σ0, and Σ := Σ0 ∪ {p}

as in the preceding subsections. In this subsection we show that it is possible to
“factor out” the Galois action from Ĥ1

O,ρ,Σ0
. To this end, we define

UΣ := HomTS,ρ[GQ](ρm
Σ , Ĥ

1
O,ρ,Σ).

There is a natural evaluation map

(5.5.1) ρm
Σ ⊗Tρ,Σ UΣ → Ĥ1

O,ρ,Σ.

Reducing each side of this map modulo$, and passing to m-torsion parts, we obtain
a map

(5.5.2) ρ⊗k (UΣ/$UΣ)[m] → H1
k,ρ,Σ[m].

5.5.3. Proposition. The evaluation map (5.5.1) is an isomorphism.

Proof. If KΣ0 is an allowable level for ρ, then Lemma 5.3.8 provides a natural
isomorphism

(5.5.4) Ĥ1(KΣ0)O,ρ

) ∼−→ (Ĥ1
O,ρ,Σ)KΣ0 ,
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from which we in turn deduce a natural isomorphism

(5.5.5) U
KΣ0
Σ

∼−→ HomTρ,Σ[GQ]

(
ρm
Σ , Ĥ

1(KΣ0)O,ρ

)
.

Passing to KΣ0-invariants in the source and target of (5.5.1) thus yields a map

(5.5.6) ρm
Σ ⊗Tρ,Σ U

KΣ0
Σ → Ĥ1(KΣ0)O,ρ.

To prove the proposition, it suffices to show that this map is an isomorphism for
each allowable level KΣ0 .

We begin by considering the map

(5.5.7) E ⊗O ρm
Σ ⊗Tρ,Σ U

KΣ0
Σ → Ĥ1(KΣ0)E,ρ.

obtained by tensoring (5.5.6) with E over O. If p ∈ Spec Tρ,Σ[1/p] is any classical
closed point, then Ĥ1(KΣ0)E,ρ[p]l.alg (which the isomorphism (5.5.4) shows is nat-
urally isomorphic to (Ĥ1

E,ρ,Σ)KΣ0 [p]l.alg) is isomorphic (as a GQ-representation) to
a direct sum of copies of ρ(p) [38, Thm. 7.4.2]. Thus the map

ρ(p)⊗κ(p) (E ⊗O U
KΣ0
Σ [p]) → Ĥ1(KΣ0)E,ρ[p],

obtained by passing to p-torsion parts in the source and target of (5.5.7), contains
Ĥ1(KΣ0)E,ρ[p]l.alg in its image.

Now KΣ0 acts smoothly on Ĥ1
E,ρ,Σ, and so averaging over KΣ0 induces a contin-

uous projection onto the space of KΣ0-invariants, which by (5.5.4) we identify with
Ĥ1(KΣ0)E,ρ. It thus follows from Corollary 5.4.5 that

⊕
p Ĥ

1(KΣ0)E,ρ[p]l.alg (where
p ranges over the classical closed points of Spec Tρ,Σ[1/p]) is dense in Ĥ1(KΣ0)E,ρ[p],
and hence we see that the map (5.5.7) has dense image.

There are natural isomorphisms

(UΣ)KΣ0
∼−→ HomTρ,Σ[GQ]

(
ρm
Σ , Ĥ

1(KΣ0)O,ρ

)
∼−→

(
(ρm

Σ )∨ ⊗TS,ρ
Ĥ1(KΣ0)O,ρ

)GQ .

Since Ĥ1(KΣ0)O,ρ is a $-adically admissible representation of G over O, the same
is true of (ρm

Σ )∨ ⊗TS,ρ
Ĥ1(KΣ0)O,ρ (which is isomorphic as a G-representation to a

direct sum of two copies of Ĥ1(KΣ0)O,ρ), and thus of its closed and saturated sub-
representation

(
(ρm

Σ )∨ ⊗TS,ρ
Ĥ1(KΣ0)O,ρ

)GQ , by [39, Prop. 2.4.13]. Hence (UΣ)KΣ0

is an admissible G-representation over O, and thus so is ρm
Σ⊗Tρ,ΣU

KΣ0
Σ (which is iso-

morphic as a G-representation to a direct sum of two copies of UKΣ0
Σ ). Thus (5.5.7)

is a continuous G-equivariant E-linear map between admissible continuous repre-
sentations of G over E, and so necessarily has closed image (as follows from the
results of [77]; see [34, Prop. 6.2.9] or Proposition 3.1.3 above for explicit state-
ments). Since we have already seen that the map (5.5.1) has dense image, we
conclude that it is in fact surjective.

Thus, in order to show that (5.5.6) is an isomorphism, it suffices, by Lemma 3.1.6,
to show that the map

(5.5.8) ρ⊗k (UΣ/$UΣ)[m] → H1
k,ρ,Σ[m],

obtained by reducing (5.5.6) modulo $ and passing to m-torsion parts of the source
and target, is injective. A consideration of the isomorphism (5.5.5) shows that there
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is a natural embedding

(UKΣ0
Σ /$U

KΣ0
Σ )[m] ↪→ Homk[GQ](ρ,H1(KΣ0)k,ρ),

such that the natural evaluation map

ρ⊗k Homk[GQ](ρ,H1(KΣ0)k,ρ) → H1(KΣ0)k,ρ

extends (5.5.8). The injectivity of (5.5.8) is thus proved once we note that this
evaluation map is injective, since ρ is an absolutely irreducible GQ-representation.

�

5.5.9. Corollary. The evaluation map (5.5.2) is an isomorphism.

Proof. This follows by reducing the isomorphism (5.5.1) mod $ and passing to
m-torsion parts. �

5.5.10. Remark. The analogue of Proposition 5.5.3 for cohomology at finite levels
has been proved by Carayol [18, Thm. 4].

5.5.11. Remark. In Section 6, we will use a similar method to furthermore “fac-
tor out” the G-action from Ĥ1

O,ρ,Σ (under some appropriate additional hypotheses
on ρ).

5.6. Ordinary forms. We present an interpretation of one of the main results
of the theory of p-adically ordinary modular forms, namely the reducibility of the
associated Galois representations locally at p, from the representation-theoretic
view-point of this note. (See Remark 5.6.10 below for an indication of the connec-
tion between the statements we give and the more traditional formulation in terms
of p-adically ordinary eigenforms.)

To begin with, suppose that π is a smooth representation of G over E, which
contains a $-adically separable G-invariant O-submodule π0 (more succinctly, a
G-invariant O-lattice) which is admissible, in the sense that π0/$π0 (and hence
π0/$nπ0 for any n ≥ 0) is an admissible smooth representation of G. Note that
π itself is then necessarily admissible. Although the G-representations π or π0 do
not quite fit into the context considered in [39] (since the coefficients of π are E,
while the O-module π0 will typically not be p-adically complete), we will begin by
observing that the basic definitions of that paper apply to them.

Indeed, if we write N0 :=
(

1 Zp

0 1

)
⊂ GL2(Zp), and then set T+ := {t ∈

T tN0t
−1 ⊂ N0}, then [39, Def. 3.1.3] applies perfectly well to π and π0, and so

we may define the Hecke T+-action on πN0 and πN0
0 (and, of course, the Hecke

T+-action on the latter is the restriction of the Hecke T+-action on the former).

5.6.1. Remark. Since π is an admissible smooth G-representation over E, it is
in particular an admissible locally analytic G-representation over G, and so the
discussion of [35, §3.4] applies to define an action of T+ on πN0 . This action is
closely related to the Hecke T+-action on πN0 defined in the preceding paragraph.
Indeed, it differs from it simply by a twist by the modulus character | |p ⊗ | |−1

p .

(Since the definition of the T+-action in [35, §3.4] involves an averaging which does
not appear in the definition of the Hecke T+-action given by [39, Def. 3.1.3].)

For each integer r ≥ 0, write Ir :=
{
g ∈ GL2(Zp) | g ≡

(
1 ∗
0 1

) }
. Note that if

t ∈ T+, then tIrt−1 ⊂ Ir for each r ≥ 0, and so the Hecke T+-action on π (resp. πN0)
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preserves πIr (resp. πIr
0 ) for each r ≥ 0. We define Ar to be the image of O[T+] in

EndO(πIr ) under the mapping induced by the Hecke T+-action. Since Ar preserves
the separated sublattice πIr

0 of the finite-dimensional E-vector space πIr , we see
that Ar is a finite O-algebra, and so there is an isomorphism Ar

∼−→ Ar,m, where m
ranges over the finitely many maximal ideals of Ar. We say that a maximal ideal
m is ordinary if the image of T+ is disjoint from m, write Ar,ord :=

∏
ordinary mAr,m

(a direct factor of Ar), and let er,ord denote the idempotent in A which projects
onto Aord.

5.6.2. Definition. Define OrdB(π) :=
⋃

r er,ordπ
Ir and OrdB(π0) :=

⋃
r er,ordπ

Ir
0 .

Note that OrdB(π) (resp. OrdB(π0)) is naturally an E[T ]-module (resp. an O[T ]-
module).

Evidently E ⊗O OrdB(π0)
∼−→ OrdB(π). The following lemma shows that the

formation of OrdB is similarly compatible with reduction modulo powers of $.

5.6.3. Lemma. For any integer n ≥ 0, the surjection π0 → π0/$
nπ0 induces an

embedding OrdB(π0)/$nOrdB(π0)
∼−→ OrdB(π/$nπ) (where OrdB(π0) is defined

according to Definition 5.6.2, while OrdB(π0/$
nπ0) is defined according to [39,

Def. 3.1.9]). If the natural map πN0
0 → (π0/$

rπ0)N0 is furthermore a surjection,
then this embedding is in fact an isomorphism.

Proof. Clearly

(5.6.4) OrdB(π0)/$nOrdB(π0)
∼−→

⋃
r

er,ord(πIr
0 /$

nπIr
0 )

(the union taking place in π0/$
rπ0). The proof of [39, Lem. 3.1.5] provides a

natural isomorphism

er,ord(πIr
0 /$

rπIr
0 ) ∼−→ Hom(O/$nO)[T+]

(
(O/$nO)[T ], πIr

0 /$
rπIr

0

)
= Hom(O/$nO)[T+]

(
(O/$nO)[T ], πIr

0 /$
rπIr

0

)
T−fin

for each r ≥ 0 (where the equality holds since πIr
0 /$

rπIr
0 is a finite O/$nO-

module), and thus a natural isomorphism

(5.6.5)
⋃
r

er,ord(πIr
0 /$

nπIr
0 )

∼−→ lim
−→

r

Hom(O/$nO)[T+]

(
(O/$nO)[T ], πIr

0 /$
rπIr

0

)
T−fin

.

Since πN0
0 =

⋃
r π

Ir
0 , and hence πN0

0 /$nπN0
0 =

⋃
r(π0/$

nπ0)Ir (the union taking
place in π0/$

rπ0), it follows from [39, Lem. 3.2.2] that

(5.6.6) lim
−→

r

Hom(O/$nO)[T+]

(
(O/$nO)[T ], πIr

0 /$
rπIr

0

)
T−fin

∼−→ Hom(O/$nO)[T+]

(
(O/$nO)[T ], πN0

0 /$rπN0
0

)
T−fin

↪→ Hom(O/$nO)[T+]

(
(O/$nO)[T ], (π0/$

nπ0)N0
)

=: OrdB(π0/$
nπ0).

The isomorphisms (5.6.4) and (5.6.5), together with the embedding (5.6.6), pro-
vide the required embedding, which is clearly an isomorphism if πN0

0 /$πN0
0 =

(π0/$π0)N0 . �
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5.6.7. Lemma. If π is absolutely irreducible as a G-representation, then OrdB(π)
is either zero or one-dimensional. In the latter case, if α ⊗ β denotes the char-
acter through which T acts on OrdB(π), and WD(π) denotes the representation
of the Weil–Deligne group attached to π via the local Langlands correspondence
(normalized as in Section 2), then there is a Weil–Deligne-equivariant embedding
α ↪→ WD(π) (where we regard α as a representation of the Weil–Deligne group via
the isomorphism Wab

p
∼−→ Q×

p of local class field theory).

Proof. Write πN0
fs := E[T ] ⊗E[T+] π

N0 . (Here the subscript fs stands for “fi-
nite slope”.) It follows from the discussion of Remark 5.6.1 together with [35,
Prop. 4.3.4] and its proof that the natural projection π → πN induces an isomor-
phism of T -representations πN0

fs
∼−→ πN ⊗ (| |−1

p ⊗ | |p). (This is a reformulation
of Casselman’s theory of the canonical lifting of the Jacquet module [19, §4].)

Since π is absolutely irreducible, its Jacquet module πN is either zero, one, or
two-dimensional, and thus the same is true of πN0

fs . Clearly OrdB(π) is identified
with that subrepresentation of πN0

fs on which T acts (possibly after an extension
of scalars) via unitary characters (i.e. characters with values in O×, rather than
merely in E×). In the case when πN is two-dimensional, if χ1⊗χ2 is one character
appearing in πN , the other is equal to χ2| |p⊗χ1| |−1

p , and thus the representation
πN ⊗ (| |−1

p ⊗ | |p) can contain at most a one-dimensional subspace on which T+

acts via a unitary character. Thus in all cases OrdB(π) is at most one-dimensional.
If OrdB(π) = α ⊗ β is one-dimensional, then we obtain an embedding α| |p ⊗

β| |−1
p ↪→ πN , and so indeed an embedding α ↪→ WD(π), as claimed. �

In the following lemma, we change our notation. Namely, we will let π denote a
cuspidal automorphic representation of GL2(A) attached to a weight two cuspidal
newform defined over E, and let πf denote the finite part of π (i.e. the restricted
tensor product of the local components π` for all finite primes `), which is an ad-
missible smooth representation of GL2(Af ) which we can take to be defined over E
[20, Prop. 3.2]. (Here we are implicitly using our chosen identification C ∼−→ Qp, as
well as our embedding E ↪→ Qp.) If Kp is any compact open subgroup of GL2(Ap

f ),
then πKp

f is an admissible smooth representation of G to which the previous results
apply. (Note that πKp

f embeds into H1(Kp)E , which contains the admissible G-
invariant O-lattice H1(Kp)O, and thus πKp

f also contains an admissible G-invariant
O-lattice.)

5.6.8. Lemma. As in the preceding paragraph, let π be a cuspidal automorphic
representation of GL2(A) attached to a weight two cuspidal newform defined over
E, so that πf is an admissible smooth representation of GL2(Af ) over E. If ρπ :
GQ → GL2(E) denotes the $-adic Galois representation attached to π, then for
any compact open subgroup Kp of GL2(Ap

f ), the action of GQp on the cokernel of
the natural embedding(

ρπ ⊗E OrdB(πKp

f )
)ab,S

↪→ ρπ ⊗E OrdB(πKp

f )

factors through Gab
Qp

. (We refer to Definition 3.6.2 for an explanation of the nota-
tion (– )ab,S.)

Proof. Let πp
f denote the restricted tensor product of the local components π` (with

` 6= p), so that πf = πp ⊗E πp
f , and hence πKp

f = πp ⊗ (πp
f )Kp . Evidently, then, we
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have that OrdB(πKp

f ) ∼−→ OrdB(πp)⊗E (πp
f )Kp

, and so(
ρπ ⊗E OrdB(πKp

f )
)ab,S ∼−→

(
ρπ ⊗E OrdB(πp)

)ab,S ⊗E (πp
f )Kp

.

Thus, to prove the lemma, it suffices to prove that the action of GQp on the cokernel
of the embedding

(5.6.9)
(
ρπ ⊗E OrdB(πp)

)ab,S
↪→ ρπ ⊗E OrdB(πp)

factors through Gab
Qp

.
Lemma 5.6.7 shows that OrdB(πp) is either zero or one-dimensional. If OrdB(πp)

vanishes, then there is nothing to prove, and so we may suppose that OrdB(πp)
is one-dimensional, with the T -action begin given by the character α ⊗ β. Note
that S then acts on OrdB(πp) via α. It follows from the main result of [75] that,
if WD(ρπ |GQp

) denotes the Weil–Deligne representation attached to the potentially
semi-stable Dieudonné module of ρπ |GQp

, then WD(ρπ |GQp
) and WD(πp) coincide

up to Frobenius semi-simplification, and Lemma 5.6.7 then implies that α is a
subrepresentation of WD(ρπ |GQp

). Since α is a unitary (i.e. O×-valued) character
of Q×

p , we see that in fact ρπ |GQp
is reducible, and contains α as a subrepresentation

(now thinking of α as a character GQp → O×). Thus α⊗EOrdB(πp) is a subspace of(
ρπ ⊗E OrdB(πp)

)ab,S , and hence the cokernel of (5.6.9) is a quotient of (ρπ/α)⊗E

OrdB(πp). Since ρπ/α is a one-dimensional representation of GQp
, the GQp

-action
on this space certainly factors through Gab

Qp
. �

5.6.10. Remark. One needn’t appeal to [75] to deduce the reducibility of ρπ in the

preceding argument. Indeed, if we write Jr :=
(

Z×p 0
0 1

)
Ir, then when restricted

to πJr
p , the Hecke action of the matrix

(
p 0
0 1

)
corresponds precisely to the action

of the Up-operator on modular forms of level Γ1(pr) (together with some auxiliary
tame level); see e.g. [36, Prop. 4.4.2]. Thus OrdB(πp) is non-zero if and only if the
newform attached to a twist of π is a ordinary at p, in the sense that it (or one of
its p-stabilizations, if its conductor is prime-to-p) has a p-adic unit Up-eigenvalue.13

The fact that ρπ is reducible locally at p is then well-known, and is due to Deligne
in the case when the conductor of π is prime-to-p [28], and to Wiles in general
[85, Thm. 2] (building on earlier results of Mazur–Wiles [66, §8, Prop. 1]). Indeed,
Lemma 5.6.8 is essentially a reformulation of [85, Thm. 2] (taking into account the
fact that we use cohomological conventions for ρπ and geometric conventions in our
normalization of the reciprocity maps of class field theory, while in [85] the opposite
conventions are used).

5.6.11. Theorem. For any n ≥ 0, the action of GQp on the cokernel of the embed-
ding

OrdB(Ĥ1
O,ρ,Σ/$

nĤ1
O,ρ,Σ)ab,S ↪→ OrdB(Ĥ1

O,ρ,Σ/$
nĤ1

O,ρ,Σ)

factors through Gab
Qp

. (We refer to Definition 3.6.2 for an explanation of the nota-
tion (– )ab,S.)

13Thus the theory of ordinary parts [39] is not quite an abstraction of the theory of ordinary
modular forms, but rather of what are usually called nearly ordinary modular forms.
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Proof. Since Ĥ1
O,ρ,Σ/$

nĤ1
O,ρ,Σ := lim

−→
KΣ0

Ĥ1(KΣ0)O,ρ/$
nĤ1(KΣ0)O,ρ, where KΣ0

runs over all allowable levels for ρ in GΣ0 , it follows from [39, Lem. 3.2.2] that there
is a natural isomorphism

lim
−→

KΣ0

OrdB

(
Ĥ1(KΣ0)O,ρ/$

nĤ1(KΣ0)O,ρ

) ∼−→ OrdB(Ĥ1
O,ρ,Σ/$

nĤ1
O,ρ,Σ).

Thus, to prove the theorem, it suffices to prove that the action of GQp
on the

cokernel of the embedding

OrdB

(
Ĥ1(KΣ0)O,ρ/$

nĤ1(KΣ0)O,ρ

)ab,S
↪→ OrdB

(
Ĥ1(KΣ0)O,ρ/$

nĤ1(KΣ0)O,ρ

)
factors through KΣ0 , for each allowable level KΣ0 .

The smoothG-representationH1(KΣ0)E,ρ containsH1(KΣ0)O,ρ as an admissible
G-invariant O-lattice, and so Definition 5.6.2 applies to each of H1(KΣ0)E,ρ and
H1(KΣ0)O,ρ.14 Lemma 5.3.8 implies that the natural map

H1(KΣ0)
Ir

O,ρ/$
nH1(KΣ0)

Ir

O,ρ →
(
Ĥ1(KΣ0)O,ρ/$

nĤ1(KΣ0)O,ρ

)Ir

is an isomorphism for each r ≥ 0 (indeed, both spaces are naturally identified with
H1(IrKΣ0K

Σ
0 )O/$nO,ρ). Passing to the inductive limit over r, we find that the

natural map

H1(KΣ0)
N0
O,ρ/$

nH1(KΣ0)
N0
O,ρ →

(
Ĥ1(KΣ0)O,ρ/$

nĤ1(KΣ0)O,ρ

)N0

is surjective, and hence, by Lemma 5.6.3, that

OrdB

(
H1(KΣ0)O,ρ

)
/$nOrdB

(
H1(KΣ0)O,ρ

)
∼−→ OrdB

(
Ĥ1(KΣ0)O,ρ/$

nĤ1(KΣ0)O,ρ

)
.

Consequently, it suffices to prove that GQp acts on the cokernel of the embedding

OrdB

(
H1(KΣ0)O,ρ

)ab,S
↪→ OrdB

(
H1(KΣ0)O,ρ

)
through Gab

Qp
, or equivalently, that GQp acts on the cokernel of the embedding

(5.6.12) OrdB

(
H1(KΣ0)E,ρ

)ab,S
↪→ OrdB

(
H1(KΣ0)E,ρ

)
through Gab

Qp
.

We may write H1(KΣ0)E,ρ as the inductive limit of its finitely generated G-
subrepresentations V , and so it suffices for each such V to show that the GQp-
action on the cokernel of OrdB(V )ab,S ↪→ OrdB(V ) factors through Gab

Qp
. Now if

we extend scalars sufficiently, we may write

V ∼= ⊕πρπ ⊗ π
KΣ0K

Σ0
0

f ,

14The only reason to cut down to a fixed auxiliary level KΣ0 is to be be able to apply the
preceding results, which, for the sake of simplicity, were developed in the context of an admissible
representation of G, rather than in the context of an admissible representation of GL2(Af ).
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where π ranges over a finite collection of cuspidal automorphic representations
of GL2(A) corresponding to a cuspidal newforms of weight two.15 The required
property of the cokernel of (5.6.12) is now seen to follow from Lemma 5.6.8. �

5.6.13. Corollary. The action of GQp
on the cokernel of the embedding

OrdB(Ĥ1
O,ρ,Σ)ab,S ↪→ OrdB(Ĥ1

O,ρ,Σ)

factors through Gab
Qp

.

Proof. This follows directly from the preceding theorem, by passing to the projec-
tive limit over n. �

5.7. Multiplicities of weights in H1
k,ρ,Σ. We give a representation-theoretic re-

formulation of the classical “mod p multiplicity one” results related to the ap-
pearance of Galois representations in the mod p (or more precisely, in our setting,
mod $) cohomology of modular curves.

5.7.1. Definition. Let V be a Serre weight, as in Definition 3.5.1. We say that V
is a global weight of ρ if HomGL2(Zp)(V,H1

k,ρ,Σ) is non-zero. We let W gl(ρ) denote
the set of global Serre weights of ρ.

5.7.2. Remark. Since every element of the Tρ,Σ-module H1
k,ρ,Σ is annihilated by

some power of m, the same is true of the Tρ,Σ-module HomGL2(Zp)(V,H1
k,ρ,Σ).

Thus HomGL2(Zp)(V,H1
k,ρ,Σ) is non-zero if and only if HomGL2(Zp)(V,H1

k,ρ,Σ[m])
(
=

HomGL2(Zp)(V,H1
k,ρ,Σ)[m]

)
is non-zero.

We will frequently impose the following hypothesis on ρ:

5.7.3. Assumption. The representation ρ is non-scalar locally at p, i.e. the restric-
tion ρ |GQp

is not the direct sum of two copies of the same character.

5.7.4. Remark. It is known that W gl(ρ) = W (ρ) (here, to ease notation, we are
writing W (ρ) := W (ρ|GQp

) to denote the set of Serre weights attached to ρ|GQp
,

as in Subsection 3.5); indeed, this is the weight part of Serre’s conjecture. (See
[14, Thm. 3.15].) However, we will not need this result in this paper (other than
in the proof of Theorem 3.3.22); we will we only need the simpler result that
W gl(ρ) ⊂ W (ρ). For those ρ whose restriction to GQp satisfies Assumptions 3.3.1,
the results of this paper will then give a new proof that W gl(ρ) = W (ρ). (See
Remark 6.2.15 below.)

If V ∈ W gl(ρ), then Remark 5.7.2 shows that HomGL2(Zp)(V,H1
k,ρ,Σ[m]) is a

non-zero k-vector space. It is equipped with commuting actions of H(V ) (see
Remark 3.5.3), GQ, and GΣ0 , and so is an H(V )[GQ × GΣ0 ]-module. We write
socH(V ) HomGL2(Zp)(V,H1

k,ρ,Σ[m]) to denote the socle of HomGL2(Zp)(V,H1
k,ρ,Σ[m])

as an H(V )-module. This is again an H(V )[GQ ×GΣ0 ]-module.

15The reason for restricting attention from H1(KΣ0 )E,ρ to its finitely generated subrepresen-

tations is just to be sure that only finitely many π contribute to V ⊗E Qp, so that we may indeed
find a common finite extension of E over which they are all defined. This is a purely technical
issue, related to the fact that all our definitions have been made in the context of a finite extension
of Qp, rather than (say) in the context of Qp.
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5.7.5. Definition. We say that a weight (Symrk2)∨ ⊗k dets in W gl(ρ) (where
0 ≤ r ≤ p− 1 and 0 ≤ s ≤ p− 2) is good if either r < p− 1, or r = p− 1 and the
weight dets does not lie in W gl(ρ).

5.7.6. Remark. Note that W gl(ρ) always contains a good weight. Indeed, if
(Symrk2)∨ ⊗k dets is a weight in W gl(ρ) that is not good, then it must be the
case that r = p−1 and that dets is also a weight in W gl(ρ); the weight dets is then
good.

5.7.7. Theorem. (1) W gl(ρ) ⊂W (ρ).
(2) If ρ satisfies Assumption 5.7.3, if V ∈ W gl(ρ) is a good weight (in the

sense of Definition 5.7.5), and if we write socH(V ) m(V, ρ) to denote the
H(V )-socle of the H(V ) module m(V, ρ) defined in Definition 3.5.4 (to ease
notation, we write m(V, ρ) rather then m(V, ρ |GQp

)), then there is an iso-
morphism of H(V )[GQ]-modules

FΣ0

(
socH(V )

(
Homk[GL2(Zp)](V,H1

k,ρ,Σ[m])
)) ∼= ρ⊗k socH(V ) m(V, ρ).

(3) If ρ satisfies Assumption 5.7.3, then for any weight V ∈ W gl(ρ), the GΣ0-
representation Homk[GL2(Zp)](V,H1

k,ρ,Σ[m]) is generic (in the sense of Def-
inition 4.1.3).

Proof. The proof of part 1 is standard, but for completeness, we recall it here (in
a form adapted to the representation-theoretic view-point of this paper). At the
same time, we will prove that any simple H(V )-submodule of

socH(V ) Homk[GL2(Zp)](V,H1
k,ρ,Σ[m])

also appears in socH(V ) m(V, ρ).
First of all, since the formation of W gl(ρ) and W (ρ) are compatible with twist-

ing ρ, we need only consider the case when V ∈ W gl(ρ) is of the form (Symrk2)∨.
For any allowable level KΣ0 for ρ, reduction modulo $ induces a map of Tρ,Σ[GQ]-
modules

(5.7.8) HomO[GL2(Zp)]

(
(SymrO2)∨, Ĥ1(KΣ0)O,ρ

)
→ Homk[GL2(Zp)]

(
V,H1(KΣ0)k,ρ

)
,

which, if KΣ0 is chosen to be sufficiently small, is surjective, by Proposition 5.3.15.
If we write Kf := GL2(Zp)KΣ0 , and let Vr denote the locally constant sheaf on the
curve Y (Kf ) corresponding to the representation SymrE2 of GL2(Q), then there
are isomorphisms

E ⊗O HomO[GL2(Zp)]

(
(SymrO2)∨, Ĥ1(KΣ0)O

)
∼−→ HomE[GL2(Zp)]

(
(SymrE2)∨, Ĥ1(KΣ0)E

)
∼−→ H1

(
Y (Kf ),Vr

)
E
,

where the last isomorphism follows from [36, (4.3.4)]. Recall from Subsection 3.5
that H(V ) = k[T,Z, Z−1], which we regard as a quotient of the ring O[T,Z, Z−1]
in the evident way. We make H1

(
Y (Kf ),Vr

)
a module over O[T,Z, Z−1] by having

T act via the classical Hecke operator Tp, and Z act via the matrix
(
p 0
0 p

)
. One
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then verifies that this action of O[T,Z, Z−1] preserves

HomO[GL2(Zp)]

(
(SymrO2)∨, Ĥ1(KΣ0)O,ρ

)
,

and that the map (5.7.8) is a map of O[T,Z, Z−1]-modules.
Since, by part 2 of Lemma 5.3.8, the space Homk[GL2(Zp)]

(
V,H1(KΣ0)k,ρ

)
is

finite-dimensional, the same is true of Homk[GL2(Zp)]

(
V,H1(KΣ0)k,ρ[m]

)
. Thus, by

extending scalars sufficiently, we may assume that the H(V )-socle of this latter
space is a direct sum of one-dimensional H(V )-submodules. Fix a non-zero H(V )-
eigenvector in Homk[GL2(Zp)]

(
V,H1(KΣ0)k,ρ[m]

)
, on whichH(V ) acts via the system

of eigenvalues λ : H(V ) → k. Taking into account the surjectivity of (5.7.8), the
Deligne–Serre lemma shows that, extending scalars further if necessary, we may
lift this eigenvector to an eigenvector for T(KΣ0)[T,Z] in H1

(
Y (Kf ),Vr

)
E
. This

latter eigenvector corresponds to a weight r + 2 cuspidal eigenform f of level KΣ0

defined over E, with Tp-eigenvalue ap that is congruent to λ(T ) mod $, and whose
associated Galois representation ρf lifts ρ. Since 2 ≤ r+2 ≤ p+1, the known results
relating the weight r + 2 and the eigenvalue ap to the structure of ρ := ρf mod $
(see e.g. [33]) then imply that V ∈W (ρ) (proving 1), and that λ appears in m(V, ρ).

We turn to proving part 2 of the theorem. Let V ∈ W gl(ρ), and hence, by
what we have already proved, in W (ρ). Again, by twisting, we may assume that
V = (Symrk2)∨ for some 0 ≤ r ≤ p−1. Extending scalars, if necessary, we may also
assume that socH(V ) m(V, ρ) is spanned by H(V )-eigenvectors. Let λ : H(V ) → k
be a system of eigenvalues appearing in socH(V ) m(V, ρ). Assumption 5.7.3 implies
that the λ-eigenspace of m(V, ρ) is one-dimensional. We will show that there is an
isomorphism

(5.7.9) FΣ0

(
Homk[GL2(Zp)](V,H1

k,ρ,Σ[m])H(V )=λ
) ∼= ρ.

Since we have shown that any irreducible constituent of

socH(V ) Homk[GL2(Zp)](V,H1
k,ρ,Σ[m])

is an irreducible constituent of socH(V ) m(V, ρ), this will serve to establish part 2
of the theorem.

As in Definition 4.1.1, write

P0 := {
(
a b
0 1

)
| a ∈

∏
`∈Σ0

Z×` , b ∈
∏

`∈Σ0

Z`} ⊂
∏

`∈Σ0

GL2(Z`) ⊂ GΣ0 .

To see that the isomorphism (5.7.9) holds, fix an admissible level KΣ0 for ρ contain-
ing P0, and chosen small enough for Kf := GL2(Zp)KΣ0 to be neat. Let Vk denote
the locally constant sheaf on Y (Kf ) corresponding to the representation Symrk2

of GL2(Fp), and then note that

(5.7.10) Homk[GL2(Zp)](V,H1(KΣ0)k,ρ)
∼−→ H1

(
Y (Kf ),Vr

)
m

(using the Hochschild–Serre spectral sequence as in the proof of Lemma 5.3.8 (2),
and taking into account the fact that ρ is irreducible). As we already noted above,
under this isomorphism the action of H(V ) becomes identified with the classical
Hecke action at p. It then follows from the classical mod p multiplicity one results
for modular curves (see [33] for example) together with the isomorphism (5.7.10)
that

Homk[GL2(Zp)]

(
V,H1(KΣ0)k,ρ[m]

)H(V )=λ,U`=0 ∀`∈Σ0 ∼= ρ.
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Passing to an inductive limit over all KΣ0 containing P0, and recalling the definition
of FΣ0 (see Definition 4.1.1), we obtain the isomorphism (5.7.9).

Part 3 of the theorem follows from Ihara’s lemma. Indeed,

Homk[GL2(Zp)](V,H1
k,ρ,Σ[m]) ↪→ V ∨ ⊗k H

1
k,ρ,Σ[m],

and so it suffices to show that this latter representation is generic as a GΣ0-
representation. If it is not, then it contains a finite-dimensional representation
of GL2(Q`), for some ` ∈ Σ0, contradicting Ihara’s lemma. This completes the
proof of the theorem. �

6. Local-global compatibility and the structure of Ĥ1
O,ρ,Σ

In this section we first introduce a local-global compatibility conjecture, namely
Conjecture 6.1.6, which refines Conjecture 1.1.1. We also recall from [42] the (some-
what more technical) Conjecture 6.1.4. The remainder of the section is then devoted
to stating and proving our main results in the direction of these two conjectures.
The statements of the main results are presented in Subsection 6.2, and we explain
there how they follow from the more technically involved results that are the sub-
ject of the following subsections. Subsection 6.2 also contains the derivations of
Theorem 1.2.1 and Theorem 1.2.6 from these results.

Throughout this section we fix an absolutely irreducible modular Galois rep-
resentation ρ : GQ → GL2(k), whose restriction to GQp we furthermore assume
satisfies Assumption 3.3.1. We also fix a finite set of primes Σ0, not containing p,
such that Σ := Σ0∪{p} contains all primes at which ρ is ramified. We freely employ
the notation related to ρ, Σ0, and Σ that was introduced in the preceding section.

6.1. A refined local-global compatibility conjecture. Our goal in this sub-
section is to state a refinement Conjecture 1.1.1, and to establish some of its conse-
quences. In order to state the conjecture, we will need to apply the local Langlands
correspondences, both at p and away from p, to ρm

Σ . We begin with the local
correspondence at p.

By construction, ρm
Σ is a deformation of ρ over Tρ,Σ. Furthermore, it follows from

Corollary 5.4.6 that the restriction ρm
Σ |GQp

lies in the subgroupoid Defcrys(ρ |GQp
) of

Def(ρ |GQp
). Thus, if we let π denote the admissible smooth G-representation over

k attached to ρ |GQp
by Theorem 3.3.2, then Theorem 3.3.13 shows that there is

a deformation πm
Σ of π to an admissible G-representation on an orthonormalizable

Tρ,Σ-module, uniquely determined, up to isomorphism, by the requirements that
MF(πm

Σ ) ∼−→ ρm
Σ |GQp

and that πm
Σ admits det(ρm

Σ |GQp
)ε as a central character.

We introduce the following notation, in analogy with the notation related to ρm
Σ

that was introduced in Definition 5.2.9.

6.1.1. Definition. For any p ∈ Spec Tρ,Σ, we write π(p)◦ := πm
Σ /pπ

m
Σ , and π(p) :=

κ(p) ⊗Tρ,Σ π
m
Σ
∼= κ(p) ⊗Tρ,Σ/p π(p)◦. (Note that if p is a closed point of Spec Tρ,Σ,

then by construction π(p) = B
(
ρ(p) |GQp

)
; see Remark 3.3.19 above.)

We now consider the local correspondence away from p, related to which we have
the following result.

6.1.2. Theorem. The coadmissible smooth representation πΣ0(ρ
m
Σ ) of GΣ0 over

Tρ,Σ (as defined in Definition 4.4.2 above) exists. Furthermore, if p > 2 then there
is an isomorphism

(
πΣ0(ρ

m
Σ )/$πΣ0(ρ

m
Σ )

)
[m] ∼−→ ⊗`∈Σ0π(ρ|GQ`

).
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Proof. This is proved in [42]. In the case when ρ satisfies Assumption 5.7.3, the ex-
istence of πΣ0(ρ

m
Σ ) also follows from Corollary 6.4.13, together with Theorems 6.4.16

and 6.4.20, below. �

6.1.3. Remark. I expect that the second statement of Theorem 6.1.2 holds also
when p = 2, but this is currently not known in general; we have only the weaker
statement that, for each ` ∈ Σ0, there is a GΣ0-equivariant embedding

π(ρ|GQ`
) ↪→

(
π`(ρm

Σ )/$π`(ρm
Σ )

)
[m],

which is an isomorphism when ρ|GQ`
is non-scalar, and has cokernel of dimension

at most one otherwise. Lassina Dembélé [29] has provided computational evidence
that this map is indeed an isomorphism even in those cases when ρ|GQ`

is scalar.

If p ∈ Spec Tρ,Σ[1/p] is a closed point, then by Theorem 4.4.1 (5) there is an
embedding E ⊗O πΣ0(ρ

m
Σ )[p] ↪→ ⊗`∈Σ0π`(ρ(p) |GQ`

). In [42] we made the following
conjecture:

6.1.4. Conjecture. For any closed point p ∈ Spec Tρ,Σ[1/p], there is an isomor-
phism

πΣ0(ρ
m
Σ )[p] ∼= πΣ0

(
ρ(p)◦

)
,

and hence also an isomorphism

E ⊗O πΣ0(ρ
m
Σ )[p] ∼= πΣ0(ρ(p))

(
:= ⊗`∈Σ0π`(ρ(p) |GQ`

)
)
.

6.1.5. Remark. In order to prove Conjecture 6.1.4, it suffices to show that, if
Σng

0 ⊂ Σ0 denotes the set of primes at which ρ(p) is non-generic principal series,
and if χ : GQ → E× is a character chosen so that χ ⊗ ρ(p) is unramified at each
` ∈ Σng

0 , then χ⊗ ρ(p) is promodular of level divisible only by primes in Σ0 \ Σng
0 .

We now state the main conjecture of this section.

6.1.6. Conjecture. There is a GQ×G×GΣ0-equivariant, Tρ,Σ-linear isomorphism

(6.1.7) ρm
Σ ⊗Tρ,Σ π

m
Σ

f
⊗Tρ,ΣπΣ0(ρ

m
Σ ) ∼−→ Ĥ1

O,ρ,Σ.

(Here
f
⊗ denotes the completed tensor product of Definition C.43.)

We will also state a slightly weaker variation of this conjecture, but before doing
so, we introduce some further notation.

6.1.8. Definition. If θ is a deformation of π over Tρ,Σ, then for any p ∈ Spec Tρ,Σ,
we write (in analogy with the notation related to πm

Σ that was introduced in Defi-
nition 6.1.1):

θ(p)◦ := θ/pθ,

and
θ(p) := κ(p)⊗Tρ,Σ θ

∼= κ(p)⊗Tρ,Σ/p θ(p)◦.

6.1.9. Conjecture. There is a deformation θ of π over Tρ,Σ, such that for every
closed point p ∈ Spec Tρ,Σ[1/p] there is an isomorphism θ(p) ∼= π(p), and such that
there is a GQ ×G×GΣ0-equivariant, Tρ,Σ-linear isomorphism

(6.1.10) ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣπΣ0(ρ

m
Σ ) ∼−→ Ĥ1

O,ρ,Σ.

(Here
f
⊗ denotes the completed tensor product of Definition C.43.)
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6.1.11. Remark. If ρ, and thus π (by [61, Lem. 2.1.2]), has only trivial endomor-
phisms, so that Def(π) is representable, then the condition that θ(p) ∼= π(p) for all
p ∈ Spec Tρ,Σ[1/p] implies that θ ∼= πm

Σ (since the closed points of Spec Tρ,Σ[1/p]
are Zariski dense in Spec Tρ,Σ). Thus in this case Conjecture 6.1.9 is equivalent to
Conjecture 6.1.6.

In general, Conjecture 6.1.6 implies Conjecture 6.1.9 (as one sees by taking
θ = πm

Σ ). The reason for considering Conjecture 6.1.9 is that, on the one hand,
we will be able to establish this conjecture in some situations in which we cannot
establish the stronger Conjecture 6.1.6, and on the other, it is already strong enough
to imply the main results described in the introduction.

In order to relate Conjectures 6.1.4 and 6.1.9 to Conjecture 1.1.1, we establish a
slight strengthening of [12, Prop. 3.2.3] and [38, Prop. 7.7.7]. Let ρ : GQ → GL2(E)
be a continuous, absolutely irreducible representation, unramified outside the finite
set of primes Σ. Let KΣ0 be a compact open subgroup of GΣ0 , and let p denote
the ideal in T(KΣ0)[1/p] generated by the elements T` − trace

(
ρ(Frob`)

)
for ` 6∈ Σ

(so p is either a closed point of Spec T(KΣ0), if ρ is promodular of tame level KΣ0 ,
or else is the unit ideal).

6.1.12. Proposition. The inclusion

HomE[GQ](ρ, Ĥ1(KΣ0)E [p]) ⊂ HomE[GQ](ρ, Ĥ1(KΣ0)E)

is an equality.

Proof. The map Frob` 7→ `S` (for ` 6∈ Σ) extends to a continuous character GQ,Σ →
T(KΣ0)

×, where GQ,Σ denotes the Galois group of the maximal extension of Q in
Q unramified outside Σ.

Define U := HomE[GQ](ρ, Ĥ1(KΣ0)E). The T(KΣ0)-action on Ĥ1(KΣ0)E induces
a T(KΣ0)-action on U . Evaluation gives a map

(6.1.13) ρ⊗E U → Ĥ1(KΣ0)E ,

which is injective, since ρ is absolutely irreducible, and is T(KΣ0)[GQ]-linear, if
T(KΣ0)[GQ] acts on the tensor product through the action of GQ on the first factor
and T(KΣ0) on the second factor. Applying the Eichler–Shimura relations as in the
proof of [12, Prop. 3.2.3], we find that

(6.1.14) ρ(Frob`)(v)⊗
(
T` − trace(ρ(Frob`))

)
u+ v ⊗ (`S` − det(ρ(Frob`))u = 0

for every v ∈ ρ, u ∈ U , and ` 6∈ Σ. If ` is such that ρ(Frob`) does not act by a
scalar, then by choosing v so that ρ(Frob`)(v) and v are linearly independent, we
conclude that

T` − trace(ρ(Frob`)) = `S` − det(ρ(Frob`)) = 0

on U . Since the second of these quantities is the difference of two continuous
characters on GQ,Σ, and since the Frob` for which ρ(Frob`) is not scalar generate
a dense subgroup of GQ,Σ (by Cebotarev density, together with the fact that ρ
is absolutely irreducible, and so in particular not identically scalar), we conclude
that these two characters coincide identically on GQ,Σ, and thus in particular that
`S` = det(ρ(Frob`)) on U for every ` 6∈ Σ. From (6.1.14) we conclude that T` =
trace(ρ(Frob`)) on U for every ` 6∈ Σ, and thus that (6.1.13) has image lying in
Ĥ1(KΣ0)E [p]. This proves the proposition. �
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6.1.15. Remark. Although we will not need it in what follows, we note that the
preceding proposition shows that if HomE[GQ](ρ, Ĥ1

E,Σ) 6= 0, then necessarily p is
a proper ideal of T(KΣ0)[1/p], and thus ρ is promodular. (This is a strengthening
of [38, Cor. 7.7.9].) In particular, Conjecture 1.1.1 implies that every odd irre-
ducible continuous two-dimensional representation of GQ over E is promodular.
(Theorem 1.2.3 provides strong evidence in this direction.)

6.1.16. Corollary. For each closed point p ∈ Spec Tρ,Σ[1/p], each of the inclusions

HomE[GQ](ρ(p), Ĥ1
E,ρ,Σ[p]) ↪→ HomE[GQ](ρ(p), Ĥ1

E,ρ,Σ) ↪→ HomE[GQ](ρ(p), Ĥ1
E,Σ)

is an equality.

Proof. We may verify the claim of the equality after making an extension of scalars,
if necessary, and thus we may assume that κ(p) = E. The claim of the corollary
is then seen to follow from Proposition 6.1.12, by passing to the limit over all
compact open subgroupsKΣ0 of GΣ0 , taking into account the fact that the inclusion
Ĥ1

E,ρ,Σ[p] ⊂ Ĥ1
E,Σ[p] is an equality, since the ideal p is associated to the deformation

ρ(p) of ρ. �

We now prove the following proposition, which relates Conjectures 6.1.4 and 6.1.9
to Conjecture 1.1.1.

6.1.17. Proposition. If Conjectures 6.1.4 and 6.1.9 hold for our fixed choice of ρ,
and for every possible choice of Σ0, then Conjecture 1.1.1 holds for every promodular
lift V of ρ.

Proof. Let V be a promodular lift of ρ over E, and let p denote the closed point of
Spec Tρ,Σ corresponding to V . Corollary 6.1.16 yields the equality

(6.1.18) HomE[GQ](V, Ĥ1
E,ρ,Σ[p]) = HomE[GQ](V, Ĥ1

E,Σ).

Tensoring with E over O, then passing to p-torsion parts, and taking into account
Lemma 6.1.19 below, together with Conjecture 6.1.4, the isomorphism (6.1.10) gives
rise to an isomorphism

Ĥ1
E,ρ,Σ[p] ∼−→ V ⊗E B(V |GQp

)⊗E

⊗
`∈Σ0

π`(V ),

from which we deduce an isomorphism

HomE[GQ](V, Ĥ1
E,ρ,Σ[p]) ∼−→ B(V |GQp

)⊗E

⊗
`∈Σ0

π`(V ).

Combined with the equality (6.1.18) and passing to the inductive limit over all Σ0,
this yields the isomorphism of Conjecture 1.1.1. �

6.1.19. Lemma. If Conjecture 6.1.4 holds, if θ is an orthonormalizable admissible
representation of G over Tρ,Σ, and if p is a point of Spec Tρ,Σ[1/p], then there is
an isomorphism(

ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣπΣ0(ρ

m
Σ )

)
[p] ∼−→ ρ(p)◦ ⊗Tρ,Σ/p θ(p)◦ ⊗Tρ,Σ/p πΣ0(ρ(p)◦).

Proof. By definition,

ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣπΣ0(ρ

m
Σ ) = lim

−→
H

ρm
Σ ⊗Tρ,Σ θ ⊗̂Tρ,ΣπΣ0(ρ

m
Σ )H ,
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where H runs over the open subgroups of GΣ0 , and so it suffices to prove that(
ρm
Σ ⊗Tρ,Σ θ ⊗̂Tρ,ΣπΣ0(ρ

m
Σ )H

)
[p] ∼−→ ρ(p)◦ ⊗Tρ,Σ/p θ(p)◦ ⊗Tρ,Σ/p πΣ0(ρ(p)◦)H ,

for each open subgroup H. Since ρm
Σ is free of rank two over Tρ,Σ, while θ is

an orthonormalizable admissible G-representation over Tρ,Σ, the tensor product
ρm
Σ ⊗Tρ,Σ θ is again an orthonormalizable admissible G-representation over Tρ,Σ,

and thus (taking into account our assumption that Conjecture 6.1.4 holds) the
required isomorphism is provided by Lemma 3.1.17, applied with M := Tρ,Σ/p,
X := πΣ0(ρ

m
Σ )H , and π := ρm

Σ ⊗Tρ,Σ θ. (Note that we may and do omit the $-adic
completion on the right hand side of this isomorphism, since πΣ0(ρ(p)◦)H is a free
O-module of finite rank.) �

We writeH1
k,ρ[m] := lim

−→
Σ0

H1
k,ρ,Σ[m]. Conjecture 6.1.9 has the following implication

for the structure of the mod $ cohomology space H1
k,ρ[m].

6.1.20. Proposition. If Conjecture 6.1.9 holds for our fixed choice of ρ, and for
every possible choice of Σ0, and if p > 2, then there is a GQ×GL2(Af )-equivariant,
k-linear, isomorphism

ρ⊗k π ⊗k

⊗
` 6=p

′ π(ρ |GQ`
) ∼−→ H1

k,ρ[m],

where, for each ` 6= p, the representation π(ρ |GQ`
) of GL2(Q`) is attached to ρ |GQ`

via the mod p local Langlands correspondence of Theorem 4.3.1.

Proof. Reducing the isomorphism (6.1.10) modulo $ and then passing to m-torsion
parts, and taking into account Lemma C.45 and the second statement of Theo-
rem 6.1.2, we obtain an isomorphism

ρ⊗k π ⊗k πΣ0(ρ)
∼−→ H1

k,ρ,Σ[m].

Passing to the inductive limit over all finite sets Σ0 then induces the required
isomorphism. �

6.1.21. Remark. I expect that the preceding proposition also holds when p = 2; see
Remark 6.1.3. From the weaker statement made in that remark relating π(ρ|GQ`

)
and

(
π`(ρm

Σ )/$π`(ρm
Σ )

)
[m], for each ` ∈ Σ0, we may deduce a correspondingly

weaker statement relating ρ⊗k π⊗k

⊗
` 6=p

′ π(ρ |GQ`
) and H1

k,ρ[m]. In particular, we
see that the former always embeds into the latter.

6.1.22. Remark. In the context of Proposition 6.1.20, in the case when ρ |GQp
is not

scalar, we see that Conjecture 6.1.9 has as a consequence various classical “mod p
multiplicity one results”; see Remark 1.2.8 above. On the other hand, in the case
when ρ |GQp

is scalar, the representation π is the direct sum of two copies of the
same parabolically induced representation (see Remark 3.3.3 (1)), and so we find
that Conjecture 6.1.9 implies a mod p multiplicity two result for such ρ. This is
consistent with [84, Cor. 4.4 and 4.5], which establish unconditionally a mod p
multiplicity ≥ 2 result for such ρ.

6.1.23. Remark. Suppose (for the duration of this remark) that the restriction to
GQp of the absolutely irreducible modular representation ρ does not satisfy Assump-
tion 3.3.1. We nevertheless expect that there will be a GQ ×GL2(Af )-equivariant,
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k-linear, isomorphism

ρ⊗k π ⊗k

⊗
` 6=p

′ π(ρ |GQ`
) ∼−→ H1

k,ρ,

where, just as in the statement of Proposition 6.1.20, for each ` 6= p, the repre-
sentation π(ρ |GQ`

) of GL2(Q`) is attached to ρ |GQ`
via the mod p local Langlands

correspondence of Theorem 4.3.1, and where π is some representation of G over k
which depends only on ρ |GQp

. However, in this case, we do not expect remark 3.3.4
to hold, i.e., we do not expect that the semi-simplification of π will match with
ρ |GQp

via the semi-simple mod p local Langlands correspondence of [8].
As an example, we will describe the form that we expect π to take in the case

when p ≥ 5,

ρ |GQp
∼ χ⊗

(
1 ∗
0 ε

)
for some k-valued character χ of GQp

, and ρ is indecomposable: Let 1 denote
the trivial character of G, and let St denote the Steinberg representation of G.
The space Ext1(1,St) is two-dimensional, and so we may construct the universal
extension

0 → St → U →W → 0,
where W = Ext1(1,St)∨ is a two-dimensional k-vector space equipped with trivial
G-action. We then expect π to be a non-split extension

0 → (χ ◦ det)⊗ (IndG
B
ε−1 ⊗ ε) → π → (χ ◦ det)⊗ U → 0.

(Any two such non-split extensions are isomorphic.)
We expect a similar phenomenon to occur in the context of Conjecture 1.1.1,

when V |GQp
∼ χ ⊗

(
1 ∗
0 ε

)
. Namely, while in this case we expect a formula

of the type stated in the conjecture to hold, we don’t expect B(V |GQp
) to be the

representation associated to V |GQp
via the p-adic local Langlands correspondence

as described for the reducible representation V |GQP
in [38], but rather to be a

slightly longer representation (longer in the sense that it will have an additional
one-dimensional topological Jordan–Hölder factor). Thus, in such a case, we don’t
expect Conjecture 1.1.1 to be true in the precise form that it was stated in [38].

6.2. Main results. We begin with the following result, which gives some informa-
tion about the multiplicity spaces HomE[GQ](ρ, Ĥ1

E,ρ,Σ), for promodular liftings ρ
of ρ.

6.2.1. Theorem. If p is a closed point of Spec Tρ,Σ[1/p], then there is a non-zero
continuous G-equivariant map B

(
ρ(p) |GQp

)
→ HomE[GQ](ρ(p), Ĥ1

E,ρ,Σ).

Proof. Remark 6.4.3 below shows that there is a non-zero GQ ×G-equivariant ho-
momorphism ρ(p) ⊗κ(p) π(p) → Ĥ1

E,ρ,Σ[p]. Since B
(
ρ(p) |GQp

)
= π(p), the present

theorem follows. �

Related to the preceding theorem, we have the following result, which extends
[12, Thm. 5.7.2]. The latter result treats the case when p is a classical point
for which ρ(p) |GQp

is reducible, and potentially crystalline with distinct Hodge–
Tate weights, but in fact its proof applies directly to the more general situation
considered in Proposition 6.2.2. We present a slight variant of that proof here.
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6.2.2. Proposition. If p is a closed point of Spec Tρ,Σ[1/p] for which ρ(p) |GQp
is

neither the direct sum of two characters, nor an extension of a character by itself,
then any non-zero continuous κ(p)-linear, G-equivariant map

B
(
ρ(p) |GQp

)
→ HomE[GQ](ρ(p), Ĥ1

E,ρ,Σ)

is necessarily a closed embedding.

Proof. If ρ(p) |GQp
is irreducible, then the same is true of B

(
ρ(p) |GQp

)
, by Proposi-

tion 3.3.24, and the proposition is immediate. Thus we may assume that ρ(p) |GQp

is the non-split extension of two distinct characters, say an extension of χ2 by χ1.
If χ1χ

−1
2 6= ε, then Proposition 3.4.2 shows that B

(
ρ(p) |GQp

)
is a non-split exten-

sion of IndG
B
χ2⊗χ1ε by IndG

B
χ1⊗χ2ε, these two representations being topologically

irreducible, while if χ1χ
−1
2 = ε, then Proposition 3.4.5 shows that B

(
ρ(p) |GQp

)
is

a non-split extension of the topologically irreducible representation IndG
B
χ2 ⊗ χ1ε

by a representation which is itself a non-split extension of a one-dimensional rep-
resentation by the topologically irreducible representation (χ1 ◦ det)⊗E Ŝt.

We claim that any κ(p)-linear, G-equivariant map

B
(
ρ(p) |GQp

)
→ HomE[GQ](ρ(p), Ĥ1

E,ρ,Σ)

which is not an embedding must factor through the quotient IndG
B
χ2 ⊗ χ1ε of

B
(
ρ(p) |GQp

)
. This is obvious in the first case. In the second case, it follows from the

fact that Ĥ1
E contains no one-dimensional G-invariant subspaces, by Lemma 5.1.3.

The adjointness between induction and the functor of ordinary parts provides
an isomorphism

(6.2.3) Homκ(p)[G](IndG
B
χ2 ⊗ χ1ε,HomE[GQ](ρ(p), Ĥ1

E,ρ,Σ)
∼−→ Homκ(p)[T ]

(
χ2 ⊗ χ1ε,OrdB(HomE[GQ](ρ(p), Ĥ1

E,ρ,Σ))
)

∼−→ Homκ(p)[GQ×T ]

(
ρ(p)⊗κ(p) (χ2 ⊗ χ1ε),OrdB(Ĥ1

E,ρ,Σ)
)
.

We claim that the target of this isomorphism vanishes. Granting this, we find that
the source also vanishes, and the proposition is proved.

To see the claimed vanishing, first recall that, by Corollary 5.6.13, the GQp-
action on OrdB(Ĥ1

E,ρ,Σ)/OrdB(Ĥ1
E,ρ,Σ)ab,S factors through Gab

Qp
. On the other

hand, since ρ(p) |GQp
is non-split (by assumption), the GQp

-action on ρ(p) does not
factor through Gab

Qp
. It follows that the image of any non-zero κ(p)[GQ × T ]-linear

map
φ : ρ(p)⊗κ(p) (χ2 ⊗ χ1ε) → OrdB(Ĥ1

E,ρ,Σ)

(which is necessarily injective, since ρ(p) is injective as a GQ-representation) must
have non-trivial intersection with OrdB(Ĥ1

E,ρ,Σ)ab,S . On the other hand, since χ1 6=
χ2 (again by assumption), we see that

(
ρ(p) ⊗κ(p) (χ2 ⊗ χ1ε)

)ab,S = 0. Thus the
image of φ necessarily has trivial intersection with OrdB(Ĥ1

E,ρ,Σ)ab,S , and hence
any such φ in fact vanishes, as claimed. �

6.2.4. Theorem. Conjecture 6.1.4 holds.

Proof. As noted in Remark 6.1.5, in proving Conjecture 6.1.4, we may replace the
closed point p by the closed point pχ for which ρ(pχ) ∼= χ ⊗ ρ(p), chosen so that
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ρ(pχ) is unramified at each prime ` ∈ Σng
0 , and then (now writing p rather than pχ)

we must prove that ρ(p) is promodular of level divisible only by primes in Σ0 \Σng
0 .

We will remove the primes ` ∈ Σng
0 from the level of ρ(p) one at a time. Thus we

fix such an `, write Σ∗0 := Σ0\{`}, and similarly write Σ∗ := Σ\{`} = Σ∗0∪{p}. Let
J` denote an Iwahori subgroup of GL2(Z`). (We use the letter J to avoid confusion
with I`, the inertia subgroup of GQ`

.) Since ρ(p) is unramified non-generic principal
series at `, we see that ρ(p) is in fact promodular of tame level KΣ∗0

J`K
Σ
0 , for some

compact open subgroup KΣ∗0
of GΣ∗0

.
Write KΣ0 := KΣ∗0

J`, an open subgroup of GΣ0 . Remark 6.4.3 below shows that
there is a non-zero GQ-equivariant map (which is necessarily an embedding, since
ρ(p) is irreducible)

(6.2.5) ρ(p) ↪→ Ĥ1(KΣ0)E,ρ[p].

Our goal is to show that p is promodular of level KΣ∗0
, and we will do this by

showing that Ĥ1(KΣ∗0
)E,ρ[p] is non-zero.

Of course, we have to use the fact that ρ(p) |GQ`
is unramified non-generic princi-

pal series. More precisely, we will use the following facts: ρ(p) is unramified locally
at `, so that ρ(p)(Frob`) is defined, and the ratio of the eigenvalues of ρ(p)(Frob`)
is equal to `±1, so that in particular ρ(p)(Frob`) is not a scalar.

To begin with, we define an extension T(KΣ0)
∗
ρ of T(KΣ0)ρ, by adjoining the

operator U` (whose definition was given in Definition 4.1.1). If f` ∈ GQ`
denotes

a choice of lift of Frob` ∈ GQ`
/I`, and if x2 + ax + b ∈ T(KΣ0)ρ[x] denotes the

characteristic polynomial of ρ(KΣ0)(f`), then U2
` + aU` + b = 0, and so T(KΣ0)

∗
ρ

is finite over T(KΣ0)ρ. Since also ρ(p) is an irreducible GQ-representation, we see
that we may find a prime p∗ of T∗ρ,Σ lying over p, such that (6.2.5) may be refined
to an embedding

ρ(p) ↪→ Ĥ1(KΣ0)E,ρ[p∗].

Since ρ(p) is unramified locally at `, in fact this embedding factors through an
embedding

(6.2.6) ρ(p) ↪→ Ĥ1(KΣ0)
I`

E,ρ[p
∗].

Below we will construct an exact sequence

(6.2.7) 0 →
(
Ĥ1(KΣ0)

I`

E,ρ

)
`−new

→ Ĥ1(KΣ0)
I`

E,ρ →
(
Ĥ1(KΣ0)

I`

E,ρ

)
`−old

→ 0

of T(KΣ0)
∗
ρ[GQ`

× G]-modules, with the following properties: the action of Frob`

on
(
Ĥ1(KΣ0)

I`

E,ρ

)
`−new

is scalar, given by the element U` ∈ T(KΣ0)
∗
ρ, and there is

an isomorphism of T(KΣ0)ρ[GQ`
×G]-modules

(6.2.8)
(
Ĥ1(KΣ0)

I`

E,ρ

)
`−old

∼−→
(
Ĥ1(KΣ∗0

)E,ρ

)⊕2
.

If (6.2.6) were to factor through
(
Ĥ1(KΣ0)

I`

E,ρ

)
`−new

, then we would find that
ρ(p)(Frob`) is equal to a scalar, namely the image of U` modulo p∗. On the other
hand, we have already observed that ρ(p)(Frob`) is not a scalar. Thus (6.2.6)
must not factor through

(
Ĥ1

)I`

`−new
[p∗], consequently the composite of (6.2.6) with

the map Ĥ1(KΣ0)
I`

E,ρ[p
∗] →

(
Ĥ1(KΣ0)

I`

E,ρ

)
`−old

[p∗] must be non-zero, and so in

particular
(
Ĥ1(KΣ0)

I`

E,ρ

)
`−old

[p∗] 6= 0. A consideration of the isomorphism (6.2.8)
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then shows that Ĥ1(KΣ∗0
)E,ρ[p] 6= 0, and thus we conclude that ρ(p) is promodular

of tame level KΣ∗0
, as required.

It remains to construct the exact sequence (6.2.7). This essentially arises from
a consideration of the nearby cycles spectral sequence for computing the p-adic
étale cohomology of the modular curves X(KpKΣ0K

Σ
0 ) over Spec Z` (for compact

open subgroups Kp of G). However, since we have to work with finite and integral
coefficients, we will find it simpler, and more concrete, to instead consider the
p-power torsion in the Néron models of the Jacobians of these curves.

Fix, for the moment, a compact open subgroup Kp of G chosen small enough
to ensure that KpKΣ∗0

KΣ∗

0 is neat, in the sense of Definition 5.3.7. For any
compact open subgroup Kf of GL2(Af ), we let X(Kf ) denote the completion
of the modular curve Y (Kf ); it is a projective smooth curve over Q, we write
J(Kf ) := Pic0

(
X(Kf )

)
, an abelian variety over Q, and we let J (Kf ) denote the

Néron model of J(Kf ) over Z`. The modular curve X(KpKΣ∗0
KΣ∗

0 ) has good reduc-
tion at `, while the modular curve X(KpKΣ0K

Σ
0 ) admits a semi-stable model over

Spec Z`, with special fibre equal to the union of two copies of the special fibre of
X(KpKΣ∗0

KΣ∗

0 ). Thus J (KpKΣ∗0
KΣ∗

0 ) is an abelian scheme, while the special fibre
of J (KpKΣ0K

Σ
0 ) is an extension of a finite étale group scheme by a semi-abelian

variety. More precisely, we have an exact sequence

(6.2.9) 0 → J (KpKΣ0K
Σ
0 )0/F`

→ J (KpKΣ0K
Σ
0 )/F`

→ Φ → 0,

where the superscript 0 denotes the connected component of the identity, and Φ,
the group scheme of connected components of J (KpKΣ0K

Σ
0 )/F`

, is a finite étale
group scheme over F`, as well as an exact sequence

(6.2.10) 0 → T → J (KpKΣ0K
Σ
0 )0/F`

→ J (KpKΣ∗0
KΣ∗

0 )/F`
× J (KpKΣ∗0

KΣ∗

0 )/F`
→ 0,

where T is a torus.
We now tensor with O over Zp, and then localize at the maximal ideal m of

T(KΣ0) corresponding to ρ. Since the Hecke action on Φ is Eisenstein [73, Cor.,
p. 140] (note that our assumption thatKpKΣ∗0

KΣ∗

0 is neat ensures that condition (i)
of the corollary is satisfied), while m is associated to the absolutely irreducible Galois
representation ρ, we see that (6.2.9) gives rise to an isomorphism(

O ⊗Zp J (KΣ0K
Σ
0 )0/F`

[pr]
)
m

∼−→
(
O ⊗Zp J (KΣ0K

Σ
0 )/F`

[pr]
)
m
,

and hence that (6.2.10) gives rise to a short exact sequence of T(KΣ0)
∗
ρ[GQ`/I`

]-
modules

(6.2.11) 0 →
(
O ⊗Zp

T [pr]
)
m
→

(
O ⊗Zp J (KpKΣ0K

Σ
0 )/F`

[pr]
)
m

→
(
O ⊗Zp J (KpKΣ∗0

KΣ∗

0 )/F`
[pr]

)
m
×

(
O ⊗Zp J (KpKΣ∗0

KΣ∗

0 )/F`
[pr]

)
m
→ 0.

It is known (see e.g. [72, Prop. 3.8]) that Frob` (the geometric Frobenius) acts on(
O ⊗Zp T [pr]

)
m

via `−1U`.
Now for any smooth projective curve X over a field k, with separable closure ks,

there is a natural isomorphism H1
ét(X/ks ,Z/prZ) ∼−→ Pic0(X)[pr](−1), where (−1)

denotes a twist by the inverse cyclotomic character. In particular, there is an
isomorphism H1

(
X(KΣ0K

Σ
0 ),Z/prZ) ∼−→ J(KΣ0K

Σ
0 )[pr](−1). Furthermore, under

this isomorphism, the I`-invariants on the left hand side are identified with the



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 75

subgroup J (KΣ0K
Σ
0 )/F`

[pr] of the right-hand side. Thus we may rewrite the inverse
cyclotomic twist of (6.2.11) as a short exact sequence of T(KΣ0)

∗
ρ[GQ`/I`

]-modules

0 →
(
H1

(
X(KpKΣ0K

Σ
0 ),O/prO

)I`

m

)
`−new

→ H1
(
X(KpKΣ0K

Σ
0 ),O/prO

)I`

m

→
(
H1

(
X(KpKΣ0K

Σ
0 ),O/prO

)I`

m

)
`−old

→ 0,

with the properties that Frob` acts on the first non-trivial term via U`, and that
there is a T(KΣ0)ρ[GQ`/I`

]-equivariant isomorphism

H1
(
X(KpKΣ0K

Σ
0 ),O/prO

)I`

m

)
`−old

∼−→
(
H1

(
X(KpKΣ∗0

KΣ∗
0 ),O/prO

)
m

)⊕2

.

Passing to the inductive limit over Kp, and then to the projective limit over r,
and noting that, since we have localized at a non-Eisenstein maximal ideal, we may
replace the closed modular curves by the corresponding open ones without changing
the spaces we are computing, we obtain the desired short exact sequence (6.2.7). �

6.2.12. Remark. The preceding argument is a p-adic analogue of the argument
used to prove [72, Thm. 6.1], an argument sometimes known as “Mazur’s principle”.
Another approach to proving Conjecture 6.1.4 is via promodularity theorems. For
example, if p > 2, ρ |GQ(ζp)

is absolutely irreducible, and ρ is p-distinguished, then
Conjecture 6.1.4 follows from Theorem 1.2.3. Indeed, that theorem shows that any
lift of ρ that is ramified at only finitely many primes, and is unramified at a prime
` 6= p, is promodular of level prime-to-`, and Conjecture 6.1.4 follows from this, as
was noted in Remark 6.1.5.

6.2.13. Theorem. If ρ is p-distinguished (i.e. if the semi-simplification of ρ |GQp

is not the direct sum of two copies of the same character), then Conjecture 6.1.6
holds.

Proof. This follows from Corollary 6.4.13 and Theorems 6.4.9, 6.4.16, and 6.4.20
below. �

Proof of Theorem 1.2.1. Let V be a promodular two-dimensional representation
of GQ unramified away from a finite set of primes, as in the statement of the
theorem, and let ρ := V denote the reduction mod $ of V . By hypothesis, ρ
satisfies the running assumptions of this section, and V corresponds to a closed
point p ∈ Spec Tρ,Σ[1/p] for some Σ containing the ramified primes for V as well
as p. Theorem 6.2.1 shows that there is a non-zero map

(6.2.14) B(V |GQp
) → HomE[GQ](V, Ĥ1

E,ρ,Σ[p]).

If V |GQp
is neither the direct sum of two characters, nor an extension of a character

by itself, then Proposition 6.2.2 shows that (6.2.14) is in fact an embedding. Ar-
guing as in the proof of [38, Prop. 7.8.7], we then see that (6.2.14) gives rise to a
map

B(V |GQp
)⊗E

⊗
` 6∈Σ

′ π`(V ) → HomE[GQ](V, Ĥ1
E),
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which is an embedding if (6.2.14) is. This proves claim 1 of the theorem. Claim 2 of
the theorem follows directly from Theorems 6.2.4 and 6.2.13 and Proposition 6.1.17.

�

Proof of Theorem 1.2.6. This theorem follows from Theorem 6.2.13 and Proposi-
tion 6.1.20. �

6.2.15. Remark. In the proof of Theorem 1.2.6 we used various mod p multiplicity
one theorems, but we did not use level-lowering at the prime p (i.e. [72, Thm. 6.1]
in the case when ` = p, and its generalizations), the existence of companion forms
[48], or the more difficult part of [86, Thm. 2.1 (ii)] in which the mod p nebentypus
character has conductor prime to p. Furthermore, each of these results is easily
deduced from Theorem 1.2.6 (for those ρ satisfying the hypotheses of the theorem).
In particular, Theorem 1.2.6 gives a new proof that W gl(ρ) = W (ρ) for those ρ to
which it applies.

Of course this last-mentioned result is now well-understood, both in the context
of proving that “the weak Serre’s conjecture implies the strong Serre’s conjecture”,
and as a part of the much stronger result that any odd ρ is in fact modular [53, 54,
55, 60]. Nevertheless, it seems interesting to note that it can also be proved by the
methods of the p-adic Langlands program.

6.3. The Tρ,Σ[GΣ0 ]-modules X(θ). In this subsection we begin our investigation
of Conjectures 6.1.6 and 6.1.9. Throughout the subsection we fix a deformation θ
of π over Tρ,Σ, and use the notation of Definition 6.1.8. The deformation θ will
always be assumed to satisfy the following key hypothesis:

6.3.1. Assumption. If p ∈ Spec Tρ,Σ[1/p] is an allowable closed point , then there
is a κ(p)-linear G-equivariant isomorphism θ(p) ∼= π(p).

6.3.2. Remark. If EndG(π) = k, then Def(π) is representable, and so, since
the allowable closed points p ∈ Spec Tρ,Σ[1/p] are Zariski dense in Spec Tρ,Σ (by
Lemma 5.4.9), we see that Assumption 6.3.1 implies that θ ∼= πm

Σ . However, this
need not be true in general (i.e. if Def(π) is not representable).

6.3.3. Lemma. For any closed point p ∈ Spec Tρ,Σ[1/p], there is an isomorphism
θ(p)ss ∼= π(p)ss.

Proof. Applying MF to θ, we obtain a deformation ψ of ρ over Spec Tρ,Σ. For each
point p ∈ Spec Tρ,Σ, we write ψ(p) := κ(p)⊗Tρ,Σ ψ. Assumption 6.3.1 implies that
ψ(p) ∼= ρ(p) for each allowable closed point p. Lemma 5.4.9 shows that these points
are Zariski dense in Spec Tρ,Σ, and hence we conclude that the characters of ψ and
ρm
Σ coincide on Spec Tρ,Σ. The lemma follows from this. �

Our goal is now to introduce, and to begin the study of, a certain Tρ,Σ[GΣ0 ]-
module, denoted X(θ), the investigation of which is intimately connected to the
investigation of Conjectures 1.1.1 and 6.1.6.

6.3.4. Definition. Write X(θ) := HomTρ,Σ [GQ×G]−cont(ρm
Σ ⊗Tρ,Σ θ, Ĥ1

O,ρ,Σ), the
Tρ,Σ-module of Tρ,Σ-linear, GQ×G-equivariant homomorphisms from ρm

Σ ⊗Tρ,Σ π
m
Σ

to Ĥ1
O,ρ,Σ that are continuous, when the source is given its m-adic topology and the

target is given its O-linear inductive limit topology. The module X(θ) is equipped
in a natural way with a Tρ,Σ-linear action of GΣ0 (induced by the action of GΣ0

on Ĥ1
O,ρ,Σ).
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6.3.5. Remark. Ideally, for the purposes of this paper we would like to be able to
restrict our attention to the case when θ = πm

Σ . However, due to limitations in our
methods, we have to develop our results for more general θ (satisfying Assump-
tion 6.3.1).

6.3.6. Remark. For any allowable level KΣ0 for ρ, Lemma 5.3.8 yields an identifi-
cation

(6.3.7) X(θ)KΣ0
∼−→ HomTρ,Σ [GQ×G]−cont(ρm

Σ ⊗Tρ,Σ θ, Ĥ
1(KΣ0)O,ρ).

6.3.8. Remark. If p ∈ Spec Tρ,Σ[1/p] is a closed point, then from the definition of
X(θ) we obtain natural isomorphisms

(6.3.9) X(θ)[p] ∼−→ HomT[GQ×G]

(
ρ(p)◦ ⊗O θ(p)◦, Ĥ1

O,S,ρ[p]
)
,

and

(6.3.10) E ⊗O X(θ)[p] ∼−→ Homκ(p)[GQ×G]−cont(ρ(p)⊗κ(p) θ(p), Ĥ1
E,ρ,Σ[p]).

(We do not need to include a continuity condition in the space of homomorphisms
considered in (6.3.9) only because the source and target are both naturally endowed
with the $-adic topology, with respect to which the indicated homomorphisms,
being in particular O-linear, are automatically continuous.)

Also, there is an induced embedding

(6.3.11) (X(θ)/$X(θ))[m] ↪→ Homk[GQ×G](ρ⊗k π,H
1
k,ρ,Σ[m])

∼−→ Homk[GQ×G](ρ⊗k π,H
1
k,ρ,Σ).

6.3.12. Theorem. The Tρ,Σ-module X(θ) is a cofinitely generated and coadmissible
smooth representation of GΣ0 over Tρ,Σ (in the sense of Definitions C.23 and C.32).

Proof. We begin by showing that X(θ) is a smooth representation of GΣ0 , that
is, that X(θ) =

⋃
KΣ0

X(θ)KΣ0 , where KΣ0 runs over all allowable levels for ρ in
GΣ0 . Equivalently, taking into account the isomorphism (6.3.7), we have to show
that any continuous Tρ,Σ-linear, GQ ×G-equivariant map φ : ρm

Σ ⊗Tρ π
m
Σ → Ĥ1

O,ρ,Σ

factors through Ĥ1(KΣ0)O,ρ, for some allowable level KΣ0 .
It follows from Lemmas 5.3.6 and 5.3.8 that

Ĥ1(KΣ0)O,ρ = Ĥ1(KΣ0)E,ρ

⋂
Ĥ1
O,ρ,Σ

(the intersection taking place in Ĥ1
O,ρ,Σ), and thus it suffices to show that any

continuous Tρ,Σ-linear, GQ × G-equivariant map φ : ρm
Σ ⊗Tρ

πm
Σ → Ĥ1

E,ρ,Σ (where
the source is given its m-adic topology and the target is given its locally convex
inductive limit topology) factors through Ĥ1(KΣ0)E,ρ, for someKΣ0 . In fact we will
show that this is true of any O-linear continuous map. Since Ĥ1

E,ρ,Σ is the inductive
limit of the Banach spaces Ĥ1(KΣ0)E,ρ, with closed transition maps, any bounded
subset of Ĥ1

E,ρ,Σ is contained in some Ĥ1(KΣ0)E,ρ [76, Prop. 5.6]. Thus it suffices
to show that the image of φ is bounded. For this, let U be an open neighbourhood
of 0 in Ĥ1(KΣ0)E,ρ. Then φ−1(U) is a neighbourhood of 0 in ρm

Σ ⊗Tρ π
m
Σ , since

φ is continuous, and so contains ms
(
ρm
Σ ⊗Tρ

πm
Σ

)
for some s ≥ 0. In particular it

contains $s
(
ρm
Σ ⊗Tρ π

m
Σ

)
, and hence $sφ(ρm

Σ ⊗Tρ π
m
Σ ) ⊂ U. Thus the image of φ is

indeed bounded, as claimed.
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We now turn to showing that X(θ) is cofinitely generated and coadmissible as
a smooth representation of GΣ0 over Tρ,Σ. Again taking into account the isomor-
phism (6.3.7), we see that for each allowable level KΣ0 for ρ, the Tρ,Σ-module
X(θ)KΣ0 inherits the properties of being $-adically separated and complete, and
O-torsion free, directly from the corresponding properties of Ĥ1

O,ρ,Σ. Furthermore,
the continuity property that the elements of X(θ)KΣ0 are assumed to satisfy implies
that the action map Tρ,Σ ×X(θ)KΣ0 → X(θ)KΣ0 is continuous, when Tρ,Σ is given
is m-adic topology and X(θ) is given its $-adic topology. Thus, in order to prove
that the smooth Tρ,Σ[GΣ0 ]-module X(θ) is cofinitely generated and coadmissible,
it suffices, by Lemma C.25 and Proposition C.33, to prove that the smooth k[GΣ0 ]-
module (X(θ)/$X(θ))[m] is finitely generated and admissible. Taking into account
the embedding (6.3.11), it suffices in turn to show that Homk[GQ×G](ρ⊗kπ,H

1
k,ρ,Σ) is

a finitely generated admissible smooth GΣ0-representation over k. If we let W ⊂ π
denote a finite-dimensional k-vector subspace of π that generates π over G, and
if we let Kp ⊂ G denote a compact open subgroup that fixes W pointwise, then
restriction to ρ⊗k W induces an embedding

(6.3.13) Homk[GQ×G](ρ⊗k π,H
1
k,ρ,Σ) ↪→ ρ∨ ⊗k W

∨ ⊗k (H1
k,ρ,Σ)Kp .

It follows from Proposition 5.3.11 and Corollary 5.3.14 that the target of (6.3.13)
is a finitely generated admissible smooth representation of GΣ0 over k, and thus so
is its source. �

6.3.14. Definition. If p ∈ Spec Tρ,Σ[1/p] is a classical closed point, then we let
M(p)E denote the closure in Ĥ1

E,ρ,Σ[p] (or equivalently, in Ĥ1
E,ρ,Σ) of Ĥ1

E,ρ,Σ[p]l.alg.
Write M(p)O := M(p)E

⋂
Ĥ1
O,ρ,Σ (the intersection taking place in Ĥ1

E,ρ,Σ).

Note that M(p)E and M(p)O are each invariant under GQ×G×GΣ0 , and that,
by construction, M(p)O is saturated in Ĥ1

O,ρ,Σ.

6.3.15. Proposition. Let p ∈ Spec Tρ,Σ[1/p] be a closed point which is allowable in
the sense of Definition 5.4.7.

(1) There is a GQ ×G×GΣ0-equivariant isomorphism

M(p)E
∼−→ ρ(p)⊗E π(p)⊗E πΣ0(ρ(p)).

(2) The inclusion M(p)E ↪→ Ĥ1
E,ρ,Σ[p] induces an isomorphism

HomE[GQ×G](ρ(p)⊗E π(p),M(p)E) ∼−→ HomE[GQ×G](ρ(p)⊗E π(p), Ĥ1
E,ρ,Σ[p]).

Proof. Let π̃p(ρ(p) |GQp
) be the locally algebraic representation attached to ρ(p) |GQp

,
as in the statement of [38, Conj. 3.3.1 (7)]. Since ρ(p) |GQp

is crystabelline, abso-
lutely irreducible, and not exceptional, the E-Banach representation π(p) of G
associated to p is isomorphic to the universal unitary completion (in the sense of
[37]) of π̃p(ρ(p) |GQp

) [3]. It then follows from [38, Thm. 7.4.2], together with the
main results of [16] and [75], that there is an isomorphism

M(p)E
∼−→ ρ(p)⊗E π(p)⊗E πΣ0(ρ(p)),

proving 1.
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Again using the fact that π(p) is isomorphic to the universal unitary completion
of the locally algebraic representation π̃p(ρ(p) |GQp

), we find that

HomE[GQ×G]

(
ρ(p)⊗E π(p), Ĥ1

E,ρ,Σ[p]
)

= HomE[GQ×G]

(
ρ(p)⊗E π̃p(ρ(p) |GQp

), Ĥ1
E,ρ,Σ[p]

)
= HomE[GQ×G]

(
ρ(p)⊗E π̃p(ρ(p) |GQp

), Ĥ1
E,ρ,Σ[p]l.alg

)
= HomE[GQ×G]

(
ρ(p)⊗E π̃p(ρ(p) |GQp

),M(p)
)

= HomE[GQ×G]

(
ρ(p)⊗E π(p),M(p)E

)
,

proving 2. �

The preceding proposition, together with Assumption 6.3.1, allows us to rewrite
the isomorphism (6.3.10), for those p satisfying the hypotheses of the proposition,
as an isomorphism

(6.3.16)
(
E ⊗O X(θ)

)
[p] ∼−→ HomTρ,Σ[GQ×G]

(
ρ(p)⊗E π(p),M(p)E

)
.

6.3.17. Corollary. If p ∈ Spec Tρ,Σ[1/p] is a closed point which is allowable in the
sense of Definition 5.4.7, then there is a GΣ0-equivariant κ(p)-linear isomorphism

(6.3.18) E ⊗O X(θ)[p] ∼−→ πΣ0(ρ(p)),

and evaluation induces an isomorphism

(6.3.19) ρ(p)⊗E π(p)⊗E (E ⊗O X(θ)[p]) ∼−→M(p)E .

Proof. Both claims follow from the isomorphism (6.3.16), together with the isomor-
phism of part 1 of Proposition 6.3.15. �

The following proposition provides a refinement of Corollary 6.3.17, for certain
points p.

6.3.20. Proposition. Suppose that p ∈ Spec Tρ,Σ[1/p] is a closed point which is
allowable in the sense of Definition 5.4.7. Furthermore, suppose that E ∼−→ κ(p),
and that ρ satisfies Assumption 5.7.3. Then the isomorphism (6.3.18) induces a
GΣ0-equivariant O-linear isomorphism

(6.3.21) X(θ)[p] ∼−→ πΣ0(ρ(p)◦)

(where πΣ0(ρ(p)◦) is the admissible smooth representation of GΣ0 over O attached
to ρ(p)◦ by the local Langlands correspondence of Section 4).

Proof. The assumption that E ∼−→ κ(p) implies that O ∼−→ Tρ,Σ/p. Thus X(θ)[p]
is an O-lattice in the admissible smooth GΣ0-representation E ⊗O X(θ)[p]. The
inclusion X(θ)[p] ⊂ X(θ) induces an embedding

X(θ)[p]/$X(θ)[p] ↪→ (X(θ)/$X(θ))[m],

and it follows from Corollary 6.3.24 below that X(θ)[p]/$X(θ)[p] is a generic GΣ0-
representation, in the sense of Definition 4.1.3. The proposition follows from this
and Corollary 6.3.17, together with the characterization of πΣ0(ρ(p)◦) provided by
Proposition 4.4.3. �

6.3.22. Proposition. If ρ satisfies Assumption 5.7.3, then HomG(π,H1
k,ρ,Σ[m]) is

a generic GΣ0-representation.
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Proof. Suppose first that π is irreducible, and let V be a weight in socGL2(Zp) π
(the GL2(Zp)-socle of π). In the case when socGL2(Zp) contains a one-dimensional
representation, we furthermore choose V to be one-dimensional. Since π is irre-
ducible, V generates π over G. Thus the restriction map HomG(π,H1

k,ρ,Σ[m]) →
HomGL2(Zp)(V,H1

k,ρ,Σ[m]) is injective. If the target is non-zero, then we find that
V belongs to the set of global weights W gl(ρ). It is furthermore good, and so the
proposition follows in this case from part 3 of Theorem 5.7.7.

Suppose next that ρ|GQp
is an extension 0 → χ1 → ρ → χ2 → 0, and that

χ1χ
−1
2 6= ε. The representation π then sits in a short exact sequence 0 → π1 →

π → π2 → 0, where π1 = IndG
B
χ1 ⊗ χ2ε and π2 = IndG

B
χ2 ⊗ χ1ε are irreducible

principle series. In this case we choose Vi to be a weight in socGL2(Zp) πi (in fact,
socGL2(Zp) πi is irreducible, so there is a unique choice for Vi). There is an exact
sequence

(6.3.23) 0 → HomG(π2,H
1
k,ρ,Σ[m])

→ HomG(π,H1
k,ρ,Σ[m]) → HomG(π1,H

1
k,ρ,Σ[m]),

and for each i = 1, 2, an embedding

HomG(πi,H
1
k,ρ,Σ[m]), ↪→ HomGL2(Zp)(Vi,H

1
k,ρ,Σ[m]).

If either of the spaces HomGL2(Zp)(Vi,H
1
k,ρ,Σ[m]) is non-zero then Vi is a weight

in W gl(ρ), which is automatically good. Part 3 of Theorem 5.7.7 then shows that
HomGL2(Zp)(Vi,H

1
k,ρ,Σ[m]) is a generic GΣ0-representation. The same is thus true

of its subrepresentation HomG(πi,H
1
k,ρ,Σ[m]). A consideration of the exact se-

quence (6.3.23) then shows that HomG(π,H1
k,ρ,Σ[m]) is generic.

Suppose, finally, that ρ|GQp
is an extension 0 → χ → ρ → χε−1 → 0, for some

character χ. Assumption 3.3.1 guarantees that this extension is non-split. The
representation π then sits in a short exact sequence 0 → π1 → π → π2 → 0, where
π1 itself sits in a short exact sequence 0 → (χ ◦ det) ⊗k St → π1 → χ ◦ det → 0,
while π2 = IndG

B
χε−1 ⊗ χε. Now socGL2(Zp) π2 contains a single weight which does

not lie in W (ρ), and hence HomG(π2,H
1
k,ρ,Σ[m]) = 0. Thus restriction induces an

injection
HomG(π,H1

k,ρ,Σ[m]) ↪→ HomG(π1,H
1
k,ρ,Σ[m]),

and it suffices to show that the latter GΣ0-representation is generic.
If ρ|GQp

is a trés ramifieé extension, then W (ρ) contains no one-dimensional
representations. Consequently, HomG(χ ◦ det,H1

k,ρ,Σ[m]) = 0, and so if we let
V = socGL2(Zp)

(
(χ ◦ det)⊗ St

)
, then restriction to V induces an injection

HomG(π1,H
1
k,ρ,Σ[m]) → HomGL2(Zp)(V,H1

k,ρ,Σ[m]).

If the target of this map is non-zero, then V is a weight in W gl(ρ), automatically
good because ρ is trés ramifieé. Thus the proposition in this case again follows from
part 3 of Theorem 5.7.7.

If ρ|GQp
is peu ramifieé, then we may find a GL2(Zp)-equivariant splitting of the

surjection π1 → χ ◦ det . If V denotes the image of this splitting, then V generates
π1 over G, and so restriction to V induces an injection

HomG(π1,H
1
k,ρ,Σ[m]) → HomGL2(Zp)(V,H1

k,ρ,Σ[m]).



LOCAL-GLOBAL COMPATIBILITY IN p-ADIC LANGLANDS FOR GL2/Q 81

If the target of this map is non-zero, then V is a weight in W gl(ρ), and V is good,
since it is one-dimensional. A last application of part 3 of Theorem 5.7.7 proves
the proposition in this case. �

6.3.24. Corollary. If ρ satisfies Assumption 5.7.3, then the GΣ0-representation
(X(θ)/$X(θ))[m] is generic, in the sense of Definition 4.1.3.

Proof. The corollary follows from the existence of the embedding (6.3.11), together
with Proposition 6.3.22. �

6.4. Evaluation maps. If Conjecture 6.1.6 holds, then the isomorphism (6.1.7)
gives rise to an embedding of πΣ0(ρ

m
Σ ) as a saturated, coadmissible Tρ,Σ[GΣ0 ]-

submodule of X(πm
Σ ), and (6.1.7) can in turn be recovered by restricting the natural

evaluation map

ρm
Σ ⊗Tρ,Σ π

m
Σ

f
⊗Tρ,ΣX(πm

Σ ) → Ĥ1
O,ρ,Σ

to ρm
Σ ⊗Tρ,Σ π

m
Σ

f
⊗Tρ,ΣπΣ0(ρ

m
Σ ). Thus, in order to study Conjecture 6.1.6, it is natural

to study the coadmissible Tρ,Σ[GΣ0 ]-submodules of X(πm
Σ ), and the corresponding

evaluation maps. In fact, as in the last section, we work in a more general context,
in which we fix a deformation θ of π over Tρ,Σ satisfying Assumption 6.3.1, and
study submodules of X(θ) and the associated evaluation maps. This will allow us
to establish cases of the weaker conjecture 6.1.9, in situations where we are not able
to prove Conjecture 6.1.6 itself.

6.4.1. Definition. If Y is a coadmissible Tρ,Σ[GΣ0 ]-submodule of X(θ), then we
let evY denote the restriction of the natural evaluation map

ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣX(θ) → Ĥ1

O,ρ,Σ

to ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣY. (Note that, by Lemma C.48, the inclusion of Y into X(θ)

induces an embedding ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣY ↪→ ρm

Σ ⊗Tρ,Σ θ
f
⊗Tρ,ΣX(θ).) We introduce

further notation for various maps induced by evY .
(1) We denote by

evE,Y : E ⊗O ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣY → Ĥ1

E,ρ,Σ

the map obtained by tensoring evY with E over O.
(2) If KΣ0 is an allowable level for ρ, then evY induces a map

ev(KΣ0)Y : ρm
Σ ⊗Tρ,Σ θ ⊗̂Tρ,ΣY

KΣ0 → Ĥ1(KΣ0)O,ρ,

as well as a map

ev(KΣ0)E,Y : E ⊗O ρm
Σ ⊗Tρ,Σ θ ⊗̂Tρ,ΣY

KΣ0 → Ĥ1(KΣ0)E,ρ.

(3) If p ∈ Spec Tρ,Σ[1/p] is a closed point, then evY induces a map

ev(p)Y : ρ(p)⊗κ(p) θ(p)⊗κ(p) (E ⊗O Y [p]) → Ĥ1
E,ρ,Σ[p].

(4) Reducing evY modulo $ and passing to m-torsion parts, and taking into
account Lemma C.45, we obtain a map

ev(m)Y : ρ⊗k π ⊗k (Y/$Y )[m] → H1
k,ρ,Σ[m]
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as the composite

ρ⊗k π ⊗k (Y/$Y )[m] → ρ⊗k π ⊗k (X(θ)/$X(θ))[m] ↪→
ρ⊗k π ⊗k Homk[GQ×G](ρ⊗k π,H

1
k,ρ,Σ[m]) → H1

k,ρ,Σ[m],

where the first arrow is induced by the inclusion of Y in X(θ), the second
arrow is induced by the embedding (6.3.11), and the third arrow is the
natural evaluation map.

The following result gives an important characterization of faithful and saturated
coadmissible Tρ,Σ[GΣ0 ]-submodules of X(θ).

6.4.2. Proposition. If Y is a saturated coadmissible Tρ,Σ[GΣ0 ]-submodule of X(θ),
then the following conditions are equivalent:

(1) Y is a faithful Tρ,Σ-module.
(2) For each allowable level KΣ0 ⊂ GΣ0 for ρ, the submodule of invariants

Y KΣ0 is a faithful T(KΣ0)ρ-module.
(3) For each classical closed point p ∈ Spec Tρ,Σ[1/p] which is allowable in the

sense of Definition 5.4.7, the inclusion E ⊗O Y [p] ⊂ E ⊗O X(θ)[p] is an
equality.

(4) For each allowable level KΣ0 ⊂ GΣ0 for ρ, and for each classical closed point
p ∈ Spec T(KΣ0)ρ[1/p] which is allowable in the sense of Definition 5.4.7,
the inclusion E ⊗O Y KΣ0 [p] ⊂ E ⊗O X(θ)KΣ0 [p] is an equality.

(5) If X(θ)ctf denotes the maximal Tρ,Σ-cotorsion free submodule of X(θ) (fol-
lowing Definition C.39), then X(θ)ctf ⊂ Y .

Proof. Note that if Y is saturated in X(θ), then Y is cofinitely generated over
Tρ,Σ[GΣ0 ], by Theorem 6.3.12 and Corollary C.34. It is clear that 2 implies 1, and
that 3 and 4 are equivalent. Corollary 6.3.17 shows that for any point p ∈ Spec Tρ,Σ

satisfying the requirements of condition 3, the GΣ0-representation E ⊗O X(θ)[p] is
irreducible. Thus for any such point p, we have that E ⊗O Y [p] 6= 0 if and only if
E ⊗O Y [p] = E ⊗O X(θ)[p]. Proposition C.36, together with the facts that Tρ,Σ is
reduced, and that the allowable closed points p ∈ Spec Tρ,Σ[1/p] are Zariski dense in
Spec Tρ,Σ (by Lemma 5.4.9), then shows that 1 and 3 are equivalent. If condition 4
holds, then Corollary 6.3.17 shows that Y KΣ0 [p] 6= 0 for each allowable closed point
p ∈ Spec T(KΣ0)ρ. Since these points are Zariski dense in Spec T(KΣ0)ρ (again by
Lemma 5.4.9), and since T(KΣ0)ρ is reduced, it then follows from Proposition C.22
that 4 implies 2.

It remains to show that 5 is equivalent to the first four conditions. This is a
consequence of the following

Claim: X(θ)ctf is the unique saturated, coadmissible Tρ,Σ[G]-submodule of X(θ)
which is both faithful and cotorsion free over Tρ,Σ.

Indeed, Proposition C.40 shows that Yctf satisfies condition 1 if Y does. The
claim then implies that Yctf = X(θ)ctf , and hence that X(θ)ctf ⊂ Y. Thus 1 im-
plies 5. As for the converse, the claim implies that X(θ)ctf satisfies condition 1.
Hence, if X(θ)ctf ⊂ Y, we deduce that Y also satisfies condition 1. Thus 5 implies 1.

It remains to prove the claim. Since X(θ) evidently satisfies condition 4, it must
also satisfy 1. Proposition C.40 then implies that X(θ)ctf also satisfies condition 1,
and so is indeed a faithful Tρ,Σ-cotorsion free Tρ,Σ[GΣ0 ]-submodule of X(θ). Now
if Y is any saturated, coadmissible Tρ,Σ[GΣ0 ]-submodule of X(θ) which is faithful
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and cotorsion free over Tρ,Σ, then certainly Y ⊂ X(θ)ctf . Also, since we have
already shown that 1 implies 3, we see (taking into account Lemma 5.4.9) that the
inclusion E ⊗O Y [p] ⊂ E ⊗O X(θ)ctf [p] is an equality for a Zariski dense set of
points p ∈ Spec Tρ,Σ. Proposition C.41 thus implies that Y = X(θ)ctf . �

6.4.3. Remark. As we already noted in the proof of Proposition 6.4.2, X(θ) it-
self satisfies condition 4 of the proposition, and thus satisfies all the equivalent
conditions of the proposition. In particular, if p ∈ Spec Tρ,Σ[1/p] is a closed
point, then Proposition C.36 shows that E ⊗O X(θ)[p] 6= 0. From the isomor-
phism (6.3.10), we conclude (taking, e.g., θ = πm

Σ , which certainly satisfies As-
sumption 6.3.1) that for any such p, there is a non-zero GQ ×G-equivariant homo-
morphism ρ(p)⊗κ(p) π(p) → Ĥ1

E,ρ,Σ[p].

We give an alternative description of X(θ)ctf , after making a preliminary defini-
tion.

6.4.4. Definition. We will say that an ideal I ⊂ Tρ,Σ is allowable if it is of the
form I :=

⋂n
i=1 pi, where each pi is an allowable closed point of Tρ,Σ[1/p], in the

sense of Definition 5.4.7.

Clearly the intersection of any two allowable ideals of Tρ,Σ is again an allowable
ideal. Thus the allowable ideals form a directed set, ordered by inclusion. Thus⋃

I allowableX(θ)[I] is a Tρ,Σ[GΣ0 ]-submodule ofX(θ) (the union, as indicated, being
taken over all allowable ideals).

6.4.5. Lemma. The closure (in the sense of Definition C.28) of
⋃

I allowable

X(θ)[I]

in X(θ) coincides with X(θ)ctf .

Proof. Let I be an allowable ideal of Tρ,Σ, and as in Definition 6.4.4, write I :=⋂n
i=1 pi, where each pi is a classical closed point of Tρ,Σ[1/p] for which ρ(pi) |GQp

is
crystabelline and absolutely irreducible, and not exceptional. If Y is a saturated,
coadmissible Tρ,Σ[GΣ0 ]-submodule of X(θ), which is faithful as a Tρ,Σ-module,
then Proposition 6.4.2 shows that

∑n
i=1X(θ)[pi] ⊂ Y. Since X(θ)[I] is equal to the

saturation of
∑n

i=1X(θ)[pi] in X(θ), we see that in fact X(θ)[I] ⊂ Y. Thus, if we let
W denote the closure

⋃
I allowableX(θ)[I] in X(θ), in the sense of Definition C.28,

then we find that W ⊂ Y . On the other hand, W is a saturated, coadmissible
Tρ,Σ[GΣ0 ]-submodule of X(θ) (by Lemmas C.30 and C.31), which is faithful as a
Tρ,Σ-module (by Lemma 5.4.9), and so W is the minimal such submodule of X(θ).
In particular, W = Wctf , and so W is cotorsion free over Tρ,Σ. Since W satisfies
condition 1 of Proposition 6.4.2, it must also satisfy condition 5 of that proposition,
and so X(θ)ctf ⊂W. We conclude that W = X(θ)ctf , as claimed. �

We will need the following strengthening of Lemma 6.3.3.

6.4.6. Proposition. Suppose that there exists a saturated coadmissible Tρ,Σ[GΣ0 ]-
submodule Y of X(θ), satisfying the equivalent conditions of Proposition 6.4.2, and
for which evY is injective. Then if p ∈ Spec Tρ,Σ[1/p] is a closed point for which
ρ(p) is an extension (possibly trivial) of distinct characters, there is an isomorphism
θ(p) ∼= π(p).

Proof. Write ρ(p) as an extension 0 → χ1 → ρ(p) → χ2 → 0, with χ1 6= χ2. Since
ρ|GQp

satisfies Assumption 3.3.1, we see that χ1χ
−1
2 6= ε−1, while if χ1χ

−1
2 = ε, then
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p ≥ 5 and ρ|GQp
is a twist of a non-split extension of ε−1 by 1. In particular, in this

latter case ρ|GQp
, and so also π, has trivial endomorphisms, the deformation functor

Def(π) is representable, hence θ ∼= πm
Σ (see Remark 6.3.2), and, in particular,

θ(p) ∼= π(p). Thus we may assume that χ1χ
−1
2 6= 1, ε±1.

Choose an allowable level KΣ0 for ρ so that T(KΣ0)ρ
∼−→ Tρ,Σ, and hence such

that Y KΣ0 is faithful as a Tρ,Σ-module (by Proposition 6.4.2 (2)). The evalua-
tion map evY is assumed to be an embedding, and thus so is the evaluation map
ev(KΣ0)Y . This latter map in turn induces an embedding

ρm
Σ ⊗Tρ,Σ (θ/pnθ)⊗Tρ,Σ Y

KΣ0 [pn] ↪→ Ĥ1(KΣ0)O,ρ[pn].

Since OrdB is a left-exact functor, Corollary 5.6.13 then implies that the action of
GQp on the cokernel of the embedding

ρm
Σ ⊗Tρ,Σ OrdB

(
(θ/pnθ)⊗Tρ,Σ/pn Y KΣ [pn]

)(
ρm
Σ ⊗Tρ,Σ OrdB

(
(θ/pnθ)⊗Tρ,Σ/pn Y KΣ [pn]

))ab,S

factors through Gab
Qp

. The claim of the proposition now follows from Proposi-
tion 3.6.4. �

We now begin our study of evaluation maps.

6.4.7. Theorem. Let Y be a saturated coadmissible Tρ,Σ[GΣ0 ]-submodule of X(θ)
satisfying the equivalent conditions of Proposition 6.4.2, and suppose furthermore
either that θ = πm

Σ and Y = X(πm
Σ ), or that evY is injective. Then the map evY,E is

surjective (or equivalently, for each allowable level KΣ0 ⊂ GΣ0 , the map evY (KΣ0)E

is surjective).

Proof. The equivalence of the two conditions is seen by alternately passing to KΣ0-
invariants, and passing to the inductive limit over all KΣ0 . Suppose that they hold.
We claim that the image of evY,E contains

⊕
p∈C Ĥ

1
E,ρ,Σ[p]l.alg, where C is the set of

closed points of p ∈ Spec T(KΣ0)ρ,Σ[1/p] which are classical, and whose associated
Galois representations are crystalline at p. Since Ĥ1

E,ρ,Σ[p]l.alg is an irreducible
GQ ×Gp ×GΣ0-representation, by [38, Thm. 7.4.2], it suffices in fact to show that
the image of ev(p)Y contains a non-zero locally algebraic vector, for each p ∈ C.

If the Galois representation ρ(p) associated to p ∈ C is irreducible locally at p,
and is not exceptional at p (in the sense of Definition 3.3.18), then the isomor-
phism (6.3.19) of Corollary 6.3.17, together with the equality E ⊗O Y [p] = E ⊗O
X(θ)[p] given by part 3 of Proposition 6.4.2, shows directly that the image of ev(p)Y

contains Ĥ1
E,ρ,Σ[p]l.alg. Suppose next either that ρ(p) is irreducible locally at p, but

is exceptional at p (note that, as a special case of the Tate conjecture, this is in fact
conjectured never to occur; see e.g. [21]), or else that ρ(p) is reducible, but non-
split. Note that in the latter case, since p is classical, the two characters of which
ρ(p) is an extension must be distinct. The hypothesis of the theorem, together with
Proposition 6.4.6, shows that θ(p) ∼= π(p). Theorem 3.3.21 then implies that θ(p)
contains locally algebraic vectors, and Proposition C.36 implies that E⊗OY [p] 6= 0.
Taking into account Proposition 6.2.2 (which does apply, since, as already noted,
in the case when ρ(p) is an extension of two characters, the characters are distinct),
we conclude that the image of ev(p)Y contains a non-zero locally algebraic vector.

Suppose now that ρ(p) is the direct sum of two characters. The representation
θ(p) ∼= π(p) may then be decomposed as a direct sum θ(p) ∼= π1

⊕
π2, where π1
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is equal to the universal unitary completion (in the sense of [37]) of the locally
algebraic representation π̃p(ρ(p) |GQp

) attached to ρ(p) |GQp
as in the statement of

[38, Conj. 3.3.1 (7)]. (See the discussion of Subsection 3.4.) If evY is an injection,
then the same is true of the induced evaluation map ev(p)Y . Since Proposition C.36
implies that E ⊗O Y [p] 6= 0, we see again in this case that the image of ev(p)Y

contains a non-zero locally algebraic vector. Finally, we consider the case when
Y = X(πm

Σ ). Since π1 is the universal unitary completion of π̃p(ρ(p) |GQp
), we

see from [38, Thm. 7.4.2] that there is a non-zero GQ × G-equivariant embedding
ρ(p)⊗Eπ1 ↪→ Ĥ1

E,ρ,Σ[p]. Composing with the projection ρ(p)⊗Eπ(p) → ρ(p)⊗Eπ1,

we obtain an element of E ⊗O X(πm
Σ )[p] whose image contains a non-zero locally

algebraic vector. Thus the image of ev(p)X(πm
Σ ) contains a non-zero locally algebraic

vector in this case as well.
Since, by Corollary 5.4.5, the direct sum

⊕
p∈C Ĥ

1
E,ρ,Σ[p]l.alg is dense in Ĥ1

E , we
have proved that the image of evY,E is dense in Ĥ1

E . On the other hand, it follows
from Theorem 6.3.12, together with Lemma 3.1.16, that ρm

Σ ⊗Tρ,Σ θ ⊗̂Tρ,Σ(X(θ))KΣ0

is a $-adically admissible representation of G over Tρ,Σ for any allowable level
KΣ0 . The same is true of Ĥ1(KΣ0)E,ρ,Σ, by Lemma 5.3.5. It follows from Propo-
sition 3.1.3 that the image of ev(KΣ0)E,Y is closed. Passing to the limit over all
KΣ0 , we find that the image of evE,Y is closed. This proves the theorem. �

6.4.8. Remark. As remarked in footnote 9, in the case when p > 2, Paškūnas [68]
has extended the results of [3] to cover the exceptional cases. Thus in this case
it is possible to avoid the appeal to Theorem 3.3.21 in the proof of the preceding
theorem. (Note that in the case when ρ(p) is reducible it is easy to show directly
that π(p) (and hence θ(p)) contains non-zero locally algebraic vectors, whether or
not ρ(p) is split).

On the other hand, it is possible to replace the application of the density results of
Subsection 5.4 in the proof of Theorem 6.4.7 by instead making a wholesale appeal
to Theorem 3.3.21. Indeed, if p is a classical closed point of Spec T(KΣ0)ρ,Σ[1/p]
corresponding to a modular form of weight two, then Theorem 3.3.21, together with
Remark 3.3.23, shows that π(p) contains non-zero smooth vectors, and so, arguing
just as in the proof given above, one finds that the image of evY,E contains all of the
smooth vectors of Ĥ1

E,ρ,Σ. These are dense in Ĥ1
E,ρ,Σ by construction, and hence

the argument can again be concluded via an appeal to Proposition 3.1.3.

6.4.9. Theorem. Let Y be a coadmissible Tρ,Σ[GΣ0 ]-submodule of X(θ). The fol-
lowing are equivalent:

(1) The map evY is an isomorphism.
(2) Y is a faithful Tρ,Σ-module, and the map evY (m) is injective.

If Y satisfies these equivalent conditions, then furthermore:
(3) Y = X(θ)ctf .

Proof. Suppose first that evY is an isomorphism. Since Ĥ1
O,ρ,Σ is a faithful Tρ,Σ-

module, we see that Y must be a faithful Tρ,Σ-module. Reducing the map evY

modulo $, and then passing to the m-torsion in the source and target, we find that
evY (m) is again an isomorphism, and so in particular, is injective. Thus 1 implies 2.

Conversely, if evY (m) is injective, then by Lemma C.46, we see that evY is
injective, with saturated image. Lemma C.52 then implies that Y must be saturated
in X(θ). If Y is furthermore faithful as a Tρ,Σ-module, then Theorem 6.4.7 shows
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that evE,Y is surjective. It follows that evY is in fact an isomorphism, and so 2
implies 1.

Suppose now that evY satisfies conditions 1 and 2. As we have already noted, it
follows that Y is saturated in X(θ), and so condition 5 of Proposition 6.4.2 shows
that

(6.4.10) X(θ)ctf ⊂ Y.

Since X(θ)ctf is saturated in X(θ), and so in Y , we conclude that the induced map(
X(θ)ctf/$X(θ)ctf

)
[m] → (Y/$Y )[m]

is an embedding, and thus that evX(θ)ctf (m) is injective, since evY (m) is. The
equivalence of 1 and 2 of the present proposition, applied now to X(θ)ctf , then
shows that evX(θ)ctf is an isomorphism. Thus the inclusion (6.4.10) induces an
isomorphism

πm
Σ ⊗Tρ,Σ π

m
Σ

f
⊗Tρ,ΣX(θ)ctf

∼−→ πm
Σ ⊗Tρ,Σ π

m
Σ

f
⊗Tρ,ΣY.

It follows from Lemma C.51 that the inclusion (6.4.10) is an equality, i.e. that part 3
holds. �

6.4.11. Theorem. Suppose that ρ satisfies Assumption 5.7.3. If evX(θ)ctf is an
isomorphism, then there is an isomorphism X(θ)ctf ∼= πΣ0(ρ

m
Σ ).

Proof. We will let Π denote the set of closed points p ∈ Spec Tρ,Σ[1/p] that are
allowable in the sense of Definition 5.4.7, and will show that X(θ)ctf and Π together
satisfy the conditions of Theorem 4.4.1. That proposition will then show that
X(θ)ctf

∼−→ πΣ0(ρ).
Since X(θ)ctf is saturated in X(θ), there is a natural embedding

X(θ)ctf/$X(θ)ctf ↪→ X(θ)/$X(θ),

and hence also an embedding(
X(θ)ctf/$X(θ)ctf

)
[m] ↪→

(
X(θ)/$X(θ)

)
[m].

A consideration of the embedding (6.3.11), together with Proposition 6.3.22, then
shows that

(
X(θ)ctf/$X(θ)ctf

)
[m] is a generic representation of GΣ0 .

Our assumption on evX(θ)ctf , together with the equivalence of conditions 1 and 2
in Theorem 6.4.9, shows that the map evX(θ)ctf (m) induces an embedding

(6.4.12) ρ⊗k π ⊗k

(
X(θ)ctf/$X(θ)ctf

)
[m] ↪→ H1

k,ρ,Σ[m].

Choose V to be a good weight in W gl(ρ) (in the sense of Definition 5.7.5). It
follows from part 1 of Theorem 5.7.7 that V lies in W (ρ). Lemma 3.5.5 gives an
isomorphism

m(V, ρ) ∼−→ HomGL2(Zp)(V, π) ∼−→ HomG(c−IndG
GL2(Zp) V, π).

Thus, applying the functor FΣ0 socH(V ) HomGL2(Zp)(V, –) to the embedding (6.4.12)
yields an embedding

ρ⊗k socH(V ) m(V, ρ)⊗k FΣ0

((
X(θ)ctf/$X(θ)ctf

)
[m]

)
↪→ FΣ0 socH(V ) HomGL2(Zp)(V,H1

k,ρ,Σ[m])
∼−→ ρ⊗k socH(V ) m(V, ρ),
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where the isomorphism is provided by part 2 of Theorem 5.7.7. We conclude that
FΣ0

((
X(θ)ctf/$X(θ)ctf

)
[m]

)
is at most one-dimensional. Combined with the result

of the preceding paragraph, this shows that condition 1 of Theorem 4.4.1 holds.
Since each point of Π is a classical closed point, the associated local represen-

tations ρ(p) |GQ`
(` ∈ Σ0) are always generic [51, p. 354]. Corollary 6.3.17 and

Lemma 6.4.5 together show that for each p ∈ Π, we have a GΣ0-equivariant isomor-
phism (and so in particular a GΣ0-equivariant map) πΣ0(ρ(p)) ∼−→ E⊗OX(θ)ctf [p].
Lemma 6.4.5 also shows that the saturation of

∑
pX(θ)ctf [p] (where p ranges over

all elements of Π) is dense in X(θ)ctf . Thus conditions 2 (a), (b), and (c) of Theo-
rem 4.4.1 all hold. As already noted, this completes the proof of the theorem. �

6.4.13. Corollary. If there is an isomorphism of Tρ,Σ[GQ ×G×GΣ0 ]-modules

(6.4.14) ρm
Σ ⊗Tρ,Σ θ

f
⊗Tρ,ΣπΣ0(ρ

m
Σ ) ∼−→ Ĥ1

O,ρ,Σ,

then X(θ)ctf ∼= πΣ0(ρ
m
Σ ), and the evaluation map evX(θ)ctf is an isomorphism. Con-

versely, if evX(θ)ctf is an isomorphism, and if ρ satisfies Assumption 5.7.3, then
X(θ)ctf ∼= πΣ0(ρ

m
Σ ), and there is an isomorphism of the form (6.4.14).

Proof. If there is an isomorphism of the form (6.4.14) then it gives rise to an
embedding πΣ0(ρ

m
Σ ) ↪→ X(θ), such that, letting Y denote the image of this map,

the evaluation map evY is an isomorphism. Theorem 6.4.9 then shows that Y =
X(θ)ctf .

Conversely, if evX(θ)ctf is an isomorphism, and if ρ satisfies Assumption 5.7.3,
then Theorem 6.4.11 shows that X(θ)ctf ∼= πΣ0(ρ

m
Σ ), and so evX(θ)ctf gives rise to

an isomorphism of the form (6.4.14). �

The preceding results are most easily applied in the case when ρ |GQp
has only

trivial endomorphisms (in which case, as we noted in Remark 6.3.2, we necessarily
have that θ ∼= ρm

Σ ).
We first prove a lemma.

6.4.15. Lemma. Suppose that π1 and π2 are smooth representations of G over
k, that U is a k-vector space, and that f : π1 ⊗k U → π2 is a G-equivariant k-
linear map (the G-action on the source being defined via its action on the first
factor in the tensor product). If furthermore π1 is admissible and soc(π1) (the
G-socle of π1) is multiplicity free, and if for every non-zero element u ∈ U , the
map π1

∼−→ π1 ⊗k (k · u) → π2 induced by f is an embedding, then f itself is an
embedding.

Proof. Write soc(π1) =
⊕s

i=1 π1,i, where the π1,i are pair-wise non-isomorphic
irreducible admissible smooth G-representations. We have the evident isomorphism

s⊕
i=1

π1,i ⊗k U
∼−→ soc(π1)⊗k U

∼−→ soc(π1 ⊗k U).

If f has a non-zero kernel, then this kernel has a non-zero socle, and so has non-zero
intersection with π1,i⊗kU for at least one value of i (since the π1,i are pair-wise non-
isomorphic), and so contains π1,i⊗k (k ·u) for some non-zero u ∈ U . Consequently,
the map π1 ⊗k (k · u) → π2 is not injective, contradicting our assumption. �

We now prove our main theorem in the case when ρ|GQp
has only trivial endo-

morphisms.



88 MATTHEW EMERTON

6.4.16. Theorem. If ρ |GQp
has only trivial endomorphisms, then the evaluation

map evX(πm
Σ ) is an isomorphism, and hence Conjecture 6.1.6 holds.

Proof. If we show that evX(πm
Σ ) is an isomorphism, then part 3 of Theorem 6.4.9

and Corollary 6.4.13 together imply that Conjecture 6.1.6 holds. To prove that
evX(πm

Σ ) is an isomorphism, it suffices, by 2 of Theorem 6.4.9, to prove that the map
ev(m)X(πm

Σ ) is injective. For this, it suffices in turn to prove that the evaluation
map

(6.4.17) ρ⊗k π ⊗k Homk[GQ×G](ρ⊗k π,H
1
k,ρ,Σ[m]) → H1

k,ρ,Σ[m]

is injective. Since ρ is absolutely irreducible, the evaluation map

ρ⊗k Homk[GQ](ρ,H1
k,ρ,Σ[m]) → H1

k,ρ,Σ[m]

is injective, and so to prove the injectivity of (6.4.17), it suffices in turn to prove
that the induced map

(6.4.18) π ⊗k Homk[GQ×G](ρ⊗k π,H
1
k,ρ,Σ[m]) → Homk[GQ](ρ,H1

k,ρ,Σ[m])

is injective.
By Lemma 6.4.15, to prove the injectivity of (6.4.18), it suffices to prove that

any non-zero G-equivariant map

π → Homk[GQ](ρ,H1
k,ρ,Σ[m])

is injective. Since

Homk[GQ](ρ,H1
k,ρ,Σ[m]) ↪→ ρ∨ ⊗k H

1
k,ρ,Σ

∼−→ H1
k,ρ,Σ[m]⊕H1

k,ρ,Σ[m]

(the latter G-equivariant isomorphism being obtained by choosing a k-basis for ρ),
we see that it in fact suffices to show that any non-zero G-equivariant map

(6.4.19) π → H1
k,ρ,Σ[m]

is injective. If ρ|GQp
, and hence π, is irreducible, this is clear. If not, then write

ρ|GQp
as an extension

0 → χ1 → ρ→ χ2 → 0.
Since ρ is assumed to have only trivial endomorphisms, we have χ1 6= χ2, and this
extension is non-split. By Assumption 3.3.1, we also have χ1χ

−1
2 6= ε−1. Thus

if χ1χ
−1
2 6= ε, then π is an extension of IndG

B
χ2 ⊗ χ1ε by the non-isomorphic

representation IndG
B
χ1 ⊗ χ2ε, with each of these principal series representations

being irreducible. The GL2(Zp)-socle of the first of these principal series consists
of a single Serre weight, which does not line in W (ρ). Taking into account part 1 of
Theorem 5.7.7, we find that there is no embedding of IndG

B
χ2⊗χ1ε into H1

k,ρ,Σ[m],
and thus that indeed any non-zero map of the form (6.4.19) is injective.

If χ1χ
−1
2 = ε, then, writing χ := χ1, we find that π is a non-split extension of

IndG
B
χε−1 ⊗ χε (which is irreducible) by a representation π1 which itself sits in a

non-split short exact sequence

0 → (χ ◦ det)⊗k St → π1 → χ ◦ det → 0.

The unique Serre weight in the GL2(Zp)-socle of IndG
B
χε−1 ⊗ χε does not lie in

W (ρ), and so a non-zero map of the form (6.4.19) cannot contain all of π1 in its
kernel. On the other hand, if it contains just (χ ◦ det)⊗k St in its kernel, then we
find that H1

k,ρ,Σ contains a one-dimensional G-invariant subrepresentation, which
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is impossible, by Ihara’s Lemma. Thus any non-zero map of the form (6.4.19) must
in fact be injective. This completes the argument. �

When ρ|GQp
is the sum of two distinct characters, we can establish a slightly

weaker result.

6.4.20. Theorem. If ρ |GQp
is isomorphic to the direct sum of distinct characters,

then Conjecture 6.1.9 holds.

The somewhat lengthy proof of the theorem is presented in the following sub-
section.

6.5. Proof of Theorem 6.4.20. Throughout this subsection we suppose that
ρ = χ1

⊕
χ2, with χ1χ

−1
2 6= 1, ε±1. (The arguments typically apply more generally,

but we have no need for them other than in this case.) We introduce the following
hypothesis on a point p ∈ Spec Tρ,Σ[1/p]:

6.5.1. Assumption. The closed point p is allowable, in the sense of Definition 5.4.7,
and E ∼−→ κ(p) (or, equivalently, O ∼−→ Tρ,Σ/p).

The following result lies at the heart of our argument.

6.5.2. Proposition. If p ∈ Spec Tρ,Σ[1/p] satisfies Assumption 6.5.1, then there is
an isomorphism of O[GΣ0 ×G]-modules

ρ(p)◦ ⊗O π(p)◦ ∼−→ FΣ0(M(p)O)

(where we refer to Definition 6.3.14 for the definition of M(p)O).

Proof. Applying the functor FΣ0 to the isomorphism of part 1 of Proposition 6.3.15,
we obtain an isomorphism

(6.5.3) FΣ0(M(p)E) ∼−→ ρ(p)⊗E π(p).

Thus FΣ0(M(p)O) is a bounded open GQ×G-invariant lattice in ρ(p)⊗Eπ(p). Since
ρ is absolutely irreducible, any such lattice is of the form

ρ(p)◦ ⊗O π◦,
for some bounded open G-invariant lattice π◦ in π(p). In particular, we may write

FΣ0(M(p)O) ∼−→ ρ(p)◦ ⊗O π◦,
for some lattice π◦. Our goal is to show that π◦ ∼−→ π(p)◦.

Since M(p)O is saturated in Ĥ1
O,ρ,Σ, we see that the induced embedding

ρ(p)◦ ⊗O π◦
∼−→ FΣ0(M(p)O)) ↪→ FΣ0(Ĥ

1
O,ρ,Σ)

is saturated, and hence that reduction modulo $n induces an embedding

(ρ(p)◦/$nρ(p))⊗O/$n (π◦/$nπ◦) ↪→ FΣ0(Ĥ
1
O,ρ,Σ/$

nĤ1
O,ρ,Σ),

for any n ≥ 0. Taking ordinary parts, we obtain an embedding

(ρ(p)◦/$nρ(p))⊗O/$n OrdB(π◦/$nπ◦) ↪→ OrdB

(
FΣ0(Ĥ

1
O,ρ,Σ/$

nĤ1
O,ρ,Σ)

)
∼−→ FΣ0

(
OrdB(Ĥ1

O,ρ,Σ/$
nĤ1

O,ρ,Σ)
)
.

From Theorem 5.6.11, we conclude that the action of GQp on the quotient

(ρ(p)◦/$nρ(p))⊗O/$n OrdB(π◦/$nπ◦)
(ρ(p)◦/$nρ(p))⊗O/$n OrdB(π◦/$nπ◦)ab,S
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factors through Gab
Qp

. The theorem is now seen to follow from Proposition 3.6.3. �

Before stating our next results, we introduce some notation.

6.5.4. Definition. We write T′ρ,Σ := HomO−cont(T′ρ,Σ) to denote the space of O-
linear, m-adically continuous maps from Tρ,Σ to O.

6.5.5. Definition. Suppose that I is an allowable ideal in Tρ,Σ, and write I =⋂n
i=1 pi, where the pi are distinct allowable closed points of Spec Tρ,Σ[1/p]. There

is an embedding
⊕n

i=1M(pi)E ↪→ Ĥ1
E,ρ,Σ0

. Since

E ⊗O (Tρ,Σ/I)
∼−→

n∏
i=1

E ⊗O (Tρ,Σ/pi),

we see that the image of this embedding may be identified with the closure of
the space Ĥ1

E,ρ,Σ[I]l.alg of locally algebraic elements of Ĥ1
E,ρ,Σ that are annihilated

by I. Generalizing the notation of Definition 6.3.14, we denote the image of this
embedding by M(I)E , and write M(I)O := M(I)E

⋂
Ĥ1
O,ρ,Σ.

Following Proposition 5.5.3, we make the factorization

ρm
Σ ⊗Tρ,Σ UΣ

∼−→ Ĥ1
O,ρ,Σ,

where UΣ := HomTρ,Σ[GQ](ρm
Σ , Ĥ

1
O,ρ,Σ) is a G×GΣ0-representation. This factoriza-

tion induces a corresponding factorization

ρm
Σ ⊗Tρ,Σ HomTρ,Σ[GQ]

(
ρm
Σ ,M(I)O

) ∼−→M(I)O.

6.5.6. Definition. If I ⊂ Tρ,Σ is an allowable ideal, then we write

WI := FΣ0

(
HomTρ,Σ[GQ]

(
ρm
Σ ,M(I)O

)) ∼−→ HomTρ,Σ[GQ]

(
ρm
Σ , FΣ0

(
M(I)O

))
,

and
θI := HomTρ,Σ

(
(Tρ,Σ/I)′,WI)

(where, following the notation introduced in Subsection 3.7, we write (Tρ,Σ/I)′ :=
HomO(Tρ,Σ/I,O)), so that there is a natural evaluation map

(6.5.7) (Tρ,Σ/I)′ ⊗Tρ,Σ θI →WI .

Both WI and θI are naturally G-representations over Tρ,Σ/I, and (6.5.7) is a map
of (Tρ,Σ/I)[G]-modules.

6.5.8. Lemma. If J ⊂ I is an inclusion of allowable ideals in Tρ,Σ, then there is a
natural isomorphism WJ

∼−→WI [J ].

Proof. Evidently the inclusion M(J)O ⊂M(I)O induces an isomorphism

M(J)O
∼−→M(I)O[J ].

The lemma follows directly from this and from the definition of WI and WJ in
terms of M(I)O and M(J)O. �

We immediately deduce the following corollary from Proposition 6.5.2.

6.5.9. Corollary. If p ∈ Spec Tρ,Σ[1/p] satisfies Assumption 6.5.1, then there is a
G-equivariant isomorphism Wp

∼= π(p)◦.
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Our goal is now to prove a partial generalization of the preceding corollary for
a general allowable ideal. In the course of the argument it will be necessary to
make an extension of scalars (so that we may put ourselves in a situation where
the prime ideals under consideration satisfy Assumption 6.5.1), and so we begin by
introducing some notation, and proving a lemma, related to such an extension.

Suppose that E′ is a finite extension of E, letO′ be the integral closure ofO in E′,
and let k′ be the residue field of O′ (a finite extension of k). Write ρ′ := k′ ⊗k ρ.
We define Ĥ1

E′,ρ′,Σ, Ĥ
1
O′,ρ′,Σ, and Tρ′,Σ in analogy with Ĥ1

E,ρ,Σ, Ĥ
1
O,ρ,Σ, and Tρ,Σ.

We furthermore define ρm′
Σ and πm′

Σ in analogy with ρm
Σ and πm

Σ . Thus ρm′
Σ denotes

the universal promodular deformation of ρ′ over Tρ′,Σ, while πm′
Σ is defined so that

MF(πm′
Σ ) ∼−→ ρm′

Σ |GQp
, with πm′

Σ |GQp
admitting the central character det(ρm′

Σ |GQp
)ε.

There are natural isomorphisms E′ ⊗E Ĥ1
E,ρ,Σ

∼−→ Ĥ1
E′,ρ′,Σ, O′ ⊗O Ĥ1

O,ρ,Σ
∼−→

Ĥ1
O′,ρ′,Σ, O′ ⊗O Tρ,Σ

∼−→ Tρ′,Σ, O′ ⊗O ρm
Σ

∼−→ ρm′
Σ , and O′ ⊗O πm

Σ
∼−→ πm′

Σ .

6.5.10. Lemma. If I is an allowable ideal (in the sense of Definition 6.4.4) in Tρ,Σ,
then I ′ := O′ ⊗O I is an allowable ideal in Tρ′,Σ.

Proof. Write I =
⋂n

i=1 pn as in Definition 6.4.4. If we tensor the embedding

Tρ,Σ/I ↪→
n∏

i=1

κ(pi)

with O′ over O, we obtain an embedding

O′ ⊗O (Tρ,Σ/I) ↪→
n∏

i=1

E′ ⊗E κ(pi).

Since E′ and each κ(pi) are fields of characteristic zero, the target of this embedding
is reduced. Thus so is the source. From the isomorphism

Tρ′,Σ/I
′ ∼−→ O′ ⊗O (Tρ,Σ/I),

we conclude that I ′ is a radical ideal, say I ′ =
⋂r

j=1 qj . Each qj contains one of
the pi, and since Tρ′,Σ is a finite extension of Tρ,Σ, the corresponding residue field
extension κ(qj)/κ(pi) is finite. Thus qj is a classical closed point of Tρ′,Σ, and there
is an isomorphism ρ(qj)

∼−→ κ(qj)⊗κ(pi)ρ(pi). (If p′i corresponds to a cuspidal Hecke
eigenform defined over κ(pi), then qj corresponds to the same Hecke eigenform, but
regarded as being defined over κ(qj).) Thus I ′ is allowable. �

We now state and prove our generalization of Corollary 6.5.9.

6.5.11. Proposition. If I is an allowable ideal, then θI is a deformation of π over
Tρ,Σ/I, and the evaluation map (6.5.7) is an isomorphism.

Proof. Write I =
⋂n

i=1 pi, as in Definition 6.4.4. Choose E′ to be a finite Galois
extension of E, sufficiently large so that each of the residue fields κ(pi) admits an
embedding into E′. Lemma 6.5.10 shows that I ′ := O′ ⊗O I is an allowable ideal
of Tρ′,Σ, and if we write I ′ =

⋂r
j=1 qj , then by virtue of our choice of E′, each of

the residue fields κ(qj) is equal to E′.
Clearly there are natural isomorphisms WI′

∼−→ O′ ⊗OWI and θI′ := O′ ⊗O θI ,
and the evaluation map

(6.5.12) (Tρ′,Σ′0
/I ′)′ ⊗Tρ′,Σ0

θI′ →WI′ .
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is obtained from the map (6.5.7) by tensoring with O′ over O. Thus it suffices to
prove the proposition with E, ρ, I, etc., replaced by E′, ρ′, I ′, etc., and hence,
replacing E by E′, ρ by ρ′, I by I ′, and so on, it is no loss of generality to assume
from the beginning that for each pi appearing in the decomposition of I, the residue
field κ(pi) is equal to E, and we do so from now on.

We will now prove the statement of the theorem (under the additional assump-
tion that κ(pi) = E for each i = 1, . . . , n) by induction on n. The base case n = 1
follows from Corollary 6.5.9. Suppose now that n > 1, and write J :=

⋂n−1
i=1 pi,

p := pn. By induction, θJ is a deformation of π over Tρ,Σ/J, and the evaluation
map (Tρ,Σ/J)′ ⊗Tρ,Σ θJ →WJ is an isomorphism.

Lemma 6.5.8 provides isomorphisms WI [J ] ∼−→ WJ and WI [p] ∼−→ Wp, and
so it follows from the induction hypothesis, Theorem 5.7.7, Lemma 3.5.5 (2), and
Proposition 3.7.11 that WI := (Tρ,Σ/I)′ ⊗Tρ,Σ X for some deformation X of π
over Tρ,Σ/I. It then follows from Lemma 3.7.10 that X ∼−→ θI , showing that
θI is a deformation of π over Tρ,Σ/I, and that the evaluation map (6.5.7) is an
isomorphism. �

We note one particular corollary of the preceding result.

6.5.13. Corollary. If J ⊂ I is an inclusion of allowable ideals, then there is a
natural isomorphism θI/JθI

∼−→ θJ .

Proof. Proposition 6.5.11 shows that the natural evaluation maps provide isomor-
phisms

(6.5.14) (Tρ,Σ/I)′ ⊗Tρ,Σ θI
∼−→WI

and

(6.5.15) (Tρ,Σ/J)′ ⊗Tρ,Σ θJ
∼−→WJ .

Now consider the composite of the sequence of isomorphisms:

(Tρ,Σ/J)′ ⊗Tρ,Σ θI/JθI
∼−→ (Tρ,Σ/J)′ ⊗Tρ,Σ θI

∼−→
(
(Tρ,Σ/I)′ ⊗Tρ,Σ θI

)
[J ]

∼−→WI [J ] ∼−→WJ
∼−→ T′ρ,Σ[J ]⊗Tρ,Σ θJ ,

of which the first is evident, the second is obtained by applying part 3 of Lemma B.6
with A taken to be Tρ,Σ/I, M taken to be Tρ,Σ/J, and N taken to be (Tρ,Σ/I)′,
the third is (6.5.14), the fourth is obtained from Lemma 6.5.8, and the fifth is
the inverse of (6.5.15). Applying HomTρ,Σ(T′ρ,Σ[J ], –) to the source and target of
this composite isomorphism, and taking into account Lemma 3.7.10, we obtain the
required isomorphism of deformations θI/JθI

∼−→ θJ . �

We are now ready to give the:

Proof of Theorem 6.4.20. Corollary 6.5.13 allows us to form the projective limit
θ := lim

←−
I

θI , the projective limit being taken over all allowable ideals I of Tρ,Σ, to

obtain a deformation θ of π over Tρ,Σ
∼−→ lim

←−
I

Tρ,Σ/I. By construction, θ/Iθ ∼−→ θI

for any allowable ideal I ⊂ Tρ,Σ. In particular, if p is an allowable prime ideal, we
compute that

θ(p) ∼−→ E ⊗O θp
∼−→ FΣ0

(
HomGQ(ρ(p),M(I)E)

) ∼−→ π(p),
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the final isomorphism following from part 1 of Proposition 6.3.15. Thus θ satis-
fies Assumption 6.3.1. Our goal is to prove that evX(θ)ctf is an isomorphism; the
claims of the theorem will follow from this, together with Corollary 6.4.13 and
Proposition 6.4.6.

Proposition 6.4.2 shows that X(θ)ctf is a faithful Tρ,Σ-module, and so by Theo-
rem 6.4.9, it suffices to prove that ev(m)X(θ)ctf is injective. Since, by Lemma 6.4.5,
X(θ)ctf is the closure of

⋃
I X(θ)[I], with I ranging over the allowable ideals in Tρ,Σ,

we see that
(
X(θ)/$X(θ)

)
[m] ∼−→

⋃
I

(
X(θ)[I]/$X(θ)[I]

)
[m], and thus it suffices

to prove that the evaluation map

ρ⊗k π ⊗k

(
X(θ)[I]/$X(θ)[I])[m] → H1

k,ρ

is injective, for each allowable ideal I. By Lemma 4.1.4 and Corollary 6.3.24, for
this it suffices in turn to show that

ρ⊗k π ⊗k FΣ0

(
X(θ)[I]/$X(θ)[I]

)
[m] → FΣ0(H

1
k,ρ)

is injective, which itself will follow in turn if we show that, for each I, the evaluation
map

(6.5.16) ρm
Σ ⊗Tρ,Σ θ ⊗Tρ,Σ FΣ0

(
X(θ)[I]

)
→ FΣ0(Ĥ

1
O,ρ,Σ)

is injective, with saturated image.
Now

(6.5.17) X(θ)[I] = HomTρ,Σ[GQ×G](ρm
Σ ⊗Tρ,Σ θ, Ĥ

1
O,ρ,Σ)[I]

∼−→ HomTρ,Σ[GQ×G](ρm
Σ ⊗Tρ,Σ θ/Iθ, Ĥ

1
O,ρ,Σ).

If we write I =
⋂n

i=1 pi, where the pi are distinct allowable prime ideals, then since

M(I)O :=
(
⊕n

i=1M(pi)E

)
∩ Ĥ1

O,ρ,Σ,

we conclude from the isomorphisms (6.3.16) (applied to p = p1, . . . , pn) and (6.5.17)
that we have an isomorphism

X(θ)[I] ∼−→ HomTρ,Σ[GQ×G]

(
ρm
Σ ⊗Tρ,Σ θ/Iθ,M(I)O

)
,

which in turn induces an isomorphism

(6.5.18) FΣ0

(
X(θ)[I]

) ∼−→ HomTρ,Σ[GQ×G]

(
ρm
Σ ⊗Tρ,Σ θ/Iθ, FΣ0

(
M(I)O

))
.

Since by construction M(I)O is a saturated O-submodule of Ĥ1
O,ρ,Σ, we see that

FΣ0

(
M(I)O

)
is saturated in FΣ0(Ĥ

1
O,ρ,Σ). Hence, in order to verify that (6.5.16) is

injective with saturated image, it suffices to verify that the evaluation map

(6.5.19) ρm
Σ ⊗Tρ,Σ θ/Iθ ⊗Tρ,Σ FΣ0

(
X(θ)[I]

)
→ FΣ0

(
M(I)O

)
,

which arises from the description of FΣ0

(
X(θ)[I]

)
provided by (6.5.18), is injective,

with saturated image.
Now FΣ0

(
M(I)O

) ∼−→ ρm
Σ ⊗TΣ WI , and so we may rewrite (6.5.18) as an isomor-

phism

(6.5.20) FΣ0

(
X(θ)[I]

) ∼−→ HomTρ,Σ[G](θ/Iθ,WI).

This in turn gives rise to an evaluation map

(6.5.21) θ/Iθ ⊗Tρ,Σ FΣ0

(
X(θ)[I]

)
→WI ,
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from which (6.5.19) is obtained by tensoring with ρm
Σ over Tρ,Σ. It thus suffices to

show that (6.5.21) is injective, with saturated image.
As already noted, there is an isomorphism θ/Iθ

∼−→ θI , while Proposition 6.5.11
gives an isomorphism (Tρ,Σ/I)′⊗TΣ,ρ θI

∼−→WI . Thus we may rewrite the isomor-
phism (6.5.20) as

FΣ0

(
X(θ)[I]

) ∼−→ HomTρ,Σ[G]

(
θI , (Tρ,Σ/I)′ ⊗TΣ,ρ θI

)
,

and hence rewrite the evaluation map (6.5.21) as the evaluation map

(6.5.22) θI ⊗Tρ,Σ HomTρ,Σ[G]

(
θI , (Tρ,Σ/I)′ ⊗Tρ,Σ θI

) ∼−→ (Tρ,Σ/I)′ ⊗Tρ,Σ θI .

It follows from Lemma 3.1.19 that the natural map

(Tρ,Σ/I)′ → HomTρ,Σ[G]

(
θI , (Tρ,Σ/I)′ ⊗Tρ,Σ θI

)
is in fact an isomorphism, and hence that (6.5.22) is also an isomorphism. In
particular it is injective with saturated image, and so we are done. �

7. Applications

7.1. Applications to the Fontaine–Mazur conjecture. In this subsection, we
prove the following theorem, which is a rephrasing of part 2 of Corollary 1.2.2.

7.1.1. Theorem. Let ρ : GQ → GL2(E) be a pro-modular lift of the absolutely
irreducible representation ρ : GQ → GL2(k), unramified outside of the finite set of
primes S ∪ {p}, and suppose that

(1) ρ |GQp
6∼ χ⊗

(
1 ∗
0 ε

)
;

(2) If ρ |GQp
is isomorphic to the direct sum of two characters, then these char-

acters have non-isomorphic reductions modulo $;
(3) ρ |GQp

is de Rham with distinct Hodge–Tate weights.

Then ρ is a twist of the Galois representation attached to a classical cuspidal eigen-
form of weight k ≥ 2.

Proof. It follows from Theorem 1.2.1 (1) that there is a G-equivariant embedding

B(ρ) ↪→ HomE[GQ](ρ, Ĥ1
E).

By Theorem 3.3.21, the space B(ρ)l.alg is non-zero, and thus HomE[GQ](ρ, Ĥ1
E,l.alg)

is non-zero. The theorem is thus seen to follow from [38, Thm. 7.4.2]. �

7.2. Applications to a conjecture of Kisin. In this subsection, we prove the
following theorem, which is a rephrasing of part 1 of Corollary 1.2.2.

7.2.1. Theorem. Let ρ : GQ → GL2(E) be a pro-modular lift of the absolutely
irreducible representation ρ : GQ → GL2(k), unramified outside of the finite set of
primes S ∪ {p}, and suppose that

(1) ρ |GQp
6∼ χ⊗

(
1 ∗
0 ε

)
;

(2) ρ |GQp
is trianguline.

Then ρ is a twist of the Galois representation attached to an overconvergent p-adic
cuspidal eigenform of finite slope.
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Proof. We begin by recalling some constructions from [38, §7.5]. For any tame
level Kp, the locally analytic Jacquet module JB

(
(Ĥ1(Kp)E)an

)
is an essentially

admissible locally analytic representation of T , corresponding to a rigid analytic
coherent sheaf E(Kp) on the space T̂ of locally analytic characters of T . Since JB

is a functor, the Hecke algebra T(Kp) acts on JB

(
(Ĥ1(Kp)E)an

)
, and so on E(Kp),

and generates a coherent sheaf of endomorphisms of E(Kp), which we denote by
A(Kp). Suppose now that (in the notation of Subsection 5.2), the tame level Kp is
of the form KΣ0K

Σ
0 , where KΣ0 is a compact open subgroup of GΣ0 . We then write

E(KΣ0) := E(Kp) and A(KΣ0) := A(Kp). If KΣ0 is chosen to be allowable for ρ,
then Ĥ1(KΣ0)E,ρ is a direct summand of Ĥ1(KΣ0)E , and so JB

(
(Ĥ1(KΣ0)E,ρ)an

)
is a direct summand of JB

(
(Ĥ1(Kp)E)an

)
. We write E(KΣ0)ρ and A(KΣ0)ρ for the

associated direct summands of E(KΣ0) and A(KΣ0).
Let p ∈ Spec Tρ,Σ denote the kernel of the map Tρ,Σ → E corresponding to ρ.

Theorem 1.2.1 (1) shows that there is a non-zero G-equivariant map

B(ρ) → HomE[GQ](ρ, Ĥ1(KΣ0)E,ρ[p]),

for a sufficiently small choice of KΣ0 . Passing to locally analytic Jacquet modules
for B, we obtain a T -equivariant map

JB

(
B(ρ)an

)
→ HomE[GQ]

(
ρ, JB

(
(Ĥ1(KΣ0)E,ρ[p])an

))
.

Since ρ is trianguline, the locally analytic vectors in each topological Jordan–Hölder
factor of B(ρ) have a non-vanishing Jacquet module (see [38, §§5.2 and 6]), and so
(by left-exactness of the functor JB

(
(–)an

)
) this map is again non-zero. Thus we

conclude that

JB

(
(Ĥ1(KΣ0)E,ρ)an

)
[p] = JB

(
(Ĥ1(KΣ0)E,ρ[p])an

)
6= 0,

and hence that the system of Hecke eigenvalues attached to ρ appears in the space
SpecA(Kp)ρ. It then follows from [38, Thm. 7.5.8] that ρ is a twist of the Galois
representation attached to a finite slope overconvergent p-adic cuspidal eigenform.

We note that the proof of [38, Thm. 7.5.8] is only sketched, and so the above
argument may rightly be regarded as incomplete. However, we can avoid the appeal
to [38, Thm. 7.5.8] as follows: As is explained in the beginning of the proof of [38,
Thm. 7.5.8], to conclude that every point of SpecA(KΣ0)ρ (and so in particular, the
Galois representation ρ) arises as the twist of a point corresponding to a finite slope
overconvergent p-adic cuspidal eigenform, it suffices to show that SpecA(KΣ0)ρ is
equidimensional of dimension two. For this, it suffices in turn to show that the
support of E(KΣ0)ρ is equidimensional of dimension two, and that E(KΣ0)ρ has no
embedded primes as a module over its support, i.e. that the support of every non-
zero section of E(KΣ0)ρ has dimension two. Since E(KΣ0)ρ is the coherent sheaf on
T̂ associated to JB

(
(Ĥ1(KΣ0)E,ρ)an

)
, this follows from Corollary 5.3.19 and [35,

Prop. 4.2.36]. (In fact, as stated, this last result shows merely that the support of
E(KΣ0)ρ is of dimension two. But in fact the considerations in its proof suffice to
establish the stronger result that each non-zero element of E(KΣ0)ρ has support of
dimension two.) �

7.3. Promodularity. In this subsection we present the:
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Proof of Theorem 1.2.3. As we noted prior to stating this theorem, its proof is a
synthesis of results and methods due to Böckle, Diamond–Flach–Guo, and Khare–
Wintenberger and Kisin. (In particular, the p-adic Langlands correspondence plays
no role in its proof!)

As in the statement of the theorem, let V be a continuous odd irreducible rep-
resentation of GQ over E, whose reduction V satisfies the given conditions 1 and 2.
Serre’s conjecture (proved by Khare–Wintenberger and Kisin [53, 54, 55, 60]) im-
plies that V is modular, and thus we may apply the results (and more generally
the methods) of Böckle [4] to study the deformation space of V , parametrizing
deformations of V unramified outside Σ.

In the case when V |GQp
is absolutely reducible, Theorem 1.2.3 follows from [4,

Cor. 3.8]. (Note that our condition 2 ensures that the condition “µ` 6= χ`” of that
result is satisfied.) Thus we may assume that V |GQp

is absolutely irreducible.
If V |GQp

is furthermore finite flat (up to a twist), then Theorem 1.2.3 again
follows from [4, Cor. 3.8]. In this (the finite flat) case, the proof of [4, Cor. 3.8]
depends on two ingredients: the main theorem of Wiles [86] and Taylor–Wiles [83],
as strengthened by Diamond [30], which identifies the universal deformation ring of
V parametrizing deformations that are finite flat locally at p with an appropriate
(weight two) Hecke algebra, and the result of Ramakrishna [70] showing that the
universal deformation ring of V |GQp

parametrizing finite flat deformations of fixed
determinant is formally smooth of relative dimension one over O.

Both of these ingredients have since been extended to the case of an arbitrary V
for which V |GQp

is absolutely irreducible, by Diamond, Flach, and Guo [31]. More
precisely, twisting V if necessary, we may assume that V is in the image of the
Fontaine–Laffaille functor [45], i.e. arises from a two-dimensional Fontaine–Laffaille
module with coefficients in k, having filtration indices 0 and k − 1, with 2 ≤ k ≤
p. In [31] it is proved that the universal deformation ring of V , parametrizing
deformations over objects A of Art(O) that locally at p arise from a rank two
Fontaine–Laffaille module with coefficients in A having filtration indices 0 and k−
1, may be identified with an appropriate (weight k − 1) Hecke algebra (see [31,
Thm. 3.6] and its proof; note that although this result includes the hypothesis k < p,
the proof is in fact valid in the case k = p also). Furthermore, the corresponding
universal deformation ring of V |GQp

is shown to be formally smooth of relative
dimension one over O [31, Cor. 2.3]. With these two ingredients at hand, the
argument proving [4, Cor. 3.8] in the finite flat case extends to handle the case
of arbitrary V for which V |GQp

is absolutely irreducible, which in turn suffices to
prove Theorem 1.2.3 for such V . �

7.4. Locally algebraic vectors. In this subsection we present the:

Completion of the proof of Theorem 3.3.22. Colmez has proved the theorem in
the case when VE is crystabelline or the twist of a semi-stable representation [25,
Thm. VI.6.50]. Thus we assume that VE is potentially crystalline but not crysta-
belline. Let Dpcrys(VE) denote the potentially crystalline Dieudonné module of VE ,
and let a > b denote the Hodge–Tate weights of VE .

Colmez has shown [25, Thm. VI.6.42] that B(VE)l.alg depends only onDpcrys(VE)
as a (ϕ,N,GQp)-module, together with the pair of weights a, b (i.e. it is independent
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of the Hodge filtration on DdR(VE)). Equivalently, it depends only on the Weil–
Deligne representation WD(VE) attached to the (ϕ,N,GQp)-module Dpcrys(VE),
together with the pair of weights a and b. Equivalently again, it depends only on
the admissible smooth GL2(Qp)-representation πp(VE) attached to WD(VE) via the
classical local Langlands correspondence, together with the pair of weight a and b.
Thus in order to prove the theorem, it suffices to construct a single two-dimensional
continuous representation V ′E of GQp

over E, with Hodge–Tate weight a and b, such
that πp(V ′E) = πp(VE), and such that

B(V ′E)l.alg
∼−→ Syma−b−1E2 ⊗E detb ⊗E πp(VE).

Indeed, it suffices to do this after making an extension of scalars from E to some
finite extension E′, since the formation of locally algebraic vectors is compatible
with the extension of scalars. We may also replace VE by an unramified twist, since
the formation of locally algebraic vectors is compatible with such twisting.

We now set about constructing such a V ′E . Note that our assumption that VE

is potentially crystalline, but not crystabelline, implies (indeed, is equivalent to
requiring) that πp(VE) be cuspidal. Let σ be the minimal type of πp(VE) [49],
and let σ0 be a GL2(Zp)-invariant OE-lattice in σ. Write τ0 := Syma−b−1O2

E ⊗OE

detb⊗σ0 (thought of as a GL2(Zp)-representation) and τ := E ⊗OE
τ0, and let W

be a Jordan–Hölder constituent of the reduction τ0/$τ0.
Choose a modular ρ such that ρ|GQp

is irreducible and such that W ∈ W (ρ),
i.e. W is a Serre weight of ρ. (It is easy to find such a ρ, e.g. as the reduc-
tion of the induction of a Grössen-character of the appropriate weight, for some
quadratic imaginary extension of Q in which p is inert.) Let Σ be the set of
primes at which ρ is ramified, together with p, and let K(Σ0) be an allowable
level for ρ, chosen so that GL2(Zp)K(Σ0)KΣ

0 is neat. We use the notation of Sec-
tion 5; thus we let m denote the maximal ideal in T(KΣ0) corresponding to ρ.
Since W is a Serre weight of ρ, the weight part of Serre’s conjecture shows that
there is a GL2(Zp)-equivariant embedding W ↪→ H1(KΣ0)k,ρ,Σ[m]. It then fol-
lows from Proposition 5.3.15 that we may lift this to a GL2(Zp)-equivariant map
τ0 → Ĥ1(KΣ0)OE ,ρ,Σ, which in turn gives rise to a GL2(Zp)-equivariant map
τ → Ĥ1(KΣ0)E,ρ,Σ, which is necessarily an embedding, since τ is irreducible
as a GL2(Zp)-representation over E. The space HomE[GL2(Zp)](τ, Ĥ1(KΣ0)E,ρ,Σ)
is finite-dimensional over E, and is a T(KΣ0)ρ-module, and hence we may find
p ∈ Spec T(KΣ0)ρ[1/p] such that HomE[GL2(Zp)](τ, Ĥ1(KΣ0)E,ρ,Σ)[p] is non-zero,
or, in other words, such that there is an embedding

(7.4.1) τ ↪→ Ĥ1(KΣ0)E,ρ,Σ[p].

Since Ĥ1(KΣ0)E,ρ,Σ[p] contains non-zero locally Syma−b−1E2 ⊗E detb-algebraic
vectors (e.g. those in the image of the embedding (7.4.1)), we see that p is a classical
point of Spec T(KΣ0), corresponding (up to a cyclotomic twist) to a classical Hecke
eigenform defined over E′ := κ(p), a finite extension of E. The local factor at p
of the corresponding automorphic representation π then has σ as a type, and so
must coincide with E′ ⊗E πp(VE), up to an unramified twist. To ease notation,
we replace E with E′ and VE with an appropriate unramified twist (which, as was
noted above, we may do without changing the problem), and thus assume that
κ(p) = E and that the local factor at p is equal to πp(VE).
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If we let N denote the conductor of π, and let

Kp
1 (N) := {

(
a b
c d

)
∈

∏
` 6=p

GL2(Z`) | c ≡ 0 mod N, d ≡ 1 mod N},

then it follows from [38, Thm. 7.4.2] that there is a GQ × GL2(Qp)-equivariant
isomorphism

Ĥ1
(
Kp

1 (N)
)
E,ρ,Σ

[p]l.alg
∼−→ ρ(p)⊗E Syma−b−1E2 ⊗E detb ⊗E πp(VE).

On the other hand, Theorem 1.2.1 shows that there is a GQ×GL2(Qp)-equivariant
isomorphism

ρ(p)⊗E B
(
ρ(p)|GQp

) ∼−→ Ĥ1
(
Kp

1 (N)
)
E,ρ,Σ

[p].

Hence

ρ(p)⊗E B
(
ρ(p)|GQp

)
l.alg

∼−→ Ĥ1
(
Kp

1 (N)
)
E,ρ,Σ

[p]l.alg
∼−→ ρ(p)⊗E Syma−b−1E2 ⊗E detb ⊗E πp(VE).

As remarked above, this serves to complete the proof of the theorem. �

7.4.2. Remark. We don’t need the full strength of Theorem 1.2.1 in order to prove
the preceding result. Indeed, it suffices to have a GQ ×GL2(Qp)-equivariant map

ρ(p)⊗E B
(
ρ(p)|GQp

)
→ Ĥ1

(
Kp

1 (N)
)
E,ρ,Σ

[p]

(which will then necessarily be an embedding, by Proposition 3.3.24), the existence
of which is guaranteed by Remark 6.4.3. Such an embedding induces a correspond-
ing embedding

ρ(p)⊗E B
(
ρ(p)|GQp

)
l.alg

↪→ Ĥ1
(
Kp

1 (N)
)
E,ρ,Σ

[p]l.alg
∼−→ ρ(p)⊗E Syma−b−1E2 ⊗E detb ⊗E πp(VE).

Since the target of this embedding is irreducible, and the source is non-zero [25,
Thm. VI.6.18], it is then necessarily an isomorphism.

Appendix A. Banach modules

Let A be a complete Noetherian local ring with maximal ideal m, and let p ∈
SpecA be a prime ideal of A. We will define the notion of a Banach module over Ap,
after first making some preliminary definitions.

A.1. Definition. If V is an Ap-module, then we say that two A-submodulesW1 and
W2 of V are commensurable if there exists a ∈ A\p such that aW1 ⊂W2 ⊂ a−1W1.

One immediately checks that commensurability is an equivalence relation on the
set of A-submodules of any given Ap-module.

A.2. Definition. If V is an Ap-module, we say that an A-submodule W of V is an
A-lattice in V if W generates V as an Ap-module, or, equivalently, if the natural
map Ap ⊗A W → V is an isomorphism.

A.3. Definition. A Banach module over Ap consists of an Ap-module V , together
with the choice of a non-empty commensurability class of m-adically complete and
separated A-lattices in V . (Note that we are not suggesting that any lattice com-
mensurable to a given m-adically complete and separated A-lattice in V is itself
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necessarily complete and separated. Rather, we are considering commensurability
as a relation on the set of complete and separated A-lattices in V .)

If V is a Banach module over Ap, and if W is a member of the chosen commen-
surability class of m-adically complete and separated A-lattices in V , then we will
sometimes refer to W as a choice of unit ball in V .

A.4. Remark. If A = O and p is the zero ideal, so that Ap = E, then the notion
of Banach module over E reduces to the standard notion of a Banach space over E.
(Here, and throughout the paper, by a Banach space over E we mean a complete
topological vector space whose topology can be defined by a norm; we do not regard
a Banach space as having a fixed choice of norm defining its topology, and thus its
unit ball is well-defined only up to commensurability.)

Appendix B. Orthonormalizable and pro-free modules

Let A be a complete Noetherian local ring.

B.1. Definition. We say that an A-module V is orthonormalizable if V is m-
adically complete and separated, and if the quotient V/miV is free over A/mi, for
each i ≥ 0.

We begin by showing that an A-module V is orthonormalizable if and only if
its isomorphic to the m-adic completion of a free A-module, or equivalently, if and
only if its admits an orthonormal basis in a sense analogous to that used in the
theory of p-adic Banach spaces.

B.2. Lemma. Let V be an orthonormalizable A-module, let {ei}i∈I be a basis of
V/mV, and let {ei}i∈I denote some choice of lifts of these basis elements to elements
of V . If F denotes the A-submodule of V generated by {ei}i∈I , then:

(1) F is freely generated by {ei}i∈I , i.e. F is a free A-module with {ei}i∈I as
a basis;

(2) For each r ≥ 0, the natural map

(B.3) F/mrF → V/mrV

is an isomorphism. In particular, if F̂ denotes the m-adic completion of F ,
then the natural map F̂ → V is an isomorphism.

Proof. Evidently, V = F + mV. Iterating this, we find that V = F + mrV for any
r ≥ 0. Thus the map (B.3) is surjective. This proves a part of 2.

Now consider the map ı : AI → V defined by ıI
(
(ai)

)
=

∑
i∈I aiei. We intend

to show that ı is an embedding. If r > 0, then reducing ı mod mr yields a map
ır : (A/mr)I → V/mrV between free A/mr-modules, which when reduced mod m
becomes an embedding. One easily concludes that ır is itself an embedding. Since
r > 0 was arbitrary, we find that ı is an embedding, and thus that the image F of
ı is free. This proves 1.

Finally, we note that the preceding argument shows that the map F/mrF →
V/mrV is injective for any r > 0. This completes the proof of 2. �

B.4. Definition. In the context of Lemma B.2, we refer to {ei}i∈I as an orthonor-
mal basis for the orthonormalizable A-module V . (The terminology is motivated
by the obvious analogy with the usual notion of an orthonormal basis of a p-adic
Banach space.)



100 MATTHEW EMERTON

B.5. Remark. If F is the free A-module generated by a basis {ei}i∈I , then the
m-adic completion F̂ of F admits the following concrete description:

F̂ ∼= {(ai)i∈I ∈ AI | ai → 0 m-adically },

where we write ai → 0 m-adically to denote that for any r ≥ 0, there exists a finite
subset J ⊂ I such ai ∈ mr if i ∈ I \ J. Consequently, if {ei}i∈I is an orthonormal
basis for an orthonormalizable A-module V , then V admits the same concrete
description.

The following lemmas establish some elementary facts regarding orthonormaliz-
able modules.

B.6. Lemma. Let V be an orthonormalizable A-module.

(1) V is flat.
(2) If M is a finitely generated A-module, then M⊗AV is m-adically complete.
(3) If M and N are A-modules, with M being finitely generated, then the nat-

ural map

HomA(M,N)⊗A V → HomA(M,N ⊗A V )

is an isomorphism.
(4) If B is a finite local A-algebra, than B ⊗A V is an orthonormalizable B-

module.

Proof. Fix an orthonormal basis {ei} for V , and if M is any finitely generated
A-module, define

F (M) := {(mi)i∈I ∈M I |mi → 0 m-adically }.

The formation of F (M) is functorial on the category of finitely generated A-
modules, and it follows from the Artin–Rees lemma that it is an exact functor.
Since F (A) ∼−→ V (see Remark B.5), we conclude that F (M) ∼−→ M ⊗A V for
any finitely generated A-module M . (Apply each of the right exact functors F and
– ⊗A V to a presentation As → Ar → M → 0 for M .) Thus – ⊗A V is exact
on the category of finitely generated A-modules, and hence on the category of all
A-modules. (Since tensor products commute with inductive limits, any A-module
is the inductive limit of finitely generated A-submodules, and the formation of in-
ductive limits is exact.) Claim 1 follows. Obviously F (M) is m-adically complete,
and so 2 also follows.

We turn to proving 3, and so fix A-modules M and N , with M finitely generated.
If we note that the functors HomA(M, –) and – ⊗A V are compatible with the
formation of inductive limits (the former since M is finitely generated over A,
and the latter as a general property of tensor products), we see (writing N as an
inductive limit of finitely generated A-modules) that we may in addition assume
that N is finitely generated over A. Since HomA(M,N) ⊗A V and N ⊗A V are
both m-adically complete, by 2, we see that the natural map HomA(M,N)⊗A V →
HomA(M,N ⊗A V ) may be computed as the projective limit over r of the maps(

HomA(M,N)/mr HomA(M,N)
)
⊗A/mr (V/mrV )

→ HomA

(
M/mrM, (N/mrN)⊗A/mr (V/mrV )

)
.
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We may factor each of these maps in the form(
HomA(M,N)/mr HomA(M,N)

)
⊗A/mr (V/mrV )

→ HomA(M/mrM,N/mrN)⊗A/mr (V/mrV )

→ HomA

(
M/mrM, (N/mrN)⊗A/mr (V/mrV )

)
.

The second map in this factorization is evidently an isomorphism, since V/mrV is
free over A/mr for each r > 0, and the first of these maps yields an isomorphism
after passing to the projective limit over r, since by the Artin–Rees lemma, the
map of projective systems

{HomA(M,N)/mr HomA(M,N)}r → {HomA(M/mrM,N/mrN)}r

is an equivalence, in the sense that in both its kernel and cokernel, the composition
of sufficiently many consecutive transition maps vanishes. This proves 3.

To prove 4, we note that, if n denotes the maximal ideal of B, then the m-adic
and n-adic topologies on B coincide. Thus to show that B ⊗A V is orthonormal, it
suffices to show that (B⊗AV )/mr(B⊗AV ) is free over B/mrB for each r > 0. This
follows from the isomorphism (B⊗AV )/mr(B⊗AV ) ∼−→ (B/mrB)⊗A/mr (V/mrV ),
and the fact that V/mrV is free over A/mr by assumption. �

B.7. Lemma. Let U and V be orthonormalizable A-modules. If M is any finitely
generated A-module, then the natural map

M ⊗A HomA(U, V ) → HomA(U,M ⊗A V )

is an isomorphism.

Proof. Choose an orthonormal basis of U , and let F ⊂ U be the free A-submodule
spanned by this orthonormal basis, so that U is the m-adic completion of F . Since
V and M ⊗A V are m-adically complete (the latter by part 2 of Lemma B.6),
there are isomorphisms HomA(U, V ) ∼−→ HomA(F, V ) and HomA(U,M ⊗A V ) ∼−→
HomA(F,M ⊗A V ). Thus it suffices to prove that

M ⊗A HomA(F, V ) → HomA(F,M ⊗A V )

is an isomorphism.
Applying the exact functor HomA(F, –) to the tensor product with V over A of

a presentation As → Ar →M → 0 of M yields an exact sequence

As ⊗A HomA(F, V ) → Ar ⊗A HomA(F, V ) → HomA(F,M ⊗A V ) → 0.

On the other hand, tensoring this presentation of M with HomA(F, V ) over A yields
an exact sequence

As ⊗A HomA(F, V ) → Ar ⊗A HomA(F, V ) →M ⊗A HomA(F, V ) → 0.

Comparing the two exact sequences yields the desired isomorphism. �

B.8. Lemma. If A is flat over O, and if V is a non-zero orthonormalizable A-
module, then A = (E ⊗O A)

⋂
EndA(V ), where the intersection takes place in

EndE⊗OA(E ⊗O V ).

Proof. Choose an orthonormal basis for V , and let F be the free A-submodule F of
V spanned by this orthonormal basis, so that V is the m-adic completion of F . If
a/$i ∈ (E ⊗O A)

⋂
EndA(V ), with a ∈ A and i ≥ 0, then aF ⊂ F

⋂
$iV = $iF ,
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and hence (since F is non-zero and free over A) we see that in fact a/$i ∈ A. The
lemma follows. �

The next lemma establishes a certain faithfulness result for completed tensor
products with orthonormalizable modules.

B.9. Lemma. Let M be an A-module which is $-adically separated, and with the
property that any element of M/$M is annihilated by some power of m. If the
$-adically completed tensor product M⊗̂AV vanishes for some orthonormalizable
A-module V , then either V = 0 or M = 0.

Proof. We will suppose M⊗̂AV = 0 and that V 6= 0, and deduce that M = 0. Since
M is $-adically separated, by assumption, it suffices to show that M/$M = 0. If
we consider the composite

(M⊗̂AV )/$(M⊗̂AV ) → (M ⊗A V )/$(M ⊗A V ) ∼−→ (M/$M)⊗A V,

the first arrow being the natural surjection, we deduce that (M/$M) ⊗A V = 0.
Also by assumption M/$M

∼−→ lim
−→

i

(M/$M)[mi], and so (since tensor product

commute with inductive limits) we have an isomorphism

0 = (M/$M)⊗A V
∼−→ lim

−→
i

(M/$M)[mi]⊗A V.

Since V is A-flat, by Lemma B.6, the transition maps in the indicated inductive
system are injective, and so we conclude that (M/$M)[mi] ⊗A V = 0, for each
i ≥ 0. There is an evident isomorphism

(M/$M)[mi]⊗A V
∼−→ (M/$M)[mi]⊗A/mi (V/miV ),

and thus (M/$M)[mi] ⊗A/mi (V/miV ) = 0, for each i ≥ 0. Since V is a non-zero
orthonormalizable A-module, its quotient V/miV is a non-zero free A/mi-module.
We conclude that (M/$M)[mi] = 0 for each i ≥ 0, and passing to the inductive
limit over i, that M/$M = 0, as required. �

Finally, we give a “dual” description of orthonormalizable A-modules.

B.10. Definition. We say that a profinite A-module M is pro-free if it is topologi-
cally isomorphic to a direct product of copies of A, each factor being equipped with
its m-adic topology.

B.11. Proposition. (1) If V is an orthonormalizable A-module, then

HomA(V,A)/mi HomA(V,A) ∼−→ HomA/mi(V/miV,A/mi),

for each i > 0.
(2) If for any orthonormalizable A-module V we equip HomA(V,A) with the

topology of point-wise convergence, with respect to the m-adic topology on
A, then the functor V 7→ HomA(V,A) induces an equivalence of categories
between the category of orthonormalizable A-modules and the category of
pro-free profinite A-modules.

Proof. Part 1 follows from Lemma B.7, applied with M = A/mi and U = A.
Part 2 is easily verified by the reader. A quasi-inverse functor is provided by
M 7→ HomA−cont(M,A), where the target is the space of continuous A-linear maps
from M to A (where A is given its m-adic topology). �
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Appendix C. Coadmissible representations

Throughout this appendix we let Γ denote a topological group which contains
a profinite open subgroup whose pro-order if prime-to-p. The example we have in
mind is Γ = GΣ0 , where Σ0 is a finite set of primes distinct from p, and, as in the
body of the paper, we have written GΣ0 :=

∏
`∈Σ GL2(Q`). However, in view of

possible future applications, it seems sensible to write this appendix in the natural
level of generality with respect to which its results hold.

Our goal in this appendix is to introduce, for any object A of Comp(O), the
notion of a coadmissible smooth representation of Γ over A, and to describe some
simple results and constructions pertaining to such representations.

Coadmissible smooth representations are dual to admissible smooth representa-
tions, in an appropriate sense, and so, in order to define them, it is necessary to
first define a class of A-modules that are dual to finitely generated O-torsion free
A-modules.

C.1. Definition. We say that an A-module X is cofinitely generated if it satisfies
the following conditions:

(1) X is $-adically complete and separated.
(2) X is O-torsion free.
(3) The action map A ×X → X induced by the A-module structure on X is

continuous, when A is given its m-adic topology, and X is given its $-adic
topology.

(4) (X/$X)[m] is finite-dimensional over k.

C.2. Remark. (1) Condition 3 of Definition C.1 is equivalent to the require-
ment that for each i > 0, and each element x ∈ X/$iX, there is a j > 0
such that mj annihilates x.

(2) From the fact that A/mj has finite length, for any j > 0, one easily in-
fers that condition 4 of the Definition C.1 is equivalent to the apparently
stronger condition that for every i, j > 0, the O-module (X/$iX)[mj ] is of
finite length.

As already intimated, an important fact about cofinitely generated A-modules
is that they are dual (in an appropriate sense) to finitely generated O-torsion free
A-modules. In order to prove this, and to exploit it to prove further results about
cofinitely generated A-modules, we must recall some facts about duality for $-
adically complete and separated, O-torsion free modules.

If X is any O-torsion free, $-adically complete and separated O-module, then
its O-dual HomO(X,O) has a natural profinite topology, namely the topology of
pointwise convergence. If we write M := HomO(X,O), then we have the following
natural isomorphisms:

(C.3) M/$iM
∼−→ HomO(X/$iX,O/$iO),

for each i > 0. Each of the spaces M/$iM is again equipped with a natural
profinite topology of pointwise convergence, and there is a topological isomorphism

(C.4) M
∼−→ lim

←−
i

M/$iM.

The functor X 7→ HomO(X,O) induces an anti-equivalence of categories between
the category of O-torsion free, $-adically complete and separated O-modules and
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the category of O-torsion free, profinite linear-topological16 O-modules, with a
quasi-inverse functor given by M 7→ HomO−cont(M,O), where HomO−cont(M,O)
denotes the space of continuous O-linear maps from M to O. (This is proved in
the course of proving [77, Thm. 1.2].)

Suppose now that X satisfies conditions 1, 2, and 3 of Definition C.1. The A-
action on X induces a transposed A-action on M := HomO(X,O), making M a
profinite linear-topological A-module. The reader may easily verify that the functor
X 7→ HomO(X,O) induces an anti-equivalence of categories between the category
of A-modules satisfying conditions 1, 2, and 3 of Definition C.1 and the category
of O-torsion free profinite linear-topological A-modules; of course, a quasi-inverse
functor is again provided by M 7→ HomO−cont(X,O).

We now give the promised description of cofinitely generated A-modules in terms
of their duals.

C.5. Proposition. If X is an A-module satisfying conditions 1, 2, and 3 of Def-
inition C.1, then X is cofinitely generated over A if and only if HomO(X,O) is
finitely generated over A. Furthermore, the functor X 7→ HomO(X,O) induces
an anti-equivalence between the category of cofinitely generated A-modules, and the
category of O-torsion free finitely generated A-modules, with a quasi-inverse func-
tor being provided by M 7→ HomO−cont(M,O) (where M is equipped with its m-adic
topology).

Proof. Note that any profinite linear-topological A-module that is finitely generated
over A is necessarily equipped with its m-adic topology. Thus, in light of the above
discussion, it suffices to show that (X/$X)[m] is finite-dimensional over k if and
only if M := HomO(X,O) is finitely generated over A.

Since any profinite linear-topological A-module is necessarily m-adically com-
plete, we see that M is finitely generated over A if and only if M/mM is finite-
dimensional over k. The isomorphism (C.3) (in the case i = 1) induces an isomor-
phism between HomO

(
(X/$X)[m], k

)
and M/mM. Thus (X/$X)[m] is indeed

finite-dimensional over k if and only if M/mM is finite-dimensional over k. The
proposition follows. �

C.6. Definition. As usual, we say that a submodule Y of an O-torsion free O-
module X is saturated if the quotient X/Y is O-torsion free. If X is an O-module,
and Y is an O-submodule of X, then we let satX(Y ) denote the saturation of Y in
X, i.e. satX(Y ) := {x ∈ X |$ix ∈ Y for some i ≥ 0}.

We note the following simple lemma.

C.7. Lemma. If X is a $-adically complete and torsion free O-module, and if
Y is a saturated O-submodule of X, then the $-adic closure of Y in X is again
saturated.

Proof. Let Y denote the $-adic closure of Y in X, and suppose that $ix ∈ Y for
some x ∈ X. For any j ≥ i, there exists xj ∈ X such that $ix−$jxj ∈ Y. Since
Y is saturated in X, we infer that x − $j−ixj ∈ Y. Letting j → ∞, we find that
x ∈ Y , and thus Y is saturated in X, as claimed. �

The following results record some additional properties of cofinitely generated
A-modules, and of maps between them.

16I.e. having a neighbourhood basis of the origin consisting of open O-submodules.
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C.8. Proposition. If φ : Y → X is an A-linear map between cofinitely generated
A-modules, then both φ(Y ) and satX

(
φ(Y )

)
are cofinitely generated A-modules, as

are the kernel of φ and the quotient X/satX

(
φ(Y )

)
(which is the maximal O-torsion

free quotient of the cokernel of φ). Furthermore, the O-torsion submodule of the
cokernel of φ is of bounded exponent.

Proof. We begin by noting that morphisms in the category of A-modules satis-
fying conditions 1, 2, and 3 of Definition C.1 admit kernels, cokernels, images,
and coimages. If φ : Y → X is a morphism in this category, then the categor-
ical kernel of φ coincides with the usual module-theoretic kernel of φ, and the
categorical coimage of φ coincides with the usual module-theoretic image. The
categorical image of φ coincides with the $-adic closure of satX

(
φ(Y )

)
in X, and

the categorical cokernel of φ coincides with the quotient of X by the categorical
image of φ. Similarly, the category of O-torsion free, profinite linear-topological
A-modules admits kernels, cokernels, images, and coimages (as it must, in light of
the anti-equivalence described above), which may be described in the same manner,
namely: if φ : M → N is a morphism in this category, then its categorical kernel
coincides with its usual module-theoretic kernel, its categorical coimage coincides
with its usual module-theoretic image (equipped with the quotient topology), its
categorical image coincides with the closure in N of satN

(
φ(M)

)
, and its categorical

cokernel coincides with the quotient of N by its categorical image. Of course, the
anti-equivalence X 7→ HomO(X,O) interchanges categorical kernels and cokernels,
and categorical images and coimages.

Suppose now that φ : M → N is a morphism of finitely generated A-modules.
The Artin–Rees Lemma shows that satN

(
φ(M)

)
is closed in N , and so coincides

with the categorical image of φ. Furthermore, the quotient satN

(
φ(M)

)
/φ(M),

which is torsion as an O-module, is finitely generated over A, and so of finite
exponent. Thus $isatN

(
φ(M)

)
⊂ φ(M) ⊂ satN

(
φ(M)

)
for some i ≥ 0. Both

satN

(
φ(M)

)
and φ(M) (which is the categorical coimage of φ) are finitely generated

over A, being submodules of N . The kernel of φ is also finitely generated over A,
being a submodule of M , as is the quotient N/satN

(
φ(M)

)
(which is equal to the

categorical cokernel of φ).
Applying the anti-equivalence of categories of Proposition C.5, we find that if

φ : Y → X is an A-linear morphism of cofinitely generated A-modules, then the
categorical coimage of φ, the categorical image of φ, the categorical kernel of φ, and
the categorical cokernel of φ are all cofinitely generated over A; that is, φ(Y ), the
$-adic closure in X of satX

(
φ(Y )

)
, the kernel of φ, and the quotient of X by the

$-adic closure in X of satX

(
φ(Y )

)
are all cofinitely generated over A. Furthermore,

if we write Z to denote the $-adic closure in X of satX

(
φ(Y )

)
, then we find that

$iZ ⊂ φ(Y ) ⊂ Z for some i ≥ 0. This shows that in fact Z ⊂ satX

(
φ(Y )

)
, and

thus that Z = satX

(
φ(Y )

)
, i.e. that satX

(
φ(Y )

)
is already $-adically closed in X,

and is cofinitely generated over A. Furthermore, we see that satX

(
φ(Y )

)
/φ(Y ) is

of bounded exponent. This proves the proposition. �

C.9. Proposition. If X is a cofinitely generated A-module, and if Y is an A-
submodule of X, then the following are equivalent:

(1) Y is a cofinitely generated A-module.
(2) Y is $-adically closed in X, and the O-torsion submodule of the quotient

X/Y is of bounded exponent.
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(3) Y is $-adically closed in X, and the $-adic topology on X induces the
$-adic topology on Y .

Proof. The reader may easily check that if X is any O-torsion free O-module,
and if Y is a submodule of X, then the $-adic topology on X induces the $-adic
topology on Y if and only if the torsion submodule of X/Y is of bounded exponent.
Indeed, the following conditions are equivalent (for some i ≥ 0): $i+1X

⋂
Y ⊂ $Y ;

$i+jX
⋂
Y ⊂ $jY for all j > 0; any O-torsion element of X/Y is annihilated

by $i. In particular, we conclude that conditions 2 and 3 of the proposition are
equivalent.

Suppose now that condition 1 holds. Applying Proposition C.8 to the inclusion
Y ⊂ X, we find that X/Y has bounded exponent. The observation of the preceding
paragraph shows that the $-adic topology on X induces the $-adic topology on Y .
Since Y is $-adically complete (being cofinitely generated over A), we see that Y
is $-adically closed in X. Thus condition 2 (and so also condition 3) holds.

Suppose conversely that conditions 2 and 3 hold. Since satX(Y )/Y is equal to
the O-torsion submodule of X/Y, we see that

(C.10) $isatX(Y ) ⊂ Y ⊂ satX(Y )

for some i ≥ 0. From this we conclude that satX(Y ) is also $-adically closed
in X, and of course, since satX(Y ) is saturated in X, by construction, the $-
adic topology on X induces the $-adic topology on satX(Y ). Thus satX(Y )
satisfies conditions 1, 2, and 3 of Definition C.1. Furthermore, the natural map(
satX(Y )

)
/$

(
satX(Y )

)
[m] ↪→ (X/$X)[m] is injective, and thus the source of this

map is finite-dimensional over k, since the target is so. This shows that satX(Y ) is
cofinitely generated over A.

Now condition 3 shows that Y is $-adically complete, and thus Y also satisfies
conditions 1, 2, and 3 of Definition C.1. From (C.10), we obtain an embedding

HomO(Y,O) ↪→ HomO($isatX(Y ),O) ∼−→ HomO(satX(Y ),O).

Since satX(Y ) is cofinitely generated over A, Proposition C.5 shows that the target
of this embedding is finitely generated over A, and thus so is the source. Another
application of the same proposition then shows that Y is cofinitely generated over A,
i.e. that condition 1 holds. �

C.11. Proposition. If M is a finitely generated A-module and X is a cofinitely
generated A-module, then HomA(M,X) is a cofinitely generated A-module. Fur-
thermore, there is a natural isomorphism(
M ⊗A HomO(X,O)

)
/
(
M ⊗A HomO(X,O)

)
[$∞] ∼−→ HomO

(
HomA(M,X),O

)
.

Proof. The fact that HomA(M,X) is cofinitely generated over A can be verified
directly from the definition. Indeed, the fact that HomA(M,X) is $-adically com-
plete and separated and O-torsion free follows directly from the corresponding
properties of X. The continuity condition on the A-action is also easily verified.
Finally, there is a natural embedding(

HomA(M,X)/$HomA(M,X)
)
[m] ↪→ Homk(M/mM, (X/$X)[m]).

Since M is finitely generated over A, the quotient M/mM is finite-dimensional over
k, while (X/$X)[m] is finite-dimensional over k by assumption. The target of this
embedding is thus finite-dimensional over k, and hence so is the source.
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We now give another proof of the cofinite generation of HomA(M,X), which also
establishes the claimed description of HomO

(
HomA(M,X),O

)
. To this end, choose

a finite presentation As → Ar →M → 0 of M . Applying the functor HomA(–, X),
we obtain an exact sequence

0 → HomA(M,X) → Xr → Xs.

It now follows from Proposition C.8 that HomA(M,X) is cofinitely generated, since
it is the kernel of an A-linear map between cofinitely generated A-modules. On the
other hand, tensoring this presentation of M with HomO(X,O) over A yields an
exact sequence

HomO(X,O)s → HomO(X,O)r →M ⊗A HomO(X,O) → 0,

and the same proposition (or, more precisely, its proof), shows that there is an
isomorphism between HomO

(
HomA(M,X),O

)
and the quotient of HomO(X,O)r

by the saturation of the image of HomO(X,O)s, or, more canoncically, that the
natural map

M ⊗A HomO(X,O) → HomO
(
HomA(M,X),O

)
induces an isomorphism(
M ⊗A HomO(X,O)

)
/
(
M ⊗A HomO(X,O)

)
[$∞] ∼−→ HomO

(
HomA(M,X),O

)
,

as claimed. �

C.12. Lemma. If A→ B is a finite morphism between objects of Comp(O), and if
X is a B-module, then X is cofinitely generated as a B-module if and only if X is
cofinitely generated as an A-module.

Proof. This is easily verified directly, and also follows from the fact that the B-
module HomO(X,O) is finitely generated over B if and only if its finitely generated
over A. �

C.13. Proposition. Let A→ B be a finite morphism between objects of Comp(O),
and let X be a cofinitely generated A-module.

(1) HomA(B,X) is a cofinitely generated B-module.
(2) If X is faithful as an A-module, and if B is reduced, then HomA(B,X) is

faithful as a B-module.

Proof. Proposition C.11 shows that HomA(B,X) is cofinitely generated as an A-
module, and Lemma C.12 then shows that it is also cofinitely generated as a B-
module. This proves (1).

To prove (2), note that if M = HomO(X,O) and N = HomO
(
HomA(B,X),O

)
,

then by Proposition C.5, there is an isomorphism X
∼−→ HomO−cont(M,O) (resp.

HomA(B,X) ∼−→ HomO−cont(N,O)), and hence X (resp. HomA(B,X)) is faithful
as an A-module (resp. B-module) if and only if the same is true of M (resp. N).
Also, by Proposition C.11, there is an isomorphism

(B ⊗A M)/(B ⊗A M)[$∞] ∼−→ N.

Thus in order to establish (2), it suffices to show that if M is a faithful A-module,
then (B ⊗A M)/(B ⊗A M)[$∞] is a faithful B-module. Since B is reduced, it
suffices for this to show this quotient has non-zero localization at each minimal
prime of B. Since B is flat over O, the localization of B at each of its minimal
primes is torsion free as an O-module, and thus the localization of this quotient at
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such a prime coincides with the localization of B⊗AM itself at that prime. Since B
is finite over A, and since M is faithful as an A-module, this localization is indeed
non-zero, and (2) follows. �

Since A is a complete local ring, its localization A[1/p] is a Jacobson ring. A
point p ∈ SpecA[1/p] ⊂ SpecA is closed if and only if A/p is a finite O-algebra,
or equivalently, if and only if κ(p) (= A/p[1/p], the fraction field of A/p) is a finite
extension of E.

C.14. Lemma. Let X be a cofinitely generated A-module. If p ∈ SpecA[1/p] is a
closed point, then E⊗OX[p] and κ(p)⊗A HomO(X,O) are dual finite-dimensional
κ(p)-vector spaces.

Proof. There is a natural isomorphism X[p] ∼−→ HomA(A/p, X), and so Proposi-
tion C.13 (1) shows that X[p] is cofinitely generated over A/p. The equivalence
of categories of Proposition C.5 (applied with A replaced by A/p) implies that
X[p] ∼−→ HomO−cont(M,O) for some finite generated torsion free A/p-module M .
However, the ring A/p is finite over O, and hence M is in fact finitely generated
as an O-module. The same is thus true of HomO−cont(M,O), and hence of X[p].
This immediately implies that E ⊗O X[p] is finite-dimensional over E, and so also
over κ(p).

Proposition C.11 also provides an isomorphism

(A/p)⊗A HomO(X,O)/
(
(A/p)⊗A HomO(X,O)

)
[$∞] ∼−→ HomO(X[p],O),

and hence an isomorphism

κ(p)⊗A HomO(X,O) ∼−→ HomE(E ⊗O X[p], E).

Linear algebra provides a κ(p)-linear isomorphism

HomE(E ⊗O X[p], E) ∼−→ Homκ(p)

(
E ⊗O X[p], κ(p)

)
,

and so we see that E⊗OX[p] and κ(p)⊗A HomO(X,O) are dual κ(p)-vector spaces,
as claimed. �

We now prove some results regarding the completed tensor products of orthonor-
malizable and cofinitely generated A-modules.

C.15. Lemma. Let be f : Y → X be a A-linear map of cofinitely generated A-
modules, and let V be an orthonormalizable A-module.

(1) If f is an embedding, then the induced map

V ⊗̂AY → V ⊗̂AX

of $-adically completed tensor products is again an embedding.
(2) If f furthermore has saturated image, then the same is true of the induced

map
V ⊗̂AY → V ⊗̂AX.

Proof. Suppose given an embedding f : Y ↪→ X, with cokernel C. We then have a
short exact sequence

0 → Y → X → C → 0,
which upon tensoring by V over A yields a short exact sequence

(C.16) 0 → V ⊗A Y → V ⊗A X → V ⊗A C → 0,
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since since V is A-flat, by Lemma B.6. Proposition C.9 shows that O-torsion
submodule of C has bounded exponent, say $i for some i ≥ 0, and thus (again
using the fact that V is flat over A) the O-torsion submodule of V ⊗A C has the
same bounded exponent. Thus passing to $-adic completions in (C.16) preserves
exactness, i.e. we obtain a short exact sequence

(C.17) 0 → V ⊗̂AY → V ⊗̂AX → V ⊗̂AC → 0.

In particular, the second arrow is injective, and so part 1 is proved.
If C is O-flat (i.e. if we can take i = 0), then the preceding discussion shows

that the same is true of V ⊗A C, and hence of its $-adic completion V ⊗̂AC. A
consideration of (C.17) then shows that the second arrow is not only injective, but
has saturated image, proving 2. �

C.18. Lemma. Let be f : Y → X be a A-linear map of cofinitely generated A-
modules, and let V be a non-zero orthonormalizable A-module.

(1) If the induced map V ⊗̂AY → V ⊗̂AX of $-adically completed tensor prod-
ucts is an embedding (with saturated image), then f is an embedding (with
saturated image).

(2) If the induced map V ⊗̂AY → V ⊗̂AX of $-adically completed tensor prod-
ucts is an isomorphism, then f is an isomorphism.

Proof. Consider the short exact sequence

0 → K → Y → X → C → 0

(so K, resp. C, is the kernel, resp. cokernel, of f). Tensoring with the A-flat (by
Lemma B.6) module V , we obtain an exact sequence

(C.19) 0 → V ⊗A K → V ⊗A Y → V ⊗A X → V ⊗A C → 0.

NowK, Y, andX are O-torsion free, while Proposition C.9 shows that the O-torsion
submodule of C has bounded exponent, and hence the same is true of the O-torsion
submodule of V ⊗AC (since V is A-flat). Thus $-adically completing (C.19) yields
an exact sequence

(C.20) 0 → V ⊗̂AK → V ⊗̂AY → V ⊗̂AX → V ⊗̂AC → 0.

Proposition C.9 shows that K is cofinitely generated over A, and so in particular,
any element of K/$K is annihilated by some power of m. The same is true of the
elements of C/$C (since this is a quotient of X/$X, and X is cofinitely generated
over A). Consequently Lemma B.9 shows that V ⊗̂AK (resp. V ⊗̂AC) vanishes if
and only if K (resp. C) vanishes, and also that V ⊗̂AC is O-torsion free if and only
if C is. These facts, taken together with the exact sequence (C.20), serve to prove
the lemma. �

We now introduce the notion of cosupport for cofinitely generated A-modules.

C.21. Definition. If X is a cofinitely generated A-module, then we define the co-
support ofX (which is a subset of SpecA) to be the support of its dual HomO(X,O)
(which is a finitely generated A-module).

Thus if I denotes the annihilator ideal in A of X, so that I is simultaneously the
annihilator ideal in A of the finitely generated A-module HomO(X,O), then the
cosupport of X is equal to the closed subset SpecA/I of SpecA.
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C.22. Proposition. If X is a cofinitely generated A-module, then a closed point
p ∈ SpecA[1/p] is contained in the cosupport of X if and only if X[p] 6= 0, or
equivalently, if and only if E ⊗O X[p] 6= 0.

Proof. By definition, p lies in the cosupport of X if and only if p lies in the support
of HomO(X,O). Since this latter module is finitely generated over A, Nakayama’s
lemma shows that p lies in its support if and only if κ(p)⊗AHomO(X,O) is non-zero.
The proposition then follows from Lemma C.14. �

We now introduce the class of coadmissible smooth Γ-representations over A.

C.23. Definition. We say that a smooth Γ-representation on an O-torsion free A-
moduleX is coadmissible if for each open subgroupKΣ0 of Γ, the space of invariants
XKΣ0 is a cofinitely generated A-module.

C.24. Definition. If X is a smooth representation of Γ on an O-torsion free A-
module, then we write X̃ to denote the smooth contragredient to X, i.e.

X̃ := {φ ∈ Hom(X,O) |φ is fixed by some compact open subgroup of Γ}.
(Here Γ acts on HomO(X,O) via the contragredient action.)

C.25. Lemma. Let X be a smooth representation of Γ over A, that satisfies the
following conditions:

(1) X is O-torsion free.
(2) For each (or equivalently, for a cofinal collection of) open subgroups H of Γ,

the space of invariants XH is $-adically complete and separated.
(3) The action map A × X → X induced by the A-module structure on X is

continuous, when A is given its m-adic topology, and X is given its $-adic
topology.

Then the smooth Γ-representation X is coadmissible if and only if (X/$X)[m]
(which is a smooth representation of Γ over k) is admissible.

Proof. Let H be a open subgroup of Γ. Conditions 1, 2, and 3 of the lemma
imply that XH satisfies conditions 1, 2, and 3 of Definition C.1. Now choose H
to be a compact open subgroup of Γ, and so small that its pro-order is prime-to-p.
Reduction modulo m commutes with the formation of H-invariants, and thus we
see that XH satisfies condition 4 of Definition C.1 for every such H if and only if
(X/$X)[m] is admissible. �

C.26. Lemma. The functor X 7→ X̃ induces an anti-equivalence of categories be-
tween the category of coadmissible smooth representations of Γ on O-torsion free
A-modules, and the category of admissible smooth representations of Γ on O-torsion
free A-modules.

Proof. If X is a coadmissible smooth representation of Γ over A, and if H is a
compact open subgroup of Γ, chosen so that the pro-order of H is prime-to-p, then

X̃H := HomO(X,O)H ∼−→ HomO(XH ,O).

Thus Proposition C.5 shows that X̃H is finitely generated over A, and hence X̃ is
an admissible smooth representation of Γ over A. The claimed anti-equivalence of
categories is easily verified by the reader, taking into account the anti-equivalence
of categories of Proposition C.5. �
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C.27. Lemma. If X is a coadmissible smooth A[Γ]-module and Y is a coadmissible
A[Γ]-submodule of X, then satX(Y ) is again a coadmissible A[Γ]-module.

Proof. If H is any compact open subgroup of Γ, then satX(Y H) = satX(Y )H . The
present lemma is thus seen to follow from Proposition C.8. �

C.28. Definition. If X is a coadmissible smooth A[Γ]-module, we say that an
A[Γ]-submodule Y of X is closed if Y H is $-adically closed in XH for any compact
open subgroup (or equivalently, for a cofinal collection of compact open subgroups)
H of Γ. If Y is any A[Γ]-submodule of X, then we define the closure of Y to
be the intersection of all closed A[Γ]-submodules of X (in the preceding sense)
containing Y . (More concretely, the closure of Y is equal to the union, over all
compact open subgroups H of Γ, of the $-adic closure of Y H in XH .)

C.29. Remark. If X is a coadmissible smooth A[Γ]-module, then there is a nat-
ural isomorphism lim

−→
H

XH ∼−→ X, where H runs over all (or equivalently, a cofinal

collection of) compact open subgroups of Γ. Equipping each XH with its $-adic
topology, we may then endow X with the resulting O-linear inductive limit topol-
ogy.17 One may then prove that an O-submodule Y of X is then closed in X, with
respect to this topology, if and only if Y H is $-adically closed in XH for each H.
This gives some justification for the preceding definition.

C.30. Lemma. If X is a coadmissible smooth A[Γ]-module, and if Y is a saturated
A[Γ]-submodule of X, then the closure of Y in X is again saturated.

Proof. If we let Y denote the closure of Y in X, then it suffices to show that Y
H

is saturated in XH , for each compact open subgroup H of Γ. Since Y
H

coincides
with the $-adic closure of Y H in XH , and since the assumption that Y is saturated
in X implies that Y H is saturated in XH , this follows from Lemma C.7. �

C.31. Lemma. Let X be a coadmissible smooth A[Γ]-module. If Y is a saturated
A[Γ]-submodule Y of X, then Y is coadmissible if and only if Y is closed in X, in
the sense of Definition C.28.

Proof. This follows directly from Proposition C.9. �

C.32. Definition. A coadmissible smooth A[Γ]-module X is called cofinitely gen-
erated over A[Γ] if X̃ is finitely generated over A[Γ].

C.33. Proposition. A coadmissible smooth A[Γ]-module X is cofinitely generated
over A[Γ] if and only if (X/$X)[m] is finitely generated over k[Γ].

Proof. Recall that an admissible smooth representation W of Γ over k is finitely
generated if and only if it is of finite length. Since W is of finite length if and
only if the same is true of its smooth contragredient W̃ , we conclude that W
is finitely generated if and only if W̃ is. In particular, since (X/$X)[m] is the
smooth contragredient to X̃/mX̃, we see that (X/$X)[m] is finitely generated over
k[Γ] if and only if X̃/mX̃ is. The proposition thus follows from the fact that the
admissible smooth A[Γ]-representation X̃ is finitely generated over A[Γ] if and only
if X̃/mX̃ is finitely generated over k[Γ] [43]. �

17I.e. we take as a basis of neighbourhoods of the origin in X those O-submodules Y such that
Y H is $-adically open in XH for each H.
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C.34. Corollary. If X is a coadmissible smooth A[Γ]-module that is cofinitely gen-
erated over A[Γ], and if Y is a saturated coadmissible A[Γ]-submodule of X, then
Y is again cofinitely generated over A[Γ].

Proof. The assumption that Y is saturated in X implies that the natural map
Y/$Y → X/$X is injective. The corollary then follows from the preceding
proposition, and the fact that a subrepresentation of a finitely generated admis-
sible smooth Γ-representation over k is again finitely generated. (Indeed, as was
already noted in the proof of the preceding result, finitely generated admissible
smooth Γ-representations over k are necessarily of finite length.) �

C.35. Lemma. If X is a coadmissible smooth Γ-representation over A, and if p ∈
SpecA[1/p] is a closed point, then E⊗OX[p] is naturally isomorphic to the smooth
contragredient of the admissible smooth Γ-representation κ(p)⊗A X̃ over κ(p).

Proof. As already noted in the proof of Lemma C.26, if H is a compact open
subgroup of Γ of pro-order prime-to-p, then

X̃H := HomO(X,O)H ∼−→ HomO(XH ,O).

Lemma C.14 then yields the second of the pairs of isomorphisms(
κ(p)⊗A X̃

)H ∼−→ κ(p)⊗ X̃H ∼−→ Homκ(p)

(
E ⊗O XH [p], κ(p)

)
.

(The first follows from the fact that H has pro-order prime-to-p.) Letting H run
over a cofinal set of compact open subgroups of Γ, we find that κ(p)⊗A X̃ and E⊗O
X[p] are indeed mutually dual admissible smooth representations of Γ over κ(p). �

C.36. Proposition. If the ring A is reduced, and if X is a coadmissible smooth
Γ-representation over A which is cofinitely generated over A[Γ], then the following
are equivalent:

(1) X[p] 6= 0, or equivalently, E ⊗O X[p] 6= 0, for every closed point p ∈
SpecA[1/p].

(2) X[p] 6= 0, or equivalently, E ⊗O X[p] 6= 0, for a Zariski dense subset of
closed points p ∈ SpecA[1/p].

(3) X is a faithful A-module.

Proof. Clearly the annihilator of X in A coincides with the annihilator of X̃ in A,
and Lemma C.35 shows that E ⊗O X[p] 6= 0 if and only if κ(p)⊗A X̃ 6= 0, for any
closed point p ∈ SpecA[1/p]. Thus it suffices to verify that (1′) κ(p)⊗A X̃ 6= 0 for
every closed point p ∈ SpecA[1/p] if and only if (2′) κ(p) ⊗A X̃ 6= 0 for a Zariski
dense subset of closed points p ∈ SpecA[1/p] if and only if (3′) X̃ is faithful as an
A-module.

By assumption, X̃ is finitely generated over A[Γ], and thus is generated over
A[Γ] by X̃H , for some sufficiently small compact open subgroup H of G. Shrinking
H if necessary, we may assume that the pro-order of H is prime-to-p. Since X̃H

is finitely generated, the following are equivalent: (1′′) κ(p) ⊗A X̃H 6= 0 for every
closed point p ∈ SpecA[1/p]; (2′′) κ(p) ⊗A X̃H 6= 0 for a Zariski dense subset of
closed points p ∈ SpecA[1/p]; (3′′) X̃H is faithful as an A-module.

We now note that κ(p) ⊗A X̃ 6= 0 if and only if κ(p) ⊗A X̃H 6= 0. Indeed,
κ(p) ⊗A X̃ is generated over κ(p)[Γ] by κ(p) ⊗A X̃H , and so the only if direction
is clear. On the other hand, X̃H is a direct summand of X̃, since p doesn’t divide
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the pro-order of H, and thus κ(p) ⊗A X̃H is a direct summand of κ(p) ⊗A X̃.
This establishes the if direction. Consequently (1′) and (1′′) are equivalent, as are
(2′) and (2′′). Since X̃H generates X̃ over A[Γ], conditions (3′) and (3′′) are also
equivalent. This completes the proof of the proposition. �

C.37. Definition. Suppose that A is reduced. We say that a coadmissible smooth
A[Γ]-module X is cotorsion free if X̃ is torsion free as an A-module (i.e. if multi-
plication by any non-zero divisor of A induces an injection on X̃).

C.38. Proposition. If A is reduced, and if X is a coadmissible smooth A[Γ]-module,
then X contains a unique maximal cotorsion free coadmissible A[Γ]-submodule,
which is furthermore saturated in X.

Proof. Let X̃tor denote the maximal A-torsion submodule of X̃, and let X̃tf :=
X̃/X̃tor denote the maximal A-torsion free quotient of X̃. Clearly X̃tor is an A[Γ]-
submodule of X̃, and is saturated in X̃. Thus X̃tf is an A[Γ]-module, and is O-
torsion free. It is admissible, since X̃ is, and corresponds under the anti-equivalence
of Lemma C.26 to the sort-after submodule of X̃. �

C.39. Definition. If A is reduced, and if X is a coadmissible smooth A[Γ]-module,
then we let Xctf denote the maximal cotorsion free coadmissible A[Γ]-submodule
of X whose existence is guaranteed by the preceding proposition.

C.40. Proposition. If A is reduced, and if X is a cofinitely generated coadmissible
smooth Γ-representation over A, which is faithful as an A-module, then Xctf is also
faithful as an A-module.

Proof. Passing from X to X̃, it suffices to show that if X̃ is a finitely generated
smooth A[Γ]-module, which is faithful as an A-module, then X̃tf (the maximal
A-torsion free quotient of X̃) is again faithful as an A-module. If we choose a
compact open subgroup H of Γ such that X̃H generates X̃ over A[Γ], then we find
that X̃H must be a faithful A-module. Since X̃H is finitely generated over A, this
implies that (X̃H)tf is again a faithful A-module. The inclusion X̃H ⊂ X̃ induces
an embedding (X̃H)tf ↪→ X̃tf . Thus X̃tf contains a faithful A-submodule, and so is
itself faithful as an A-module. �

C.41. Proposition. If A is reduced, if X is a coadmissible cotorsion free smooth
A[Γ]-module, and if Y is a saturated coadmissible A[Γ]-submodule of X with the
property that Y [p] = X[p] (or equivalently, since Y is saturated in X, that E ⊗O
Y [p] = E ⊗O X[p]) for a Zariski dense set of closed points p ∈ SpecA[1/p], then
Y = X.

Proof. If H is a compact open subgroup of Γ whose pro-order is prime-to-p, then
Y H is a saturated cofinitely generated A-submodule of the cofinitely generated
A-module XH , and thus the induced map of finitely generated A-modules

(C.42) HomO(XH ,O) → HomO(Y H ,O)

is surjective. By assumption Y H [p] = XH [p] for a Zariski dense set of closed points
p ∈ SpecA[1/p], and so from Lemma C.14, we conclude that the induced surjection

κ(p)⊗A HomO(XH ,O) → κ(p)⊗A HomO(Y H ,O)
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is an isomorphism for a Zariski dense set of closed points p ∈ SpecA[1/p]. Thus the
kernel of the surjection (C.42) is torsion. The A-submoduleXH is a direct summand
of X, since the pro-order of H is prime-to-p, and consequently HomO(XH ,O)
is a direct summand of X̃. Thus HomO(XH ,O) is also torsion free as an A-
module, and hence so are all of its submodules. In particular, the kernel of (C.42)
is simultaneously torsion and torsion free as an A-module, and so must vanish.
Consequently, the surjection (C.42) is in fact an isomorphism, and thus Y H = XH .
Taking H to be arbitrarily small, we conclude that in fact Y = X, as claimed. �

C.43. Definition. If V is any A-module, and if X is a coadmissible smooth A[Γ]-
module, then we write

V
f
⊗AX := lim

−→
H

V ⊗̂AX
H ,

where H runs over the collection of open subgroups of Γ, and V ⊗̂AX
H denotes the

$-adic completion of the tensor product V ⊗A XH .

The formation of V
f
⊗AX is evidently functorial in both V and X, and the Γ-

action on X induces a corresponding Γ-action on V
f
⊗AX. In the remainder of this

appendix, we prove some simple lemmas involving this functor.

C.44. Lemma. If V is an orthonormalizable A-module, X is a coadmissible A[Γ]-

module, and H is an open subgroup of Γ, then the natural map V ⊗̂AX
H → V

f
⊗AX

is an embedding with saturated image.

Proof. Let H ′ ⊂ H be an inclusion of open subgroups. Since XH is evidently
saturated in X, it is saturated in XH′ , and hence, by part 2 of Lemma C.15, the
induced map V ⊗̂AX

H → V ⊗̂AX
H′ is injective, with saturated image. Passing to

the inductive limit over all H ′, the lemma follows. �

C.45. Lemma. If V is an orthonormalizable A-module and X is a coadmissible
representation of Γ over A, then there is a natural isomorphism

V/mV ⊗k (X/$X)[m] ∼−→
(
(V

f
⊗AX)/$(V

f
⊗AX)

)
[m].

Proof. Since V
f
⊗AX = lim

−→
H

V ⊗̂XH , where H runs over the open subgroups of Γ,

we see that

(V
f
⊗AX)/$(V

f
⊗AX) ∼−→ lim

−→
H

(V ⊗A XH)/$V ⊗A XH) ∼−→ V/$V ⊗A/$A X/$X

(the last isomorphism holding since tensor produces commute with inductive limits).
We now apply the functor (–)[m], which is isomorphic to the functor HomA/$A(k, –),
to the composite of these isomorphisms, to obtain the first in the sequence of
isomorphisms(

(V
f
⊗AX)/$(V

f
⊗AX)

)
[m] ∼−→ (V/$V ⊗A/$A X/$X)[m]
∼−→ V/$V ⊗A/$A (X/$X)[m] ∼−→ V/m⊗k (X/$X)[m];

the second isomorphism is given by part 3 of Lemma B.6, which applies, since
V/$V is orthonormalizable over A/$A, by part 4 of the same lemma, while the
third isomorphism is evident. The composite of this sequence of isomorphisms
yields the required isomorphism. �
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C.46. Lemma. If V is an orthonormalizable A-module, X is a coadmissible rep-
resentation of Γ over A, and W is an O-flat A-module, then an A-linear map

V
f
⊗AX → W is injective, with saturated image, if and only if the map V/mV ⊗k

(X/$X)[m] → (W/$W )[m] obtained by reducing it modulo $ and passing to m-
invariants (and then applying the isomorphism of Lemma C.45) is injective.

Proof. A map V
f
⊗AX → W is injective, with saturated image, if and only if the

induced map

(C.47) (V
f
⊗AX)/$(V

f
⊗AX) →W/$W

is injective. Now, as was noted in the proof of the preceding lemma, there is a
natural isomorphism

(V/$V )⊗A (X/$X) ∼−→ (V
f
⊗AX)/$(V

f
⊗AX).

Since each element of (X/$X) is annihilated by some power of m, the same is thus
true of each element of the source of this isomorphism, and thus also of each element
of its target. An easy argument then shows that (C.47) is injective if and only if
the induced map on m-torsion submodules is injective. This proves the lemma. �

C.48. Lemma. Let Y ↪→ X be an A-linear, Γ-equivariant embedding of coadmissible
A[Γ]-modules. If V is an orthonormalizable A-module, then the induced map

(C.49) V
f
⊗AY → V

f
⊗AX

is again an embedding.

Proof. Write Y ∼−→ lim
−→
H

Y H , X
∼−→ lim

−→
H

XH , where H runs over the open subgroups

of Γ. The map (C.49) is the inductive limit of the maps V ⊗̂AY → V ⊗̂AX, which
are injective, by Lemma C.15. Thus (C.49) is also injective, as claimed. �

C.50. Lemma. Let H be a compact open subgroup of Γ whose pro-order is prime-
to-p. If V is a $-adically complete A-module and if X is a coadmissible smooth

A[Γ]-module, then the induced map V ⊗̂XH → (V
f
⊗X)H is an isomorphism.

Proof. We may write X ∼−→ lim
−→
N

XN , where N runs over normal open subgroups of

H, and that V
f
⊗AX

∼−→ lim
−→
N

V ⊗̂AX
N . Passing to the H-invariants, we find that

(V
f
⊗AX)H ∼−→ lim

−→
N

(V ⊗̂AX
N )H ∼−→ lim

−→
N

V ⊗̂AX
H ∼−→ V ⊗̂AX

H ,

as required. �

C.51. Lemma. Let Y → X be an A-linear, Γ-equivariant map between coadmissible
smooth A[Γ]-modules, and let V be an orthonormalizable A-module. If the induced

map V
f
⊗AY → V

f
⊗AX is an isomorphism, then the same is true of the given map

Y → X.

Proof. Let H be a compact open subgroup of Γ whose pro-order is prime-to-p.
Lemma C.50 shows that the map V ⊗̂AY

H → V ⊗̂AX
H is an isomorphism. Part 2

of Lemma C.18 then shows that the map Y H → XH is an isomorphism. Passing
to the inductive limit over all H, we find that Y ∼−→ X, as claimed. �
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C.52. Lemma. Let V be an orthonormalizable A-module, let Y ↪→ X be an em-
bedding of coadmissible A[Γ]-modules, let W be an A-module, and suppose give an

A-linear map V
f
⊗AX →W. If the composite

V
f
⊗AY → V

f
⊗AX →W

has saturated image, then the embedding Y ↪→ X has saturated image.

Proof. It suffices to show that the induced embedding Y H ↪→ XH has a saturated
image, for each open subgroup H of Γ. Now Lemma C.44 shows that the natural

map V ⊗̂AY
H → V

f
⊗AY is an embedding, with a saturated image. Thus so is the

composite

V ⊗̂AY
H → V ⊗̂AX

H → V
f
⊗AX →W,

and hence so is the first of these maps. Part 1 of Lemma C.18 then implies that
the embedding Y H ↪→ XH has a saturated image, as required. �
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[1] Barthel L., Livné R., Irreducible modular representations of GL2 of a local field, Duke
Math. J. 75 (1994), 261–292.

[2] Berger L., Représentations modulaires de GL2(Qp) et représentations galoisiennes de dimen-
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phic forms, Shimura varieties and L-functions. Vol. I (Ann Arbor, MI, 1988) (L. Clozel and
J.S. Milne, eds.), Perspectives in math., vol. 10, Academic Press, 1990, 77–159.

[21] Coleman R.F., Edixhoven B., On the semi-simplicity of the Up-operator on modular forms,
Math. Ann. 310 (1998), 119–127.

[22] Colmez P., Une correspondance de Langlands p-adique pour les représentations semi-stables
de dimension 2, preprint (2004), available at
http://math.jussieu.fr/~colmez/publications.html

[23] Colmez P., Série principale unitaire pour GL2(Qp) et représentations triangulines de dimen-
sion 2, preprint (2005), available at http://math.jussieu.fr/~colmez/publications.html

[24] Colmez P., Représentations de GL2(Qp) et (ϕ,Γ)-modules (version provisoire et partielle),
preprint (2007), available at http://math.jussieu.fr/~colmez/publications.html

[25] Colmez P., Représentations de GL2(Qp) et (ϕ,Γ)-modules, Astérisque 330 (2010), 283–512.
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[27] Deligne P., Les constantes des équations fonctionelles des fonctions L, Modular functions of

one variable II, Springer Lecture Notes 349 (1973), 501–597.
[28] Deligne P., Letter to J.-P. Serre, dated May 28, 1974.
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