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1. Introduction

This paper is the first of two in which we define and study the functors of or-
dinary parts on categories of admissible smooth representations of p-adic reductive
groups over fields of characteristic p, as well as their derived functors. These func-
tors of ordinary parts, which are characterized as being right adjoint to parabolic
induction, play an important role in the study of smooth representation theory in
characteristic p. They also have important global applications: when applied in
the context of the p-adically completed cohomology spaces introduced in [7], they
provide a representation theoretic approach to Hida’s theory of (nearly) ordinary
parts of cohomology [11, 12, 13]. The immediate applications that we have in mind
are for the group GL2: the results of our two papers have applications to the con-
struction of the mod p and p-adic local Langlands correspondences for the group
GL2(Qp), and to the investigation of local-global compatibility for p-adic Langlands
over the group GL2 over Q.

To describe our results more specifically, let G be (the Qp-valued points of) a
connected reductive p-adic group, P a parabolic subgroup of G, P an opposite para-
bolic to P , and M = P

⋂
P the corresponding Levi factor of P and P . If k is a finite

field of characteristic p, we let Modadm
G (k) (resp. Modadm

M (k)) denote the category
of admissible smooth G-representations (resp. M -representations) over k. Para-
bolic induction yields a functor IndG

P
: Modadm

M (k) → Modadm
G (k). The functor of

ordinary parts associated to P is then a functor OrdP : Modadm
G (k)→ Modadm

M (k),
which is right adjoint to IndG

P
.

In this paper, we define OrdP and study its basic properties. In the sequel
[9] we investigate the derived functors of OrdP , and present some applications to
the computation of Ext spaces in the category Modadm

G (k) in the case when G =
GL2(Qp), computations which in turn play a role in the construction of the mod p
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and p-adic local Langlands correspondences (see [4] and [10]). The applications to
local-global compatibility are part of the arguments of [10]. We hope to discuss the
applications in the context of p-adically completed cohomology in a future paper.
Let us only mention here that Theorem 3.4.8 below is an abstract formulation of
Hida’s general principle that the ordinary part of cohomology should be finite over
weight space.

1.1. Arrangement of the paper. In order to allow for maximum flexibility in
applications, we actually work throughout the paper with representations defined
not just over the field k, but over general Artinian local rings, or even complete
local rings, having residue field k. This necessitates a development of the founda-
tions of the theory of admissible representations over such coefficient rings. Such
a development is the subject of Section 2. We also take the opportunity in that
section to present some related representation theoretic notions that do not seem
to be in the literature, and which will be useful in this paper, its sequel, and future
applications. The functors OrdP are defined, and some of their basic properties
established, in Section 3. Their characterization as adjoint functors is proved in
Section 4. In the appendix we establish some simple functional analytic results
about modules over p-adic integer rings.

1.2. Notation and terminology. Throughout the paper, we fix a prime p, as
well as a finite extension E of Qp, with ring of integers O. We let F denote the
residue field of O, and $ a choice of uniformizer of O. Let Comp(O) denote the
category of complete Noetherian local O-algebras having finite residue fields, and
let Art(O) denote the full subcategory of Comp(O) consisting of those objects that
are Artinian (or equivalently, of finite length as O-modules).

If A is an object of Comp(O), and V is an A-module which is torsion as an
O-module, then we write V ∗ := HomO(V,E/O) to denote the Pontrjagin dual
of V (where V is endowed with its discrete topology), equipped with its natural
profinite topology. If V is a G-representation over A, for some group G, then the
contragredient action makes V ∗ a G-representation over A (with each element of G
acting via a continuous automorphism).

If V is any O-module, then we let Vfl denote the maximal O-torsion free quotient
of V . We write V [$i] to denote the kernel of multiplication by $i on V , and
V [$∞] :=

⋃
i≥0 V [$i]. If C is any O-linear category, then for any integer i ≥ 0

(resp. i = ∞), we let C[$i] denote the full subcategory of C consisting of objects
that are annihilated by $i (resp. by some power of $).

1.3. Acknowledgments. I would like to thank the referee for a very careful read-
ing of the paper, and for saving me from a blunder or two. I would also like to
thank Florian Herzig for his close reading of an earlier version of the paper, and
Kevin Buzzard for his helpful comments.

2. Representations of p-adic analytic groups

Let G be a p-adic analytic group. Throughout this section, we will let A de-
note an object of Comp(O), with maximal ideal m. We denote by ModG(A) the
abelian category of representations of G over A (with morphisms being A-linear G-
equivariant maps); equivalently, ModG(A) is the abelian category of A[G]-modules,
where A[G] denotes the group ring of G over A. In this section we introduce, and
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study some basic properties of, various categories of G-representations, as well as
of certain related categories of what we will call augmented G-representations.

2.1. Augmented G-representations. If H is a compact open subgroup of G,
then as usual we let A[[H]] denote the completed group ring of H over A, i.e.

(2.1.1) A[[H]] := lim
←−
H′
A[H/H ′],

where H ′ runs over all normal open subgroups of H. We equip A[[H]] with the
projective limit topology obtained by endowing each of the rings A[H/H ′] appearing
on the right hand side of (2.1.1) with its m-adic topology. The rings A[H/H ′] are
then profinite (since each H/H ′ is a finite group), and hence this makes A[[H]] a
profinite, and so in particular compact, topological ring.

2.1.2. Theorem. The completed group ring A[[H]] is Noetherian.

Proof. In the case when A = O = Zp, this is proved by Lazard [14]: after replacing
H by an open subgroup, if necessary, Lazard equips Zp[[H]] with an exhaustive
decreasing filtration F • whose associated graded ring Gr•F Zp[[H]] is isomorphic to
a polynomial algebra (with generators in degree 1) over the graded ring Fp[t] (which
is the graded ring associated to Zp with its p-adic filtration).

For general A, we may write A[[H]] ∼−→ A⊗̂ZpZp[[H]], and so equip A[[H]] with
an exhaustive decreasing filtration obtained as the completed tensor product of
the m-adic filtration on A and Lazard’s filtration F • on Zp[[H]]. The graded ring
associated to this filtration on the completed tensor product is naturally isomorphic
to a quotient of the tensor product of the individual associated graded rings, i.e.
is isomorphic to a quotient of (Gr•mA)⊗Fp[t] Gr•F Zp[[H]], where Gr•mA denotes the
graded ring associated to the m-adic filtration on A (which is also naturally an
algebra over the graded ring Fp[t] associated to the p-adic filtration of Zp, since
p ∈ m).

Thus the associated graded ring to A[[H]] is isomorphic to a quotient of a poly-
nomial algebra over the Noetherian ring Gr•mA, and thus is again Noetherian. Con-
sequently A[[H]] itself is Noetherian, as claimed. �

2.1.3. Proposition. (1) Any finitely generated A[[H]]-module admits a unique
profinite topology with respect to which the A[[H]]-action on it becomes
jointly continuous.

(2) Any A[[H]]-linear morphism of finitely generated A[[H]]-modules is contin-
uous with respect to the profinite topologies on its source and target given
by part (1).

Proof. Since A[[H]] is Noetherian, we may find a presentation

A[[H]]s → A[[H]]r →M → 0

of M , for some r, s ≥ 0. Since A[[H]] is profinite, it follows that the first arrow
has closed image, and hence that M is the quotient of the profinite module A[[H]]r

by a closed A[[H]]-submodule. If we equip M with the induced quotient topology,
then it becomes a profinite module. The resulting profinite topology on M is
clearly independent of the chosen presentation, and satisfies the requirements of
the proposition. �

2.1.4. Definition. If M is a finitely generated A[[H]]-module, we refer to the topol-
ogy given by the preceding lemma as the canonical topology on M .
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2.1.5. Definition. By an augmented representation of G over A we mean an A[G]-
module M equipped with an A[[H]]-module structure for some (equivalently, any)
compact open subgroup H of G, such that the two induced A[H]-actions (the first
induced by the inclusion A[H] ⊂ A[[H]] and the second by the inclusion A[H] ⊂
A[G]) coincide.

2.1.6. Definition. By a profinite augmented G-representation over A we mean an
augmented G-representation M over A that is also equipped with a profinite topol-
ogy, so that the A[[H]]-action on M is jointly continuous 1 for some (equivalently
any) compact open subgroup H over A.

The equivalence of the conditions “some” and “any” in the preceding definitions
follows from the fact that if H1 and H2 are two compact open subgroups of G, then
H := H1

⋂
H2 has finite index in each of H1 and H2.

We denote by Modaug
G (A) the abelian category of augmented G-representations

over A, with morphisms being maps that are simultaneously G-equivariant and
A[[H]]-linear for some (equivalently, any) compact open subgroup H of G, and by
Modpro aug

G (A) the abelian category of profinite augmented G-representations, with
morphisms being continuous A-linear G-equivariant maps (note that since A[H] is
dense in A[[H]], any such map is automatically A[[H]]-linear for any compact open
subgroup H of G). Forgetting the topology induces a forgetful functor

Modpro aug
G (A) −→ Modaug

G (A).

We let Modfg aug
G (A) denote the full subcategory of Modaug

G (A) consisting of aug-
mented G-modules that are finitely generated over A[[H]] for some (equivalently
any) compact open subgroup H of G. Proposition 2.1.3 shows that by equipping
each object of Modfg aug

G (A) with its canonical topology, we may lift the inclusion
Modfg aug

G (A)→ Modaug
G (A) to an inclusion Modfg aug

G (A)→ Modpro aug
G (A).

2.1.7. Proposition. The category Modfg aug
G (A) forms a Serre subcategory of each

of the abelian categories Modaug
G (A) and Modpro aug

G (A) (i.e. it is closed under
passing to subobjects, quotients, and extensions). In particular, it itself is an abelian
category.

Proof. Closure under the formation of quotients and extensions is evident, and
closure under the formation of subobjects follows from Theorem 2.1.2. �

2.2. Smooth G-representations. In this subsection we give the basic definitions,
and state the basic results, related to smooth, and admissible smooth, representa-
tions of G over A. In the case when A is Artinian, our definitions will agree with
the standard ones. Otherwise, they may be slightly unorthodox, but will be the
most useful ones for our later purposes.

2.2.1. Definition. Let V be a representation of G over A. We say that a vector
v ∈ V is smooth if:

(1) v is fixed by some open subgroup of G.
(2) v is annihilated by some power mi of the maximal ideal of A.

We let Vsm denote the subset of V consisting of smooth vectors.

1It is equivalent to ask that the profinite topology on M admits a neighbourhood basis at the
origin consisting of A[[H]]-submodules.
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2.2.2. Remark. The following equivalent way of defining smoothness can be useful:
a vector v ∈ V is smooth if and only if v is annihilated by the intersection J

⋂
A[H]

for some open ideal J ⊂ A[[H]], where H is some (equivalently, any) compact open
subgroup of G.

2.2.3. Remark. If A is Artinian, then mi = 0 for sufficiently large i, and so auto-
matically miv = 0 for any element v of any A-module V . Thus condition (2) can be
omitted from the definition of smoothness for such A, and our definition coincides
with the usual one.

2.2.4. Lemma. The subset Vsm is an A[G]-submodule of V .

Proof. If vi ∈ Vsm (i = 1, 2) are fixed by open subgroups Hi ⊂ G, and annihilated
by mi1 and mi2 , then any A-linear combination of v1 and v2 is fixed byH1

⋂
H2, and

annihilated by mmax i1,i2 , and hence also lies in Vsm. Thus Vsm is an A-submodule
of V . Also, if v ∈ Vsm is fixed by the open subgroup H ⊂ G, and annihilated by
mi, then gv is fixed by gHg−1 ⊂ G for any g ∈ G, and again annihilated by mi.
Thus Vsm is closed under the action of G. �

2.2.5. Definition. We say that a G-representation V of G over A is smooth if
V = Vsm; that is, if every vector of V is smooth.

We let Modsm
G (A) denote the full subcategory of ModG(A) consisting of smooth

G-representations. The association V 7→ Vsm is a left-exact functor from ModG(A)
to Modsm

G (A), which is right adjoint to the inclusion of Modsm
G (A) into ModG(A).

2.2.6. Lemma. The full subcategory Modsm
G (A) of ModG(A) is closed under the

formation of subobjects, quotients, and inductive limits (and so in particular is an
abelian category).

Proof. This is clear. �

The following lemma provides some useful ways of thinking about smooth rep-
resentations of G.

2.2.7. Lemma. Let V be a G-representation over A, and suppose that V is torsion
as an O-module. (Note that this holds automatically if A is torsion as an O-module,
e.g. if A is an object of Art(O).) The following conditions on V are equivalent.

(1) V is smooth.
(2) The A-action on V and the G-action on V are both jointly continuous,

when V is given its discrete topology.
(3) The A-action and the G-action on V ∗ are both jointly continuous when V ∗

is given its natural profinite topology.
(4) For some (equivalently, every) compact open subgroup H of G, the A[H]-

action on V extends (in a necessarily unique manner) to an A[[H]]-action
which is continuous when V is equipped with the discrete topology.

(5) For some (equivalently, every) compact open subgroup H of G, the H-action
on V ∗ extends (in a necessarily unique manner) to a continuous action of
the completed group ring A[[H]] on V ∗.

(In both conditions (2) and (3), the ring A is understood to be equipped with its
m-adic topology.)

Proof. The straightforward (and well-known) proofs are left to the reader. �
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Lemma 2.2.7 implies that passing to Pontrjagin duals induces an anti-equivalence

(2.2.8) Modsm
G (A) anti∼ // Modpro aug

G (A).

2.2.9. Definition. We say that a smooth G-representation V over A is admissible
if V H [mi] (the mi-torsion part of the subspace of H-fixed vectors in V ) is finitely
generated over A for every open subgroup H of G and every i ≥ 0.

2.2.10. Remark. If A is Artinian, so that mi = 0 for i sufficiently large, then
V H [mi] = V H for i sufficiently large, and so the preceding definition agrees with
the usual definition of an admissible smooth A-module.

We let Modadm
G (A) denote the full subcategory of Modsm

G (A) consisting of ad-
missible representations.

2.2.11. Lemma. A smooth G-representation V over A is admissible if and only if
V ∗ is finitely generated as an A[[H]]-module for some (equivalently, every) compact
open subgroup H of G.

Proof. This is well-known. �

By Lemma 2.2.11, the anti-equivalence (2.2.8) restricts to an anti-equivalence

(2.2.12) Modadm
G (A)

anti∼ // Modfg aug
G (A).

2.2.13. Proposition. The category Modadm
G (A) forms a Serre subcategory of the

abelian category Modsm
G (A). In particular, it itself is an abelian category.

Proof. This follows directly from the anti-equivalences (2.2.8) and (2.2.12), together
with Proposition 2.1.7 and Lemma 2.2.6. �

2.2.14. Remark. It follows from Lemma 2.2.11, together with the topological ver-
sion of Nakayama’s lemma, that if H is an open pro-p subgroup of G (so that
A[[H]] is a – typically non-commutative – local ring), then V is admissible if and
only if V H [m] is finite dimensional over A/m. In particular, if the condition of
Definition 2.2.9 holds when i = 1, then it holds automatically for all values of i,
and so V is admissible.

2.2.15. Definition. Let V be a G-representation over A.
(1) We say that an element v ∈ V is locally admissible if v is smooth, and if

the smooth G-subrepresentation of V generated by v is admissible.
(2) We let Vl adm denote the subset of V consisting of locally admissible ele-

ments.

2.2.16. Lemma. The subset Vl adm is an A[G]-submodule of V .

Proof. Let vi ∈ Vl adm (i = 1, 2), and let Wi denote the G-subrepresentation of V
generated by vi. Since Modadm

G (A) is a Serre subcategory of Modsm
G (A), we see

that the image of the map W1

⊕
W2 → V induced by the inclusions Wi ⊂ V is

admissible. This image certainly contains any A-linear combination of the vi, and
thus Vl adm is an A-submodule of V . It is also clearly G-invariant, and thus is an
A[G]-submodule of V . �
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2.2.17. Definition. We say that a G-representation V of G over A is locally ad-
missible if V = Vl adm; that is, if every vector of V is locally admissible.2

We let Modl adm
G (A) denote the full subcategory of Modsm

G (A) consisting of locally
admissible G-representations.

2.2.18. Proposition. The category Modl adm
G (A) is closed under passing to subrep-

resentations, quotients, and inductive limits in Modsm
G (A). In particular, it itself is

an abelian category.

Proof. Since Modadm
G (A) is closed under passing to subrepresentations and quo-

tients in Modsm
G (A), the same is evidently true for Modl adm

G (A). The closure under
formation of inductive limits is also clear, since the property of being locally ad-
missible is checked elementwise. �

2.2.19. Remark. Clearly any finitely generated locally admissible representation is
in fact admissible smooth. Since any representation is the inductive limit of finitely
generated ones, we see that a representation is locally admissible if and only if it
can be written as an inductive limit of admissible representations.

The association V 7→ Vl adm gives rise to a left-exact functor from ModG(A) to
Modl adm

G (A), which is right adjoint to the inclusion of Modl adm
G (A) into ModG(A).

The following diagram summarizes the relations between the various categories
that we have introduced:

ModG(A)

( )sm
##

( )l adm

++

Modsm
G (A)
?�

OO

oo anti∼ // Modpro aug
G (A) // Modaug

G (A)

Modl adm
G (A)
?�

OO

Modadm
G (A)
?�

OO

oo anti∼ // Modfg aug
G (A)

?�

canonical
topology

OO

( �

LL

2.3. Some finiteness conditions. Let Z denote the centre of G.

2.3.1. Definition. Let V be an object of ModG(A).
(1) We say that V is Z-finite if, writing I to denote the annihilator of V in

A[Z], the quotient A[Z]/I is finitely generated as an A-module.
(2) We say that v ∈ V is locally Z-finite if the A[Z]-submodule of V generated

by v is finitely generated as an A-module. We let VZ−fin denote the subset
of locally Z-finite elements of V .

(3) We say that V is locally Z-finite if every v ∈ V is locally finite over Z, i.e.
if V = VZ−fin.

2As was pointed out by a referee, in the context of smooth representations of p-adic groups
over the field of complex numbers, such representations have been called quasi-admissible by
Harish-Chandra.
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2.3.2. Lemma. (1) For any object V of ModG(A), the subset VZ−fin is an
A[G]-submodule of V .

(2) If V1 and V2 are two (locally) Z-finite representations, then V1

⊕
V2 is again

(locally) Z-finite.
(3) Any A[G]-invariant submodule or quotient of a (locally) Z-finite represen-

tation is again (locally) Z-finite.

Proof. If V1 and V2 are A[G]-modules annihilated by the A-finite quotients A[Z]/I1
and A[Z]/I2 of A[Z], respectively, then V1

⊕
V2 is annihilated by A[Z]/(I1

⋂
I2),

which is again A-finite (since it embeds into (A[Z]/I1)×(A[Z]/I2)). This proves (2)
in the case of Z-finite representations.

Now suppose that v1 and v2 are two elements of VZ−fin, for some A[G]-module V .
Let Ii denote the annihilator of vi in A[Z], and let Wi be the G-subrepresentation
of V generated by vi. Since Z is the centre of G, we see that Ii annihilates all of
Wi. Thus each Wi is Z-finite, and thus so is W1

⊕
W2. The image of the natural

map W1

⊕
W2 → V contains all linear combinations of the vi, and is G-invariant.

Thus VZ−fin is an A[G]-submodule of V , proving (1).
Now let V1 and V2 be locally Z-finite A[G]-modules. Then (V1

⊕
V2)Z−fin con-

tains V1 and V2, and so, since it is an A[G]-submodule of V1

⊕
V2, equals all of

V1

⊕
V2. This proves (2) in the case of locally Z-finite representations.

Part (3) is evident (and was already used implicitly in the proof of part (1)). �

2.3.3. Lemma. If V is an object of ModG(A) which is finitely generated over A[G],
then V is Z-finite if and only if V is locally Z-finite.

Proof. As we already observed in the proof of the preceding lemma, if an A[G]-
module is generated by a single locally Z-finite vector, then it is Z-finite. If V is
generated by finitely many such vectors, then it is a quotient of a direct sum of
finitely many Z-finite representations, and so is again Z-finite (by parts (2) and (3)
of the preceding lemma). �

2.3.4. Lemma. If V is an object of ModG(A), then any locally admissible vector
in V is locally Z-finite.

Proof. Suppose that v ∈ V is locally admissible, let H ⊂ G be a compact open
subgroup that fixes v, and let mi annihilate v, for some i ≥ 0. If W ⊂ V denotes
the A[G]-submodule generated by v, then W is admissible smooth, by assumption,
and is annihilated by mi, and so WH is finitely generated over A. Since WH is
Z-invariant, we conclude that v is locally Z-finite, as claimed. �

2.3.5. Lemma. If an object V of Modadm
G (A) is finitely generated over A[G], then

V is Z-finite.

Proof. This follows directly from the preceding lemmas. �

2.3.6. Lemma. Let V be an object of Modsm
G (A), and consider the following con-

ditions on V .
(1) V is of finite length (as an object of Modsm

G (A), or equivalently, as an object
of ModG(A)), and is admissible.

(2) V is finitely generated as an A[G]-module, and is admissible.
(3) V is of finite length (as an object of Modsm

G (A)), and is Z-finite.
Then (1) implies (2) and (3).
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Proof. The implication (1) ⇒ (2) is immediate. The implication (1) ⇒ (3) then
follows from this together with the preceding lemma. �

We make the following conjecture:

2.3.7. Conjecture. If G is a reductive p-adic group, then the three conditions of
Lemma 2.3.6 are mutually equivalent.

2.3.8. Theorem. Conjecture 2.3.7 holds in the following two cases:
(1) G is a torus.
(2) G = GL2(Qp).

Proof. Suppose first that G is a torus, so that G = Z. Let V be an object of
Modsm

G (A). Taking into account Lemma 2.3.5, we see that each of conditions (2)
and (3) of Lemma 2.3.6 implies that V is both finitely generated over A[Z] and
Z-finite. These conditions, taken together, imply in their turn that V is finitely
generated as an A-module. In particular, it is a finite length object of Modadm

G (A).
Thus conditions (2) and (3) of Lemma 2.3.6 each imply condition (1).

Suppose now that G = GL2(Qp). The results of [1] and [2] imply that any
irreducible smooth G-representation that is Z-finite is admissible (see [2, Cor. 1.2],
and note that each of the representations listed in this corollary is admissible), and
thus condition (3) of Lemma 2.3.6 implies condition (1). It remains to show that
the same is true of condition (2) of Lemma 2.3.6. To this end, let V be an object of
Modadm

G (A) that is finitely generated over A[G]. We must show that it is of finite
length.

WriteH = GL2(Zp)Z ⊂ G. Let S ⊂ V be a finite set that generates V over A[G],
and let W be the A[H]-submodule of V generated by S. Since V is smooth (by
assumption), and Z-finite (by Lemma 2.3.5), we see that W is finitely generated
as an A-module, annihilated by some power of m. Since W contains the gener-
ating set S, the H-equivariant embedding W ↪→ V induces a G-equivariant sur-
jection c−IndG

H W → V. Thus it suffices to show that any admissible quotient V
of c−IndG

H W is of finite length as an A[G]-module. Taking into account Propo-
sition 2.2.13, we see in fact that it suffices to prove the analogous result with W
replaced by one of its (finitely many) Jordan-Hölder factors, which will be a fi-
nite dimensional irreducible representation of H over k := A/m. Extending scalars
to a finite extension of k, if necessary, we may furthermore assume that W is an
absolutely irreducible representation of H over k, and this we do from now on.

Since V is a quotient of c−IndG
H W , the evaluation map

(2.3.9) Homk[G](c−IndG
H W,V )⊗k c−IndG

H W → V

is surjective. Lemma 2.3.10 below shows that Homk[G](c−IndG
H W,V ) is a finite

dimensional k-vector space. It is also naturally a module over the endomorphism
algebra H := Endk[G](c−IndG

H W ). In [1] it is proved that H ∼= k[T ] (where T
denotes a certain specified endomorphism whose precise definition need not concern
us here). Thus Homk[G](c−IndG

H W,V ) is a finite dimensional k[T ]-module, and
hence is a direct sum of k[T ]-modules of the form k[T ]/f(T )k[T ], for various non-
zero polynomials f(T ) ∈ k[T ].

Taking into account the surjection (2.3.9), we see that it suffices to show that
any G-representation of the form (c−IndG

H W )/f(T )(c−IndG
H W ) is of finite length.

Further extending scalars, if necessary, we may assume that f(T ) factors completely
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in k[T ] as a product of linear factors, and hence are reduced to showing that for
any scalar λ ∈ k, the quotient (c−IndG

H W )/(T − λ)(c−IndG
H W ) is of finite length.

This, however, follows from the results of [1] and [2]. (Indeed, these quotients are
either irreducible or of length two – see Theorems 1.1 and 2.7.1 of [2].) Thus the
theorem is proved in the case of GL2(Qp). �

2.3.10. Lemma. If U and V are smooth representations of G over A, such that U
is finitely generated over A[G] and V is admissible, then HomA[G](U, V ) is a finitely
generated A-module.

Proof. Let W ⊂ U be a finitely generated A-submodule that generates U over A[G],
let H ⊂ G be a compact open subgroup of G that fixes W , and let i ≥ 0 be such
that mi annihilates W . (Since U is a smooth representation of G over A, such H
and i exist.) Restricting homomorphisms to W induces an embedding

(2.3.11) HomA[G](U, V ) ↪→ HomA(W,V H [mi]).

Since V is an admissible smooth G-representation, its submodule V H [mi] is finitely
generated over A, and so the target of (2.3.11) is finitely generated over A. The
same is thus true of the source, and the lemma follows. �

2.4. $-adically admissible G-representations. In this subsection we introduce
a class of representations related to the considerations of [15].

2.4.1. Definition. We say that a G-representation V over A is $-adically contin-
uous if:

(1) V is $-adically separated and complete.
(2) The O-torsion subspace V [$∞] of V is of bounded exponent (i.e. is anni-

hilated by a sufficiently large power of $).
(3) TheG-actionG×V → V is continuous, when V is given its$-adic topology.
(4) The A-action A×V → V is continuous, when A is given its m-adic topology

and V is given its $-adic topology.

2.4.2. Remark. Conditions (3) and (4) of the definition can be expressed more
succinctly as follows: for any i ≥ 0, the G-action on V/$iV is smooth, in the sense
of 2.2.1. Also, the reader may easily check, in Definition 2.4.1, that condition (3)
is equivalent to the apparently weaker condition that the map G × V → V be
left-continuous (i.e. that the map G→ V defined by g 7→ gv is continuous for each
v ∈ V ) when V is equipped with its $-adic topology, and that condition (4) is
equivalent to the apparently weaker condition that the map A × V → V be left-
continuous when A is equipped with its m-adic topology and V is equipped with
its $-adic topology.

We let Mod$−cont
G (A) denote the full subcategory of ModG(A) consisting of $-

adically continuous representations of G over A.

2.4.3. Remark. If V is a O-torsion object of Mod$−cont
G (A), then V = V [$i] for

some i ≥ 0, hence V = V/$iV , and so V is in fact a smooth representation of G.
Thus Mod$−cont

G (A)[$∞] = Modsm
G (A)[$∞]. In particular, when A is an object of

Art(O), the categories Mod$−cont
G (A) and Modsm

G (A) coincide.

We now establish some basic results concerning the category Mod$−cont
G (A).
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2.4.4. Proposition. Let 0 → V1 → V2 → V3 → 0 be a short exact sequence
in ModG(A). If V2 is an object of Mod$−cont

G (A), then the following are equivalent:

(1) V1 is closed in the $-adic topology of V2, and V3[$∞] has bounded exponent.
(2) V3 is an object of Mod$−cont

G (A).

Furthermore, if these equivalent conditions hold, then the G-representation V1 is
also an object of Mod$−cont

G (A), and the $-adic topology on V2 induces the $-adic
topology on V1.

Proof. The surjection V2 → V3 induces a surjection V2/$
iV2 → V3/$

iV3 for each
i ≥ 0. Thus V3/$

iV3 is a smooth A[G]-representation for each i ≥ 0, since this is
true of V2/$

iV2 by assumption. Since V2 is assumed to be $-adically complete
and separated, we see furthermore that V1 is closed in V2 if and only if V3 (which
is isomorphic to the quotient V2/V1) is $-adically complete and separated. From
this we conclude the equivalence of (1) and (2).

If these conditions hold, then it follows from Lemma A.1 that the$-adic topology
on V2 induces the $-adic topology on V1, and hence that V1 is $-adically separated
and complete, since V2 is by assumption. This shows that V1 satisfies condition (1)
of Definition 2.4.1. It obviously satisfies condition (2), since it is a submodule of
V2, which satisfies this condition by assumption. Conditions (3) and (4) are also
inherited from the corresponding conditions for V2, again taking into account the
fact that the $-adic topology on V2 induces the $-adic topology on V1. Thus V1

is an object of Mod$−cont
G (A), as claimed. �

2.4.5. Corollary. The category Mod$−cont
G (A) is closed under the formation of

kernels and images in the abelian category ModG(A).

Proof. Suppose that 0 → V1 → V2 → V3 is an exact sequence of objects in
ModG(A), with V2 and V3 lying in Mod$−cont

G (A). Let V ′3 denote the image of
V2 in V3. Since V3[$∞] has bounded exponent, by assumption, so does V ′3 [$∞].
The preceding proposition then implies that both V1 and V ′3 lie in Mod$−cont

G (A).
This proves the closure of Mod$−cont

G (A) under the formation of kernels and im-
ages. �

2.4.6. Corollary. If V is any object of Mod$−cont
G (A), then each of V [$∞] and Vfl

is also an object of Mod$−cont
G (A).

Proof. Since V [$∞] is of bounded exponent, the discussion of Remark A.2 show
that V [$∞] is $-adically closed in V . Since (Vfl)[$∞] = 0, the result is now
seen to follow directly from Proposition 2.4.4, applied to the short exact sequence
0→ V [$∞]→ V → Vfl → 0. �

2.4.7. Definition. A $-adically admissible representation of G over A is an object
V of Mod$−cont

G (A) for which the inducedG-representation on (V/$V )[m] (which is
then a smooth G-representation over A/m, by Remark 2.4.2) is in fact an admissible
smooth G-representation over A/m.

2.4.8. Remark. Since admissible smooth representations form a Serre subcategory
of Modsm

G (A), we see (taking into account Remarks 2.2.14 and 2.4.2) that if V is a
$-adically admissible G-representation over A, then in fact V/$iV is an admissible
smooth representation for every i ≥ 0.
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We let Mod$−adm
G (A) denote the full subcategory of Mod$−cont

G (A) consisting
of $-adically admissible representations.

2.4.9. Remark. Combining the observations of Remarks 2.4.3 and 2.4.8, one sees
that Mod$−adm

G (A)[$∞] = Modadm
G (A)[$∞]. In particular, when A is an object of

Art(O), the categories Mod$−adm
G (A) and Modadm

G (A) coincide.

2.4.10. Proposition. The functor V 7→ HomO(V,O) induces an A-linear anti-
equivalence of categories Mod$−adm

G (A)fl ∼−→ Modfg aug
G (A)fl.

Proof. As is explained in the proof of [15, Thm. 1.2], the functor V 7→ HomO(V,O),
the latter space being equipped with the weak topology (i.e. the topology of point-
wise convergence), induces an equivalence of categories between the category of
$-adically separated and complete flat O-modules and the category of compact
linear-topological flat O-modules. The reader may now easily check that this func-
tor induces the required equivalence. �

2.4.11. Proposition. The category Mod$−adm
G (A) is closed under the formation

of kernels, images, and cokernels in the abelian category ModG(A), and under ex-
tensions in the category Mod$−cont

G (A). In particular, Mod$−adm
G (A) is an abelian

category.

Proof. Suppose first that 0 → V1 → V2 → V3 → 0 is a short exact sequence of
objects in Mod$−cont

G (A), with V1 and V3 being objects of Mod$−adm
G (A). For any

i ≥ 0, we have the exact sequence V1/$
iV1 → V2/$

iV2 → V3/$
iV3 → 0. Since

V1/$
iV1 and V3/$

iV3 are assumed to be admissible smooth G-representations over
A, the same is true of V2/$

iV2, by Proposition 2.2.13. Thus V2 is an object of
Mod$−adm

G (A).
Suppose now that 0 → V1 → V2 → V3 is an exact sequence of objects of

ModG(A), with V2 and V3 being objects of Mod$−adm
G (A). Let V ′3 denote the

image of V2 in V3. It follows from Corollary 2.4.5 that V1 and V ′3 are objects of
Mod$−cont

G (A). Since V3[$∞] is an object of Mod$−adm
G (A)[$∞], which by Re-

mark 2.4.9 equals Modadm
G (A)[$∞], so is V ′3 [$∞], by Proposition 2.2.13. Choose

i ≥ 0 so that V ′3 [$i] = V ′3 [$∞]. For each j ≥ i, our given exact sequence yields an
exact sequence

V ′3 [$i] = V ′3 [$j ]→ V1/$
jV1 → V2/$

jV2 → V ′3/$
jV ′3 → 0.

Since the first and third terms of the exact sequence lie in Modadm
G (A), we conclude

from Proposition 2.2.13 that the other two terms do also. We conclude that V1 and
V ′3 are both objects of Mod$−adm

G .
Suppose finally that V1 → V2 → V3 → 0 is an exact sequence of objects of

ModG(A), with V1 and V2 being objects of Mod$−adm
G (A). We wish to show that

V3 is also an object of Mod$−adm
G (A). By what we have already proved, we know

that the image of V1 in V2 again lies in Mod$−adm
G (A). Thus, replacing V1 by this

image, we may assume that our sequence is in fact short exact.
We intend to apply Theorem A.11, but before doing so, we must verify that

V3 is complete, with O-torsion of bounded exponent. Since V2[$∞] has bounded
exponent by assumption, it is no loss of generality to do this after replacing V1 and
V2 by (V1)fl and (V2)fl respectively, and replacing V3 by its quotient by the image
of V2[$∞]. We may thus assume that V1 and V2 are O-torsion free.
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Applying HomO(– ,O) to the embedding V1 ↪→ V2, and taking into account the
anti-equivalence of categories of Proposition 2.4.10, we obtain a map M2 →M1 of
objects of Modfg aug

G (A)fl. Let M denote the image of M2 in M1, and let M̃ denote
the saturation of M in M1 as a O-module, i.e.

M̃ = {m ∈M1 |$im ∈M for some i ≥ 0}.

The quotient M1/M̃ is again an object of Modfg aug
G (A)fl, and thus the complex

M2 →M1 →M1/M̃ in Modfg aug
G (A)fl, with the last map being a surjection, arises

via the anti-equivalence of Proposition 2.4.10 from a complex V → V1 → V2 in
Mod$−adm

G (A)fl, with the first arrow being an injection, by Lemma A.13. Since
the second arrow is also an injection, by assumption, we conclude that V = 0, and
hence that M1/M̃ = 0, i.e. that the saturation in M1 of the image M of M2 is
equal to M1. Thus the quotient M1/M is O-torsion. Since it is furthermore finitely
generated over A[[H]], for any compact open subgroup H of G (as this is true of
M1), it is of bounded exponent. It follows from Lemma A.14 that V3[$∞] has
bounded exponent. Lemma A.1 then implies that $-adic topology on V2 induces
the $-adic topology on V1. Since V1 is $-adically complete by assumption, we find
that it is $-adically closed in V2, and so it follows from Proposition 2.4.4 that V3

is an object of Mod$−cont
G (A), and in particular is $-adically complete.

We now apply HomO(– ,O) to the exact sequence 0 → V1 → V2 → V3 → 0 to
obtain (by Theorem A.11) the exact sequence

0→ HomO
(
(V3)fl,O

)
→ HomO

(
(V2)fl,O

)
→ HomO

(
(V1)fl,O

)
→ HomO(V3[$∞], E/O)→ HomO(V2[$∞], E/O).

(Note that HomO
(
(Vi)fl,O

) ∼−→ HomO(Vi,O) for i = 1, 2, 3, since O is torsion
free as a module over itself.) Proposition 2.4.10 and Lemma 2.2.11 (together
with Remark 2.4.9) imply that, for any compact open subgroup H of G, each
of HomO

(
(V1)fl,O

)
, HomO

(
(V2)fl,O

)
, and HomO(V2[$∞], E/O) is a finitely gen-

erated A[[H]]-module. Since A[[H]] is Noetherian, a consideration of this exact se-
quence shows that the A[[H]]-modules HomO

(
(V3)fl,O

)
and HomO(V3[$∞], E/O)

are also finitely generated, and thus that (V3)fl and V3[$∞] are both objects of
Mod$−adm

G (A) (by the same proposition and lemma). We have already observed
that since V3[$∞] has bounded exponent, Proposition 2.4.4 implies that V3 lies
in Mod$−cont

G (A). Since it is furthermore an extension of the objects (V3)fl and
V3[$∞] of Mod$−adm

G (A), it follows from the first paragraph of the proof that V3

is itself an object of Mod$−adm
G (A). �

2.4.12. Proposition. If 0 → V1 → V2 → V3 → 0 is a short exact sequence in
ModG(A), and if V2 is an object of Mod$−adm

G (A), then the following are equivalent:
(1) V1 is closed in the $-adic topology of V2, and V3[$∞] has bounded exponent.
(2) V1 is an object of Mod$−adm

G (A).
(3) V3 is an object of Mod$−cont

G (A).
(4) V3 is an object of Mod$−adm

G (A).
If these equivalent conditions hold, then the $-adic topology on V2 induces the $-
adic topology on V1.

Proof. The equivalence of (1) and (3) follows from Proposition 2.4.4, and clearly (4)
implies (3). Since V1 (resp. V3) is the kernel of the map V2 → V3 (resp. the cokernel
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of the map V1 → V2), the equivalence of (2) and (4) follows from Proposition 2.4.11.
Finally, note that if (3) holds, then V3/$

iV3 is a quotient of V2/$
iV2 for any i ≥ 0.

The latter module is an admissible A[G]-representation by assumption, and thus so
is the former. Consequently, V3 is an object of Mod$−adm

G (A), and so (3) implies (4).
The remaining claim of the proposition follows from Proposition 2.4.4. �

2.4.13. Corollary. If V is any object of Mod$−adm
G (A), then each of V [$∞] and

Vfl is also an object of Mod$−adm
G (A).

Proof. This follows directly from the preceding proposition, applied to the short
exact sequence 0→ V [$∞]→ V → Vfl → 0. (Compare the proof of Corollary 2.4.6.)

�

3. Ordinary parts

In this section we take G to be a p-adic reductive group (by which we always
mean the group of Qp-points of a connected reductive algebraic group over Qp).
We suppose that P is a parabolic subgroup of G (more precisely, the group of
Qp-valued points of a parabolic subgroup of G defined over Qp), with unipotent
radical N , that M is a Levi factor of P (so that P = MN), and that P is an
opposite parabolic to P , with unipotent radical N , chosen so that M = P

⋂
P .

(This condition uniquely determines P .) Our goal in this section is to define the
functor of ordinary parts, which (for any object A of Comp(O)) is a functor OrdP :
Modadm

G (A) → Modadm
M (A). In the following section we will show that it is right

adjoint to parabolic induction IndG
P

: Modadm
M (A)→ Modadm

G (A).
In fact, it is technically convenient to define OrdP in a more general context, as

a functor OrdP : Modsm
P (A) → Modsm

M (A), and this we do in Subsection 3.1. In
Subsection 3.2 we establish some elementary properties of OrdP . In Subsection 3.3,
we prove that OrdP , when applied to admissible smooth G-representations, yields
admissible smooth M -representations. Finally, Subsection 3.4 extends the main
definitions and results of the preceding subsections to the context of $-adically
continuous and $-adically admissible representations over A.

The functor OrdP is analogous to the locally analytic Jacquet functor JP studied
in [6] and [8], and many of the constructions and arguments of this section and the
next are suitable modifications of the constructions and arguments found in those
papers. Typically, the arguments become simpler. (As a general rule, the theory of
OrdP is more elementary than the theory of the Jacquet functors JP , just as the
theory of p-adic modular forms is more elementary in the ordinary case than in the
more general finite slope case.)

3.1. The definition of OrdP . We fix G, P , P , etc., as in the preceding discussion.
We let A denote an object of Comp(O).

3.1.1. Definition. If V is a representation of N over A, and if N1 ⊂ N2 are compact
open subgroups of N , then let hN2,N1 : V N1 → V N2 denote the operator defined
by hN2,N1(v) :=

∑
n∈N2/N1

nv. (Here we are using n to denote both an element of
N2/N1, and a choice of coset representative for this element in N2. Since v ∈ V N1 ,
the value nv is well-defined independently of the choice of coset representative.)

3.1.2. Lemma. If N1 ⊂ N2 ⊂ N3 are compact open subgroups of N , then

hN3,N2hN2,N1 = hN3,N1 .
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Proof. This is immediate from the definition of the operators. �

Fix a compact open subgroup P0 of P , and set M0 := M
⋂
P0, N0 := N

⋂
P0,

and M+ := {m ∈M |mN0m
−1 ⊂ N0}. Let ZM denote the centre of M , and write

Z+
M := M+

⋂
ZM . Note that each of M0 and N0 is a subgroup of G, while M+

and Z+
M are submonoids of G.

3.1.3. Definition. If V is a representation of P over A, then for any m ∈M+, we
define hN0,m : V N0 → V N0 via the formula hN0,m(v) := hN0,mN0m−1(mv).

3.1.4. Lemma. If m1,m2 ∈M+, then hN0,m1m2 = hN0,m1hN0,m2 .

Proof. We compute that

hN0,m1m2 = hN0,m1m2N0m−1
2 m−1

1
m1m2

= hN0,m1N0m−1
1
hm1N0m−1

1 ,m1m2N0m−1
2 m−1

1
m1m2

= hN0,m1N0m−1
1
m1hN0,m2N0m−1

2
m2 = hN0,m1hN0,m2 .

�

If m ∈M0, then (since in this case mN0m
−1 = N0) the operator hN0,m coincides

with the given action of m on V N0 . In general, the preceding lemma shows that
the operators hN0,m induce an action of the monoid M+ on V N0 , which we refer
to as the Hecke action of M+.

Regarding V N0 as a module over the monoid algebra A[M+], and so in particular
its central subalgebra A[Z+

M ], via this action, we may consider the A[ZM ]-module
HomA[Z+

M ](A[ZM ], V N0), as well as its submodule HomA[Z+
M ](A[ZM ], V N0)ZM−fin.

3.1.5. Lemma. If U is an A[Z+
M ]-module which is finitely generated over A, then

evaluation at the element 1 ∈ ZM induces an embedding HomA[Z+
M ](A[ZM ], U) ↪→ U.

In particular, HomA[Z+
M ](A[ZM ], U) is finitely generated over A.

Proof. If B denotes the image of A[Z+
M ] in EndA(U), then B is a commutative finite

A-algebra, and so is isomorphic to the product of its localizations at its finitely
many maximal ideals, i.e. B ∼−→

∏
m maximalBm. This factorization of B induces a

corresponding factorization of the B-module U , namely U =
∏

m maximal Um, and a
consequent factorization

HomA[Z+
M ](A[ZM ], U) ∼−→

∏
m maximal

HomA[Z+
M ](A[ZM ], Um).

We will say that a maximal ideal m is ordinary (resp. non-ordinary) if and only
if no (resp. some) element z ∈ Z+

M has its image in B lying in m. If m is ordinary,
then the A[Z+

M ]-module structure on Um extends in a unique manner to an A[ZM ]-
module structure (since Z+

M generates ZM as a group [6, Prop. 3.3.2 (i)]), and
evaluation at 1 ∈ ZM induces an isomorphism

HomA[Z+
M ](A[ZM ], Um) ∼−→ Um.

On the other hand, if m is non-ordinary, then it is easily seen that

HomA[Z+
M ](A[ZM ], Um) = 0.
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Thus evaluation at 1 induces an embedding

HomA[Z+
M ](A[ZM ], U) ∼−→

∏
m ordinary

Um ⊂ U,

as claimed. �

3.1.6. Lemma. Let W be an A[Z+
M ]-module, and let φ ∈ HomA[Z+

M ](A[ZM ],W ).

(1) The image im(φ) of φ is an A[Z+
M ]-submodule of W .

(2) φ is locally ZM -finite if and only if im(φ) is finitely generated as an A-
module.

(3) If z ∈ Z+
M , then z im(φ) = im(φ).

Proof. Claim (1) is clear, since we have z1φ(z2) = φ(z1z2) for z1 ∈ Z+
M and

z2 ∈ ZM . As for claim (2), note that we may regard φ as an element of the
A[ZM ]-submodule HomA[Z+

M ]

(
A[ZM ], im(φ)

)
of HomA[Z+

M ](A[ZM ],W ). If im(φ) is
finitely generated over A, then Lemma 3.1.5 shows that this submodule is finitely
generated over A, and thus that φ is locally ZM -finite. On the other hand, let
ev1 : HomA[Z+

M ](A[ZM ],W )ZM−fin → W denote the map given by evaluation at
1 ∈ Z+

M . For any φ ∈ HomA[Z+
M ](A[ZM ],W )ZM−fin, if U denotes the A[ZM ]-

submodule of HomA[Z+
M ](A[ZM ],W )ZM−fin generated by φ, then clearly ev1(U)

coincides with the image im(φ) of φ. Thus if φ is locally ZM -finite, we see that U
is finitely generated over A, and hence the same is true of im(φ). This completes
the proof of (2). Claim (3) follows from the following calculation:

im(φ) := A-linear span of the elements φ(z′), z′ ∈ ZM

= A-linear span of the elements φ(zz′), z′ ∈ ZM

= A-linear span of the elements zφ(z′), z′ ∈ ZM

= z im(φ).

�

3.1.7. Lemma. Let W be an A[M+]-module.
(1) The A[ZM ]-module structure on HomA[Z+

M ](A[ZM ],W ) extends naturally
to an A[M ]-module structure, characterized by the property that for any
z ∈ ZM , the map HomA[Z+

M ](A[ZM ],W ) → W induced by evaluation at z
is M+-equivariant.

(2) If the M0-action on W is furthermore smooth, then the induced M -action
on HomA[Z+

M ](A[ZM ],W )ZM−fin is smooth.

Proof. From [6, Prop. 3.3.6], we see that the natural map A[M+]⊗A[Z+
M ]A[ZM ]→

A[M ] is an isomorphism, and thus that the restriction map induces an isomorphism

(3.1.8) HomA[M+](A[M ],W ) ∼−→ HomA[Z+
M ](A[ZM ],W ).

The source of this isomorphism has a natural A[M ]-module structure, which we
may then transport to the target. This A[M ]-module structure clearly satisfies the
condition of (1).

Suppose now that W is M0-smooth. Part (4) of Lemma 2.2.7 shows that
the A[M0]-action on W then extends to an A[[M0]]-action, and that any ele-
ment of W is annihilated by an open ideal in A[[M0]]. Let φ be an element of
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HomA[Z+
M ](A[ZM ],W )ZM−fin. Since im(φ) is a finitely generated A-submodule of

W , by Lemma 3.1.6, we may find an open ideal I in A[[M0]] which annihilates
im(φ). Hence the intersection I

⋂
A[M0] annihilates φ itself (as follows directly

from the definition of the M -action on φ, together with the fact that M0 ⊂ M+),
and so the M0-action on φ is smooth (by Remark 2.2.2). Thus the M -action on
HomA[Z+

M ](A[ZM ],W )ZM−fin is smooth, proving (2). �

We now give the main definition of this section.

3.1.9. Definition. If V is a smooth representation of P over A, then we write

OrdP (V ) := HomA[Z+
M ](A[ZM ], V N0)ZM−fin,

and refer to OrdP (V ) as the P -ordinary part of V (or just the ordinary part of V ,
if P is understood).

Lemma 3.1.7 shows that HomA[Z+
M ](A[ZM ], V N0), and hence OrdP (V ), is nat-

urally an M -representation over A. Since the Hecke M0-action on V N0 coincides
with the given M0-action, it is smooth, and so the same lemma shows that the
M -action on OrdP (V ) is smooth. Thus the formation of OrdP (V ) yields a functor
from Modsm

P (A) to Modsm
M (A).

3.1.10. Definition. We define the canonical lifting

OrdP (V )→ V N0

to be the composite of the inclusion OrdP (V ) ⊂ HomA[Z+
M ](A[ZM ], V N0) with the

map HomA[Z+
M ](A[ZM ], V N0)→ V N0 given by evaluation at the element 1 ∈ A[ZM ].

Our choice of terminology is motivated by that of [3, §4].

Although the definition of the functor OrdP depends on the choice of compact
open subgroup P0 of P , we now show that it is independent of this choice, up to
natural isomorphism. To this end, suppose that P ′0 is an open subgroup of P0. Write
M ′

0 := M
⋂
P ′0, N

′
0 := N

⋂
P ′0, (M+)′ := {m ∈ M |mN ′

0m
−1 ⊂ N ′

0}, (Z+
M )′ :=

(M+)′
⋂
ZM . We define the Hecke action of (M+)′ on V N ′0 in analogy to the Hecke

action of M+ on V N0 .
Let z ∈ ZM be such that zN ′

0z
−1 ⊂ N0, and for any object V of Modsm

P (A),
define a map hN0,N ′0,z : V N ′0 → V N0 via the formula v 7→ hN0,zN ′0z−1zv, for v ∈ V N ′0 .

3.1.11. Lemma. (1) The map hN0,N ′0,z intertwines the Hecke action of the in-
tersection M+

⋂
(M+)′ on its source and target.

(2) If P ′′0 is another compact open subgroup of P , giving rise to N ′′
0 , (M+)′′,

etc., and if z, z′ ∈ ZM are such that zN ′
0z
−1 ⊂ N0 and z′N ′′

0 (z′)−1 ⊂ N ′
0,

then hN0,N ′0,zhN ′0,N ′′0 ,z′ = hN0,N ′′0 ,zz′ .
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Proof. If m ∈M+
⋂

(M+)′, then
hN0,mhN0,N ′0,z = hN0,mN0m−1mhN0,zN ′0z−1z

= mhm−1N0m,N0hN0,zN ′0z−1z

= mhm−1N0m,zN ′0z−1z

= zmh(zm)−1N0zm,N ′0

= zmh(zm)−1N0zm,m−1N ′0mhm−1N ′0m,N ′0

= zhz−1N0z,N ′0
hN ′0,mN ′0m−1m

= hN0,zN ′0z−1zhN ′0,mN ′0m−1m

= hN0,N ′0,zhN ′0,m.

This proves claim (1). Claim (2) is proved by an analogous computation. �

If we write Y ′ = M+
⋂

(M+)′ and Y = Z+
M

⋂
(Z+

M )′, then Y generates ZM as
a group [6, Prop. 3.3.2 (i)], and Y ′ and ZM generate M [6, Prop. 3.3.2 (ii)]. In
particular, the inclusions

HomA[(Z+
M )′](A[ZM ], V N ′0) ⊂ HomA[Y ](A[ZM ], V N ′0)

and
HomA[Z+

M ](A[ZM ], V N0) ⊂ HomA[Y ](A[ZM ], V N0)

are actually equalities. Since hN0,N ′0,z is Y ′-equivariant, it induces an M = Y ′ZM -
equivariant map

HomA[Y ](A[ZM ], V N ′0)→ HomA[Y ](A[ZM ], V N0)

and hence an M -equivariant map

HomA[(Z+
M )′](A[ZM ], V N ′0)→ HomA[Z+

M ](A[ZM ], V N0),

which we denote by ıN0,N ′0,z. Now define

ıN0,N ′0
:= z−1ıN0,N ′0,z : HomA[(Z+

M )′](A[ZM ], V N ′0)→ HomA[Z+
M ](A[ZM ], V N0).

3.1.12. Proposition. (1) The map ıN0,N ′0
is well-defined independently of the

choice of element z ∈ ZM such that zN ′
0z
−1 ⊂ N0.

(2) ıN0,N ′0
is an M -equivariant isomorphism.

(3) If P ′′0 is another choice of compact open subgroup of P , giving rise to N ′′
0 ,

etc., then ıN0,N ′0
ıN ′0,N ′′0

= ıN0,N ′′0
.

Proof. Since z−1 is central in M , and since ıN0,N ′0,z is M -equivariant, the same is
true of the map z−1ıN0,N ′0,z. This proves the M -equivariance claim of part (2).

If P ′′0 is as in part (3), and z′ ∈ ZM is such that z′N ′′
0 (z′)−1 ⊂ N ′

0, then part (2)
of Lemma 3.1.11 shows that ıN0,N ′0,zıN ′0,N ′′0 ,z′ = ıN0,N ′′0 ,zz′ . Thus

z−1ıN0,N ′0,z(z′)−1ıN ′0,N ′′0 ,z′ = (zz′)−1ıN0,N ′′0 ,zz′ .

(Here we have also used the fact that ıN0,N ′0,z is M -equivariant, and so in particular
ZM -equivariant.) This proves part (3).

If we take P ′′0 = P0 in part (3), then we find that ıN0,N0,zz′ is induced by hN0,zz′ ,
and thus gives the action of zz′ ∈ Z+

M on HomA[Z+
M ](A[ZM ], V N0). Consequently

(zz′)−1ıN0,N0,zz′ acts as the identity on HomA[Z+
M ](A[ZM ], V N0), and we find that

z−1ıN0,N ′0,z and (z′)−1ıN ′0,N0,z′ are mutually inverse isomorphisms. This completes
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the proof of claim (2). Also, since z and z′ are independent of one another, we find
that the isomorphism z−1ıN0,N ′0,z does not depend on the choice of z. This proves
claim (1), and completes the proof of the proposition. �

The preceding result shows that OrdP is well-defined, up to canonical isomor-
phism, independently of the choice of the open subgroup P0 of P . It is similarly
independent of the choice of the Levi factor M of P . Indeed, if M ′ is another Levi
factor of P , then we may canonically identify M and M ′ via the canonical isomor-
phisms M ∼←− P/N

∼−→M ′. Furthermore, there is a uniquely determined element
n ∈ N such that nMn−1 = M ′, and the isomorphism induced by conjugation by
n yields the same identification of M and M ′. Via this canonical identification, we
may and do regard any M ′-representation equally well as an M -representation.

Given a choice of compact open subgroup P0 ⊂ P , write P ′0 := nP0n
−1, M ′

0 :=
nM0n

−1 = nMn−1
⋂
P ′0, N

′
0 := nN0n

−1 = N
⋂
P ′0, (M ′)+ := nM+n−1 = {m′ ∈

M ′ |m′N ′
0(m

′)−1 ⊂ N ′
0}, and Z+

M ′ := nZ+
Mn−1 = (M ′)+

⋂
ZM ′ . We define the

Hecke action of (M ′)+ on V N ′0 in analogy to the Hecke action of M+ on V N0 , and
denote by

Ord′P : Modsm
P (A)→ Modsm

M (A)

the functor
V 7→ HomA[Z+

M′ ]
(A[ZM ′ ], V N ′0)ZM′−fin.

(The analogue of Lemma 3.1.7 for P ′0 and M ′ shows that HomA[Z+
M′ ]

(A[ZM ′ ], V N ′0),

and so also HomA[Z+
M′ ]

(A[ZM ′ ], V N ′0)ZM′−fin, is naturally an M ′-representation,

and hence an M -representation.) Thus Ord′P is the analogue of the functor OrdP ,
but computed using the Levi factor M ′ of P rather than M. (Note that we have
already seen that this functor is well-defined independently of the particular choice
of compact open subgroup P ′0 used to compute it.)

Multiplication by n provides an isomorphism V N0
∼−→ V N ′0 , which intertwines

the operator hm on V N0 with the operator hnmn−1 on V N ′0 , for each m ∈ M+.
Consequently, multiplication by n induces an M -equivariant isomorphism

HomA[Z+
M ](A[ZM ], V N0) ∼−→ HomA[Z+

M′ ]
(A[ZM ′ ], V N ′0),

and hence an M -equivariant isomorphism OrdP (V ) ∼−→ Ord′P (V ). This shows that
the functor OrdP is well-defined, up to canonical isomorphism, independently of
the choice of Levi factor of P .

3.2. Some elementary properties of OrdP . In this subsection, we record some
simple properties of the functor OrdP . We maintain the notation of the preceding
subsection (A, P , M , N , P0, M0, N0, M+, ZM , Z+

M , etc.), and begin with a lemma
that records some useful facts related to the monoid Z+

M .

3.2.1. Lemma. (1) The monoid Z+
M contains a compact open subgroup of ZM .

(2) If Z0 is a compact open subgroup of Z+
M , then we may find a submonoid

Z0 ⊂ Y ⊂ Z+
M for which the quotient Y/Z0 is a finitely generated monoid,

and such that Y generates ZM as a group.

Proof. Since M0 is an open subgroup of M , the intersection M0

⋂
ZM is a compact

open subgroup of ZM , which is clearly contained in Z+
M . This proves (1).
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Suppose that Z0 is any compact open subgroup of ZM contained in Z+
M . We

claim that ZM/Z0 is a finitely generated abelian group. (The proof will be given
in the following paragraph.) This quotient is generated by Z+

M/Z0 (since, as we
have already recalled, Z+

M generates ZM as a group). Thus we may find a finitely
generated submonoid of Z+

M/Z0 which generates ZM/Z0. The preimage of this
submonoid in Z+

M is a submonoid Y of Z+
M satisfying the requirements of (2).

To see that ZM/Z0 is finitely generated, let Z0
M denote the (Qp-points of the)

connected component of (the algebraic group underlying) ZM ; so Z0
M is (the group

of Qp-points of) a torus. If we write Z0
0 := Z0

⋂
Z0

M , then Z0
M/Z0

0 has finite index
in ZM/Z0, and so it suffices to show that the former group is finitely generated.
Let S denote the maximal split quotient of Z0

M (in the category of tori), and let
S′ denote the kernel of the map Z0

M → S. The torus S′ is then anisotropic, and
hence (its groups of Qp-points is) compact. The intersection S′

⋂
Z0

0 is compact
and open in the compact group S′, and hence of finite index. Thus, if we let S0

denote the image of Z0
0 in S, it suffices to show that S/S0 is finitely generated. Let

S1 denote the maximal compact subgroup of S. Since S0 is of finite index in S1,
it suffices in turn to show that S/S1 is finitely generated. Since S is a product of
copies of Q×

p , this follows from the isomorphism Q×
p /Z×p

∼−→ Z. (We remark that
in fact ZM itself is topologically finitely generated. Indeed, this follows from what
we have just proved, together with [5, Prop. 6.4.1].) �

3.2.2. Lemma. If {Wi}i∈I is an inductive system of smooth Z+
M -modules3, then

the natural map of A[ZM ]-modules

(3.2.3) lim
−→

i

HomA[Z+
M ](A[ZM ],Wi)ZM−fin → HomA[Z+

M ](A[ZM ], lim
−→

i

Wi)ZM−fin

is an isomorphism.

Proof. Let φ ∈ HomA[Z+
M ](A[ZM ],Wj)ZM−fin for some index j in the directed set I,

and suppose that the image of φ under (3.2.3) vanishes, or equivalently, that the im-
age of im(φ) under the map Wj → lim

−→
i

Wi vanishes. Since Lemma 3.1.6 shows that

im(φ) is a finitely generated A-submodule ofWj , we may find an index k lying over j
such that the image of im(φ) under the transition mapWj →Wk vanishes, or equiv-
alently, such that the image of φ under the map HomA[Z+

M ](A[ZM ],Wj)ZM−fin →
HomA[Z+

M ](A[ZM ],Wk)ZM−fin vanishes. This proves the injectivity of (3.2.3).
Now let φ′ ∈ HomA[Z+

M ](A[ZM ], lim
−→

i

Wi)ZM−fin. Lemma 3.1.6 shows that im(φ′)

is a finitely generated and Z+
M -invariant A-submodule of lim

−→
i

Wi. Thus we may find

a finitely generated A-module U ⊂ Wj that maps isomorphically onto im(φ′), for
some sufficiently large index j. Let Z0 ⊂ Z+

M be a compact open subgroup that
fixes U elementwise, so that the Z+

M -action on U factors through Z+
M/Z0. Fix a

submonoid Y of Z+
M satisfying the conditions of Lemma 3.2.1 (2).

If we choose k over j large enough, then, as the monoid ring A[Y/Z0] is Noether-
ian (since Y/Z0 is finitely generated), the image of the finitely generated A[Y/Z0]-
module A[Y/Z0]U in Wk will map isomorphically onto its image in lim

−→
i

Wi, which is

to say, onto im(φ′). Consequently, if we choose j large enough, then we may choose

3I.e., smooth under the action of a compact open subgroup of Z+
M ; such a subgroup exists, by

Lemma 3.2.1 (1).
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U to be an A[Y ]-submodule of Wj that maps isomorphically onto im(φ′). We may
then lift φ′ to an element

φ ∈ HomA[Y ](A[ZM ], U)ZM−fin ⊂ HomA[Y ](A[ZM ],Wj)ZM−fin.

Since Y generates ZM as a group, the natural inclusion

HomA[Z+
M ](A[ZM ],Wj)ZM−fin ⊂ HomA[Y ](A[ZM ],Wj)ZM−fin

is an isomorphism. Thus φ is in fact an element of HomA[Z+
M ](A[ZM ],Wj)ZM−fin,

which maps to the given element φ′. This shows that (3.2.3) is surjective. �

3.2.4. Proposition. OrdP : Modsm
P (A) → Modsm

M (A) is left-exact and additive,
and commutes with inductive limits.

Proof. The functors V 7→ V N0 and W 7→ HomA[Z+
M ](A[ZM ],W )ZM−fin (on the

categories of P -representations and M+-modules respectively) are left-exact and
additive, and (taking into account Lemma 3.2.2) commute with inductive limits.
Thus OrdP also has these properties. �

3.3. Preservation of admissibility. If V is an object of Modsm
G (A), then we

may also regard it as an object of Modsm
P (A), and so define OrdP (V ), an object of

Modsm
M (A). The main result of this subsection is Theorem 3.3.3 below, which shows

that if V is an admissible smooth G-representation, then OrdP (V ) is an admissible
smooth M -representation.

We begin with a key lemma, which allows us to gain some control over the Hecke
Z+

M -action on V N0 . Recall that if I is a compact open subgroup of G, then we say
that I admits an Iwahori decomposition with respect to P and P if the product
map

(I
⋂
N)× (I

⋂
M)× (I

⋂
N)→ I

is a bijection. Note that, by applying the bijection g 7→ g−1 from I to itself, we
find that the product map

(I
⋂
N)× (I

⋂
M)× (I

⋂
N)→ I

is also a bijection.

3.3.1. Remark. Note that the product map induces an injection

N ×M ×N ↪→ G.

Thus the following pair of conditions is equivalent to I admitting an Iwahori de-
composition:

(1) I ⊂ NMN.
(2) If nmn ∈ I, with n ∈ N, m ∈M , n ∈ N , then each of n,m, n lies in I.

From this it follows immediately that if I and I ′ are two subgroups, both ad-
mitting an Iwahori decomposition, then the same is true of I ∩ I ′, i.e. I ∩ I ′ =
(I ∩ I ′ ∩N)× (I ∩ I ′ ∩M)× (I ∩ I ′ ∩N).

3.3.2. Lemma. Let I0 and I1 be two compact open subgroups of G, both of which
admit an Iwahori decomposition with respect to P and P . Suppose furthermore
that I1

⋂
N ⊂ I0

⋂
N , that I1

⋂
M = I0

⋂
M, and that I1

⋂
N = I0

⋂
N = N0. If

z0 ∈ Z+
M is such that (I0

⋂
N) ⊂ z0(I1

⋂
N)z−1

0 , then hN0,z0(V
I1) ⊂ V I0 .
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Proof. To ease notation, write M1 := I1
⋂
M = I0

⋂
M, and N i := Ii

⋂
N , for i =

0, 1. Thus I0 = N0M1N0, while I1 = N1M1N0. Also, since z0 centralizes M , we see
that z0I1z−1

0 = z0N1z
−1
0 M1z0N0z

−1
0 , and so our assumption that z0N1z

−1
0 ⊃ N0

implies that z0I1z−1
0

⋂
I0 = N0M1z0N0z

−1
0 .

Evidently z0I1z
−1
0 ⊃ z0I1z

−1
0

⋂
I0, and so z0V

I1 = V z0I1z−1
0 ⊂ V z0I1z−1

0
T

I0 .

Thus to prove the lemma, it suffices to show that hN0,z0N0z−1
0

(V z0I1z−1
0

T
I0) ⊂ V I0 .

Since M1 normalizes both N0 and z0N0z
−1
0 , we see that hN0,z0N0z−1

0
(V z0I1z−1

0
T

I0)
is invariant under M1 and N0. Thus it suffices to show that it is furthermore
invariant under N0.

Let n ∈ N0, and v ∈ V z0I1z−1
0

T
I0 . Fix a set {nl} of coset representatives for

N0/z0N0z
−1
0 . Then

nhN0,z0N0z−1
0
v = n

∑
l

nlv =
∑

l

nnlv =
∑

l

n′lplv =
∑

l

n′lv,

where we have used the Iwahori decomposition of I0 to rewrite each product nnl

in the form n′lpl, with n′l ∈ N0 and pl ∈ N0M1. We claim that the n′l again form a
set of coset representatives for N0/z0N0z

−1
0 . Given this, we find that

nhN0,z0N0z−1
0
v = hN0,z0N0z−1

0
v,

and thus that V z0I1z−1
0

T
I0 is fixed by N0, as required.

Suppose now that (n′l)
−1n′l′ ∈ z0N0z

−1
0 for some l 6= l′. Then

n−1
l nl′ = p−1

l (n′l)
−1n′l′pl′ ,

and the right hand side of this equation is a product of elements all lying in
z0I1z

−1
0

⋂
I0. Since the left hand side lies in N , we see from the Iwahori decom-

position of z0I1z−1
0

⋂
I0 that in fact n−1

l nl′ ∈ z0N0z
−1
0 , contradicting the fact that

they are distinct coset representatives for N0/z0N0z
−1
0 . Thus {n′l} is indeed a set

of distinct coset representatives for N0/z0N0z
−1
0 , and the lemma is proved. �

We now choose a cofinal sequence {Ii}i≥0 of compact open subgroups of G, with
each Ii normal in I0, and such that each Ii admits an Iwahori decomposition with
respect to P and P . We write Mi := Ii

⋂
M, Ni := Ii

⋂
N , and Ni := Ii

⋂
N , for

each i ≥ 0.
For each i ≥ j ≥ 0, we write Ii,j := N iMjN0. Each Ii,j is a compact open

subgroup of I0 (since we may rewrite it as Ii,j = IiMjN0, noting that MjN0 is a
subgroup of M0N0, and thus of I0, and so normalizes Ii). The bijection

N i ×Mj ×N0
∼−→ Ii,j

provides an Iwahori decomposition of Ii,j .

3.3.3. Theorem. If V is an admissible smooth representation of G over A, then
OrdP (V ) is an admissible smooth representation of M , and the canonical lifting of
Definition 3.1.10 is an embedding.

Proof. Since V is smooth by assumption, it is the inductive limit of its submodules
V [mi] (i ≥ 0). Since OrdP is left-exact and preserves inductive limits (Proposi-
tion 3.2.4), the embedding OrdP (V [mi]) ↪→ OrdP (V )[mi] is an isomorphism, and
OrdP (V ) is the inductive limit of its submodules OrdP (V )[mi]. It thus suffices to
prove the theorem with V replaced by V [mi] for some i ≥ 0. We must show that, for
each j ≥ 0, OrdP (V )Mj is finitely generated over A, and that the canonical lifting
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induces an embedding OrdP (V )Mj ↪→ V N0 . We will compute OrdP (V ) using the
compact open subgroup P0 := M0N0 of P . Observe that V MjN0 is invariant under
the Hecke Z+

M -action on V N0 (since Z+
M is central in M), and thus

OrdP (V )Mj = HomA[Z+
M ](A[ZM ], V N0)Mj

ZM−fin = HomA[Z+
M ](A[ZM ], V MjN0)ZM−fin.

Let φ ∈ HomA[Z+
M ](A[ZM ], V MjN0)ZM−fin. Lemma 3.1.6 (2) shows that im(φ) is

a finitely generated Z+
M -invariant A-module, and thus is contained in V Ii,j for

some sufficiently large i ≥ j. If we choose z0 ∈ Z+
M so that z0N iz

−1
0 ⊃ Nj , then

Lemma 3.1.6 (3) shows that in fact im(φ) = hN0,z0 im(φ) ⊂ hN0,z0(V
Ii,j ) ⊂ V Ij,j

(the final inclusion holding by Lemma 3.3.2). Thus if we let U denote the maximal
A-submodule of V Ij,j that is invariant under the Hecke Z+

M -action, then we see
that in fact im(φ) ⊂ U . Consequently, OrdP (V )Mj ⊂ HomA[Z+

M ](A[ZM ], U), and
so is finitely generated over A, by Lemma 3.1.5. The same lemma shows that the
canonical lifting induces an embedding OrdP (V )Mj ↪→ U ⊂ V Ij,j ⊂ V N0 . �

3.4. Extension to the case of $-adically complete representations. We
begin by making the following definition.

3.4.1. Definition. If V is an object of Mod$−cont
P (A), then we define

OrdP (V ) := lim
←−

i

OrdP (V/$iV ).

(Note that each of the quotients V/$iV is an object of Modsm
P (A/mi), by Re-

mark 2.4.2, and hence its P -ordinary part is defined.)

We now establish some basic properties of the functor OrdP on the category
Mod$−cont

P (A). It will ease the notation, and lend itself to further applications, if
we work in a more general situation. Thus, we let H denote an arbitrary p-adic
analytic group, and let F denote any O-linear, O-module valued, left-exact functor
on Modsm

H (A)[$∞]. We extend F to a functor on Mod$−cont
H (A) via the formula

(3.4.2) F (V ) := lim
←−

i

F (V/$iV ),

for any object V of Mod$−cont
H (A). For any such V , the O-module F (V ) has a natu-

ral projective limit topology, obtained by endowing each of the terms F (V/$iV ) ap-
pearing in the projective limit that defines F (V ) with its discrete topology. We also
note that F (V ) is $-adically complete and separated (since each term F (V/$iV )
appearing in the projective limit is $-adically discrete4, hence $-adicallly com-
plete and separated, and a projective limit of $-adically complete and separated
O-modules is itself $-adically complete and separated).

The following results establish some additional properties of F (V ).

3.4.3. Proposition. (1) The natural map F (V [$∞]) → F (V )[$∞] is an iso-
morphism. In particular, F (V )[$∞] is of bounded exponent.

(2) There is a natural embedding F (V )fl ↪→ F (Vfl), whose cokernel is of bounded
exponent.

(3) The projective limit topology and the $-adic topology on F (V ) coincide.

4I.e. the $-adic topology on this module coincides with the discrete topology.
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Proof. Suppose first that V is O-torsion free. Then for any i, j ≥ 0, the short exact
sequence

0 −→ V/$iV
$j

−→ V/$i+jV −→ V/$jV −→ 0
gives rise to an exact sequence

0 −→ F (V/$iV ) $j

−→ F (V/$i+jV ) −→ F (V/$jV ).

Passing to the projective limit in i, we obtain an exact sequence

0 −→ F (V ) $j

−→ F (V ) −→ F (V/$jV ).

Thus F (V ) is O-torsion free, which verifies conditions (1) and (2), and for any
j ≥ 0, we obtain an embedding

F (V )/$jF (V ) ↪→ F (V/$jV ).

This verifies condition (3), and completes the proof of the lemma for O-torsion
free V .

Let us turn to the general case. Fix i ≥ 0 so that V [$i] = V [$∞]. For any j ≥ i,
we have the diagram

0 // V [$i] // V/$jV //

$i

%%LLLLLLLLLL
Vfl/$

jVfl
//

��

0

V/$i+jV

whose top row is exact, which gives rise to the diagram

(3.4.4) 0 // F (V [$i]) // F (V/$jV ) //

$i

''OOOOOOOOOOO
F (Vfl/$

jVfl)

��
F (V/$i+jV )

whose top row is again exact. Passing to the inductive limit over j, we obtain the
diagram

0 // F (V [$i]) // F (V ) //

$i

##HH
HH

HH
HH

H
F (Vfl)

��
F (V )

with an exact top row. The result of the first paragraph shows that F (Vfl) is
O-torsion free, and so we see that F (V [$i]) maps isomorphically onto F (V )[$∞],
verifying condition (1), and also that there is an induced injection F (V )fl ↪→ F (Vfl),
whose cokernel is annihilated by $i, verifying condition (2).

We now derive (3). For any j ≥ 0, letKj ⊂ F (V ) denote the kernel of the natural
map F (V )→ F (V/$jV ). The sequence {Kj}j≥0 forms a basis of neighbourhoods
of 0 in the projective limit topology on F (V ). Clearly $jF (V ) ⊂ Kj .

Taking into account condition (1), which we have already proved, and the ex-
actness of the top row of (3.4.4), we find that the map F (V )[$∞]→ F (V/$jV ) is
injective if j ≥ i, and thus that Kj

⋂
F (V )[$∞] = 0. If we let K ′

j denote the image
of Kj under the surjection F (V )→ F (V )fl, it follows that, when j ≥ i, the induced
surjection Kj → K ′

j is in fact an isomorphism.
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It follows from the results of the first paragraph of the proof that the kernel of
the map F (Vfl) → F (Vfl/$

jVfl) is precisely $jF (Vfl), and thus that the image of
K ′

j under the injection F (V )fl ↪→ F (Vfl) of (2) is contained in $jF (Vfl). Since, as we
have shown above, the cokernel of this injection is annihilated by $i, we find that
$iK ′

j ⊂ $jF (V )fl, and thus (since F (V )fl is O-torsion free) that K ′
j ⊂ $j−iF (V )fl,

provided that j ≥ i.
Both Kj and $j−iF (V ) are subsets of Kj−i, and we have just shown that the

image of the first in K ′
j−i is contained in the image of the second. If we now

suppose that j ≥ 2i, so that the surjection Kj−i → K ′
j−i is also an isomorphism,

we conclude that Kj ⊂ $j−iF (V ). Thus the two decreasing sequences of O-
submodules {Kj}j≥0 and {$jF (V )}j≥0 of F (V ) do indeed define the same topology
on F (V ), proving (3). �

3.4.5. Corollary. If H1 and H2 are two p-adic analytic groups, if F : Modsm
H1

(A)→
Modsm

H2
(A) is a left-exact functor, and if we extend F to a functor on Mod$−cont

H1
(A)

via the formula (3.4.2), then the extended functor takes values in Mod$−cont
H2

(A). If
in addition the restriction of F to Modadm

H1
(A) takes values in Modadm

H2
(A), then the

restriction to Mod$−adm
H1

(A) of the extension of F takes values in Mod$−adm
H2

(A).

Proof. The preceding proposition implies, for any object V of Mod$−cont
H1

(A), that
F (V ) is $-adically complete and separated and that F (V )[$∞] has bounded ex-
ponent, verifying conditions (1) and (2) of Definition 2.4.1 for F (V ). We also
conclude that the projective limit topology on F (V ) coincides with the $-adic
topology. Consequently, for any i ≥ 0, we may find j ≥ 0 such that F (V )/$iF (V )
is a subquotient of F (V/$jV ). Since the latter representation is a smooth H2-
representation, so is the former, by Lemma 2.2.6. Remark 2.4.2 now shows that
F (V ) is an object of Mod$−cont

H2
(A).

Suppose now that F restricts to a functor Modadm
H1

(A) → Modadm
H2

(A). If V
is an object of Mod$−adm

H1
(A), then V/$jV is an object of Modadm

H1
(A), for each

j ≥ 0, and so F (V/$jV ) is an object of Modadm
H2

(A). As shown in the preceding
paragraph, for any i ≥ 0, the quotient F (V )/$iF (V ) is a subquotient of F (V/$jV )
for some j ≥ 0, and thus is also an object of Modadm

H2
(A), by Proposition 2.2.13.

We conclude that F (V ) is an object of Mod$−adm
H2

(A), as claimed. �

3.4.6. Proposition. Taking ordinary parts is a functor OrdP : Mod$−cont
P (A) →

Mod$−cont
M (A).

Proof. Since OrdP is a left-exact functor on Modsm
P (A), this follows directly from

Corollary 3.4.5, together with the fact that the definition of OrdP on Mod$−cont
G (A)

is made according to the formula (3.4.2). �

For each i ≥ 0, we have the canonical lifting OrdP (V/$iV ) → (V/$iV )N0 .
These are compatible in an evident way as we change i, and so passing to the
projective limit, we obtain an M+-equivariant map

(3.4.7) OrdP (V )→ V N0 ,

which we again refer to as the canonical lifting.

3.4.8. Theorem. The passage to ordinary parts gives rise to a functor OrdP :
Mod$−adm

G (A)→ Mod$−adm
M (A). Furthermore, for any object V of Mod$−adm

G (A),
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the canonical lifting (3.4.7) is a closed embedding, when source and target are given
their $-adic topologies.

Proof. The first claim of the theorem follows from Corollary 3.4.5, together with
Theorem 3.3.3. That same theorem shows that if V is an object of Mod$−adm

G (A),
then the canonical lifting OrdP (V/$jV ) → (V/$jV )N0 is an embedding, for
any j ≥ 0. Passing to the projective limit over j, we find that the canonical lifting
OrdP (V )→ V N0 is a topological embedding, when source and target are given their
corresponding projective limit topologies. Proposition 3.4.3 (applied to each of the
left-exact functors OrdP and (–)N0) implies that these topologies coincide with the
$-adic topologies on source and target, completing the proof of the theorem. �

4. Adjunction formulas

4.1. Parabolic induction. Let A denote an object of Comp(O), with maximal
ideal m. If U is an object of Modsm

M (A), then we regard U as a P -representation,
via the projection P → P/N

∼−→M , and define:

IndG
P
U := {f : G→ U | f locally constant ,

f(pg) = pf(g) for all p ∈ P , g ∈ G} .

The right regular action of G on functions induces a natural G-action on IndG
P
U ,

making it an A[G]-module.
If U is an object of Mod$−cont

M (A), then again regarding U as a P -representation,
we define:

IndG
P
U := {f : G→ U | f continuous when U is given its $-adic topology ,

f(pg) = pf(g) for all p ∈ P , g ∈ G} .

Again, the right regular action of G on functions induces a natural G-action on
IndG

P
U , making it an A[G]-module.

In order to establish some basic properties of the functor IndG
P

, it will be con-
venient to choose a continuous section σ : P\G → G to the projection G → P\G.
(Such a section exists, since G is a locally trivial P -bundle over P\G, and hence we
may find a finite cover of P\G by disjoint open and closed sets over which this bun-
dle is trivialized.) If we write Csm(P\G,U) (resp. C(P\G,U)) to denote the space of
locally constant (resp. continuous) U -valued functions on P\G, for an object U of
Modsm

G (A) (resp. an object U of Mod$−cont
G (A), equipped with its$-adic topology),

then pulling back functions along σ induces natural A-linear isomorphisms

(4.1.1) IndG
P
U

∼−→ Csm(P\G,U), for any object U of Modsm
M (A),

and

(4.1.2) IndG
P
U

∼−→ C(P\G,U), for any object U of Mod$−cont
M (A).

4.1.3. Lemma. If U is an object of Mod$−cont
M (A), then for each i ≥ 0, there is a

natural isomorphism

(IndG
P
U)/$i(IndG

P
U) ∼−→ IndG

P
(U/$iU).
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Proof. Taking into account the isomorphism (4.1.2), it suffices to show that

C(X,U)/$i C(X,U) ∼−→ C(X,U/$iU)

for any profinite space X. For any j ≥ i, we have the pair of short exact sequences

0 −→ ($j−iU + U [$i])/$jU −→ U/$jU
$i

−→ $iU/$jU −→ 0

and
0→ $iU/$jU → U/$jU → U/$iU → 0.

Note that the projective systems {($j−iU +U [$i])/$jU}j≥i and {$iU/$jU}j≥i

both satisfy the Mittag–Leffler condition. Indeed, for the latter projective system,
the transition maps are even surjective. For the former projective system, denoting
the jth term in the system by Mj , the image of the map Mk →Mj (for k ≥ j ≥ i)
is ($min(k−i,j)U + U [$i])/$jU . If k ≥ j + i, then k − i ≥ j, and so this image
simplifies to ($jU + U [$i])/$jU , which is independent of k.

Upon applying the (manifestly exact) functor Csm(X, –), we obtain the short
exact sequences

0 −→ Csm
(
X, ($j−iU + U [$i])/$jU

)
−→ Csm(X,U/$jU)

$i

−→ Csm(X,$iU/$jU) −→ 0

and

0→ Csm(X,$iU/$jU)→ Csm(X,U/$jU)→ Csm(X,U/$iU)→ 0.

Furthermore, the two projective systems {Csm
(
X, ($j−iU +U [$i])/$jU

)
}j≥i and

{Csm(X,$iU/$jU)}j≥i again satisfy the Mittag–Leffler condition, since Csm(X, –)
is exact. Thus, passing to the projective limit in j, we obtain short exact sequences

0 −→ C(X,U [$i]) −→ C(X,U) $i

−→ C(X,$iU) −→ 0

and
0→ C(X,$iU)→ C(X,U)→ C(X,U/$iU)→ 0.

(The exactness of the second sequence also follows directly from the discreteness
of U/$iU .) Putting these together yields the exact sequence

0 −→ C(X,U [$i]) −→ C(X,U) $i

−→ C(X,U) −→ C(X,U/$iU) −→ 0,

proving the lemma. �

4.1.4. Lemma. For objects U of Modsm
M (A), the formation of IndG

P
U commutes

with the formation of inductive limits.

Proof. Taking into account the isomorphism (4.1.1), it suffices to show that the
formation of Csm(X,U) commutes with the formation of inductive limits for any
profinite space X. However, this is clear, as any element of Csm(X,U) assumes only
finitely many different values in U (since X is compact). �

4.1.5. Proposition. Parabolic induction U 7→ IndG
P
U gives rise to exact functors

Modsm
M (A)→ Modsm

G (A) and Mod$−cont
M (A)→ Mod$−cont

G (A).
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Proof. We first consider the case when U is smooth. As already noted in the proof
of Lemma 4.1.3, the formation of locally constant functions is manifestly an exact
functor. It follows from the isomorphism (4.1.1) that the formation of IndG

P
U is

exact in U . We must show that it furthermore yields an object in Modsm
G (A). Fix

a compact open subgroup H of G. Since P\G is compact, it is the union of finitely
many H-orbits, say Pg1H, . . . , PgrH. Restricting functions from G to

∐r
i=1 giH

thus induces the first of two isomorphisms in the following sequence of maps:

(4.1.6)

IndG
P
U

∼−→
r⊕

i=1

{f ∈ Csm(giH,U) | f(pgih) = pf(gih) for all p ∈ P
⋂
giHg

−1
i }

∼−→
r⊕

i=1

{f ∈ Csm(H,U) | f(g−1
i pgih) = pf(h) for all p ∈ P

⋂
giHg

−1
i }

↪→
r⊕

i=1

Csm(H,U),

in which the second isomorphism is induced by left translation by g−1
i on the ith

summand, and the third map is the obvious embedding. If we equip each of the
summands with the H-action given by right translation, then these maps become
H-equivariant. The right regular H-action on Csm(H,U) makes this space an object
of Modsm

H (A), since any element of Csm(H,U) is uniformly locally constant (since
H is compact) and assumes only finitely many values in U . Thus IndG

P
U embeds

into a finite direct sum of smooth H-representations, and so is itself a smooth
H-representation.

We now consider the case of $-adically continuous representations. If 0→ U1 →
U2 → U3 → 0 is a short exact sequence in Mod$−cont

G (A), then for any i ≥ 0 we
obtain the short exact sequence 0 → U1/(U1

⋂
$iU2) → U2/$

iU2 → U3/$
iU3 →

0, which in turn yields a short exact sequence

0→ Csm
(
P\G,U1/(U1

⋂
$iU2)

)
→ Csm

(
P\G,U2/$

iU2

)
→ Csm

(
P\G,U3/$

iU3

)
→ 0.

Since the projective system {U1/(U1

⋂
$iU2)}i≥0 has surjective transition maps,

so does the projective system {Csm
(
P\G,U1/(U1

⋂
$iU2)

)
}i≥0. Thus, passing to

the projective limit in i, we obtain a short exact sequence

0→ C(P\G,U1)→ C(P\G,U2)→ C(P\G,U3)→ 0.

(Here we have used Proposition 2.4.4, which shows that the topology on U1 induced
by the decreasing sequence of O-submodules U1

⋂
$iU2 coincides with the $-adic

topology on U1.) Taking into account the isomorphism (4.1.2), we see that IndG
P

induces an exact functor on Mod$−cont
M (A). It remains to show that it takes values

in Mod$−cont
G (A).

If U is any object of Mod$−cont
M (A), then the space IndG

P
U is $-adically com-

plete and separated, since the isomorphism (4.1.2) identifies it with a space of con-
tinuous functions with values in the $-adically complete and separated space U .



ORDINARY PARTS OF ADMISSIBLE REPRESENTATIONS 29

Lemma 4.1.3 then shows that there is a natural isomorphism

IndG
P
U

∼−→ lim
←−

i

IndG
P

(U/$iU),

and thus that the functor IndG
P

on Mod$−cont
M (A) is naturally isomorphic to the

functor on Mod$−cont
M (A) obtained from the functor IndG

P
on Modsm

M (A) accord-
ing to formula (3.4.2). Corollary 3.4.5 now implies that IndG

P
takes values in

Mod$−cont
G (A). �

4.1.7. Proposition. If U is an admissible smooth (resp. locally admissible smooth,
resp. $-adically admissible) A[M ]-module, then IndG

P
U is an admissible smooth

(resp. locally admissible smooth, resp. $-adically admissible) A[G]-module.

Proof. In light of Proposition 4.1.5 and Lemmas 4.1.3 and 4.1.4, it suffices to
consider the case when U is an object of Modadm

G (A). Let H be a compact
open subgroup of G, and let j ≥ 0. As in the proof of Proposition 4.1.5, let
{Pg1, . . . , Pgr} ⊂ G be a set of representatives for the finitely many orbits of
H on P\G. If we write Mi := M ∩ giHg

−1
i , for i = 1, . . . , r, then the composition

of the first two maps of (4.1.6) induces an embedding

(IndG
P
U)H [mj ] ↪→

r⊕
i=1

UMi [mj ].

Since each Mi is an open subgroup of M , and since U is assumed admissible, we
see that the target of this embedding is finitely generated over A, and thus so is
the source. This proves the proposition. �

Suppose now that U is an object of Modsm
M (G), so that elements of IndG

P
U are

locally constant. If f is such an element, then its support, which is an open and
closed subset of G, is invariant under left translation by P , and so corresponds to
a compact open subset of the quotient P\G. We will thus frequently speak of the
support of f as a subset of P\G, rather than of G.

Composing the closed embedding N ↪→ G with the quotient map G→ P\G, we
obtain an open immersion

 : N ↪→ P\G,
which identifies N with an open subset (N) of P\G. Let

(
IndG

P
U

)(
(N)

)
denote

the A-submodule of IndG
P
U consisting of elements whose support (thought of as a

compact open subset of P\G) is contained in (N). Pulling back such a function
to N via , we obtain a locally constant compactly supported function N → U .
Thus, if we denote Csmc (N,U) the A-module of all such functions, then we have a
map of A-modules

(4.1.8)
(
IndG

P
U

)(
(N)

)
→ Csmc (N,U).

4.1.9. Lemma. The map (4.1.8) is an isomorphism.

Proof. Clearly this map is injective. On the other hand, given a function f ∈
Csmc (N,U), we may extend it to a function on PN via the formula f(pn) = pf(n),
and then extend it by zero to a function on G. Since f is compactly supported, this
extension is locally constant, and yields an element of

(
IndG

P
U

)(
(N)

)
that maps

to f under (4.1.8). Thus (4.1.8) is also surjective. �



30 MATTHEW EMERTON

We denote the inverse isomorphism to (4.1.8) by ∗. Thus

∗ : Csmc (N,U) ∼−→
(
IndG

P
U

)(
(N)

)
.

The translation action of P on P\G leaves its open subset (N) invariant. Con-
cretely, we see that if mn ∈MN = P, and n′ ∈ N , then

(n′)mn = (m−1n′mn)

(where the left side denotes the translation action of mn on the element (n′) ∈
P\G). Thus

(
IndG

P
U

)(
(N)

)
is P -invariant. We may transport this P -action via

the isomorphism of Lemma 4.1.9 to a P -action on Csmc (N,U). Of course, this P -
action also admits a direct description, as follows:

(mnf)(n′) = mf(m−1n′mn), for m ∈M, n, n′ ∈ N, and f ∈ Csmc (N,U).

There is a natural isomorphism of A[P ]-modules

Csmc (N,A)⊗A U
∼−→ Csmc (N,U),

if we equip the left hand side with the tensor product P -action, where P acts on
Csmc (N,A) via the above description (taking the M -action on the coefficients A to
be trivial), and on U through its quotient M .

4.2. A simple adjunction formula. Fix a compact open subgroup P0 of P , and
define M0, N0,M

+, etc., as in Subsection 3.1. We regard Csmc (N,A) as an A[P ]-
module via the formula of the preceding subsection (taking the M -action on A to
be trivial). For any compact open subset Ψ ⊂ N , we denote by 1Ψ ∈ Csmc (N,A)
the characteristic function of Ψ (i.e. 1Ψ is identically equal to 1 on Ψ, and vanishes
elsewhere). If V is an object of Modsm

P (A), then (since M normalizes N), the space
HomA[N ](Csmc (N,A), V ) has a natural M -action.

4.2.1. Lemma. The map ev1N0
: HomA[N ](Csmc (N,A), V )→ V N0 , induced by eval-

uation at the function 1N0 ∈ Csmc (N,A), is M+-equivariant, if we equip the target
with its Hecke M+-action.

Proof. This is a simple calculation. �

Since the source of ev1N0
is an A[M ]-module, it induces an M -equivariant map

(4.2.2) HomA[N ](Csmc (N,A), V )→ HomA[M+](A[M ], V N0)( ∼−→ HomA[Z+
M ](A[ZM ], V N0)

)
,

where the isomorphism, which was observed in the proof of Lemma 3.1.7 (1), follows
from [6, Prop. 3.3.6].

4.2.3. Proposition. The map (4.2.2) is an isomorphism.

Proof. Given φ ∈ HomA[N ](Csmc (N,A), V ), let φ̃ ∈ HomA[M+](A[M ], V N0) denote
the image of φ under (4.2.2). If m ∈M+, then

(4.2.4) φ̃(m) = (mφ̃)(1) = (mφ)(1N0) = φ(m1N0) = φ(1mN0m−1)

(where 1mN0m−1 denotes the characteristic function of mN0m
−1). Since any el-

ement of Csmc (N,A) may be written in the form
∑

i aini1mN0m−1 for some finite
collections {ai} ⊂ A and {ni} ⊂ N , and some m ∈M+, we see that φ is completely
determined by the function φ̃, and thus (4.2.2) is injective. Conversely, given any
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φ̃ ∈ HomA[M+](A[M ], V N0), we can define φ ∈ HomA[N ](Csmc (N,A), V ) via the
formula (4.2.4), i.e.

φ(f) :=
∑

i

ainiφ̃(m),

for any function f =
∑

i aini1mN0m−1 ∈ Csmc (N,A); the M+-equivariance of φ̃
ensures that φ(f) is well-defined, independently of the choice of representation of
f as a sum of this form. Thus (4.2.2) is also surjective. �

4.2.5. Remark. Since the source of (4.2.2) is independent of the choice of N0, this
isomorphism yields another proof of Proposition 3.1.12.

4.2.6. Proposition. If U and V are objects of Modsm
M (A) and Modsm

P (A), respec-
tively, then there is a natural isomorphism

HomA[P ]

(
Csmc (N,U), V

) ∼−→ HomA[M ]

(
U,HomA[Z+

M ](A[ZM ], V N0)
)
.

Proof. We compute

HomA[P ]

(
Csmc (N,U), V

) ∼−→ HomA[P ]

(
Csmc (N,A)⊗A U, V

)
∼−→ HomA[P ]

(
U,HomA(Csmc (N,A), V )

)
∼−→ HomA[M ]

(
U,HomA[N ](Csmc (N,A), V )

)
∼−→ HomA[M ]

(
U,HomA[Z+

M ](A[ZM ], V N0)
)
,

where the third isomorphism arises from the fact that the P -action on M factors
through M = P/N , and the final isomorphism is provided by Proposition 4.2.3. �

4.2.7. Proposition. If U is a locally ZM -finite smooth representation of M over A
then there is a natural M -equivariant isomorphism U

∼−→ OrdP (Csmc (N,U)), char-
acterized by the fact that its composite with the canonical lifting OrdP (Csmc (N,U))→
Csmc (N,U)N0 is given by mapping an element u ∈ U to the constant function u sup-
ported on N0.

Proof. If we write U =
⋃

i∈I Ui as the directed union of finitely generated, ZM -
invariant, A-modules, then we may write

Csmc (N,U)N0 ∼−→ lim
−→

i∈I,z∈Z
+
M

Csm(z−1N0z, Ui)N0 ∼−→ lim
−→

i∈I,z∈Z
+
M

A[z−1N0z/N0]⊗A Ui,

where, in forming the inductive limits, we direct Z+
M via the relation of divisibility.

Lemma 3.2.2 yields an isomorphism

lim
−→
i,z

HomA[Z+
M ](A[ZM ], A[z−1N0z/N0]⊗A Ui)ZM−fin

∼−→ Ordp(Csmc (N,U)).

It is easily checked that evaluation at 1 induces an isomorphism

HomA[Z+
M ](A[ZM ], A[z−1N0z/N0]⊗A Ui)ZM−fin

∼−→ Ui,

where Ui is embedded into A[z−1N0z/N0]⊗A Ui via u 7→ 1⊗ u. Thus we find that

U
∼−→ lim

−→
i

Ui
∼−→ Ordp(Csmc (N,U))

in the manner claimed. We leave it to the reader to verify that this isomorphism
is M -equivariant. �
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4.2.8. Corollary. If U is a locally ZM -finite smooth representation of M over A,
and if V is a smooth representation of P over A, then passing to ordinary parts
induces a natural isomorphism

HomA[P ]

(
Csmc (N,U), V

) ∼−→ HomA[M ]

(
U,OrdP (V )

)
.

Proof. This follows from the preceding propositions, together with the fact that,
since U is locally ZM -finite by assumption, the inclusion

HomA[M ]

(
U,OrdP (V )

)
⊂ HomA[M ]

(
U,HomA[Z+

M ](A[ZM ], V N0)
)

is in fact an equality. �

4.3. Ordinary parts of parabolically induced representations. In this sub-
section we will strengthen Proposition 4.2.7 by computing the P -ordinary part of
a representation parabolically induced from P .

Fix a minimal parabolic subgroup P0 of G (defined over Qp) contained in P ,
choose a Levi factor M0 of P0 contained in M , and let W denote the Weyl group
of G with respect to M0. We may choose a subset WP ⊂W so that G decomposes
as the disjoint union of locally closed subsets

G =
∐

w∈wP

PwP.

We may and do choose WP so that it contains the identity 1 ∈ W , and also the
longest element w` ∈ W . We define a partial ordering on WP as follows: w � w′

if and only if PwP is contained in the closure of Pw′P . (See for instance the
discussion at the beginning of [3, §6.3]; note, though, that the parabolic subgroups
PΘ and PΩ considered there are both supposed to be attached to subsets Θ and Ω
of positive simple roots. Thus to compare our situation with that of [3, §6.3], one
should write P = PΩ for some set of positive simple roots, as well as P = w−1

` Pw`,
so that the above decomposition of G gets rewritten as G =

∐
w∈wP

PΩw`wPΩ.

In [3, §1.1] a subgroup WΩ of W associated to Ω is defined, and a particular set
of double-coset representatives [WΩ\W/WΩ] of the double quotient WΩ\W/WΩ is
chosen. If w ∈ W, let [w] ∈ [WΩ\W/WΩ] denote the representative of WΩwWΩ.
The map w 7→ [w`w] then induces a bijection between the subset WP of W and the
set [WΩ\W/WΩ], which is order-reversing, when WP is equipped with the order
introduced above, and [WΩ\W/WΩ] is equipped with the order defined in [3, §6.3].)

For any w ∈WP , write

Sw :=
∐

w′∈WP ,w�w′

P\Pw′P.

Then each Sw is an open subset of P\G, S1 := (N), Sw`
:= P\G, and Sw′ ⊂ Sw

if and only if w � w′.
If U is a locally ZM -finite smooth representation of M over A, then for each

w ∈WP , we let (IndG
P
U)(Sw) denote the subspace of IndG

P
U consisting of functions

whose support (when regarded as a subset of P\G) lies in Sw. Since each Sw is a
union of P -orbits in P\G, each subspace (IndG

P
U)(Sw) is P -invariant.

4.3.1. Lemma. If w � w′ and w is an immediate successor of w′ in WP (i.e. if
w 6= w′, and if there is no element w′′ ∈WP such that w � w′′ � w′), then

OrdP

(
(IndG

P
U)(Sw)/(IndG

P
U)(Sw′)

)
= 0.
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Proof. Restricting elements of (IndG
P
U)(Sw) to PwP induces an exact sequence of

P -representations 0→ (IndG
P
U)(Sw′)→ (IndG

P
U)(Sw)→ C, where

C := {f : PwP → U | f(nmwp) = mf(wp) for all n ∈ N,m ∈M,p ∈ P,
and the support of f is compact modulo P}

is equipped with the right regular P -action. Since OrdP is a left-exact functor, it
suffices to show that OrdP (C) = 0. Suppose that

φ ∈ OrdP (C) := HomA[ZM ]+(A[ZM ], CN0)ZM−fin.

Lemma 3.1.6 (2) shows that im(φ) is a finitely generated A-submodule of C. In
particular, we may find a compact open subset Ω of P\PwP such that the support
of every element of im(φ), taken modulo P , lies in Ω. Since Ω is compact, we may
find z ∈ Z+

M such that Ωz−1 ⊂ P\PwN0. Since Lemma 3.1.6 (3) implies that

(4.3.2) im(φ) = hN0,z im(φ),

we see that in fact every element of im(φ) has its support contained in P\PwN0.
Since φ takes values in CN0 , every element f of im(φ) is furthermore invariant under
the right regular action of elements of N0. Thus, if we write f(w) = u, then, when
restricted to its support (i.e. to P\PwN0), the function f is given by the formula

(4.3.3) nmwn0 7→ mu.

We write f =: fu.
If z ∈ Z+

M , then hN0,zfu is again supported on P\PwN0, and invariant under N0,
and so we may write hN0,zfu = fu′ , for some u′ ∈ U. To compute u′, we evaluate
hN0,zfu at w:

u′ = (hN0,zf)(w) =
∑

n∈N0/zN0z−1

(nzfu)(w) =
∑

n∈N0/zN0z−1

fu(wnz).

Since fu is supported on PwN0, we see (taking into account the formula (4.3.3))
that

fu(wnz) =

{
0 if n 6∈ w−1Nw

⋂
N0

(wzw−1)u if n ∈ w−1Nw
⋂
N0.

Thus
u′ = [

(
N0

⋂
w−1Nw

)
:
(
zN0z

−1
⋂
w−1Nw

)
] · (wzw−1)u.

Since w is a non-trivial element of WP (since it is strictly greater than the el-
ement w′ ∈ WP ), the intersection N

⋂
w−1Nw is non-trivial, and so the inter-

section N0

⋂
w−1Nw is a non-trivial pro-p group, which is topologically finitely

generated, but of infinite order. As z ranges over the elements of Z+
M , the groups

zN0z
−1 range over a cofinal collection of open subgroups of N0. Thus the in-

tersections zN0z
−1

⋂
w−1Nw range over a cofinal collection of open subgroups of

N0

⋂
w−1Nw, and so the index [

(
N0

⋂
w−1Nw

)
:

(
zN0z

−1
⋂
w−1Nw

)
] can be

made an arbitrarily large power of p by choosing z ∈ Z+
M appropriately. Since u is

annihilated by some power of p, we conclude that u′ = 0. From (4.3.2) we conclude
that in fact im(φ) = 0, and the lemma follows, since φ was an arbitrarily chosen
element of OrdP (C). �

4.3.4. Proposition. If U is a locally ZM -finite smooth M -representation over A,
then there is a natural isomorphism of M -representations U ∼−→ OrdP (IndG

P
U).
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Proof. It follows from the preceding lemma, together with the left-exactness of
OrdP , that the inclusion (

IndG
P
U

)(
(N)

)
⊂ IndG

P
U

induces an isomorphism on P -ordinary parts. The proposition now follows from
Proposition 4.2.7 and Lemma 4.1.9. �

4.3.5. Corollary. If U is an object of Mod$−adm
M (A), then there is a natural iso-

morphism of M -representations U ∼−→ OrdP (IndG
P
U).

Proof. For each integer i ≥ 0, the preceding proposition, together with Lemma 2.3.4,
yields an isomorphism

U/$iU
∼−→ OrdP

(
IndG

P
(U/$iU)

)
.

Passing to the projective limit over i, and taking into account Definition 3.4.1 and
Lemma 4.1.3, we obtain the required isomorphism. �

4.4. The main adjunction formula. The main result of this subsection is The-
orem 4.4.6, showing that IndG

P
and OrdP are adjoint functors.

Let U be a smooth, admissible representation of M over A, and let V be a
smooth representation of G over A. Recall from Subsection 4.1 that ∗ provides a
P -equivariant isomorphism between Csmc (N,U) and

(
IndG

P
U

)(
(N)

)
.

If Ω is a compact open subset of P\G, and f ∈ IndG
P
U , then we will let f |Ω denote

the restriction of f to the preimage (under the canonical projection G→ P\G) of
Ω in G, extended by zero to a function on G. The function f |Ω again lies in IndG

P
U,

and the support of f |Ω, thought of as a subset of P\G, is equal to the intersection
of Ω and the support of f . The reader may verify the following formula, which we
will apply repeatedly: for any g ∈ G, we have that

(4.4.1) (gf) |Ω = g(f |Ωg).

We will apply similar notation when considering elements of Csmc (N,U): i.e. if
f ∈ Csmc (N,U), and if Ψ is a compact open subset of N , then we will let f |Ψ denote
the restriction of f to Ψ, extended by zero over N . We have the following formula,
analogous to (4.4.1): if mn ∈MN = P, then

(4.4.2) (mnf) |Ψ = mn(f |m−1Ψmn).

4.4.3. Lemma. Let φ ∈ HomA[P ]

((
IndG

P
U

)(
(N)

)
, V

)
. If f ∈

(
IndG

P
U

)(
(N)

)
and

g ∈ G are chosen so that gf also lies in
(
IndG

P
U

)(
(N)

)
, then φ(gf) = gφ(f).

Proof. Let Ω denote the support of f , which by assumption is contained in (N),
and write Ψ = −1(Ω) ⊂ N. As in Subsection 3.3, choose a cofinal sequence {Ii}i≥0

of compact open subgroups of G, each admitting an Iwahori decomposition N i ×
Mi × Ni

∼−→ Ii. Since Ω, and hence Ψ, is compact, we may choose i sufficiently
large so that Ψ is a union of left cosets of Ni, i.e. so that Nin ⊂ Ψ for every n ∈ Ψ.
Write f = ∗f

′, with f ′ ∈ Csmc (N,U). Since f ′ is a locally constant function, and in
particular assumes only finitely many distinct values in U , enlarging i if necessary,
and choosing i′ sufficiently large, we may furthermore assume that f ′ is left-Ni-
invariant5, and takes values in UMi [mi′ ]. If n ∈ Ψ, we then see that (nf ′) |Ni

is a
constant UMi [mi′ ]-valued function on Ni.

5I.e. constant on left Ni-cosets.
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We let X denote the subspace of Csmc (N,U) consisting of constant UMi [mi′ ]-
valued functions on Ni, regarded as functions on N via extension by zero. The
previous paragraph shows that (nf ′) |Ni

∈ X.
We claim that ∗(X) is elementwise-fixed by Ii. Note that ∗(X) equals the set

of functions fu : G→ U which are supported on PNi = NMNi, and which on that
set are defined by the formula fu(nmn) = mu, for n ∈ N , m ∈ M , and n ∈ Ni,

where u ranges over the elements of UMi [mi′ ]. Note next (taking into account the
Iwahori decomposition of Ii) that PNi = PIi, and thus that if F is any function
on G supported on PNi, the same is true of gF , if g ∈ Ii. Furthermore, if g ∈ Ii
and n ∈ Ni then the product ng again lies in Ii, and so (again taking into account
the Iwahori decomposition of Ii) may be written in the form g = n′m′n′, for some
n′ ∈ N i,m

′ ∈Mi, and n′ ∈ Ni. We thus compute that, for any n ∈ N and m ∈M ,
that

(gfu)(nmn) = fu(nmng) = fu(nmn′m′n′) = fu(n(mn′m−1)mm′n′)

= mm′u = mu = fu(nmn).

(Here the first equality holds by definition, since G acts by right translation; the
second equality is just applying the Iwahori decomposition for ng given above; the
third equality is clear; the fourth and sixth equalities follow from the definition of
fu as a function; and the fifth equality follows from the fact that u ∈ UMi .) Thus
∗(X) is indeed fixed elementwise by Ii.

Since U is assumed to be admissible smooth, the space UMi [mi′ ] is a finitely
generated A-module, and thus the same is true of X and ∗(X). Thus φ

(
∗(X)

)
is

a finitely generated A-submodule of V , and we may choose j ≥ i so that Ij fixes
φ
(
∗(X)

)
elementwise.

The support of gf is equal to the translate Ωg−1 of Ω, which by assumption
again lies in (N). Note that this translate is equal to the image under the natural
projection P\G → G of the translate Ψg−1 ⊂ Ng−1 ⊂ G. Since by assumption
it lies (N), we see that Ψg−1 is a compact subset of PN . Let Ψ denote the
projection of Ψg−1 onto N (i.e. the projection onto the first factor in the source
of the isomorphism N ×M × N ∼−→ PN). Choose an element z ∈ ZM so that
zΨz−1 ⊂ N j , while z−1Niz ⊂ Ni.

Fix an n ∈ Ψ. Since Ψg−1 ⊂ ΨP, we may write gn−1 = pn for some n ∈ Ψ
−1

and p ∈ P . By virtue of our choice of z, we have znz−1 ∈ N−1

j = N j . We now
compute:

(4.4.4) g(f |(Ni)zn) = gn−1z−1(znf) |(Ni) = pnz−1(znf) |(Ni)

= pz−1znz−1(znf) |(Ni) = pz−1(znf) |(Ni).

All but the final equality are trivial manipulations (taking into account the for-
mula (4.4.1)). The final equality holds because (znf) |(Ni) lies in ∗(X) (as we will
show in a moment), and so is fixed by the element znz−1 ∈ N j ⊂ N i. To see that
(znf) |(Ni) ∈ ∗(X), note that since (nf ′) |Ni

is a constant UMi [mi′ ]-valued function
on Ni, an application of (4.4.2) shows that (znf ′) |zNiz−1 = z

(
(nf ′) |Ni

)
is a con-

stant UMi [mi′ ]-valued function on zNiz
−1 ⊃ Ni. Thus (znf ′) |Ni

is again a constant
UMi [mi′ ]-valued on Ni, and so lies in X. Consequently (znf) |(Ni) = ∗

(
(znf ′) |Ni

)
lies in ∗(X), as claimed.
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Applying φ to (4.4.4), we compute that

(4.4.5) φ
(
g(f |(Ni)zn)

)
= φ

(
pz−1(znf) |(Ni)

)
= pz−1φ

(
(znf) |(Ni)

)
= pz−1(znz−1)φ

(
(znf) |(Ni)

)
= gn−1z−1φ

(
(znf) |(Ni)

)
= gφ

(
n−1z−1(znf) |(Ni)

)
= gφ(f |(Ni)zn).

Here the first equality is given by (4.4.4), the second and fifth equalities follow
from the P -equivariance of φ, and the third equality arises from the fact that
φ
(
(znf) |(Ni)

)
∈ φ

(
∗(X)

)
(by the discussion of the preceding paragraph), and

hence is fixed by the element znz−1 ∈ N j . The fourth equality is a trivial manip-
ulation, while the final equality is an application of (4.4.1).

Since z−1Niz ⊂ Ni, we may write Ψ as a finite disjoint union of left z−1Niz
cosets, say Ψ =

∐
l z
−1Niznl, and thus decompose Ω as a union of translates of

(Ni), namely Ω =
∐

l (Ni)znl. Accordingly, we may write f =
∑

l f |(Ni)znl
, and

then compute (taking into account (4.4.5)) that

φ(gf) =
∑

l

φ(gf |(Ni)znl
) =

∑
l

gφ(f |(Ni)znl
) = gφ(f).

This proves the lemma. �

We now prove our main result.

4.4.6. Theorem. Let A be an object of Comp(O). If U is an object of Modadm
M (A)

(resp. Mod$−adm
M (A)) and V is an object of Modsm

G (A) (resp. Mod$−cont
G (A) ) then

passage to ordinary parts induces an isomorphism

HomA[G]

(
IndG

P
U, V

) ∼−→ HomA[M ]

(
U,OrdP (V )

)
.

Consequently, the functor OrdP on Modadm
G (A) (resp. Mod$−adm

G (A)) is right ad-
joint to the functor U 7→ IndG

P
U (which takes Modadm

M (A), resp. Mod$−adm
M (A), to

Modadm
G (A), resp. Mod$−adm

G (A), by Proposition 4.1.7).

Proof. We first consider the case when U and V are smooth. Restricting maps from
IndG

P
U to

(
IndG

P
U

)(
(N)

)
induces a map

(4.4.7) HomA[G]

(
IndG

P
U, V

)
→ HomA[P ]

((
IndG

P
U

)(
(N)

)
, V

)
∼−→ HomA[G]

(
A[G]⊗A[P ]

(
IndG

P
U

)(
(N)

)
, V

)
.

The natural map
A[G]⊗A[P ]

(
IndG

P
U

)(
(N)

)
→ IndG

P
U

is surjective, as
(
IndG

P
U

)(
(N)

)
generates IndG

P
U over G, since the G-translates of

(N) cover P\G. Thus (4.4.7) is injective. We claim that it is in fact an isomor-
phism. To prove this, we have to show that any map of A[G]-modules

φ : A[G]⊗A[P ]

(
IndG

P
U

)(
(N)

)
→ V,

in which the target is smooth, necessarily factors through the quotient IndG
P
U of

the source. In other words, we have to show that if g1, . . . , gl is a finite sequence
of elements of G, and f1, . . . , fl is a finite sequence of elements of

(
IndG

P
U

)(
(N)

)
,

such that

(4.4.8)
l∑

i=1

gifi = 0 in IndG
P
U,
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then

(4.4.9)
l∑

i=1

giφ(fi)
?= 0 in V.

It suffices to show that each point x of P\G has a compact open neighbourhood
Ωx such that for any neighbourhood Ω′x ⊂ Ωx of x we have

(4.4.10)
l∑

i=1

giφ(fi|Ω′xgi
) ?= 0.

Indeed, we can then partition P\G into a finite disjoint union of such neighbour-
hoods, say P\G =

∐s
j=1 Ω′xj

, and writing

gifi =
s∑

j=1

(gifi)|Ω′xj
=

s∑
j=1

gifi|Ω′xj
gi

(where we have used (4.4.1)), so that

fi =
s∑

j=1

fi|Ω′xj
gi
,

we conclude that if (4.4.10) holds, then so does (4.4.9).
If x = Pg for some g ∈ G, then replacing (g1, . . . , gl) by (gg1, . . . , ggl), we see

that it suffices to treat the case when x equals the identity coset, which is equal to
the image (e) of the identity e of N under the open immersion  : N ↪→ P\G. Let
Ωe be a compact open neighbourhood of (e) in (N), chosen so that Ωegi ⊂ (N)
for all i for which gi ∈ PN , and so that Ωegi is disjoint from the support of fi for
all other i. It follows from (4.4.8) (and an application of (4.4.1)) that

l∑
i=1

(gifi)|Ωe
=

l∑
i=1

gifi|Ωegi
= 0 in

(
IndG

P
U

)(
(N)

)
.

Applying the map φ to the second of these equalities (which is an equation in-
volving elements of

(
IndG

P
U

)(
(N)

)
, since fi|Ωegi

= 0 if Ωegi 6⊂ (N), by virtue
of our choice of Ωe), and taking into account Lemma 4.4.3, we deduce that indeed∑l

i=1 giφ(fi|Ωegi
) = 0, and thus we have shown that (4.4.7) is an isomorphism. Now

composing (4.4.7) with the isomorphism

HomA[P ]

((
IndG

P
U

)(
(N)

)
, V

) ∼−→ HomA[P ]

(
Csmc (N,U), V

)
induced by ∗, together with the isomorphism of Corollary 4.2.8, and taking into
account Proposition 4.3.4 (note that these results apply, since Lemma 2.3.4 implies
that U is locally ZM -finite), completes the proof of the theorem in the case when
U and V are smooth.
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We now consider the case when U is $-adically admissible and V is $-adically
continuous. There is a commutative diagram

HomA[G]

(
IndG

P
U, V

) ∼ //

��

lim
←−

i

Hom(A/$iA)[G]

(
IndG

P
(U/$iU), V/$iV

)
��

HomA[M ]

(
U,OrdP (V )

) ∼ // lim
←−

i

Hom(A/$iA)[M ]

(
U/$iU,OrdP (V/$iV )

)
,

in which the vertical arrows are given by passing to ordinary parts (here we are
taking into account Proposition 4.3.4 and Corollary 4.3.5), and the horizontal ar-
rows arise from the isomorphism of Lemma 4.1.3 and Definition 3.4.1. By what we
have already proved, the right hand vertical arrow is also an isomorphism. Thus so
is the left hand vertical arrow. �

Appendix A. Functional analysis

In this appendix we establish some simple functional analytic results regarding
(not necessarily finitely generated) modules over the ring O.

A.1. Lemma. If 0 → V1 → V2 → V3 → 0 is a short exact sequence of O-modules
such that V3[$∞] has bounded exponent, then the $-adic topology on V2 induces
the $-adic topology on V1.

Proof. If we choose i so large that V3[$i] = V3[$∞], then we deduce the second of
the inclusions

$jV1 ⊂ V1

⋂
$jV2 ⊂ $j−iV1;

the first is evident. This proves the lemma. �

In the remainder of the appendix, we will restrict our attention to O-modules
whose submodule of torsion elements is of bounded exponent. We begin with a
general remark about such modules.

A.2. Remark. If V is any O-module then there is a canonical short exact sequence

(A.3) 0→ V [$∞]→ V → Vfl → 0.

Suppose now that the torsion submodule of V is of bounded exponent, i.e. that
V [$∞] = V [$i] for some sufficiently large i. Then, for any j ≥ i, tensoring the
above short exact sequence by O/$j over O induces a short exact sequence

(A.4) 0→ V [$∞] = V [$i]→ V/$jV → Vfl/$
jVfl → 0.

We now turn to proving Theorem A.11 below. We begin by first making a
definition, and then establishing some preliminary results.

A.5. Definition. If V is an O-module, then we say that an O-linear map φ : V → E

is bounded if the image is contained in
1
$i
O for some i ≥ 0. We let HomO−bd(V,E)

denote the O-submodule of HomO(V,E) consisting of bounded maps.

A.6. Lemma. If A is an Artinian local ring, then an A-module is flat if and only
if it is free.
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Proof. Any free module is flat; we must prove the converse. Let m denote the
maximal ideal of A, and choose a basis {ei}i∈I of V/mV, as well as elements ei ∈ V
lifting the basis elements ei. The elements ei give rise to a map φ : A⊕I → V ,
which we will show is an isomorphism.

Let U denote the kernel of φ, and W its image. By construction V = W + mV.
Iterating this inequality, and using the fact that mi = 0 for sufficiently large i, we
find that in fact V = W , i.e. that φ is surjective. Thus we have a short exact
sequence

0 −→ U −→ A⊕I φ−→ V −→ 0,
which when tensored with A/m over A, yields a short exact sequence

0 −→ U/mU −→ A⊕I φ−→ V/mV −→ 0

(since V is flat over A, by assumption). Now φ is an isomorphism, since the ei form
a basis of V/mV . Thus we find that U/mU = 0, and hence that U = mU . Iterating
this inequality (and again using the fact that mi = 0 for some i) shows that U = 0,
and thus that φ is injective. Consequently φ is an isomorphism, as claimed. �

A.7. Lemma. If V is a $-adically complete and separated, torsion free O-module,
then there is a short exact sequence

0→ HomO(V,O)→ HomO−bd(V,E)→ HomO(V,E/O)[$∞]→ 0.

Proof. The short exact sequence 0 → O → E → E/O → 0 gives rise to an ex-
act sequence 0 → HomO(V,O) → HomO(V,E) → HomO(V,E/O), which in turn
induces an exact sequence

(A.8) 0→ HomO(V,O)→ HomO−bd(V,E)→ HomO(V,E/O)[$∞].

We will show that this sequence is also exact on the right.
To this end, let φ ∈ HomO(V,E/O)[$∞], and suppose that φ is annihilated

by $i, so that in fact

φ : V/$iV → 1
$i
O/O.

Since V is torsion free, and hence flat over O, it follows that V/$jV is flat over
O/$jO, for each j > 0, and so Lemma A.6 implies that V/$jV is free over
O/$jO, for each j > 0. Proceeding inductively on j, we see that we may construct

a projective system of maps φj : V/$j → 1
$i
O/$j−iO, for each j ≥ i, such that

φi = φ. Passing to the projective limit in j, we obtain a map V → 1
$i
O ⊂ E,

which is an element of HomO−bd(V,E) lifting φ. �

A.9. Lemma. If V is a O-module whose torsion submodule is of bounded exponent,
then there is an exact sequence

0→ HomO(Vfl, E/O)[$∞]→ HomO(V,E/O)[$∞]→ HomO(V [$∞], E/O)→ 0.

Proof. Since E/O is an injective O-module, the short exact sequence (A.3) gives
rise to a short exact sequence

0→ HomO(Vfl, E/O)→ HomO(V,E/O)→ HomO(V [$∞], E/O)→ 0,

which in turn gives rise to an exact sequence

0→ HomO(Vfl, E/O)[$∞]→ HomO(V,E/O)[$∞]→ HomO(V [$∞], E/O).
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We will show that this latter exact sequence is also short exact.
To this end, suppose that φ : V [$∞] → E/O. By assumption V [$∞] = V [$i]

for some i, and so in fact φ : V [$∞] → 1
$i
O/O. The short exact sequence (A.4)

(taken with j = i) induces an embedding V [$∞] = V [$i] ↪→ V/$iV, and thus,

using the fact that
1
$i
O/O is injective over O/$iO, we may extend φ to a map

φ′ : V/$iV → 1
$i
O/O. Composing φ′ with the projection V → V/$iV yields an

element of HomO(V,E/O)[$∞] which maps onto φ. �

A.10. Proposition. If V is a $-adically complete and separated O-module whose
torsion submodule is of bounded exponent, then there is an exact sequence

0→ HomO(V,O)→ HomO−bd(V,E)

→ HomO(V,E/O)[$∞]→ HomO(V [$∞], E/O)→ 0.

Proof. Since O and E are torsion free, the surjection V → Vfl induces isomorphisms
HomO(Vfl,O) ∼−→ HomO(V,O) and HomO−bd(Vfl, E) ∼−→ HomO−bd(V,E). Thus
we obtain the required four term exact sequence by gluing together the short exact
sequences obtained by applying Lemma A.7 to Vfl and Lemma A.9 to V . �

A.11. Theorem. If 0 → V1 → V2 → V3 → 0 is a short exact sequence of $-
adically complete and separated O-modules, the torsion submodule of each of which
has bounded exponent, then there is a long exact sequence

0→ HomO(V3,O)→ HomO(V2,O)→ HomO(V1,O)

→ HomO(V3[$∞], E/O)→ HomO(V2[$∞], E/O)

→ HomO(V1[$∞], E/O)→ 0.

Proof. The injective resolution E → E/O of O gives rise to a morphism of short
exact sequences

0 // HomO(V3, E) //

��

HomO(V2, E) //

��

HomO(V1, E) //

��

0

0 // HomO(V3, E/O) // HomO(V2, E/O) // HomO(V1, E/O) // 0.

Passing to bounded maps in the top row, and to torsion submodules in the bottom
row, we obtain a morphism of exact sequences
(A.12)

0 // HomO−bd(V3, E) //

��

HomO−bd(V2, E) //

��

HomO−bd(V1, E)

��
0 // HomO(V3, E/O)[$∞] // HomO(V2, E/O)[$∞] // HomO(V1, E/O)[$∞].

The top row of this diagram is canonically identified with the exact sequence of
continuous dual spaces

0→ (E ⊗O V3)′ → (E ⊗O V2)′ → (E ⊗O V1)′

associated to the exact sequence of Banach spaces

0→ E ⊗O V1 → E ⊗O V2 → E ⊗O V3 → 0,
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and so is exact on the right, by the Hahn–Banach theorem. (One could also prove
this exactness directly, using the style of argument employed in the proof of Lem-
mas A.7 and A.9.)

We claim that the bottom row of (A.12) is also exact on the right. To see
this, let φ ∈ HomO(V1, E/O)[$∞], and suppose that $jφ = 0, so that in fact

φ : V1 →
1
$j
O/O. Now, if i ≥ 0 is chosen so that V3[$∞] = V3[$i], then (as was

noted in the proof of Lemma A.1) we have an inclusion V1

⋂
$i+jV2 ⊂ $jV1. Since

1
$i+j

O/O is injective over O/$i+jO, we find that we may lift the composite map

V1/V1

⋂
$i+jV2 −→ V1/$

jV1
φ−→ 1

$i
O/O ⊂ 1

$i+j
O/O

to a map φ′ : V2/$
i+jV2 →

1
$i+j

O/O. The map φ′ then gives an element of

HomO(V2, E/O)[$∞] which maps onto φ.
We have thus seen that both the top and bottom row of (A.12) are short exact.

Applying the snake lemma, and taking into account Proposition A.10, we obtain
the six term exact sequence in the statement of the theorem. �

We close the appendix by noting two further lemmas. They are both simple
consequences of the Hahn–Banach theorem (and could also be deduced directly
using arguments of the type used in the proof of Lemmas A.7 and A.9).

A.13. Lemma. Let V1 → V2 be an O-linear map of $-adically complete and torsion
free O-modules. If the induced map HomO(V2,O) → HomO(V1,O) is surjective,
then the given map is injective.

Proof. Let V denote the kernel of the given map; it is a $-adically closed and
saturated O-submodule of V1, and hence is again $-adically complete. Thinking
of V and V1 as the unit balls of the corresponding E-Banach spaces E ⊗O V and
E ⊗O V1, we see by the Hahn-Banach theorem that if V 6= 0 then the image of the
restriction HomO(V1,O) → HomO(V,O) is non-zero, contradicting the hypothesis
of the lemma. �

A.14. Lemma. Let 0→ V1 → V2 → V3 → 0 be a short exact sequence of O-modules,
such that V1 and V2 are $-adically complete and torsion free. If the cokernel of
the induced map HomO(V2,O)→ HomO(V1,O) is torsion, with bounded exponent,
then V3[$∞] is also of bounded exponent.

Proof. Let Ṽ1 denote the saturation in V2 of (the image of) V1, i.e.

Ṽ1 = {v ∈ V2 |$i ∈ V1 for some i ≥ 0}.
(To simplify the notation, we identify V1 with its image in V2.) There is an evident
isomorphism Ṽ1/V1

∼−→ V3[$∞], and hence we must show that Ṽ1/V1 has bounded
exponent. By assumption, there exists j ≥ 0 such that if φ : V1 → O, then $jφ is
the restriction of some ψ : V2 → O. Let v ∈ Ṽ1, and choose i ≥ 0 minimally such
that $iv ∈ V1. Suppose that i > j. Since $iv 6∈ $V1 (by the minimality of i),
the Hahn–Banach theorem allows us to choose φ : V1 → O such that φ($iv) = 1.
Suppose that $jφ is the restriction of ψ, as above. We compute that $iψ(v) =
ψ($iv) = $jφ($iv) = $j , and hence that ψ(v) = $j−i. In particular we conclude
that $j−i ∈ O, and thus that i ≤ j, a contradiction. Consequently it must be that
V3[$∞] = V3[$j ], proving the lemma. �
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