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Abstract. Let N be a positive integer, and f a normalized newform of weight two

on Γ0(N). Attached to f is an optimal quotient Af of the Jacobian J0(N). We
prove two theorems concerning such optimal quotients. (A) Let T denote the algebra

of endomorphisms of J0(N) generated by the Hecke operators, and let Ff denote

the ideal of fusion of f in T. If Âf denotes the dual abelian variety to Af , then

the canonical polarization of J0(N) induces a polarization θf : Âf → Af . We show
that there is an embedding ker(θf ) ⊂ J0(N)[Ff ] whose cokernel is supported at

maximal ideals m of T for which J0(N)[m] is not two-dimensional. (B) If N is prime,
let C denote the subgroup of J0(N) generated by the divisor 0 − ∞ on X0(N).
Mazur has shown that C is equal to the full torsion subgroup of J0(N)(Q), and that
specialization modulo N induces an isomorphism of C with the group of connected

components ΦJ0(N) of the characteristic N fibre of the Néron model of J0(N). We
prove that analogous results hold for every optimal quotient of prime conductor,
thereby generalizing results of Mestre and Oesterlé (who treated the case of strong
Weil curves) and confirming William Stein’s refined Eisenstein conjecture. The key
idea in the proof of these two theorems is encapsulated in corollary 2.5 below, which
allows us to apply multiplicity one results in a novel way to the study of optimal

quotients.

Let N be a positive integer, let S(N) denote the space of weight two cuspforms
on Γ0(N), and let T denote the Z-algebra of Hecke operators acting on S(N). If f is
a newform, let If denote the ideal in T that is the kernel of the map T → C induced
by the action of the Hecke operators on f . We let J0(N) denote the Jacobian of
the modular curve X0(N); then T acts on J0(N) by Picard functoriality, and we
write Af = J0(N)/If . We refer to Af as the optimal quotient of J0(N) attached to
f . The aim of this paper is to prove two results concerning such optimal quotients,
which we will describe in turn.

Our first result relates the kernel of the canonical polarization θf of Af to the
ideal of fusion Ff of f . Before stating the result, we recall the relevant notions.

We begin with the construction of the polarization θf . If A is an abelian variety,
let Â denote its dual. The Jacobian J0(N) is endowed with a canonical principal
polarization θ : J0(N )̂ → J0(N), which induces a polarization θf : Âf → Af .
More precisely, if πf denotes the surjection J0(N) → Af , then dualizing yields an
embedding π̂f : Âf → J0(N )̂. (That this is an embedding follows from the fact
that ker πf = IfJ0(N) is connected.) The polarization θf is equal to the composite
θf = πf ◦ θ ◦ π̂f .

We now define the ideal of fusion Ff . Let Sf denote the subspace of S(N)
spanned by f and its Galois conjugates, and write S⊥f for the orthogonal comple-
ment of Sf under the Petersson inner product. Note that If is the annihilator of Sf
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in T; we let I⊥f denote the annihilator of S⊥f in T. We define the ideal of fusion of
f to be the ideal Ff = If + I⊥f in T. Then Ff has finite index in T, and “measures”
the congruences between f and normalized Hecke eigenforms in S⊥f .

Finally, we introduce some terminology regarding maximal ideals of T. If m is
such a maximal ideal, then attached canonically to m is a semi-simple representation
ρm : Gal(Q/Q) → GL2(T/m) [12, prop. 5.1]. We say that m satisfies multiplicity
one if J0(N)[m] is two-dimensional over the residue field T/m. (The motivation for
this terminology is that if ρm is irreducible, then J0(N)[m] is isomorphic to a direct
sum of copies of ρm [2], and so m satisfies multiplicity one if and only if J0(N)[m]
is isomorphic to a single copy of ρm.)

We now state our first result.

Theorem A. Let f be a normalized new form in S(N). If we embed Âf into
J0(N) via the composite θ ◦ π̂f : Âf → J0(N), then this restricts to an embedding
ker(θf ) → J0(N)[Ff ] whose cokernel is supported at maximal ideals of T that do
not satisfy multiplicity one.

This theorem is related to [20, thm. 3], which (for prime N) relates the modular
degree of a strong Weil curve and the modulus of congruence of the corresponding
eigenform. However, even when Af is an elliptic curve, the above result differs from
that of [20], insofar as it relates the kernel of θf to the kernel of Ff on the entire
Jacobian J0(N). (Consider the examples discussed below, involving certain Weil
curves of conductors 431 and 503.)

The strength of the result stems from the fact that “many” maximal ideals of
T are known to satisfy multiplicity one. For example, if ρm is irreducible, if the
residue characteristic ` of m is odd, and if ` is prime to N , or if ` exactly divides
N and m is not `-old, then [12, thm. 5.2 (b)] and [7, main theorem] show that m
satisfies multiplicity one. (The result of [7] is strengthened by the results of [13].
Some cases of residue characteristic two are treated in [3]. See also [15, thm. 3.5]
for a related summary of results.) If N is prime, then the results of [6] show that
all m of odd residue characteristic satisfy multiplicity one.

We should point out, though, that multiplicity one need not hold for all maximal
ideals (even if N is prime), and that correspondingly the cokernel of the inclusion
ker(θf ) ⊂ J0(N)[Ff ] need not vanish. We illustrate this by an example. Calcula-
tions of Lloyd Kilford and William Stein show that when N = 431 or 503 there is a
maximal ideal m of T having residue characteristic two that does not satisfy multi-
plicity one. Furthermore, there is a strong Weil curve E arising from a newform f of
level N for which the m-adic completion of Ff is non-trivial. Thus J [m] ⊂ J [Ff ]. On
the other hand, J [m] cannot be contained in ker θf , since J [m]∩E = E[2], and the
fact that m does not satisfy multiplicity one shows that the inclusion E[2] ⊂ J [m]
is not an equality.

The second result that we prove is Stein’s refined Eisenstein conjecture [19,
conj. 1.1]. This is a conjecture that concerns optimal quotients of prime conductor.
Recall that if N is prime, then the results of [6] give a very precise description of
the arithmetic properties of J0(N). If C denotes the subgroup of J0(N) generated
by image of the divisor 0−∞ on X0(N), then C is a finite subgroup of J0(N)(Q)
that in fact equals the full torsion subgroup of J0(N)(Q) [6, thm. III.1.2]. Also, if
ΦJ0(N) denotes the group of connected components of the characteristic N fibre of
the Néron model J0(N), then the specialization map C → ΦJ0(N) is an isomorphism
[6, p. 99].
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Stein has conjectured that the analogous statements are true for each optimal
quotient of Af , and that furthermore, if {fi} denotes a complete set of conjugacy
class representatives of normalized eigenforms in S(N), then the product of the
orders of the torsion subgroups of the Afi

(Q) is equal to the order of C. The
following theorem proves his conjecture in its entirety.

Theorem B. Let f be a newform of weight two and prime conductor N . Let
Cf denote the image of C in Af (so that Cf is the subgroup of Af generated by
the image of the divisor 0 − ∞ on X0(N)); Cf is a T-submodule of the torsion
subgroup Af (Q)tor of the group of Q-rational points on Af . Let ΦAf

(respectively
ΦÂf

) denote the group of connected components of the characteristic N fibre of the

Néron model of Af (respectively Âf ).
(i) The T-module Cf is isomorphic to C/If .
(ii) The inclusion Cf → Af (Q)tor is an isomorphism of T-modules.
(iii) The T-module Âf (Q)tor is abstractly isomorphic to Cf .
(iv) The specialization map Af (Q)tor → ΦAf

is an isomorphism of T-modules.
(v) The specialization map Âf (Q)tor → ΦÂf

is an isomorphism of T-modules.
(vi) The (étale) group schemes ΦAf

and ΦÂf
over FN are constant (that is, have

trivial Galois action).
(vii) If {fi} is a complete set of conjugacy class representatives of the normalized

eigenforms in S(N), then
∏

fi
#Cfi = #C.

In the special case when Af is an elliptic curve, parts (ii), (iii), (iv), (v) and (vi)
of this result were proved by Mestre and Oesterlé [8, §5] (in this case parts (iii)
and (v) follow from parts (ii) and (iv), because the elliptic curve Af is self-dual).
Their proof depends on calculations that are very particular to the situation of
elliptic curves. The most powerful tools that they use are Mazur’s classification of
the possible torsion subgroups of the group of Q-rational points of an elliptic curve
over Q [6, thm. III.5.1], and Ribet’s lowering-the-level theorem [12, thm. 1.1]. Our
proof also depends on the results of [6], in a more direct fashion – we use crucially
Mazur’s description of the commutative algebra properties of the Eisenstein ideal
of T, as well as his calculation of the kernel of the Eisenstein ideal acting on J0(N).
We also depend on the work of both Ribet and Tate on Serre’s conjectures (in
particular, [14, prop. 2.2]).

One general difficulty in studying optimal quotients is that the description of
the kernel of the map J0(N) → Af as being IfJ0(N) is difficult to work with. A
potentially more useful description is that it is equal to the connected component
of J0(N)[I⊥f ]. However, a priori the latter algebraic subgroup of J0(N) may not
be connected, and without control of its connected component group, this char-
acterization would again be rather unsatisfactory. The key to the proof of both
theorems A and B is the following result, which provides the necessary control: if
m is a maximal ideal of T that satisfies multiplicity one, then the m-adic comple-
tion of the connected component group of J0(N)[If ] is trivial, and so the inclusion
IfJ0(N) ⊂ J0(N)[I⊥f ] induces an isomorphism on m-divisible groups. With this re-
sult in hand, it is easy to relate properties of optimal quotients to the commutative
algebra properties of the Hecke ring (as long as one is willing to forsake informa-
tion supported away from the multiplicity one maximal ideals of T). By itself it is
already enough to imply theorem A, and when combined with the results of [6], to
prove part (ii) of theorem B.
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The result itself is proved in section 2, in a suitably abstracted situation; it is
a special case of corollary 2.5. The rest of that section is devoted to elaborating
some of its consequences.

To obtain information about the connected component groups ΦAf
we apply the

results of section 2 in the context of rigid analytic uniformizations of J0(N) and its
optimal quotients. This is the subject of section 3. The key result is corollary 3.6.

Section 4 presents the proofs of theorems A and B. In order to prove theorem B
in its entirety, we find it necessary to generalize the notion of optimal quotient,
and introduce a more flexible notion of an optimal subquotient of J0(N). We then
prove a more general version of theorem B for optimal subquotients (theorem 4.13),
which has theorem B as an immediate corollary.

In section 1 we develop the algebra that is needed for the later sections. This
section is intended to organize as usefully as possible the information on the com-
mutative algebra of Hecke rings that can be deduced from the results of [6].

To conclude this introduction, let us emphasize that we regard the main technical
innovation of this paper to be the results of section 2, which allow us to apply
multiplicity one results to obtain precise descriptions of the Tate-modules of optimal
quotients. We hope that these results might have additional applications to the
analysis of optimal quotients.

Acknowledgments. I would like to thank William Stein and Shuzo Takahashi for
their comments on some earlier versions of this paper. I would also like to thank
the anonymous referee for their careful examination of the paper, which led to the
clarification of several obscure points in the exposition.

0. notation and conventions

All rings and algebras that we consider are commutative with unit. If I1 and I2

are two ideals of a ring R, we write (I1 : I2) = {r ∈ R | rI2 ⊂ I1}. If I is an ideal of
R we also write I⊥ = (0 : I) = AnnR(I). (See lemma 4.1 below for a reconcilliation
of this use of the notation I⊥ with the notation I⊥f used in the introduction.)

If M is a locally compact abelian group, we write M∗ for the Pontrjagin dual of
M . We will apply this notation only in the cases when M is either ind-finite (that
is, torsion and discrete) or pro-finite. In these cases, M∗ = Homcont(M, Q/Z), with
Q/Z being regarded as a discrete group.

1. algebraic preliminaries

In this section, we let R be a finite flat O-algebra, where O is a Dedekind domain
with field of fractions L. If we write that an R-module is “torsion”, or “torsion-
free”, we will always mean that it is O-torsion, or O-torsion-free. We say that an
ideal I of R is saturated if R/I is torsion-free. Note that the association of I ⊗O L
to I induces a bijection between the saturated ideals of R and the ideals of R⊗OL.
Note also that I⊥ ⊗O L = (I ⊗O L)⊥.

Recall that R is Gorenstein if the R-module HomO(R,O) is locally free (nec-
essarily of rank one). We say that R is monogenic if it is generated by a single
element as an O-algebra. If R is monogenic, then it is Gorenstein.

Lemma 1.1. Let I1 and I2 be two ideals of R. If I1 is saturated then (I1 : I2) is
saturated. In particular, for any ideal I of R, the ideal I⊥ is saturated.

Proof. This is immediate from the definitions. �
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Lemma 1.2. Suppose that R is either Gorenstein or reduced.
(i) If I is a saturated ideal of R, then the inclusion I ⊂ (I⊥)⊥ is an equality.
(ii) If I1 and I2 are two saturated ideals of R, then (I⊥2 : I⊥1 ) = (I1 : I2).

Proof. Since (I⊥)⊥/I ⊂ R/I is torsion free, by the assumption on I, it suffices to
verify part (i) after tensoring over O with L. The assumption on R then implies
that R ⊗O L is Gorenstein. Since it also zero-dimensional, it is in fact a product
of Gorenstein local rings. Thus (proceeding factor by factor) we may find a perfect
R⊗OL-bilinear pairing (R⊗OL)×(R⊗OL) → L. This pairing puts (R⊗OL)/(I⊗O
L) and I⊥ ⊗O L = (I ⊗O L)⊥ in duality with one another. Applying this remark
also with I⊥ in place of I , and then counting dimensions over L, proves part (i).

To prove part (ii), note that for r ∈ R, rI⊥1 ⊂ I⊥2 if and only if rI⊥1 I2 = 0,
which holds if and only if rI2 ⊂ (I⊥1 )⊥. Part (i) shows that (I⊥1 )⊥ = I1, and this
establishes part (ii). �

Lemma 1.3. If R is reduced and I is a saturated ideal of R, then the natural map
R → R/I ⊕R/I⊥ is injective, with torsion cokernel.

Proof. It suffices to check that the map R ⊗O L → (R ⊗O L)/(I ⊗O L) ⊕ (R ⊗O
L)/(I ⊗O L)⊥ is an isomorphism. This follows from that fact that our assumption
on R implies that R⊗O L is reduced, and so is a product of fields. �

If I is an ideal in R then the surjection R → R/I gives rise to an embedding
HomO(R/I,O) → HomO(R,O), identifying HomO(R/I,O) with the R-module
HomO(R,O)[I] of maps in HomO(R,O) that annihilate I.

Corollary 1.4. If R is monogenic and I is a saturated ideal of R, then I is locally
principal, and so (since it is a faithful R/I⊥-module) is locally free of rank one over
R/I⊥.

Proof. Since R is monogenic, the same is clearly true of R/I. Since both are also
finite flat O-algebras, they are both Gorenstein. Thus HomO(R,O) is, locally on
Spec R, isomorphic to R, and so by the preceding remark, there are, locally on
Spec R, isomorphisms between HomO(R/I,O) and I⊥. Since R/I is Gorenstein,
we conclude I⊥ is locally free of rank one over R/I. Replacing I by I⊥ (and noting
that I = (I⊥)⊥, since I⊥ is locally free over R/I, or alternatively by part (i) of
lemma 1.2), we establish the corollary. �

Another proof of corollary 1.4 follows by noting that any saturated ideal in the
polynomial ring O[X] is locally principal.

Corollary 1.5. If R is monogenic and I1 ⊂ I2 are saturated ideals of R, then
I⊥2 ⊂ I⊥1 , and I⊥1 /I⊥2 is a locally free R/(I1 : I2)-module of rank one.

Proof. Since I1 ⊂ I2, it is immediate that I⊥2 ⊂ I⊥1 . Corollary 1.4 shows that I⊥1 is
a locally principal ideal of R, and so I⊥1 /I⊥2 is a locally free R/(I⊥2 : I⊥1 )-module of
rank one. Part (ii) of lemma 1.2 now completes the proof (once we note that R is
Gorenstein, since it is monogenic). �

Lemma 1.6. If I1 is a principal ideal of R for which R/I1 is torsion, and I2 is a
saturated ideal of R, then I1 ∩ I2 = I1I2.

Proof. Write I1 = rR. Since R/I1 is torsion, we deduce that r is a unit in R⊗O L,
and thus is a non-zero divisor in each of the torsion-free R-modules appearing in
the exact sequence

0 → I2 → R → R/I2 → 0.
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This implies that I2 ∩ rR = rI2, proving the lemma. �

Corollary 1.7. Suppose that I1 is a principal ideal of R for which R/I1 is torsion,
and that I2 is a saturated principal ideal of R. Then the surjection I⊥2 /(I1I

⊥
2 ) →

I⊥2 (R/I1) (defined by mapping x ∈ I⊥2 to the coset of x in R/I1) and the inclusion
I⊥2 (R/I1) → (R/I1)[I2] are both isomorphisms.

Proof. Lemmas 1.1 and 1.6 show that I1 ∩ I⊥2 = I1I
⊥
2 . This implies the first state-

ment of the corollary.
Note that there is an inclusion I1 +I⊥2 ⊂ (I1 : I2). Write I1 = r1R and I2 = r2R.

Let r ∈ (I1 : I2), so that r2r = r1r
′ for some r′ ∈ R. Then lemma 1.6 implies that

r1r
′ = r1r2r

′′ for some r′′ ∈ R, and so r2(r − r1r
′′) = 0. Thus r − r1r

′′ ∈ I⊥2 , and
so in fact I1 + I⊥2 = (I1 : I2). We conclude that

I⊥2 (R/I1) = (I1 + I⊥2 )/I1 = (I1 : I2)/I1 = (R/I1)[I2].

This proves the second statement of the corollary. �

Corollary 1.8. Suppose that R is monogenic, that I1 is a principal ideal of R
for which R/I1 is torsion, and that I2 ⊂ I3 are saturated ideals of R. Then
((R/I1)[I2])/((R/I1)[I3]) is a locally free R/(I1 + (I2 : I3))-module of rank one.

Proof. Corollary 1.4 shows that I2 and I3 are locally principal. Corollary 1.7 then
shows that ((R/I1)[I2])/((R/I1)[I3]) is (locally, and hence globally, since it is finitely
generated and torsion) isomorphic to

(I⊥2 /I1I
⊥
2 )/(I⊥3 /I1I

⊥
3 ) = (I⊥2 /I⊥3 )/(I1(I⊥2 /I⊥3 )).

Corollary 1.5 implies that I⊥2 /I⊥3 is locally free of rank one over R/(I2 : I3). This
implies the corollary. �

2. rings of operators on algebraic groups

If G is a smooth commutative algebraic group over a field K of characteristic zero,
then for any integer n we let G[n] denote the the algebraic subgroup of G consisting
of the n-torsion elements of G. Since we are in characteristic zero, multiplication by
n is a smooth morphism from G to itself, and consequently G[n] is a finite algebraic
group (since a smooth morphism from a variety to itself must have finite fibres).

If n divides n′, then G[n] ⊂ G[n′]. We will be especially interested in the case
when we fix a prime `, and consider the `-power torsion G[`n] of G. We write G[`∞]
for the ind-finite algebraic subgroup of G formed by the G[`n] as n ranges over all
positive integers.

The formation of G[`∞] is evidently functorial in G. If G is connected, then
multiplication by ` is surjective from G to itself, and so G[`∞] is an `-divisible
group.

For any G of the type we are considering, we will let G0 denote the connected
component of the identity of G. The quotient G/G0 is a finite algebraic group, the
group of connected components of G.

Let us remark that if we choose an algebraic closure K of K, then the K-
valued points of any finite algebraic group over K form a finite group, and we
will not distinguish between a finite algebraic group over K and its group of K-
valued points. (This is permissible, since the finite algebraic group can be recovered
up to isomorphism from its group of K-valued points, equipped with its natural
Gal(K/K)-action.)

We will require the following easily proved results:
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Lemma 2.1. The formation of G[`∞] is exact in G.

Proof. Let H ⊂ G be an inclusion of smooth commutative algebraic groups over K.
We must show that the exact sequence

(2.2) 0 → H[`∞] → G[`∞] → (G/H)[`∞]

is also exact on the right. If H is connected, then H(K) is divisible (and hence
injective as an abelian group), and so we can be more precise: for any non-negative
integer n we have a short exact sequence

0 → H[`n] → G[`n] → (G/H)[`n] → 0.

On the other hand, if H is finite, then it is in particular torsion, and so it is clear
that (2.2) is exact on the right.

In general, the kernel of the map G/H0 → G/H is equal to the finite group
H/H0. Applying the results of the preceding paragraph successively to the finite
group H/H0 and to the connected group H0, we find that (2.2) is exact on the
right, as required. �

Lemma 2.3. For any G as above and any prime `, the inclusion G0[`∞] → G[`∞]
identifies G0[`∞] with the maximal `-divisible subgroup of G[`∞]. The cokernel of
this inclusion is canonically isomorphic to the `-Sylow subgroup of G/G0.

Proof. Since multiplication by ` is surjective on the connected algebraic group G,
it is clear that G0[`∞] is a divisible abelian group. Also, the quotient group
G[`∞]/G0[`∞] embeds into G/G0, the group of connected components of G. Since
this latter group is finite, so is the former. In particular, we see that any divisible
subgroup of G[`∞] is contained in G0[`∞]. (Recall that any quotient of a divisible
abelian group is divisible, and that any finite divisible group is trivial.) This es-
tablishes the claim of the first sentence. The claim of the second sentence follows
from lemma 2.1, which shows that

0 → G0[`∞] → G[`∞] → (G/G0)[`∞] → 0

is a short exact sequence. �

For the remainder of this section, let us fix a group G as above. Furthermore,
let T denote a finite flat commutative Z-algebra that acts on G. (As indicated in
the introduction, in the applications T will be a Hecke algebra, as the notation
suggests.) If I is any ideal in T, we let G[I] denote the algebraic subgroup of G
consisting of elements annihilated by I. Taking R to be T and O to be Z puts us
in a particular case of the situation of section 1. Thus we will say that an ideal I
in T is saturated if the quotient T/I is torsion-free as a Z-module.

If ` is any prime number then the `-adic completion of T factors as the direct
product of completions Tm, where m ranges over the maximal ideals of T of residue
characteristic `. Thus any object on which this `-adic completion acts similarly
factors. For example, G[`∞] factors into such a product of `-divisible subgroups. We
let G[m∞] denote the factor corresponding to the maximal ideal m. The formation
of G[m∞] is an exact functor of G, since lemma 2.1 shows that this is true of the
formation of G[`∞]. Similarly, the `-adic Tate module T`G (by which we refer to the
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Pontrjagin dual G[`∞]∗ = Hom(G[`∞], Q`/Z`) of G[`∞]; this is the contravariant
`-adic Tate module) factors into such a product, and we let TmG denote the factor
corresponding to the maximal ideal m. The formation of TmG is also an exact
functor of G (since Pontrjagin duality is an exact functor).

Let us make a remark which we will use several times below. If I is an ideal of
T, and if we write H = G[I], then there are natural isomorphisms TmG/I

∼−→ TmH

and Tm(G/H) ∼−→ ITmG. Indeed, by the exactness of the formation of m-adic Tate
modules, there is a short exact sequence

0 → Tm(G/H) → TmG → TmH → 0.

The fact that Pontrjagin duality is a perfect duality, together with the definition
of TmG (respectively TmH) as the Pontrjagin dual of G[m∞] (respectively H[m∞],
which of course equals G[m∞, I], the I-torsion subgroup of the ind-finite group
G[m∞]), shows that the natural map TmG/ITmG → TmH is an isomorphism. The
preceding short exact sequence then yields the second of the two stated isomor-
phisms.

We say that a maximal ideal m of T is good (or good with respect to G, if it is
necessary to specify the group G) if TmG is a free Tm-module.

Lemma 2.4. Suppose that m is good, and that I is a saturated ideal of T. Then
the ind-finite group G[m∞, I] is `-divisible.

Proof. This follow by Pontrjagin duality. More precisely, G[m∞, I] = (TmG)∗[I] =
(Tm/I)∗, showing that TmG/I is the Pontrjagin dual of G[m∞, I]. (This fact was
already used in the preceding remark.) Now G[m∞, I] is `-divisible if and only if
its Pontrjagin dual TmG/I is torsion-free. But since m is good, this latter group is
free over Tm/I, which is torsion-free by virtue of our assumption on I. �

Corollary 2.5. Let I be a saturated ideal of T, and write H = G[I].
(i) If m is a good maximal ideal of T then the natural map H0[m∞] → G[m∞, I] is

an isomorphism. Equivalently, the natural map TmH → TmH0 is an isomorphism.
(ii) The connected component group H/H0 is supported at maximal ideals of T

that are not good.

Proof. Both claims follows immediately from lemmas 2.1 and 2.4. �

The preceding corollary will be our basic tool in this paper. We now apply it to
prove some additional results involving good maximal ideals, which will be used in
what is to come.

Lemma 2.6. Let m be a good maximal ideal in T, let I be a saturated ideal of T,
let I be an ideal of finite index in T, and suppose that ITm is a principal ideal in
Tm. If we write H = G[I], then the sequence

0 → H0[I]m → G[I]m → (G/H0)[I]m → 0

is short exact. (The subscript m denotes m-adic completion.)

Proof. Since I has finite index in T, the group G[I] is finite. Thus G[I]m =
G[m∞, I]. A similar remark holds with H0 and G/H0 in place of G. Thus we must
show that the sequence

0 → H0[m∞, I] → G[m∞, I] → (G/H0)[m∞, I] → 0
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is short exact.
Part (i) of corollary 2.5 shows that the map H0[m∞] → H[m∞] is an isomor-

phism, and hence that (G/H0)[m∞] → (G/H)[m∞] is an isomorphism. Thus it
suffices to prove that

0 → H[m∞, I] → G[m∞, I] → (G/H)[m∞, I] → 0

is short exact. This sequence is Pontrjagin dual to the sequence

0 → (ITmG)/I(ITmG) → TmG/ITmG → TmG/(I + I)TmG → 0,

which is clearly exact on the right. (Here we have applied the remark preceding
the statement of lemma 2.4 to the ideal I, so as to identify the Tate modules of
G/H and H with ITmG and TmG/ITmG respectively. We have also used the fact
that Pontrjagin duality is perfect to conclude that TmG/ITmG is Pontrjagin dual
to G[m∞, I], as well as to draw similar conclusions with G/H and H in place of
G.) We must show that it is also exact on the left.

Since m is good, TmG is free over Tm, and so it suffices to show that the map

I/II → Tm/I

is injective. This follows from lemma 1.6 �

Lemma 2.7. Suppose that G is either an abelian variety or a torus. Let Ĝ denote
the dual of G, endowed with the dual T-action. Let m be a maximal ideal of T for
which the completion Tm is Gorenstein. Then m is good for G if and only if it is
good for Ĝ.

Proof. Let ` denote the residue characteristic of m. Recall that Ĝ[`∞] is naturally
isomorphic to the Cartier dual of G[`∞]. Since this isomorphism is natural, it is
T-equivariant, and so there is an induced isomorphism between Ĝ[m∞] and the
Cartier dual of G[m∞]. Thus (if we ignore the implicit Gal(K/K)-actions) there is
an isomorphism of Tm-modules TmĜ

∼−→ HomZ`
(TmG, Z`). Since Tm is a Gorenstein

ring, it follows that TmĜ is free over Tm if and only if TmG is free over Tm. This
proves the lemma. �

Lemma 2.8. Suppose that G is either an abelian variety or a torus, and that I
is an ideal of T. Let (G/I )̂ → Ĝ be dual to the surjection G → G/I. Then this
morphism is injective, and identifies (G/I )̂ with Ĝ[I]0.

Proof. Dualizing the short exact sequence 0 → IG → G → G/I → 0 yields the
short exact sequence 0 → (G/I )̂ → Ĝ → (IG)̂ → 0. (Exactness on the left follows
from the fact that IG is connected.) Let α1, . . . , αr be generators for I. Write
G′ =

∏r
i=1 G. Dualizing the surjection G′ → IG defined by (g1, . . . , gr) 7→ α1g1 +

· · ·+αrgr yields a morphism (IG)̂ → Ĝ′ =
∏r

i=1 Ĝ, whose kernel is a finite subgroup
of (IG)̂. Composing this injection with the preceding short exact sequence yields
the sequence

0 → (G/I )̂ → Ĝ → Ĝ′,

which is exact on the left, and exact in the middle up to finite index. The right-
hand arrow is given by ĝ 7→ (α1ĝ, . . . , αr ĝ), and so its kernel is equal to Ĝ[I]. Thus
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we find that (G/I )̂ is contained in Ĝ[I] with finite index. Since it is connected, the
lemma follows. �

By abuse of terminology, we say that a maximal ideal m of T is monogenic if the
completion Tm is monogenic as a Z`-algebra (where ` is the residue characteristic
of m).

Lemma 2.9. Let m be a good maximal ideal of T, and let I ⊂ m be a saturated
ideal of T. Let m′ denote the image of m in T/I. Note that the ring T/I acts on
each of G[I] and G/I.

(i) The maximal ideal m′ is good with respect to G[I]0.
(ii) Suppose that G is either an abelian variety or a torus. If m is monogenic,

then m′ is also monogenic, and is good with respect to G/I.

Proof. The proof of lemma 2.4 shows that Tm′G[I] = TmG/I. Thus if TmG is
free over Tm, we see that Tm′G[I] is free over (T/I)m′ = Tm/I. Also, part (i) of
corollary 2.5 shows that the map Tm′G[I] → Tm′G[I]0 is an isomorphism. This
proves part (i).

We now turn to proving part (ii). Since (T/I)m′ = Tm/I, the fact that m is
monogenic immediately implies the same for m′. Both T and T/I are torsion-free
by assumption. Thus both Tm and (T/I)m′ are Gorenstein Z`-algebras. Lemma 2.7
now shows that m is good for Ĝ, and that to prove that m′ is good for G/I, it suffices
to prove that it is good for (G/I )̂.

The surjection G → G/I has connected kernel, and so dualizing leads to an
injection (G/I )̂ → Ĝ. Lemma 2.8 shows that this embedding identifies (G/I )̂ with
Ĝ[I]0, and it follows from part (i) that m′ is good for Ĝ[I]0. This proves part (ii)
of the lemma. �

We record the following result for later use.

Lemma 2.10. If G is connected, then AnnT(G) is a saturated ideal of T.

Proof. Let T ∈ T and n ∈ Z such that nT annihilates G. Then T annihilates nG.
Since G is connected, nG = G. This proves the lemma. �

We finish this section by proving an abstract version of theorem A. We begin
by describing the necessary set-up. To begin with, suppose that I1 and I2 are two
saturated ideals of T, and that the natural map T → T/I1 ⊕T/I2 is injective, with
finite-order cokernel.

Lemma 2.11. Suppose that G is connected. Then I1G = G[I2]0.

Proof. The assumptions on I1 and I2 imply that I1I2 ⊂ I1 ∩ I2 = 0. Thus I1G ⊂
G[I2]. Since G is connected, I1G is also connected, and so in fact I1G ⊂ G[I2]0.
To see the converse, note that the assumptions on I1 and I2 imply that I1 + I2 has
finite index in T, and so we may choose n ∈ Z such that nT ⊂ I1 + I2. Since G[I2]0

is connected, we find that

G[I2]0 = nG[I2]0 ⊂ (I1 + I2)G[I2]0 = I1G[I2]0 ⊂ I1G.

This establishes the lemma. �
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Now suppose in addition that G is either an abelian variety or a torus, and that
there is a T-equivariant isomorphism φ : Ĝ → G. By lemma 2.8, the surjection
G → G/I1 gives rise to an embedding (G/I1)̂ → Ĝ. We let φ′ denote the composite

(G/I1)̂ → Ĝ
φ→ G → G/I1.

Lemma 2.12. In the preceding situation, the restriction of φ to ker(φ′) embeds
ker(φ′) into G[I1 + I2]. The cokernel of this embedding is supported away from the
good maximal ideals of T.

Proof. Lemma 2.11 shows that I1G = G[I2]0, and so φ−1 : G → Ĝ identifies I1G

with Ĝ[I2]0. Also, lemma 2.8 shows that (G/I1)̂
∼−→ Ĝ[I1]0, and hence

ker(φ′) = Ĝ[I1]0 ∩ Ĝ[I2]0 ⊂ Ĝ[I1] ∩ Ĝ[I2] = Ĝ[I1 + I2].

It follows immediately that φ embeds ker(φ′) into G[I1 + I2]. The assumptions
on I1 and I2, together with part (ii) of corollary 2.5, imply that the inclusion of
Ĝ[I1]0 ∩ Ĝ[I2]0 into Ĝ[I1] ∩ Ĝ[I2] becomes an equality after localizing at any good
maximal ideal of T. Thus the cokernel of the embedding of ker(φ′) into G[I1 + I2]
is supported away from the good maximal ideals of T. �

3. abelian varieties with semi-abelian reduction

In this section we assume that the field K is complete with respect to a discrete
valuation, and has a perfect residue field. If A is an abelian variety over K having
semi-abelian reduction, in the sense that the connected component of the special
fibre of its Néron model over the ring of integers of K is an extension of an abelian
variety by a torus, then A has a uniformization in the category of rigid analytic
spaces over K. This consists of a short exact sequence

0 → ΓA → GA → A → 0,

in which ΓA is a finite rank free Z-module equipped with a continuous Gal(K/K)-
action, GA is a semi-abelian variety, and the maximal abelian variety quotient of
GA is isomorphic to the maximal quotient of A having good reduction (see [5,
§§7, 14] and [9]). The formation of ΓA and GA is functorial in the category of
abelian varieties A having semi-abelian reduction. (To be precise, if B → A is
a morphism of abelian varieties over K having semi-abelian reduction, then there
is induced functorially an algebraic morphism GB → GA of semi-abelian varieties
over K, which restricts to a morphism ΓB → ΓA.) Furthermore, ΓA is canonically
isomorphic (as a Gal(K/K)-module) to the character lattice of the toric part of the
special fibre of the Néron model of the dual abelian variety to A. (In particular,
the Galois action on ΓA is unramified.)

In fact, it will do no harm to recall in a little more detail the construction of
this uniformization. Thus we suppose that A is an abelian variety over K having
semi-abelian reduction, and we let A denote the Néron model of A over the ring of
integers OK of K; then A is a finite type smooth commutative group scheme over
OK , whose generic fibre is naturally isomorphic to A, and whose special fibre As is
an extension of a finite étale group scheme ΦA (which can alternatively be regarded
as an unramified Galois module over K) by a semi-abelian variety A0

s. We let A0
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denote the complement in A of the non-identity connected components of As; it is
an open subgroup scheme of A.

The semi-abelian variety GA is defined to be the generic fibre of the formal
completion of A0 along its special fibre A0

s. Although the generic fibre of a formal
scheme over OK is in general defined only as a rigid analytic variety, the formal
scheme that we are considering can be algebraized in a natural way, and so GA is in
fact a semi-abelian variety over K. For details, see the discussion of [5, §§7.1, 7.2],
where (due to apparent notational inconsistency) the algebraization of the formal
completion of A0 along its special fibre is denoted alternately by A\ and G\.

The natural isomorphism A0
/K

∼−→ A induces a rigid analytic map GA → A,
and it is this map that provides the uniformization of A. One shows that this map
is surjective, and that the kernel ΓA of this map is naturally isomorphic to the
character lattice of the torus part of the special fibre of Â, where Â denotes the
Néron model of the abelian variety Â dual to A. (See the discussion of [5, §14].)

That a map A → B between abelian varieties with semi-abelian reduction in-
duces an algebraic map (i.e. a map in the category of K-schemes, not just in the
category of K-rigid analytic spaces) GA → GB follows from [5, lem. 7.2.1]. To be
precise, the functoriality of the construction of Néron models shows that we obtain
a morphism A → B of Néron models, which in turn induces a morphism of the
formal completions of these OK-schemes along their special fibres. The preceding
reference then shows that, since these formal completions can be algebraized, the
same is true of this morphism.

The following lemma recalls the exactness properties of the formation of ΓA

and GA.

Lemma 3.1. Let B → A be a morphism of abelian varieties over K, both having
semi-abelian reduction.

(i) If B → A is injective, then the same is true of the morphisms ΓB → ΓA and
GB → GA.

(ii) If B → A is surjective, then the same is true of the morphism GB → GA.
(iii) If the morphism B → A is surjective, and has a connected kernel, then the

maps GB → GA and ΓB → ΓA are both surjective.

Proof. Functoriality of uniformization yields a diagram

0 // ΓB

��

// GB

��

// B

��

// 0

0 // ΓA
// GA

// A // 0,

with exact rows. Applying the snake lemma, we obtain an exact sequence

0 → ker(ΓB → ΓA) → ker(GB → GA) → ker(B → A)

→ coker(ΓB → ΓA) → coker(GB → GA) → coker(B → A) → 0.

If B → A is injective, then we obtain an isomorphism ker(ΓB → ΓA) ∼−→
ker(GB → GA). The source of this isomorphism is a free Z-module of finite rank,
while the target is the kernel of an algebraic morphism between semi-abelian vari-
eties. It follows that both source and target vanish, and so we have proved (i).
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If B → A is surjective, then we find that the map

coker(ΓB → ΓA) → coker(GB → GA)

is a surjection from a finitely generated abelian group onto the connected group
scheme coker(GB → GA). Thus this cokernel vanishes, and so we have proved (ii).
If furthermore ker(B → A) is connected, then we find that ker(B → A) →
coker(ΓB → ΓA) is a surjection from a connected group scheme onto a finitely
generated abelian group, and hence that coker(ΓB → ΓA) also vanishes, prov-
ing (iii). �

If 0 → C → B → A is an exact sequence of abelian varieties, then uniformizing
B and A yields a commutative diagram in which all rows and columns are short
exact:

0

��

0

��

0

��
0 // Γ′C

��

// G′
C

��

// C //

��

0

0 // ΓB
//

��

GB

��

// B //

��

0

0 // ΓA
//

��

GA
//

��

A //

��

0

0 0 0 .

(The top row is defined so as to make the columns exact; we are also taking into
account part (iii) of the preceding lemma.)

The top row of this diagram need not necessarily be the rigid-analytic uniformiza-
tion of C, since the algebraic group G′

C need not be connected. The following lemma
clarifies the situation.

Lemma 3.2. There is a canonical identification of GC (the semi-abelian variety
that uniformizes C) with (G′

C)0 (the connected component of the identity in G′
C),

with respect to which ΓC is identified with the intersection Γ′C∩(G′
C)0. Furthermore,

the induced map Γ′C/ΓC → G′
C/GC is an isomorphism.

Proof. The group G′
C appearing in the preceding diagram is the kernel of the map

of semi-abelian varieties GB → GA, and so is an algebraic group, of dimension
equal to the difference of the dimensions of GB and GA, which is the difference
of the dimensions of B and A, which is the dimension of C. By functoriality of
uniformizations, and taking into account part (i) of lemma 3.1, the injection C → B
induces an injection GC → GB . Since the image of GC in GB certainly maps to
zero in GA, the image of GC lies in G′

C ; in fact, since GC is connected, it lies in
(G′

C)0. Since GC and (G′
C)0 have the same dimension, the image of GC must equal

(G′
C)0. This proves the first statement of the lemma. The rest of the lemma follows
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from a consideration of the diagram

0

��

0

��

0

��
0 // ΓC

��

// GC

��

// C // 0

0 // Γ′C // G′
C

// C // 0,

whose rows and columns are exact. �

We may dualize our exact sequence of abelian varieties to obtain the exact se-
quence of dual abelian varieties 0 → Â → B̂ → Ĉ → 0, and a diagram

0

��

0

��

0

��
0 // Γ′

Â

��

// G′
Â

��

// Â //

��

0

0 // ΓB̂
//

��

GB̂

��

// B̂ //

��

0

0 // ΓĈ
//

��

GĈ
//

��

Ĉ

��

// 0

0 0 0 .

Lemma 3.2 applies equally well in this situation, to yield isomorphisms GÂ

∼−→
(G′

Â
)0 and Γ′

Â
/Γ′

Â

∼−→ G′
Â
/(GÂ).

The description of the kernel of the monodromy pairing [5, §9] provided by [5,
thm. 11.5] yields a short exact sequence of complexes (the complexes are in the
vertical direction; the exact sequence is in the horizontal direction)

0

��

0

��

0

��
0 // ΓC

//

��

Hom(ΓĈ , Z) //

��

ΦC
//

��

0

0 // ΓB
//

��

Hom(ΓB̂ , Z) //

��

ΦB
//

��

0

0 // ΓA
//

��

Hom(ΓÂ, Z) //

��

ΦA
//

��

0

0 0 0 .
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Taking the associated long exact sequence of cohomology, and using the preceding
diagrams, we obtain the exact sequence

0 → ker(ΦC → ΦB) → Γ′C/ΓC → 0 → ker(ΦB → ΦA)/ im(ΦC → ΦB)

→ 0 → Ext1(Γ′
Â
/ΓÂ, Z) → coker(ΦB → ΦA) → 0.

Recall the isomorphisms Γ′C/ΓC
∼−→ G′

C/GC and Γ′
Â
/ΓÂ

∼−→ G′
Â
/GÂ of lemma 3.2.

Also recall that if M is any finite group, then there is an isomorphism

Ext1(M, Z) ∼−→ Hom(M, Q/Z) = M∗.

Using these isomorphisms, we may reorganize the information contained in the
preceding exact sequence to obtain the exact sequence

(3.3) 0 → G′
C/GC → ΦC → ΦB → ΦA → (G′

Â
/GÂ)∗ → 0.

(This exact sequence is a generalization of [16, prop. 2], which treats the case when
B is the Jacobian of a Shimura curve of square-free level, and A is an elliptic curve
that is an optimal quotient of B.)

The remainder of this section is devoted to applying the preceding discussion in
the context of section 2. From now on we suppose that T is a finite flat commutative
Z-algebra that acts on B, that I1 and I2 are saturated ideals in T for which the
morphism T → T/I1 ⊕ T/I2 is injective with finite-order cokernel, that C = I1B,
and that A = B/I1.

The functoriality of the constructions of this section imply that T acts naturally
on GB , ΓB , ΦB , and similarly with B replaced by any of A, C, Â, B̂, or Ĉ. The
ring T also acts naturally on G′

C and G′
Â
, and all morphisms appearing in the

diagrams of the preceding discussion are T-equivariant. In particular, T acts on all
the objects appearing in the exact sequence (3.3), and all the morphisms of this
exact sequence are T-equivariant.

Lemma 3.4. We have the following sequences of equalities and inclusions:

GC = (G′
C)0 = I1GB = GB [I2]0 ⊂ G′

C ⊂ GB [I2],

and
GÂ = (G′

Â
)0 = I2GB̂ = GB̂ [I1]0 ⊂ G′

Â
⊂ GB̂ [I1].

Proof. Since I1 annihilates A, it also annihilates GA, and so I1GB ⊂ G′
C . Since

I1GB is connected, in fact I1GB ⊂ (G′
C)0. The assumptions on I1 and I2, together

with lemma 2.11, imply that I1GB = GB [I2]0, and lemma 3.2 implies that GC =
(G′

C)0. Combining all these observations, we obtain the sequence of inclusions and
equalities I1GB = GB [I2]0 ⊂ GC = (G′

C)0 ⊂ G′
C .

Again by lemma 2.11, we see that C = I1B is also equal to B[I2]0. Since I2

annihilates C, we see that I2G
′
C ⊂ Γ′C . Now I2G

′
C is an algebraic group, while

Γ′C is a lattice. Thus I2G
′
C = 0, and we deduce that G′

C ⊂ GB [I2]. Passing to
connected components, we also find that GC = (G′

C)0 ⊂ GB [I2]0. Combining these
two inclusions with the result of the preceding paragraph proves the first claim of
the lemma. The second claim follows from the first, once one notes that lemmas 2.8
and 2.11 imply that Â = I2B̂, and hence that Ĉ = B̂/I2. �
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Corollary 3.5. The kernel of the map ΦC → ΦB is a subobject of the T-module
GB [I2]/GB [I2]0, while the cokernel of the map ΦB → ΦA is a quotient of the T-
module (GB̂ [I1]/GB̂ [I1]0)∗.

Proof. Lemma 3.4 shows that there is an injection G′
C/GC → GB [I2]/GB [I2]0. The

first claim of lemma now follows, since the exact sequence (3.3) identifies G′
C/GC

with the kernel of the map ΦC → ΦB . The second claim of the lemma is proved
similarly. �

Corollary 3.6. Suppose that m is a maximal ideal of T that is good for both GB

and GB̂. Then the sequence

0 → (ΦC)m → (ΦB)m → (ΦA)m → 0

is short exact. (Here the subscript m denotes m-adic completion, of course.)

Proof. This follows immediately from the exact sequence (3.3), and corollaries 3.5
and 2.5. �

We conclude this section with an analogue of lemma 2.9.

Lemma 3.7. Suppose that GB is a torus, that m is good for GB, and that m
is monogenic. Let mi denote the image of m in T/Ii (for i = 1, 2). Then m1

(respectively m2) is monogenic, and good for GA (respectively GC).

Proof. By lemma 3.4, GC = GB [I2]0. This equality, together with part (i) of
lemma 2.9, implies that m2 is good for GC .

To show that m1 is good for GA, note that again by lemma 3.4, I1GB =
GB [I2]0 ⊂ G′

C ⊂ GB [I2]. Thus there is a surjection GB/I1 → GB/G′
C = GA, whose

kernel G′
C/I1GB is a subgroup of the connected component group GB [I2]/GB [I2]0.

Since m is good for GB , part (ii) of corollary 2.5 shows that this group is supported
away from m, and so the surjection GB/I1 → GA induces an isomorphism on m-adic
Tate modules. Thus it suffices to show that m1 is good for GB/I1. This follows
from part (ii) of lemma 2.9, and completes the proof of the lemma. �

4. applications to optimal quotients

In this section, we present the proofs of the two theorems stated in the intro-
duction. We will see that theorem A is a quite straightforward consequence of the
results of section 2. While theorem B also follows from these results (as augmented
by the discussion of section 3), the process of deducing it from them is slightly more
involved.

As in the introduction, we let N be a positive integer, S(N) the space of weight
two cuspforms on Γ0(N), and T the Hecke algebra acting on S(N).

Lemma 4.1. Let f be a normalized newform in S(N), let If denote the annihilator
of f in T, let Sf denote the subspace of S(N) spanned by all the algebraic conjugates
of f , and let S⊥f denote the orthogonal complement with respect to the Petersson
inner product of Sf in S(N). As usual, write I⊥f = AnnT(If ).

(i) I⊥f is the annihilator of S⊥f in T.
(ii) The map T → T/If ⊕ T/I⊥f is injective and its cokernel has finite order.

Proof. The finite dimensional Q-algebra T⊗Z Q decomposes as a product of Artin
local Q-algebras T ⊗Z Q =

∏d
i=1 Ai, which are in bijection with the normalized
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eigenforms in S(N). In particular, the newform f corresponds to one of these
factors, say A1. Since f is a newform, A1 is a field, and so If ⊗Z Q =

∏d
i=2 Ai,

and I⊥f ⊗Q = A1. In particular, the map T⊗Z Q → (T⊗Z Q)/(If ⊗Z Q)⊕ (T⊗Z

Q)/(I⊥f ⊗Z Q) is an isomorphism. Part (ii) follows from this.
The decomposition of T into a product gives rise to a decomposition S(N) =∏d

i=1 Si of the T-module S(N). Each Si is a faithful Ai ⊗Q C-module, whose
dimension over C is equal to the dimension of Ai over Q. (In fact, Si is canonically
isomorphic as an Ai-module to HomQ(Ai, C) [11, thm. 2.2].) Now Sf = S1, while
S⊥f =

∏d
i=2 Si. Thus AnnT⊗Q(S⊥f ) = A1 = I⊥f ⊗Z Q. This implies part (i). �

Note that part (i) of this lemma reconciles our use of the ⊥ notation in the
introduction with its use in the main body of the paper.

Proof of theorem A. We will deduce theorem A from lemma 2.12. One of the
complications in doing this is that the natural principal polarization θ : J0(N )̂ ∼−→
J0(N) of J0(N) does not respect the action of T on J0(N). For this reason, we
have to pay (routine, but) close attention to questions of variance in the course of
the proof.

As we stated in the introduction, the action of the correspondences T ∈ T on
J0(N) that we are considering is that induced via Picard functoriality. This induces
a dual action of T on J0(N )̂. If T ∈ T we let T † denote the endomorphism of J0(N)
defined by θ ◦ T ◦ θ−1. (Thus † denotes the Rosati involution.) As discussed in [12,
pp. 443-444], the endomorphism T † is the endomorphism of J0(N) obtained from
the correspondence T via Albanese functoriality, and in general T and T † are not
the same endomorphism. However, it is pointed out in [12, p. 444, eqns. (3), (4)]
that one has the equality T † = wNTwN , where wN is the Atkin-Lehner involution of
J0(N). Thus if we write φ = wN ◦θ : J0(N )̂ → J0(N), then φ is T-equivariant. Note
that since wN (as an automorphism of J0(N)) is induced by an involution of the
curve X0(N), it is fixed by the Rosati involution. (By functoriality of the formation
of the theta divisor, and hence of the polarisation θ, the involution wN commutes
with the principal polarization θ.) Thus we may equally well write φ = θ ◦ wN .

A useful observation will be that there is an isomorphism of S(N) (with its usual
Hecke action) with the tangent space at the origin of J0(N) (equipped with the
Hecke action induced by the Hecke action on J0(N) defined by Picard functoriality).
To see this, note that S(N) equipped with its usual Hecke action is naturally
isomorphic to the cotangent space at the origin of J0(N), equipped with the Hecke
action induced by Albanese functoriality [12, p. 444]. Thus if T ∈ T acts on J0(N)
via Picard functoriality, the action that it induces on S(N) is equal to the usual
action of T † = wNTwN on S(N). We may use the Petersson inner product to
identify S(N) with the dual to S(N), and thus with the tangent space at the origin
of J0(N). (Here S(N) denotes the complex conjugate vector space to S(N).) With
respect to this inner product, the actions of T and T † on S(N) are adjoint to one
another. Thus we obtain an identification of S(N) with the tangent space at the
origin of J0(N) equipped with the Hecke action induced by Picard functoriality. The
subspace of S(N) consisting of cuspforms with real Fourier coefficients endows S(N)
with a T-invariant real structure, which in turn yields a T-equivariant isomorphism
of S(N) with S(N). Composing this with the preceding identification yields a T-
equivariant isomorphism of S(N) with the tangent space of J0(N) equipped with
the Hecke action induced by Picard functoriality.
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Now let f be a newform in S(N), corresponding to the ideal If in T. Note that
by part (ii) of lemma 4.1, the ideals If and I⊥f satisfy the hypotheses of lemma 2.12.
Thus, if we let φ′ : Âf → Af be the polarization of Âf induced by the principal
polarization φ of J0(N), we deduce from lemma 2.12 that φ embeds kerφ′ into
J0(N)[If +I⊥f ] = J0(N)[Ff ], with cokernel supported away from the good maximal
ideals of T.

To complete the proof of theorem A, it suffices to prove the following two claims.
First, that each of IfJ0(N) ⊂ J0(N) and Âf ⊂ J0(N )̂ is invariant under wN , so
that φ(ker(φ′)) = θ(ker(θA)). Second, that if m satisfies multiplicity one, then it is
good for J0(N).

One may regard the exact sequence of abelian varieties

0 → IfJ0(N) → J0(N) → Af → 0

as arising by applying the exponential map to the exact sequence of tangent spaces

0 → S⊥f → S(N) → Sf → 0.

It follows from the results of [1] and the fact that f is a newform that each of Sf

and S⊥f is invariant under the action of wN . As a consequence, we deduce that wN

restricts to an automorphism of IfJ0(N). Dualizing, we observe that wN restricts
to an involution of Âf . This proves the first of the above claims.

To prove the second of the above claims, it suffices to show that the Tm ⊗Z Q-
module TmJ0(N)⊗Z Q is free of rank two. For this implies that if m satisfies multi-
plicity one, then TmJ0(N) is free of rank two over Tm, and so in particular, that m is
good for J0(N). To see the required fact about Tm⊗Z Q, note that this T-module is
isomorphic to the m-adic component of the cohomology space H1(J0(N), Q`) (where
` is the residue characteristic of m). (Recall that our Tate-modules are defined to
be contravariant.) Thus it suffices to show that this cohomology space is free of
rank two over T ⊗Z Q`. To verify this statement, we may replace Q` by any other
field of characteristic zero, for example R. We will show that H1(J0(N), R) is free
of rank two over T⊗Z R.

There is a natural isomorphism of T⊗Z R-modules between the tangent space at
the origin of J0(N) and the first homology space H1(J0(N), R). Since this tangent
space is isomorphic to S(N), we see that S(N) and H1(J0(N), R) are naturally
dual as T ⊗Z R-modules. As already observed in the proof of lemma 4.1, [11,
thm. 2.2] implies that S(N) is naturally isomorphic to Hom(T, C), and thus we see
that H1(J0(N), R) is isomorphic to T⊗Z C as a T⊗Z R-module. In particular, it is
free of rank two, which is what we intended to show. �

As already mentioned, the proof of theorem B is more involved. We begin by
recalling some additional terminology concerning maximal ideals of the Hecke ring.
For any prime p, we say that a maximal ideal m of T is p-finite if the representation
ρm is finite at p [17, p. 189]. We say that a maximal ideal m of T is Eisenstein if
ρm is reducible.

We now prove a result that controls the support of the connected component
groups of special fibres of Néron models of certain T-equivariant subquotients of
J0(N). It is a minor variation on the argument of [19, §4].
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Proposition 4.2. Let N be a positive integer, and let A be a subquotient of J0(N)
in the category of abelian varieties over Q with T-action. Suppose that A has
semi-abelian reduction at a prime p, and let ΦA denote the T-module of connected
components of the characteristic p fibre of the Néron model of A. Then ΦA is
supported on the union of the p-finite and Eisenstein locus of T.

Proof. Consider the p-adic rigid analytic uniformization 0 → ΓA → GA → A → 0
of A. If ` is a prime, then applying Hom(Z/`, –) to this short exact sequence yields
the short exact sequence of Gal(Qp/Qp)-modules

0 → GA[`] → A[`] → (ΓA/`)∗ → 0.

(Here we have used the natural isomorphism Ext1(Z/`,ΓA) ∼−→ (ΓA/`)∗.) The
Gal(Qp/Qp)-modules GA[`] and (ΓA/`)∗ appearing at either end of this short exact
sequence are finite (not only in cardinality (!), but in the sense of [17, p. 189]).

The asserted finiteness is a standard fact, but (with the encouragement of the
referee) we will recall the reasons for it. As in the discussion preceding the statement
of lemma 3.1, we let A denote the Néron model of A over Zp, and let A0 denote the
“connected component of the identity” in A. We let Ŝ denote the formal completion
of A0 along its special fibre (so that Ŝ is a formal semi-abelian scheme). As we
observed, the formal scheme Ŝ may be naturally algebraized, yielding a semi-abelian
scheme S over Zp.

The semi-abelian GA is defined to be the generic fibre of S. Thus GA[`] is
naturally isomorphic to the generic fibre of the group scheme S[`] over Zp. Since
S is a semi-abelian scheme over Zp, its `-torsion subgroup scheme is finite flat over
Zp. Thus GA[`] extends to a finite flat group scheme over Zp, and so (by definition)
is finite. (By Zariski’s main theorem, the quasi-finite flat group scheme A0[`] over
Zp contains a unique closed subgroup scheme that is finite flat over Zp, and whose
special fibre is equal to A0

s[`] (see [5, §2.2.3]). The proceeding discussion shows that
the natural map S[`] → A0[`] identifies S[`] with this “finite part” of A0[`].)

To see the finiteness of (ΓA/`)∗ is easier; one simply recalls that the Galois action
on ΓA, and hence on (ΓA/`)∗, is even unramified. (Recall that ΓA is naturally
isomorphic to the character lattice of the toric part of the special fibre of the Néron
model of Â, the dual abelian variety to A.)

Applying Hom(Z/`, –) to the exact sequence 0 → ΓA → Hom(ΓÂ, Z) → ΦA → 0
provided by [5, thm. 11.5] yields an injection ΦA[`] → (ΓA/`)∗. Pulling back the
above short exact sequence by this map yields a morphism of short exact sequences
of Gal(Qp/Qp)-modules

(4.3) 0 // GA[`] // E //

��

ΦA[`] //

��

0

0 // GA[`] // A[`] // (ΓA/`)∗ // 0.

We claim that E is also finite at p.
Just as with A0[`], Zariski’s main theorem guarantees the existence of a unique

closed subgroup scheme of A[`] that is finite flat over Zp, and whose special fibre
is equal to As[`]; we refer to this subgroup scheme as the “finite part” of A[`]. We
will show that its generic fibre is isomorphic to E.
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If T denotes the finite part of A[`], then T contains the finite part of A0[`], which
as we observed above is equal to S[`]. The quotient T/S[`] is a finite flat group
scheme over Zp whose special fibre is equal to ΦA[`] (since As[`] is an extension of
A0

s[`] by ΦA[`]). Since ΦA, and hence ΦA[`], is an étale group scheme over Fp, we
see that T/S[`] is an étale group scheme over Zp (in fact the unique deformation of
ΦA[`] to an étale group scheme over Zp). Passing to generic fibres, and to the point
of view of Galois modules, we find that the generic fibre T/Qp

of T is an extension
of the unramified Gal(Qp/Qp)-module ΦA[`] by the Gal(Qp/Qp)-module GA[`].

We claim that the extension class of T/Qp
in Ext1

Gal(Qp/Qp)
(ΦA[`], GA[`]) is equal

to the extension class of E. Indeed, this follows from the very construction (in
[5, §11.6]) of the exact sequence of [5, thm. 11.5]. In particular, E is naturally
isomorphic to the generic fibre of the finite flat group scheme T over Zp, and hence
is finite.

The diagram (4.3) may be localized at any maximal ideal m of T having residue
characteristic ` to yield the diagram

0 // GA[`]m // Em
//

��

ΦA[`]m //

��

0

0 // GA[`]m // A[l]m // (ΓA/`)∗m // 0.

Now suppose that m is not Eisenstein. Then A[`]m has a filtration F • as a
Tm/` [Gal(Q/Q)]-module whose successive quotients F i/F i+1 are isomorphic to ρm

[12, thm. 5.2].
Suppose in addition that m is not p-finite. Since GA[`]m and (ΓA/`)∗m are both

finite at p, the short exact sequence

0 → (F i ∩GA[`]m)/(F i+1 ∩GA[`]m)

→ F i/F i+1 → F i/(F i+1 + F i ∩GA[`]m) → 0,

which exists for each i, shows that the graded pieces of the filtration induced by
F • on each of these Tm/`-modules are one-dimensional T/m-vector spaces. (Note
that these graded pieces are precisely the kernel and cokernel in the preceding short
exact sequence.) Thus each of these Tm/`-modules is of the same length; that is,
they are both of length equal to the length of the filtration F •. Now Em is also finite
at p, and so the submodule (F i ∩ Em)/(F i+1 ∩ Em) of F i/F i+1 = ρm must again
be one dimensional. Thus Em is also of length equal to the length of the filtration
F •, the inclusion GA[`]m → Em must be an isomorphism, and so ΦA[`]m = 0. This
establishes the proposition. �

We now assume that N is prime. Our first object will be to obtain a correspon-
dence between saturated prime ideals of T and abelian subvarieties of J0(N). In
order to apply some results of section 1, it will be useful to note that since N is
prime, the Hecke algebra T is reduced.

Proposition 4.4. If A is an abelian subvariety of J0(N) then A is defined over
Q, and is closed under the action of T on J0(N).

Proof. Let us remark that if A is an abelian subvariety of any abelian variety J ,
then there is an endomorphism of J whose image is equal to A. (Since the category
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of abelian varieties up to isogeny is semi-simple, we may find a map σ : J/A → J
whose composition with the projection π : J → J/A is multiplication by an integer
m on J/A; then m − σ ◦ π is the desired endomorphism.) In our case J = J0(N),
and so [10, prop. 3.1] shows that any endomorphism of J0(N) is defined over Q,
and hence so is its image. This proves that any abelian subvariety A of J0(N) is
defined over Q.

Now define T′ to be the subring of T generated by the Hecke operators Tn for
those n prime to N . Since there are no oldforms in S(N), the subring T′ has finite
index in T; let m be a non-zero integer for which mT ⊂ T′. From [18, prop. 7.19]
we see that A is closed under the action of T′. Since A is connected, mA = A, and
so TA = TmA ⊂ T′A ⊂ A. This completes the proof of the proposition. �

If A is an abelian subvariety of J0(N), we may associate to A the ideal AnnT(A),
the annihilator in T of A. Lemma 2.10 shows that this is a saturated ideal of T.
Conversely, if I is a saturated ideal of T, then J0(N)[I]0 is an abelian subvariety of
J0(N).

Proposition 4.5. The preceding correspondences between abelian subvarieties of
J0(N) and saturated ideals of T put these two sets of objects in order-reversing
bijection with one other. More precisely:

(i) If A is an abelian subvariety of J0(N) and I = AnnT(A), then A = J0(N)[I]0.
(ii) If I is a saturated ideal of T, then AnnT(J0(N)[I]0) = I.
(iii) If I1 and I2 are two saturated ideals of T, then I1 is contained in I2 if and

only if J0(N)[I1]0 contains J0(N)[I2]0.

Proof. This is an easy consequence of the results of [10]; see the discussion of [6,
II.10]. �

We now generalize the notion of optimal quotient of J0(N). If A1 and A2 are
two abelian subvarieties of J0(N), such that A2 ⊂ A1, we refer to the quotient A =
A1/A2 as an optimal subquotient of J0(N). An important invariant of the optimal
subquotient A of J0(N) is the saturated (by lemma 2.10) ideal I = AnnT(A). The
following result describes this ideal in terms of the annihilators of A1 and A2.

Lemma 4.6. Let A = A1/A2 be an optimal subquotient of J0(N). If we write
I = AnnT(A), and Ii = AnnT(Ai) (for i = 1, 2), then I = (I1 : I2).

Proof. An alternative description of I is that it is the ideal of elements of T that
multiply A1 into A2. Thus II2 annihilates A1, and so II2 ⊂ I1. This proves that
I ⊂ (I1 : I2).

Proposition 4.5 shows that A1 = J0(N)[I1]0 and that A2 = J0(N)[I2]0. Thus

(I1 : I2)A1 = (I1 : I2)J0(N)[I1]0 ⊂ J0(N)[I2]0 = A2,

and so (I1 : I2) ⊂ I. Combining this with the result of the preceding paragraph
proves the lemma. �

The following result shows that the collection of optimal subquotients of J0(N)
is closed under passing to duals.

Lemma 4.7. If A is an optimal subquotient of J0(N), then Â is naturally isomor-
phic (as an abelian variety with T-action) to an optimal subquotient of J0(N).
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Proof. Write A = A1/A2, B1 = J0(N)/A1, and B2 = J0(N)/A2. The surjections
J0(N) → B2 → B1 each have connected kernels, and so dualize to yield injections
B̂1 → B̂2 → J0(N )̂. Dualizing the short exact sequence

0 → A → B2 → B1 → 0

(and using the fact that A is connected) yields the short exact sequence

0 → B̂1 → B̂2 → Â → 0,

and so we have an isomorphism B̂2/B̂1
∼−→ Â. The lemma follows once we note

that J0(N )̂ is T-equivariantly isomorphic to J0(N). (See the proof of theorem A. In
fact, since wN centralizes T when N is prime, the canonical polarization of J0(N)
yields such an isomorphism.) �

Let I denote the Eisenstein ideal of T [6, p. 95]. We recall the following conse-
quences of the results of [6], concerning the Eisenstein ideal I and the Eisenstein
maximal ideals of T.

Proposition 4.8. (i) If m is an Eisenstein maximal ideal of T of residue char-
acteristic `, then Tm is a monogenic Z`-algebra, and ITm is a principal ideal of
Tm.

(ii) If m is a non-Eisenstein maximal ideal of T, then ITm is the unit ideal of
Tm.

Proof. We begin by noting that [6, prop. II.14.1] reconciles our definition of Eisen-
stein maximal ideals as being those whose associated Galois representation is re-
ducible with that of Mazur as being those in the support of T/I. Given this, part (i)
follows from [6, cor. II.16.2, thm. II.18.10], while part (ii) is immediate. (To avoid
confusion, let us note that our ` corresponds to Mazur’s p in the preceding refer-
ences. The role of the “good prime” ` that appears in these references is to explicitly
describe a local generator of the Eisenstein ideal. This explicit description will be
of no importance to us.) �

We are now in a position to show that the results of sections 2 and 3 may be
applied to analyze the local structure of optimal subquotients at Eisenstein maximal
ideals of T.

Proposition 4.9. Let A be an optimal subquotient of J0(N), and let I = AnnT(A).
If m is a maximal ideal of T, let m′ denote the image of m in T/I. As in section 3,
let GA denote the semi-abelian variety over QN that rigid analytically uniformizes
A over QN . Note that T/I acts on both A and (by functoriality) on GA. If m is
an Eisenstein maximal ideal of T, then m′ is good for both A and GA.

Proof. The results of [6] imply that every Eisenstein maximal ideal is good for both
J0(N) and GJ0(N) (see [4, thm. 0.5] and the discussion following its statement).
Now repeated applications of lemmas 2.9 and 3.7 prove the proposition (bearing in
mind proposition 4.8). �

Recall that C denotes the subgroup of J0(N) generated by the image of the
divisor 0 −∞ on X0(N). We know that C is a free T/I-module [6, props. II.9.7,
II.11.1].

If A = A1/A2 is an optimal subquotient of J0(N), we define CA to be the
quotient C ∩ A1/C ∩ A2. Note that CA is a subgroup of A(Q)tor. As in section 3,
we also let ΦA denote the group of connected components of the characteristic N
fibre of the Néron model of A.
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Lemma 4.10. If A is an abelian subvariety of J0(N), if I = AnnT(A), and if H
is a finite order T-submodule of J0(N) that is supported on the Eisenstein locus of
T, then H ∩A = H[I].

Proof. Proposition 4.5 shows that A = J0(N)[I]0. Proposition 4.9, together with
corollary 2.5, shows that J0(N)[I]/J0(N)[I]0 is supported away from the Eisenstein
maximal ideals of T. By assumption H is supported at the Eisenstein maximal
ideals of T. Thus we conclude that

H ∩A = H ∩ J0(N)[I]0 = H ∩ J0(N)[I] = H[I],

proving the lemma. �

Corollary 4.11. If A is an abelian subvariety of J0(N), with annihilator I =
AnnT(A), then C ∩A = C[I].

Proof. Part (ii) of proposition 4.8 shows that C is supported at the Eisenstein
maximal ideals of T. The corollary is thus a special instance of lemma 4.10. �

Lemma 4.12. If A is an optimal subquotient of J0(N), then A(Q)tor is supported
on the Eisenstein locus of T.

Proof. This follows from [6, lem. III.1.1]. �

We can now state and prove our main theorem concerning optimal subquotients
of J0(N), which will have theorem B as a corollary.

Theorem 4.13. Let A be an optimal subquotient of J0(N), and let I = AnnT(A).
(i) CA is a free T/(I + I)-module of rank one.
(ii) The specialization map CA → ΦA is an isomorphism
(iii) The (étale) group scheme ΦA over FN is constant (that is, has trivial Galois

action).
(iv) The inclusion CA ⊂ A(Q)tor is an isomorphism.

Proof. For the duration of the proof, write A = A1/A2, and write Ii = AnnT(Ai)
(for i = 1, 2). We will prove each part of the theorem in turn.

For part (i), note that lemma 4.10 shows that CA = C[I1]/C[I2]. Thus CA

is a T/(I1 : I2)-module. Lemma 4.6 shows that (I1 : I2) = I, and so CA is a
T/I-module. Since it is certainly annihilated by I, it is in fact a T/(I+ I)-module.

To show that it is free of rank one, it suffices to check this after completing at
each of the Eisenstein maximal ideals m, since T/I is supported at these maximal
ideals. If we complete at such a maximal ideal, part (i) of proposition 4.8 shows
that we are in the situation of corollary 1.8, and the conclusion of that result gives
us what we want. This proves part (i).

We begin our proof of part (ii) by noting that by [14, prop. 2.2], no non-Eisenstein
maximal ideal of T is N -finite. Thus proposition 4.2 implies that ΦA, ΦA1 , and ΦA2

are all supported on the Eisenstein locus of T. Let m be an Eisenstein maximal
ideal of T, and let m1 denote the image of m in T/I1. Proposition 4.9, together
with lemma 4.7, shows that m1 is good for both GA1 and GÂ1

. Thus corollary 3.6
implies that the sequence

0 → (ΦA2)m → (ΦA1)m → (ΦA)m → 0
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is short exact. Since this is true for every Eisenstein maximal ideal, we deduce that

0 → ΦA2 → ΦA1 → ΦA → 0

is short exact.
Now consider the morphism of short exact sequences

0 // CA2
//

��

CA1
//

��

CA
//

��

0

0 // ΦA2
// ΦA1

// ΦA
// 0,

in which the vertical arrows are provided by specialization to characteristic N .
Corollary 4.11 implies that CA2 = CA1 [I2], while ΦA2 ⊂ ΦA1 [I2], since I2 annihilates
A2, and hence ΦA2 . Thus if we knew that the central vertical arrow were an
isomorphism, we would conclude that the same is true of the left-hand vertical
arrow, and hence also of the right-hand vertical arrow. Applying the same argument
with A1, J0(N) and J0(N)/A1 in place of A2, A1 and A, and using the fact that
we know that part (ii) holds for J0(N) [6, p. 99], we deduce that the central arrow
is an isomorphism, and thus that part (ii) holds for A. This completes the proof of
part (ii).

Part (iii) is an immediate consequence of part (ii), which shows that ΦA is
obtained by specializing a group, all of whose points are defined over Q.

To prove part (iv), we begin by noting that CA is a direct factor of A(Q)tor.
The argument is the same as that of [6, p. 99], namely that the composite of the
specialization map A(Q)tor → ΦA with the inverse of the isomorphism CA

∼−→ ΦA

of part (ii) yields a retraction to the inclusion CA ⊂ A(Q)tor. Write A(Q)tor =
CA ⊕MA.

Observe that CA ⊂ A(Q)[I]. Suppose that we could prove that this inclusion
were an equality. Then we would conclude that MA[I] = 0, and thus MA[m], and
so also (MA)m, would be trivial for every Eisenstein maximal ideal m. Since MA is
supported at the Eisenstein maximal ideals of T (by lemma 4.12) we would conclude
that MA = 0, and part (iv) would be proved. Thus we turn to proving that the
inclusion CA ⊂ A(Q)[I] is an equality.

It suffices to prove that for each Eisenstein maximal ideal m of T, the corre-
sponding inclusion of m-adic completions (CA)m → A(Q)[I]m is an equality. Fix
one such m. We claim that the sequence

0 → A2[I]m → A1[I]m → A[I]m → 0

is exact. Indeed, this follows from lemma 2.6, once we note that the image m1 of m
in T/I1 is good for A1 by proposition 4.9, that I2/I1 is a saturated ideal of T/I1,
that I(T/I)m1 is principal by part (i) of proposition 4.8, and that A2 = A1[I2/I1].
Now Ai[I]m = J0(N)[I + Ii]m, by lemma 4.10, for i = 1, 2. Since (CAi

)m is equal
to the Gal(Q/Q)-invariants of J0(N)[I + Ii]m, we are reduced to proving that the
morphism J0(N)[I + I1]m → J0(N)[I + I1]m/J0(N)[I + I2]m induces a surjection
after passing to Gal(Q/Q)-invariants.

Corollary 1.4 implies that I2Tm is principal; write I2Tm = αTm. Multiplication
by α induces an isomorphism J0(N)[I+I1]m/J0(N)[I+I2]m

∼−→ I2J0(N)[I+I1]m.
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Thus we must show that multiplication by α induces a surjection from the Galois
invariants of J0(N)[I + I1]m onto those of I2J0(N)[I + I1]m.

Since TmJ0(N) is free of rank two over Tm [6, cor. II.16.3], we see that J0(N)[I+
I1]m is dual to a module that is free of rank two over Tm/(I + I1) (recall again
that our Tate modules are contravariant), and so is itself free of rank two over
Tm/(I + I1). (Since Tm/(I + I1) is a quotient of T/I, which is a quotient of Z,
and so is obviously Gorenstein.) Thus corollary 1.7 shows that I2J0(N)[I + I1]m =
J0(N)[I + I1 + I⊥2 ]m. The Galois invariants of J0(N)[I + I1]m are equal to C[I1]m,
and so the Galois invariants of J0(N)[I + I1 + I⊥2 ]m are equal to C[I1 + I⊥2 ]m.
Hence we must show that multiplication by α induces a surjection from C[I1]m
onto C[I1 + I⊥2 ]m. Since C[I1]m is free of rank one over Tm/(I + I1), by part (i),
this again follows from corollary 1.7. Thus part (iv) is proved. (We remark that
rather than appealing to corollary 1.7 in this final step, we could instead have used
the fact that T/I is isomorphic to Z/n for an integer n [6, prop. II.9.7]; this allows
one to make an analogous argument, using the elementary and explicit description
of ideals in Z/n.) �

Proof of theorem B. Let f be a normalized eigenform in S(N). Then Af and Âf

are optimal subquotients of J0(N), both of whose annihilators in T are equal to If .
The first six parts of theorem B thus follow immediately from theorem 4.13.

It remains to prove part (vii). Let {f1, . . . , fd} be a complete set of conjugacy
class representatives of the normalized eigenforms in S(N). Observe that we may
find a descending sequence of saturated ideals 0 = I0 ⊂ I1 ⊂ · · · ⊂ Id = T of T
such that (Ii−1 : Ii) = Ifi

. Let Ai = J0(N)[Ii−1]0/J0(N)[Ii]0 (for i = 1, . . . , d).
Lemma 4.6 shows that AnnT(Ai) = Ifi

. Thus part (i) of theorem 4.13 shows that
CAi and Cfi = CAfi

are isomorphic T-modules, and so in particular have the same
order. Also, corollary 4.11 shows that CAi

= C[Ii−1]/C[Ii]. Thus we conclude that

∏
fi

#Cfi
=

d∏
i=1

#C[Ii−1]
#C[Ii]

= #C.

This proves part (vii). �
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Astérisque 196–197 (1991), 215–255.
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