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p-ADIC FAMILIES OF MODULAR FORMS

[after Hida, Coleman, and Mazur]

by Matthew EMERTON

INTRODUCTION

The theory of p-adic families of modular forms grew out of two highly related tradi-

tions in the arithmetic theory of modular forms: the theory of congruences of modular

forms (which dates back to work of Ramanujan) and the (more recent) theory of Galois

representations attached to modular forms. The first example of a p-adic family of

modular forms was the Eisenstein family, considered by Serre in [37]. This is a family

of q-expansions, parametrized by the weight k, whose coefficients are p-adically contin-

uous functions of k. Serre’s immediate goal in studying this family was to obtain an

understanding of the possible congruences between the q-expansion coefficients of mod-

ular forms in different weights, especially of the constant terms, since such congruences

lead to congruences between special values of ζ-functions.

The papers [22, 23] led to a decisive shift in the theory, placing it at the centre of the

arithmetic theory of modular forms. In these papers, Hida constructed p-adic families

of cuspforms, varying continuously with the weight k, which were also simultaneous

eigenforms for the Hecke operators. Thus, in light of the known construction of Ga-

lois representations attached to Hecke eigenforms, one found that associated to these

p-adic families of cuspidal eigenforms there were corresponding p-adic families of p-adic

Galois representations. The existence of such families led Mazur to develop his general

theory of deformations of Galois representations [31], which in turn inspired further

developments [45, 43].

Hida’s constructions had a certain limitation: if f is a Hecke eigenform of weight

k ≥ 1 and level N prime to p, then f appears in a Hida family if and only if (at least)

one of the roots of the pth Hecke polynomial of f is of slope zero (i.e. a p-adic unit).

This restriction was removed by the work of Coleman and Mazur [10], who constructed

p-adic analytic (more precisely, rigid analytic) curves of eigenforms containing any such

form f , whether or not its pth Hecke polynomial admits a unit root; these are the

so-called eigencurves.

The eigencurves are fundamentally analytic objects. One can also ask whether there

is an algebraic family (or more precisely, a scheme) that parametrizes all the f as

above, regardless of the slopes of the roots of the pth Hecke polynomial. Indeed, there

is such an object; all the eigenforms f (of arbitrary weight but some fixed level N) are
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parametrized by the Zp points of Spec T(N), where T(N) is the p-adic Hecke algebra

of level N . These points are no longer parametrized by weight; indeed, Spec T(N) is

(at least conjecturally) of relative dimension three over Spec Zp. It is conjectured that

every continuous, two-dimensional, semi-simple odd p-adic Galois representation of GQ
that is unramified outside finitely many primes corresponds to a point of Spec T(N) for

some appropriate value of N . This is one of the main motivations for the study of the

families Spec T(N), and the related p-adic families of eigenforms constructed by Hida

and Coleman–Mazur.

In Section 1 of this exposé we recall the basic theory of modular forms, Hecke oper-

ators, and the Galois representations associated to Hecke eigenforms. In Section 2, we

outline the definitions and basic results and conjectures regarding the p-adic Hecke al-

gebras T(N), and the families of Hida and Coleman–Mazur. We focus more on systems

of Hecke eigenvalues attached to eigenforms, rather than on the eigenforms themselves.

This is in keeping with our focus on the relationship with Galois representations (al-

though it takes us somewhat far in spirit from the concrete viewpoint of [37]).

Acknowledgments. I would like to thank J-P. Serre for his helpful comments on an

earlier version of this article.

0.1. Notation

As usual Q, R, and C denote the fields of rational, real, and complex numbers, and

Z denotes the ring of integers. For any prime p, we let Zp denote the ring of p-adic

integers, and Qp denote the field of p-adic numbers.

We let Q denote the algebraic closure of Q in C, and let Z denote the integral closure

of Z in Q. For each prime p, we fix an algebraic closure Qp of Qp, and let Zp denote the

integral closure of Zp in Qp. We also fix an embedding ıp : Q ↪→ Qp. This restricts to

an embedding Z ↪→ Zp. We write Fp to denote the residue field of Zp. It is an algebraic

closure of the field Fp of p elements. We let ordp : Qp → Z ∪ {∞} denote the p-adic

valuation, normalized so that ordp(p) = 1. If x ∈ Qp, then ordp(x) is also called the

slope of x. (Thus x has finite slope if and only if x 6= 0, while x has slope zero if and

only if x ∈ Z×p .)

1. MODULAR FORMS, HECKE ALGEBRAS, AND GALOIS

REPRESENTATIONS

1.1. Modular forms

Let

H =
{
τ ∈ C | =(τ) > 0

}
denote the complex upper half-plane. The group SL2(Z) acts on H in the usual way:(

a b

c d

)
τ =

aτ + b

cτ + d
.
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Let O(H) denote the space of holomorphic functions on H. If k is an integer, then we

define the weight k-action of SL2(Z) on O(H) as follows:

(f |k γ)(τ) := (cτ + d)−kf(γτ),

for f ∈ O(H) and γ = ( a bc d ) ∈ SL2(Z); as the notation indicates, this is a right action.

If N ≥ 1, define

Γ1(N) :=
{
γ ∈ SL2(Z) | γ ≡ ( 1 ∗

0 1 ) mod N
}
.

Definition 1.1. — A modular form (resp. cuspform) of weight k and level N is a

holomorphic function f ∈ O(H) that is invariant under the weight k-action of Γ1(N),

and for which

(1) lim
y→∞

(f |k γ)(iy)

exists and is finite (resp. vanishes) for each γ ∈ SL2(Z). We let Mk(N) (resp. Sk(N))

denote the space of modular forms (resp. cuspforms)of weight k and level N .

Remark 1.2. — If f ∈ O(H) is invariant under the weight k-action of Γ1(N), then, in

order to check if f is a modular form or a cuspform, it suffices to study the limit (1) for

finitely many γ ∈ SL2(Z) (namely, for a set of coset representatives for Γ1(N)\SL2(Z)).

Remark 1.3. — If f is a modular form of weight k and level N , then, applying the

invariance property of f to the matrix ( 1 1
0 1 ) ∈ Γ1(N), one finds that f(τ +1) = f(τ).

We may thus expand the function f(τ) as a Fourier series

f(τ) :=
∞∑

n=−∞

cn(f)qn,

where q := exp(2πiτ). Condition (1), with γ = 1, then shows that cn(f) = 0 for n < 0

(resp. for n ≤ 0 if f is a cuspform). We refer to this Fourier series as the q-expansion

of f .

Clearly Mk(N) and Sk(N) are vector subspaces of O(H). In fact they are also finite

dimensional. (See [39] for a discussion of this and other basic facts concerning modular

forms.)

Example 1.4. — If k < 0, then Mk(N) = 0. When k = 0, the space M0(N) consists

simply of the constant functions on H (and so S0(N) = 0). To avoid these trivial cases,

we will typically assume that k ≥ 1 in all that follows. As k increases, the dimensions

of both Mk(N) and Sk(N) grow essentially linearly in k (with the exception that

Mk(N) = 0 if N = 1 or 2 and k is odd).

Example 1.5. — The simplest examples of modular forms of positive weight are the

Eisenstein series Ek ∈ Mk(1). These are defined for even k ≥ 4. (It is easily shown
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that Mk

(
1) vanishes if k is odd or 0 < k < 4.) The q-expansion of Ek is given by the

following formula:

Ek(τ) =
−Bk

2k
+

∞∑
n=1

(
∑
d|n

dk−1)qn,

where Bk is the kth Bernoulli number.

There is a direct sum decomposition

Mk(1) = CEk ⊕ Sk(1).

More generally, for any N , we may decompose Mk(N) into the direct sum of a space of

Eisenstein series (typically of dimension greater than one when N > 1) and the space

of cuspforms. (See Example 1.18 below.)

1.2. Hecke operators

Fix integers k ≥ 1 and N ≥ 1. Write

Γ0(N) :=
{
γ ∈ SL2(Z) | γ ≡ ( ∗ ∗0 ∗ ) mod N

}
.

Note that Γ0(N) contains Γ1(N) as a normal subgroup, and that the map(
a b

c d

)
7→ d mod N

induces an isomorphism

(2) Γ0(N)/Γ1(N)
∼−→ (Z/NZ)×.

A simple computation, using the normality of Γ1(N) in Γ0(N), shows that the weight

k-action of Γ0(N) preserves Mk(N) and Sk(N). When restricted to these spaces,

this action obviously factors through the quotient Γ0(N)/Γ1(N), and hence, via the

isomorphism (2), we obtain an action of the group (Z/NZ)× on Mk(N) and Sk(N).

If d ∈ (Z/NZ)×, then we denote the corresponding automorphism of Mk(N) by 〈d〉.
(These operators are sometimes referred to as the diamond operators.)

Remark 1.6. — We note a simple but important identity for the action of the diamond

operator 〈−1〉, namely

(3) 〈−1〉f = (−1)kf,

for any f ∈ Mk(N). This is easily verified by considering the weight k-action of the

matrix
( −1 0

0 −1

)
∈ Γ0(N) on f .

Definition 1.7. — If ` is a prime not dividing N , then we define the automorphism

S` of Mk(N) via the formula

S` = 〈`〉`k−2.
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Since the diamond operators leave Sk(N) invariant, so do the operators S`. In fact,

although it is traditional to single out the operators S` as defined above, it is the

operators `S` = 〈`〉`k−1 that will be more important for us, as we see already in the

next definition.

Definition 1.8. — If ` is a prime not dividing N , then we define the endomorphism

T` of Mk(N) via the formula

(4) (T`f)(τ) =
∞∑
n=0

cn`(f)qn +
∞∑
n=0

`cn(S`f)qn`.

Remark 1.9. — It is not immediately obvious that T`, which we have defined simply

by its effect on q-expansions, actually preserves the space Mk(N). In fact T` can

be thought of as a certain double coset operator, corresponding to the double coset

GL2(Z`) ( ` 0
0 1 ) GL2(Z`) (see e.g. [39, Ch. 3]). From this point of view, it is easy to verify

that it preserves the space Mk(N), as well as the subspace Sk(N) of cuspforms.

The operator S` also has a double coset interpretation; it corresponds to the double

coset GL2(Z`) ( ` 0
0 ` ) GL2(Z`). This is one reason to consider S` as a primary object,

rather than the diamond operator 〈`〉.

Definition 1.10. — We let Tk(N), or simply Tk when the level N is understood,

denote the Z-subalgebra of End
(
Mk(N)

)
generated by the operators `S` and T` as `

ranges over the primes not dividing N . The algebra Tk(N) is called the Hecke algebra

(for the given weight k and level N).

Remark 1.11. — Following [39, Ch. 3], one can extend Definition 1.8 and define Hecke

operators Tm acting on Mk(N) for any positive integer m prime to N . The algebra

Tk(N) defined above then coincides with the Z-algebra of endomorphisms of Mk(N)

generated by the collection of these operators Tm.

The following result encapsulates the basic properties of the algebra Tk, and of its

action on Mk(N).

Proposition 1.12. — The algebra Tk is commutative, reduced, and free of finite rank

over Z. Furthermore, the tensor product C⊗Z Tk acts faithfully on Mk(N).

Remark 1.13. — The commutativity part of the statement is not difficult to verify; for

example, it is easily checked using the description of the Hecke operators in terms of

double cosets. The additional properties of Tk are then equivalent to the following

statements about the eigenspaces and eigenvalues of the Hecke operators:

1. Every eigenvalue of any of the Hecke operators is an algebraic integer. (Here one

sees the importance, when k = 1, of taking `S` rather than S` in the definition of

Tk, so as to avoid introducing denominators.)

2. The systems of simultaneous eigenvalues for the action of the Hecke operators on

Mk(N) (which are collections of algebraic integers, by 1) are closed under the

action of Gal(Q/Q).
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3. The space Mk(N) decomposes as a direct sum of simultaneous eigenspaces for the

Hecke operators.

Definition 1.14. — We say that f ∈ Mk(N) is a Hecke eigenform if it is a simul-

taneous eigenvector for the Hecke operators `S` and T` (where ` ranges over all primes

not dividing N), or equivalently, if there is a ring homomorphism λ : Tk → C such that

Tf = λ(T )f for all T ∈ Tk.

We refer to a homomorphism λ : Tk → C as a system of Hecke eigenvalues. (Any

such λ is the system of Hecke eigenvalues attached to some Hecke eigenform. Also,

according to the preceding remark, any such λ factors through the ring of algebraic

integers Z in Q.) If λ is a system of Hecke eigenvalues, then we write Mk(N)[λ] to

denote the corresponding subspace of Hecke eigenforms.

As already noted in the preceding remark, the space Mk(N) admits the direct sum

decomposition

Mk(N) =
⊕
λ

Mk(N)[λ],

where the direct sum is taken over all systems of Hecke eigenvalues.

Remark 1.15. — The formula (4) shows that if λ is a system of Hecke eigenvalues,

then the q-expansion of a Hecke eigenform f ∈ Mk(N)[λ], and hence the eigenform

f itself, is to a large extent determined by the system of Hecke eigenvalues λ. For

example, if N = 1, then the group of diamond operators is trivial, and so `S`f = `k−1f .

Formula (4) then shows that

λ(T`)cn(f) = cn`(f) + cn/`(f)`k−1

for every prime number ` (where we set cn/` = 0 if ` - n). Thus the Fourier coefficients

cn(f) (n ≥ 1) are determined recursively by the single coefficient c1(f), and so f is

determined up to a scalar by its associated system of Hecke eigenvalues. In particular,

the λ-eigenspace in Mk(1) is one-dimensional.(1) If N > 1, then we find that f is deter-

mined by λ, together with the Fourier coefficients cm(f), for those positive integers m

divisible only by primes dividing N . Thus f need not be uniquely determined (up to

a scalar) by λ, and the λ-eigenspace in Mk(N) can be of dimension greater than one.

However, the structure of this eigenspace is well-understood, either using the theory of

so-called oldforms and newforms as in [1], or in terms of the action of GL2(A) on the

space of modular forms of weight k [25, 6]. We do not recall the details here, since

they will not be important for us. As we will explain in the following subsection, our

(1)A slight amount of caution is required here, because c0(f) is not directly determined by the cn(f)
for n ≥ 1. However, since k ≥ 1, then in fact c0(f) is so determined, as one easily sees, since a constant
function cannot be modular of weight k > 0. As Serre notes [37, Rem. 2), p. 221], one can directly
determine c0(f) from the cn(f) for n ≥ 1 as follows: −c0(f) is the value at s = 0 of the meromorphic
function defined by analytic continuation of the Dirichlet series

∑∞
n=1 cn(f)n−s.
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attention will be focussed on the systems of eigenvalues λ themselves, rather than on

the associated Hecke eigenforms.

Remark 1.16. — Given a system of Hecke eigenvalues λ appearing in Mk(N), it fol-

lows from the definition of the operators S` that there is a Q×
-valued character ε of

(Z/NZ)× such that λ(`S`) = ε(`)`k−1. Thus we may recover the value of the weight k

from the system of eigenvalues λ. Indeed, if ` is any prime not dividing N , then

k = (log` |λ(`S`)|) + 1.

Example 1.17. — If k ≥ 4 is even, then the Eisenstein series Ek ∈ Mk(1) is a Hecke

eigenform. The corresponding system of Hecke eigenvalues λ is given by

λ(`S`) = `k−1, λ(T`) = 1 + `k−1.

(Here ` is an arbitrary prime, since we are in the case N = 1).

Example 1.18. — Let ψ1 : (Z/M1Z)× → C× and ψ2 : (Z/M2Z)× → C× be characters,

and let k ≥ 1 (unless M1 = M2 = 1, in which case we require that k ≥ 4) be chosen so

that ψ1(−1)ψ2(−1)(−1)k = 1. Then the following system of Hecke eigenvalues, which

we denote by λψ1,ψ2,k, appears in Mk(M1M2):

λψ1,ψ2,k(`S`) = ψ1(`)ψ2(`)`
k−1, λψ1,ψ2,k(T`) = ψ1(`) + ψ2(`)`

k−1.

In the case when M1 = M2 = 1, we obtain the systems of Hecke eigenvalues associated

to the Eisenstein series Ek, as considered in the preceding example. In general, we refer

to such a system of Hecke eigenvalues as an Eisenstein system of eigenvalues.

If we write

Ek(N) =
⊕

λ Eisenstein

Mk(N)[λ],

where the sum ranges over all Eisenstein systems of Hecke eigenvalues for which

M1M2 = N, then we refer to modular forms f ∈ Ek(N) as Eisenstein series. There is a

direct sum decomposition

Mk(N) = Ek(N)⊕ Sk(N).

Unlike the Eisenstein systems of eigenvalues considered in Example 1.18, the sys-

tems of eigenvalues appearing in the spaces of cuspforms do not admit an elementary

description. As we will see in the following subsection, they correspond to certain Galois

representations.

Example 1.19. — We close this subsection with a careful presentation of the preceding

concepts in the case N = 1 and k = 12. In this case

M12(1) = E12(1)⊕ S12(1),

where E12(1) is one-dimensional, spanned by

E12 =
691

32760
+

∞∑
n=1

(
∑
d|n

d11)qn =
691

32760
+ q + 2049q2 + 177148q3 + · · · ,
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and S12(1) is also one-dimensional, spanned by Ramanujan’s famous cuspform

∆(τ) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 + · · · .

(Here τ(n) = cn(∆) is by definition the nth Fourier coefficient of ∆.) Each of these

modular forms is a Hecke eigenform, and correspondingly T12 admits two systems of

Hecke eigenvalues.

If we write λ1 (resp. λ2) to denote the system of Hecke eigenvalues attached to E12

(resp. ∆), then

(5) λ1 × λ2 : T12 ↪→ Z× Z.

Note that since each of these eigenforms has been normalized so that c1 = 1, we may

read off the corresponding systems of Hecke eigenvalues from the Fourier coefficients, as

in Remark 1.15. The product λ1×λ2 provides an embedding λ1×λ2 : T12 ↪→ Z×Z. It

was first observed by Ramanujan that this embedding is not an isomorphism. Indeed,

Ramanujan showed that

τ(n) ≡
∑
d|n

d11 mod 691

for every natural number n, or equivalently,

λ1(T`) ≡ λ2(T`) mod 691

for each prime `. On the other hand, it is easily verified (just by considering the cases

when ` = 2 and 3) that no such congruence holds modulo any higher power of 691, nor

modulo any other prime. Thus (5) induces an isomorphism

T12
∼−→ {(u, v) ∈ Z× Z |u ≡ v mod 691}.

If p is a prime and p 6= 691, then Zp ⊗Z T12
∼−→ Zp × Zp; this reflects the fact that

the distinct systems of eigenvalues λ1 and λ2 remain distinct when reduced modulo p.

On the other hand, the tensor product Z691 ⊗Z T12 does not factor as a product in

any non-trivial way; rather, it is a local ring, reflecting the congruence of λ1 and λ2

modulo 691.

1.3. Galois representations

As in the preceding section, fix integers k ≥ 1 and N ≥ 1. From a certain point of

view, it is the systems of Hecke eigenvalues appearing in Mk(N) that are of the greatest

interest, rather than the modular forms, or even the Hecke eigenforms, themselves. This

is because they give rise to Galois representations, as we now recall.

Choose a prime number p. If λ is a system of Hecke eigenvalues appearing in Mk(N),

then since λ takes values in the ring Z of algebraic integers, we may compose it with

our chosen embedding ıp : Q ↪→ Qp, and so regard λ as taking values in Zp. For

the remainder of this subsection, we regard all systems of Hecke eigenvalues as being

Zp-valued. If λ : Tk → Zp is a system of Hecke eigenvalues, then we let λ : Tk → Fp be
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the homomorphism obtained by composing λ with the map Zp → Fp given by reducing

modulo the maximal ideal of Zp.

Let Σ denote the (finite) set of primes dividing Np, let QΣ denote the maximal

algebraic extension of Q in Q that is unramified outside of the primes in Σ, and write

GQ,Σ := Gal(QΣ/Q). Recall that if ` is a prime not in Σ, then attached to ` is a Frobenius

element Frob` ∈ GQ,Σ, well-defined up to conjugacy, with the property that there is a

prime ideal l lying over ` in the ring of algebraic integers in QΣ that is preserved by

Frob`, such that for any algebraic integer x ∈ QΣ, Frob`(x) ≡ x` mod l. The Čebotarev

density theorem furthermore implies that the union of these conjugacy classes is dense

in GQ,Σ.

If M is any integer divisible only by primes dividing Np, and if ζM denotes a primitive

Mth root of unity, then ζM ∈ QΣ, and so there is a group homomorphism

χM : GQ,Σ → (Z/MZ)×

describing the action of the elements of GQ,Σ on ζM , namely, for any σ ∈ GQ,Σ, we have

σ(ζM) = ζ
χM (σ)
M .

We refer to χM as the mod M cyclotomic character. It can also be characterized by

the formula

χM(Frob`) ≡ ` mod M,

for any prime ` not dividing Np. Also, if c ∈ GQ,Σ denotes complex conjugation, then

χM(c) = −1.

We also define the p-adic cyclotomic character χ : GQ,Σ → Z×p to be the projective

limit over n of the mod pn-cyclotomic characters χpn . Again, the character χ is charac-

terized by the formula χ(Frob`) = ` for any ` not dividing Np, and we also have that

χ(c) = −1.

The various cyclotomic characters give the basic examples of characters (i.e. one-

dimensional representations) of the group GQ,Σ. The following theorem shows that

Hecke eigenforms are a source of two-dimensional representations of this group.

Theorem 1.20. — There is a continuous, semi-simple representation

ρλ : GQ,Σ → GL2(Qp),

uniquely determined (up to equivalence) by the condition that for each prime ` - Np, the
matrix ρλ(Frob`) has characteristic polynomial equal to X2 − λ(T`)X + λ(`S`).

Remarks on the proof. — The uniqueness statement of the theorem is easily proved.

Indeed, if ρ1 and ρ2 are two representations both satisfying the conditions of the theo-

rem, then by assumption their characteristic polynomials agree on the set of elements

Frob`, which by Čebotarev density are dense in GQ,Σ. Since they are continuous, their

characteristic polynomials then agree on all elements of GQ,Σ. It follows that ρ1 and

ρ2 are equivalent, as claimed, since a semi-simple finite-dimensional representation of a

group is uniquely determined, up to equivalence, by its characteristic polynomials.
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In the case when λ is an Eisenstein system of Hecke eigenvalues, the existence of ρλ
is also easily proved; see Example 1.24 below. On the other hand, if λ is a system of

eigenvalues attached to a cuspform, then the construction of ρλ is much less trivial. Its

construction is due to Eichler, Shimura, and Igusa [13, 38, 24] (in the case k = 2), to

Deligne [11] (for k > 2), and to Deligne and Serre [12] (for k = 1).

It is useful to give a name to the characteristic polynomials appearing in Theo-

rem 1.20.

Definition 1.21. — If λ : Tk(N) → C is a system of Hecke eigenvalues, then for

each prime ` - N , we define the `th Hecke polynomial of λ to be the polynomial

X2 − λ(T`)X + λ(`S`).

Remark 1.22. — Since GQ,Σ is profinite, the representation ρλ may be conjugated so as

to take values in GL2(Zp), and we let ρ◦λ denote such a GL2(Zp)-valued representation

underlying ρλ. The GL2(Zp)-valued representation ρ◦λ is not always uniquely determined

up to equivalence by λ. However, if we let ρλ denote the semi-simplification of the

representation GQ,Σ → GL2(Fp) obtained by reducing ρ◦λ modulo the maximal ideal

of Zp, then ρλ is uniquely determined, up to equivalence, by λ, and in fact, even by

λ (as the notation suggests). Indeed, ρλ is uniquely characterized, up to equivalence,

by the condition that for each prime ` - Np, the matrix ρλ(Frob`) has characteristic

polynomial equal to X2− λ(T`)X + λ(`S`). (The proof of the uniqueness is identical to

that given in the proof of Theorem 1.20.)

Remark 1.23. — As in Remark 1.16, write λ(`S`) = ε(`)`k−1 for some Q×
-valued

character ε of (Z/NZ)×. We may compose ε with the mod N cyclotomic character

χN to obtain a Q×
-valued character of GQ,Σ, which we regard as being Q×

p -valued via

our chosen embedding ıp : Q ↪→ Qp. It then follows from the condition on the deter-

minant of ρ(Frob`) in the statement of Theorem 1.20, together with Čebotarev density

and the given relationship between λ(`S`) and ε(`), that

det ρλ := (ε ◦ χN)χk−1,

where as above χ denotes the p-adic cyclotomic character.

In particular, if c ∈ GQ,Σ denotes complex conjugation, then one computes that

det ρλ(c) = ε(−1)(−1)k−1 = −1

(the last equality following from (3)). One says that ρλ is odd. Similarly, the represen-

tation ρλ is odd.

Example 1.24. — If λψ1,ψ2,k is an Eisenstein system of Hecke eigenvalues attached to

characters ψi : (Z/MiZ)× → C× and the weight k, as in Example 1.18, then it is easy

to write down a corresponding Galois representation ρλψ1,ψ2,k
satisfying the conditions

of Theorem 1.20; namely, we can take

ρλψ1,ψ2,k
= (ψ1 ◦ χM1)⊕ (ψ2 ◦ χM2)χ

k−1.
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On the other hand, if λ arises from a cuspform, then ρλ does not admit a description

in terms of characters. Indeed, one has the following result [35, Thm. 2.3].

Proposition 1.25. — If the system of Hecke eigenvalues λ is attached to a cuspform,

then the representation ρλ associated to λ by Theorem 1.20 is irreducible.

For any prime p, write T(p)
k to denote the subalgebra of Tk generated by the elements

`S` and T` for ` not dividing Np (i.e. we omit the Hecke operators at p). If λ : Tk → Zp

is a system of Hecke eigenvalues, we write λ(p) to denote the restriction of λ to T(p)
k , and

refer to λ(p) as the p-deprived system of Hecke eigenvalues associated to λ. Similarly,

we let λ
(p)

: T(p)
k → Fp denote the restriction of λ. The conditions on the Galois

representation ρλ given in Theorem 1.20 evidently depend only on λ(p), and in fact

we can use the existence of the Galois representations attached to λ to show that λ(p)

already determines λ. Indeed, we have the following more general result.

Proposition 1.26. — If λ1 and λ2 are two systems of Hecke eigenvalues such that

λ1(T`) = λ2(T`) for all but finitely many primes ` not dividing N, then λ1 and λ2

coincide.

Proof. — This is proved by the same argument used to establish the uniqueness claim

of Theorem 1.20. Let q be some fixed prime not dividing N , and choose p to be distinct

from q. Let ρλ1 and ρλ2 denote the Galois representations associated to λ1 and λ2 as in

Theorem 1.20, regarded as representations over Qp. Then ρλ1 and ρλ2 have the same

traces on the elements Frob`, for all but finitely many `. Čebotarev density implies

that the set of elements Frob` (where ` ranges over all but finitely many primes not

dividing Np) is dense in GQ,Σ, and so, since ρλ1 and ρλ2 are continuous, we see that their

traces coincide. Thus they have isomorphic semi-simplifications (since we are working

over the field Qp of characteristic zero), and so their characteristic polynomials coincide

on any element of GQ,Σ. Applying this to Frobq, we find that λ1(Sq) = λ2(Sq) and

that λ1(Tq) = λ2(Tq). Since q was an arbitrary prime not dividing N , the proposition

follows.

The preceding proposition has the following technical corollary.

Corollary 1.27. — The ring T(p)
k has finite index in Tk.

Proof. — Since Tk is finite over Z, it suffices to show that C ⊗Z T(p)
k

∼−→ C ⊗Z Tk.

Equivalently, we must show that distinct systems of Hecke eigenvalues remain distinct

after omitting the eigenvalues corresponding to the Hecke operators at p. This follows

from the proposition.

Remark 1.28. — The finite index of Corollary 1.27 can be greater than 1. For example,

if N = 23, k = 2, and p = 2, then the index of T(2)
2 in T2 is equal to 2. (More precisely,

T2
∼= Z[(1 +

√
5)/2], while T(2)

2
∼= Z[

√
5].)
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Remark 1.29. — Corollary 1.27 (or better, its proof) shows that λ 7→ λ(p) induces a

bijection between the set of homomorphisms Tk → C and the set of homomorphisms

T(p)
k → C, and hence between the set of homomorphisms Tk → Zp and the set of

homomorphisms T(p)
k → Zp.

2. p-ADIC FAMILIES OF SYSTEMS OF HECKE EIGENVALUES

2.1. The p-adic Hecke algebra

Let N be a positive integer, and fix a prime p not dividing N . If k ≥ 1 is a positive

integer, then for each prime ` not dividing N we define the operators S` and T` on the

direct sum
⊕k

i=1Mi(N) in the obvious way: S` and T` act on each summand via the

Hecke operator with the same name.

Definition 2.1. — We let T(p)
≤k(N), or simply T(p)

≤k if the level N is understood, denote

the Z-algebra of endomorphisms of
⊕k

i=1Mi(N) generated by the operators `S` and T`,

as ` ranges over all primes not dividing Np.

Since each operator S` and T` is determined by its action on each of the direct

summands, there is a natural injection

(6) T(p)
≤k ↪→

k∏
i=1

Ti.

Remark 2.2. — We could consider the analogous algebra in which we included the

operators pSp and Tp. However, for our later purposes, it is important to omit these

operators from the algebra under consideration.

Proposition 2.3. — The image of (6) has finite index in
∏k

i=0 Ti.

Proof. — Given that the source and target of (6) are both finite Z-algebras, it suffices to

show that (6) becomes an isomorphism after tensoring with C over Z. This follows from

the fact that the p-deprived systems of eigenvalues appearing in Mk(N) are distinct

for different values of k, by Remarks 1.16 and 1.29.

Example 2.4. — Take N = 1, p = 2, and k = 6. The spaces Mi(1) for 1 ≤ i ≤ 6

vanish unless i = 4 or 6, in which case they are one-dimensional, spanned by E4 and

E6 respectively. Thus T4
∼−→ Z and T6

∼−→ Z, and so (6) becomes in this case an

embedding

(7) T(2)
≤6 ↪→ Z× Z.

Now

E4 =
1

240
+

∞∑
n=1

(
∑
d|n

d3)qn,
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while

E6 =
−1

504
+

∞∑
n=1

(
∑
d|n

d5)qn.

One immediately checks that

1 + `3 ≡ 1 + `5 mod 12,

for all ` 6= 2. Furthermore, no analogous congruence holds modulo any larger modulus,

and thus the embedding (7) induces an isomorphism

T(2)
≤6

∼−→ {(u, v) ∈ Z× Z |u ≡ v mod 12}.

A similar calculation shows that

T(3)
≤6

∼−→ {(u, v) ∈ Z× Z |u ≡ v mod 6}.

These examples exhibit congruences similar to those discussed in Example 1.19, but

involving congruences between systems of Hecke eigenvalues in different weights.

If k′ ≥ k, then
k⊕
i=0

Mi(N) ⊂
k′⊕
i=0

Mi(N),

and so restriction induces a surjection

T(p)
≤k′ → T(p)

≤k.

Tensoring this with Zp over Z, we obtain a surjection

(8) Zp ⊗Z T(p)
≤k′ → Zp ⊗Z T(p)

≤k.

Definition 2.5. — The p-adic Hecke algebra T(N), or simply T if the level N is

understood, is defined to be the projective limit

(9) T := lim
←−
k

Zp ⊗Z T(p)
≤k,

where the transition maps are the maps (8).

Remark 2.6. — Note that since any prime ` 6= p is invertible in Zp, the operator S` =

`−1(`S`) lies in each of the algebras Zp ⊗Z T(p)
k , for each ` - Np, and so we may regard

each of these algebras as being generated by the elements S` and T` (` - Np), just as

well as by `S`. Also, since the transition maps (8) take the elements S` and T` in the

source to the elements S` and T` in the target, these elements give rise to well-defined

elements S` and T` in the projective limit T, for any prime ` - Np.

From the various embeddings (6), we obtain an embedding

T ↪→
∏
k≥1

Zp ⊗Z Tk.
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The target of this embedding is a countable product of non-zero rings; in particular,

it is not Noetherian. On the other hand, we have the following result regarding the

source.

Theorem 2.7. — The ring T is a p-adically complete, Noetherian Zp-algebra, and is

in fact the product of finitely many complete Noetherian local Zp-algebras.

Remarks on the proof. — Each Zp ⊗Z T(p)
k is a finite Zp-algebra, and so is a product of

finitely many complete local finite Zp-algebras. It follows that T is p-adically complete,

and is a product of a countable collection of complete local Zp-algebras. The fact that

this product involves only finitely many local algebras is not formal; it is equivalent

to a statement about Fp-valued systems of Hecke eigenvalues that is the subject of

Proposition 2.8 below. The fact that these local factors are Noetherian is also not

formal; it is proved via a consideration of relation between the ring T and Galois

representations, as discussed in the following subsection. (More precisely, each local

component of T is canonically the quotient of a certain Galois pseudo-deformation ring,

and hence is Noetherian; see [30, §1.4] for a discussion of the latter, and in particular

Lemma 1.4.2 for a proof of the Noetherianness of pseudo-deformation rings.(2))

Informally speaking, this theorem can be thought of as showing that the phenomenon

exhibited in Example 2.4 is typical: as k grows, the power of p dividing the index of the

image of (6) in its target grows progressively larger, reflecting the existence of many

congruences modulo powers of p between systems of eigenvalues appearing in various

weights.

We present one concrete manifestation of this abundance of congruences in the fol-

lowing proposition (due to Jochnowitz [26], generalizing an argument of Serre in the

case N = 1), which is an important ingredient in the proof of Theorem 2.7. Indeed, its

statement is a straightforward reformulation of the claim that T has only finitely many

maximal ideals. In order to state the proposition, we introduce additional notation.

Suppose given a p-deprived system of Hecke eigenvalues λ(p) : T(p)
k → Zp. We then

write λ
(p)

: T(p)
k → Fp to denote the reduction of λ(p) modulo the maximal ideal of Zp.

Proposition 2.8. — As λ(p) ranges over all p-deprived systems of eigenvalues of all

weights k ≥ 0, there are only finitely many possibilities for the collection of eigenvalues(
λ

(p)
(`S`), λ

(p)
(T`)

)
`-Np.

One has the following precise conjecture regarding the Krull dimension of the ring T.

Conjecture 2.9. — The ring T is equidimensional of Krull dimension 4, i.e. each

irreducible component of Spec T is of dimension 4.

(2)Technically, the results of [30, §1.4] only apply when p is odd; however, with the appropriate modi-
fications, they should also apply in the case when p = 2.
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Since T is a torsion free and p-adically complete Zp-algebra, this is equivalent to

Spec T having relative dimension 3 over Spec Zp. This conjecture is motivated by the

known and conjectured relations between the ring T and Galois representations. (See

Remark 2.14 below.) We will prove in Corollary 2.28 below that each irreducible com-

ponent of Spec T has Krull dimension at least 4.

2.2. Galois representations again

As in the preceding subsections, we regard all systems of Hecke eigenvalues as taking

values in Zp.

Definition 2.10. — A p-adic system of Hecke eigenvalues is a homomorphism of

Zp-algebras ξ : T → Zp.

Suppose that λ(p) : T(p)
k → Zp is a p-deprived system of Hecke eigenvalues. Since

the target of λ(p) is a Zp-algebra, this homomorphism extends to a homomorphism

λ(p) : Zp ⊗Z T(p)
k → Zp. Composing this homomorphism with the natural surjection T →

T(p)
k , we obtain a homomorphism ξ : T → Zp. We refer to p-adic systems of Hecke

eigenvalues arising in this way as classical.

Theorem 2.11. — If ξ : T → Zp is any p-adic system of Hecke eigenvalues, then there

is a continuous, semi-simple representation

ρξ : GQ,Σ → GL2(Qp),

uniquely determined (up to equivalence) by the condition that for each prime ` - Np, the
matrix ρξ(Frob`) has characteristic polynomial equal to X2 − ξ(T`)X + ξ(`S`).

Sketch of proof. — The uniqueness proof is identical to that given in the proof of

Theorem 1.20. As for existence, if ξ is a classical system, arising from the p-deprived

system of eigenvalues λ(p), then we can clearly set ρξ := ρλ. To construct ρξ in general,

one uses the fact that the classical ξ are dense in the set of all ξ (in a suitable sense),

and then constructs ρξ by an interpolation argument.

Just as in the case of Theorem 1.20, one shows that if ξ is a p-adic system of Hecke

eigenvalues, then ρξ is odd, and so we see that T parametrizes a family of odd two-

dimensional p-adic Galois representations. Furthermore, one has the following fun-

damental conjecture to the effect that all odd two-dimensional Galois representations

should be of this form. (See e.g. the conjecture on p. 108 of [20].)

Conjecture 2.12. — If Σ is any finite set of primes containing p, and if

ρ : GQ,Σ → GL2(Qp)

is continuous, semi-simple, and odd, then ρ = ρξ for some p-adic system of Hecke

eigenvalues of some level N divisible only by primes in Σ distinct from p.

Remark 2.13. — In fact, one expects to be able to take N to be the tame (i.e. prime-

to-p) Artin conductor of ρ.
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Remark 2.14. — One can use techniques from Galois cohomology to show that if ρ is

an odd, irreducible, continuous two-dimensional p-adic representation of GQ,Σ (for some

fixed finite set of primes Σ), then the expected dimension of a neighbourhood of ρ in

the space of all such representations is three. (See Corollary 3 on p. 405 of [31]. This

reference treats the case of mod p Galois representations, but is easily adapted to the

context of p-adic Galois representations.) Taken together with Conjecture 2.12, this

motivates Conjecture 2.9.

Building on ideas of Gouvêa and Mazur [21] (in particular, the infinite fern, as con-

sidered in Subsection 2.5 below), together with the techniques of Wiles [45] and Taylor–

Wiles [43], Böckle [3] has proved a strong result in the direction of Conjectures 2.12

and 2.9. Since the statement of his result is a little technical, we do not recall it here.

However, by appealing to a result of Kisin, one can improve the part of Böckle’s theorem

that pertains to Conjecture 2.9, as follows.

Before stating it, we recall that Q(ζp3) contains a unique quadratic extension of Q
when p is odd, and three such extensions when p = 2. For any such quadratic

L ⊂ Q(ζp3), we write GL,Σ := Gal(QΣ/L).

Theorem 2.15. — Let ξ : T → Zp be classical, and suppose that ρξ |GL,Σ is irreducible,

for each quadratic extension L ⊂ Q(ζp3). Then Spec T has dimension 3 in a neighbour-

hood of ξ.

Proof. — It follows from [29, Thm., p. 277] that this dimension is at most 3, while

Corollary 2.28 below establishes the opposite inequality. This proves the result.

2.3. Families parametrized by weight: the Eisenstein family

Since Spec T is (at least conjecturally) of relative dimension 3 over Spec Zp, one can

think of the set of all p-adic systems of Hecke eigenvalues ξ as depending on three

parameters. Unfortunately, even in those cases when Conjecture 2.9 is known, there

is no particularly canonical choice of these three parameters. A little more formally,

if Spec T has Krull dimension 4, then Noether normalization allows one to construct a

finite map Spec T → Spec Zp[[T1, T2, T3]]. However, there is no canonical choice for such

a map.

On the other hand, there is a canonical map Spec T → Spec Zp[[T ]], as we now

explain. Write q = p if p is odd, and q = 4 if p = 2, and set Γ = 1 + qZp. Let

L := {` prime | ` ≡ 1 mod Nq}.

We regard L as a subset of Γ. Dirichlet’s theorem on primes in arithmetic progression

shows that L is in fact dense in Γ.

Lemma 2.16. — The map L → T given by ` 7→ S` extends uniquely to a continuous

homomorphism of groups Γ → T×.
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Proof. — If ` ∈ L, and if λ is any system of Hecke eigenvalues of weight k, then

λ(S`) = `k−2. (Because ` ≡ 1 mod N , the diamond operator 〈`〉 is trivial.) The function

x 7→ xk−2 is continuous on Γ, and so the map ` 7→ S` from L → Zp ⊗Z T(p)
k extends

to a continuous homomorphism Γ → (Zp ⊗Z T(p)
k )×, for any weight k. The lemma now

follows by an easy passage to the limit.

Write Zp[[Γ]] := lim
←−
n

Zp[Γ/Γ
pn ]. This is the so-called completed group ring of Γ over Zp;

there is an evident embedding of the usual group ring Zp[Γ] ↪→ Zp[[Γ]]. If x ∈ Γ, we write

[x] to denote the corresponding element of Zp[[Γ]] (so as to avoid confusion with the same

element x regarded as belonging to the ring of coefficients Zp). There is an isomorphism

of Zp-algebras Zp[[T ]]
∼−→ Zp[[Γ], determined by the condition T 7→ [1 + q]− 1.

The continuous map Γ → T× of the preceding lemma extends uniquely to a homo-

morphism of Zp-algebras

(10) w : Zp[[Γ]] → T,

which we may equally well regard as a map Zp[[T ]] → T. Passing to Specs, we get the

canonical map

(11) Spec T → Spec Zp[[Γ]]
∼−→ Spec Zp[[T ]]

referred to above. What is the meaning of this map?

Well, giving a Zp-valued point of Spec Zp[[Γ]] is the same as giving a continuous

character κ : Γ → Z×p . Thus Spec Zp[[Γ]] is the space of characters of Γ. (The iso-

morphism Spec Zp[[Γ]]
∼−→ Spec Zp[[T ]] is then given by mapping a character κ to the

value T = κ(1 + q)− 1; in this way, the space of continuous characters of Γ is identified

with the maximal ideal of Zp, or, in more geometric terms, the open unit disk around

the origin of Qp.) If k is an integer, then we may define a character κk : Γ → Z×p via

the formula κk(x) = xk−2. These points are Zariski dense in Spec Zp[[Γ]] (in fact, any

infinite collection of them is Zariski dense), and so we regard Spec Zp[[Γ]] as a certain

kind of interpolation of the set of integers, and refer to it as weight space. In particular,

the Zp-valued point κk is said to be the point of weight k.

Now suppose that ξ : T → Zp is classical, arising from the system of Hecke eigenvalues

λ : Tk → Zp. One computes that the composite ξ ◦ w is equal to κk, the point of

weight k. Thus we may think of the w as mapping a system of Hecke eigenvalues to

its corresponding weight (which explains our choice of notation). From this, we also

see that w is injective (since there exist systems of Hecke eigenvalues of arbitrarily high

weight), and hence that (11) is dominant.

Now the weight is a very natural parameter to consider, and so it is reasonable to

ask whether we can find families of systems of Hecke eigenvalues, and hence families of

Galois representations, that are parametrized by the weight. Somewhat more precisely,

we can ask whether we can find a closed subscheme Z ↪→ Spec T such that the composite
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Z ↪→ Spec T → Spec Zp[[T ]] is dominant with finite fibres; such a subscheme Z could

then be thought of as a family of Galois representations, parametrized by the weight.(3)

Of course, if we impose no other conditions on Z, then such subschemes Z exist

for very general geometric reasons; on the other hand, a further natural condition to

impose is that Z contain a Zariski dense set of points corresponding to classical systems

of Hecke eigenvalues. The scheme Z could then be regarded as a one-dimensional family

of systems of Hecke eigenvalues, parametrized by weight, and interpolating a collection

of classical systems of Hecke eigenvalues.

Example 2.17. — The most basic example of a one-dimensional family of systems of

Hecke eigenvalues, parametrized by weight, is the Eisenstein family. This is the original

p-adic family of modular forms, introduced by Serre in [37]. We describe it here, in the

language of systems of Hecke eigenvalues that we have introduced.

For simplicity we take N = 1, and we fix an even residue class i mod p−1 if p is odd.

Consider the p-deprived systems of Hecke eigenvalues λ
(p)
k associated to the Eisenstein

series Ek, for k ≥ 4 and congruent to i mod p − 1 if p is odd (resp. k ≥ 4 and even if

p = 2). Recall that these are given by

λ
(p)
k (`S`) = `k−1, λ

(p)
k (T`) = 1 + `k−1,

where ` ranges over all primes distinct from p.

We wish to rewrite these formulas slightly. Recall that Z×p = µp−1 × Γ (if p is odd)

or µ2 × Γ (if p = 2). In either case, let µ denote the first factor, and write ω : Z×p → µ

to denote the corresponding projection. Then we may rewrite the formulas for λ
(p)
k as

λ
(p)
k (`S`) = `ω(`)i−2

(
`ω(`)−1

)k−2
, λ

(p)
k (T`) = 1 + `ω(`)i−2

(
`ω(`)−1

)k−2
,

where we set i = 0 if p = 2. We may evidently interpolate these formulas into a

Zp[[Γ]]-valued point of Spec T. Namely, there is a homomorphism E : T → Zp[[Γ]],

defined by

S` 7→ ω(`)i−2[`ω(`)−1], T` 7→ 1 + `ω(`)i−2[`ω(`)−1].

By construction, the composite κk ◦ E is equal to λk, for any k ≡ i mod p− 1 (or any

even k, if p = 2). Again by construction, E ◦w is the identity on Zp[[Γ]]. Thus, in more

geometric terms, we have constructed a map Spec Zp[[Γ]] → Spec T which is a section

to the weight map w : Spec T → Spec Zp[[Γ]], namely a family of Eisenstein systems of

eigenvalues, parametrized by their weight.

(3)We are using the word “parametrized” in a somewhat liberal sense, in that we are allowing our
family to be a multi-valued function of the weight, i.e. we are asking that Z → Spec Zp[[T ] have finite
fibres, but not that it necessarily be injective.
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2.4. Families parametrized by weight: Hida families and the eigencurve

In our discussion of p-adic systems of Hecke eigenvalues, we have systematically

ignored the Hecke operators Sp and Tp. This is important; for example, for the family

λk of the Example 2.17, we have λk(Sp) = pk−2 and λk(Tp) = 1 + pk−1. These functions

do not interpolate well as p-adic functions of k. However, if we consider the pth Hecke

polynomial X2 − λk(Tp)X + pλk(Sp), we see that it has the form

X2 − (1 + pk−1)X + pk−1 = (X − 1)(X − pk−1).

One of the two roots of this polynomial is in fact constant in the family, and so inter-

polates without difficulty in the family. It is the second root which does not interpolate

well. This motivates the idea of changing our context slightly, and considering points

not just in Spec T, but in Spec T × Gm (here the fibre product is with Spec Z[T, T−1]

over Spec Z, or equivalently, with Spec Zp[T, T
−1] over Spec Zp). To any system of Hecke

eigenvalues λ appearing in some Mk(N), we can plot a pair of Qp-valued points in this

fibre product, whose first coordinate (for either point) is the associated classical p-adic

system of eigenvalues ξ, and whose second coordinates are the roots of the pth Hecke

polynomial of λ.

Definition 2.18. — Let X denote the set of Qp-valued points of Spec T × Gm con-

sisting of pairs (ξ, α), where ξ : Spec T → Zp is classical, attached to some system of

Hecke eigenvalues λ : Tk → Zp with k ≥ 1, and α is a root of the pth Hecke polynomial

X2 − λ(Tp)X + pλ(Sp).

Let X ord denote the subset of X consisting of pairs (ξ, α) for which α ∈ Z×p . (The

superscript ord is for ordinary.)

Remark 2.19. — The reason for singling out the subset X ord of X is that (since any

system of Hecke eigenvalues is a Zp-valued point of Spec T) these are precisely the points

of X that consist of Zp-valued points of Spec T×Gm.

The following theorem, due to Hida [22, 23], describes the interpolation of the points

in X ord. (The map Spec T × Gm → Spec Zp[[Γ]] appearing in the statement of the

theorem is the one obtained by first projecting onto the factor Spec T, and then applying

the map w.)

Theorem 2.20. — The Zariski closure Cord of X ord in Spec T×Gm is one-dimensional.

The composite Cord → Spec T × Gm → Spec Zp[[Γ]] is finite, and is furthermore étale

in the neighbourhood of those points of X ord that are attached to systems of Hecke

eigenvalues appearing in weight k ≥ 2.

Definition 2.21. — We refer to Cord as the Hida family, or ordinary family, of tame

level N .

Remark 2.22. — We will see in Subsection 2.5 below that it is necessary to restrict to

weights k ≥ 2 in the final statement of the theorem.
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The curve Cord is (almost) precisely a family of the type we envisaged in the previous

subsection. (We say “almost” because it lies in Spec T × Gm rather than in Spec T
itself.) On the other hand, not every classical system of eigenvalues appears in Cord; it

is certainly possible that if λ : Tk → Zp, then both roots of the pth Hecke polynomial

may have positive slope.

We thus turn to our next result, due to Coleman and Mazur [10], which deals with

the interpolation of the entire set X . In this case, taking the algebraic Zariski closure of

these points in Spec T×Gm turns out to be too coarse of an operation, and we cannot

hope to construct an algebraic family of the type envisaged in the previous subsection

that contains all the points of X . Rather, we will construct a rigid analytic family,

lying inside the associated rigid analytic space (Spec T×Gm)an.(4)

Theorem 2.23. — The rigid analytic Zariski closure C of X in (Spec T × Gm)an is

one-dimensional. More precisely, the composite

(12) C ↪→ (Spec T×Gm)an → (Spec Zp[[Γ]])an

is flat, and has discrete fibres. Furthermore, for any positive constant C, there are only

finitely many points (ξ, α) in any given fibre satisfying ordp(α) ≤ C. (In other words,

the slopes of the Gm-coordinates go to ∞ in each fibre.)

Definition 2.24. — The curve C is called the eigencurve of tame level N . The ana-

lytification of Cord is called the slope zero part, or the ordinary part, of the eigencurve.

It is a union of connected components of C.

Remark 2.25. — The map (12) is in fact étale in the neighbourhood of a point

(ξ, α) ∈ X , unless α is a repeated root of the pth Hecke polynomial of the system of

eigenvalues λ giving rise to ξ. (Compare the discussion of [10, p. 5].) It is conjectured

that such repeated roots cannot occur when the weight k ≥ 2 [9].

Remark 2.26. — By construction, each of Cord and C contains a(n algebraic or rigid

analytic, as the case may be) Zariski dense set of points (ξ, α) for which ξ is a classical

system of eigenvalues. It is natural to ask whether the converse holds, namely, if (ξ, α)

is any Qp-valued point of Cord of C lying over the weight κk : Γ → Z×p , for some positive

integer k, then is ξ classical?

The answer is no in general, for trivial reasons. One already sees this with the Eisen-

stein family of Example 2.17. Indeed, in the notation of that example (and assuming

(4)Concretely, if T =
∏m

i=1 Zp[[T1, . . . , Tri ]]/(fi,1, . . . , fi,si), then

Spec T×Gm =
m∐

i=1

Spec Zp[[T1, . . . , Tri ]][T, T−1]/(fi,1, . . . , fi,si),

and (Spec T×Gm)an is the rigid analytic space
m∐

i=1

{ (T1, . . . , Tri , T ) | |T1|, . . . , |Tri | < 1, T 6= 0, fi,1(T1, . . . , Tri) = · · · = fi,si(T1, . . . , Tri) = 0 }.

Also, (Spec Zp[[Γ]])an ∼= (Spec Zp[[T ]])an = {T | |T | < 1}, i.e. the open unit disk in Qp.
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p is odd for simplicity), if k 6≡ i mod p − 1 then the associated system of eigenvalues

is not associated to a modular form of level 1; rather, its values on `S` and T` (for

` - Np) coincide with those of the system of eigenvalues λ
(p)

1,ωi−k,k
(in the notation of

Example 1.18), corresponding to an Eisenstein series of level p.

Hida showed in general that if (ξ, α) is a Zp-valued (or equivalently, Qp-valued) point

of Cord lying over the character κk for k ≥ 2 (or, more generally, a character of the

form ψκk, where ψ has finite order and k ≥ 2), then there is a system of eigenvalues

λ : Tk(Np) → Zp such that ξ(`S`) = λ(`S`) and ξ(T`) = λ(T`) for all ` - Np.
In the non-ordinary case, the situation is more complicated. The fibre of C over any

κk (or over any character ψκk, where ψ is of finite order) is typically infinite, and all

but finitely many of the points do not arise from a classical eigenform (of any level).

However, Coleman showed [7, 8] that if (ξ, α) is such a point, and if the slope of α

is less than k − 1, then just as in the ordinary case, there is a system of eigenvalues

λ : Tk(Np) → Zp such that ξ(`S`) = λ(`S`) and ξ(T`) = λ(T`) for all ` - Np. (One can

show, e.g. using Theorem 2.33 below, that, conversely, if such a λ exists, then the slope

of α is at most k − 1. Of course, all but finitely many of the points lying over κk have

slope > k − 1.)

Idea of proofs. — The first step in the proof of Theorems 2.20 and 2.23 is to define a

space of p-adic modular forms on which the p-adic Hecke algebra T acts. In fact one

can literally work with such a space, namely the space of generalized p-adic modular

functions of Katz (as defined in [27], see also [19] and [22]) — this is the approach taken

in [22] for the ordinary case and in [10] for the general case — or with a surrogate,

constructed from the group cohomology of Γ1(N) and certain of its subgroups. The

cohomological approach to the ordinary case is developed in [23], and for the general

case is developed in [42, 2]. There is another approach, via the p-adically completed

cohomology of modular curves [15, §4], which is somewhat different, and which we will

say a little about below. To simplify the exposition, from now on we will speak simply

of “the space of p-adic modular forms”, meaning either the space of generalized p-adic

modular functions, or one of the cohomological surrogates of [2, 23, 42].

The next step is to introduce an additional Hecke operator on this space, the so-called

Up-operator. In the context of p-adic modular forms, this operator has the following

effect on q-expansions:

Upf =
∞∑
n=0

anp(f)qn.

We let T∗ denote the quotient of T[Up] that acts faithfully on the space of p-adic modular

forms. Evidently, Spec T∗ ↪→ Spec T× A1.

Suppose for a moment that f is a modular form of weight k and level N, with p - N ,

and let α and β be the roots of the pth Hecke polynomial. Then f(τ) − βf(pτ) is

a modular form of level Np, which is a Up-eigenform with eigenvalue α. (This can

be checked directly on the level of q-expansions.) Thus Spec T∗ contains the set X ,

and hence also the Zariski closure of this set. The technical difficulty that arises in
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establishing the theorems is that Spec T∗ is much bigger than either Cord or C, roughly

speaking because Up has a huge kernel on the space of the p-adic modular forms, while

we are trying to construct curves lying in Spec T × Gm, i.e. systems of eigenvalues of

T∗ for which the associated Up-eigenvalue is non-zero.

It is at this point that the proofs of the two theorems diverge somewhat, with the

proof of Theorem 2.20 being technically simpler than that of Theorem 2.23. The points

of X ord correspond to eigenforms whose Up-eigenvalue is ordinary. If f is any eigenform

for T∗ whose Up-eigenvalue α is of positive slope, then limn U
n
p f = αnf → 0 as n → 0.

Thus by iterating Up on the space of p-adic modular forms and passing to a limit, we

can cut out the ordinary part of the space of p-adic modular forms, on which Up acts

with only ordinary eigenvalues. (This process can be summarized by using the limits

of powers of Un to construct the so-called ordinary projector, which projects to the

ordinary part.) The quotient of T∗ acting faithfully on this ordinary part is denoted

by Tord, and Cord = Spec Tord. The key fact, underlying the proof of Theorem 2.20,

is that Tord is finite over Zp[[Γ]]. This can be proved in various ways; either using

the theory of mod p modular forms, if one is working with generalized p-adic modular

functions (this is the approach taken in [22]), or by arguments with group cohomology

(this is the approach of [23]).

As already indicated, the proof of Theorem 2.23 is more technical. The reason is as

follows: if m∗ is a maximal ideal of T∗ lying over a maximal ideal m of T, and if m∗ is

not ordinary (i.e. if Up ∈ m∗), then it follows from [19, Prop. II.3.14] that

T∗m∗ ∼= Tm[[Up]].

(Here T∗m∗ and Tm denote completions, and Tm[[Up]] is the formal power series ring in

Tm with variable Up.) Thus if ξ : Tm → Zp is a system of eigenvalues, we can extend

it to a system of eigenvalues of T∗m by assigning any positive-slope value of Up that

we choose; even if ξ is classical, attached to some system of eigenvalues λ : Tk → Zp,

the algebra T∗ has no way of distinguishing the positive slope roots of the pth Hecke

polynomial of λ from any other positive slope elements of Zp.

Thus one cannot reasonably interpolate the points X by algebra alone; it is necessary

to use some analysis. In the generalized p-adic modular functions setting, the key step

is to replace this space by a certain subspace of so-called overconvergent modular forms.

(This is the approach of [10].) In the cohomological framework, this step can be taken at

the beginning, by working with rigid analytic (rather than merely continuous) modular

symbols (as is done in [42, 2]). In these settings, the operator Up is a compact operator,

and so has a reasonable spectral theory. One can then analyze, and obtain finiteness

results for, all of its non-zero eigenspaces, rather than just the ordinary eigenspaces.

The analysis of these eigenspaces is at the heart of the proof of Theorem 2.23.

As mentioned above, there is another approach to the proof of Theorem 2.23, via

p-adically completed cohomology [15]. In this setting, one does not directly have an

action of the Up-operator, but rather has an action of the entire group GL2(Qp), and the
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introduction of the Up-operator and the passage to its non-zero eigenspaces is effected

in a single step, by applying the locally analytic Jacquet module functor of [14].

We make some further technical remarks. In the paper [10], the authors prove Theo-

rem 2.23 only in the case when N = 1. The generalization to arbitrary N can be found

in [4, Part II], or [15, §4]. Also, in most of the papers cited, the authors work with

Hecke algebras that contain the Hecke operators U` for `|N, ` 6= p, as well as the oper-

ators S` and T` that we have considered. We have avoided any consideration of these

operators, since they are not essential for the consideration of Galois representations.

It is not difficult to deduce the results in the form that we have stated them from the

corresponding results cited, which perhaps involve these additional operators.

2.5. The infinite fern

The composition of the closed embedding Cord ↪→ Spec T × Gm with the projection

onto the first factor gives a map

(13) Cord → Spec T,

which is very close to being injective on Zp-points. Indeed, if (ξ1, α) and (ξ2, β) are two

such points mapping to the same point of Spec T, then ξ1 = ξ2 = ξ (say), and we see

that ρξ |GQp
admits unramified quotients on which Frobp acts by α and β respectively.

Thus if α 6= β, we see that ρξ |GQp
is unramified. It is then conjectured (as a special case

of [18, Conj. 3c]), and is proved in most cases [5], that ξ is a classical system of Hecke

eigenvalues, arising from a weight 1 Hecke eigenform of level N . Hence (13) has (or at

least, is expected to have) at most finitely many double points, arising from classical

systems of Hecke eigenvalues in weight one.

On the other hand, if we consider the analogous map

(14) C → (Spec T)an,

then every system of eigenvalues λ : Tk → Zp gives rise to a pair of points (ξ, α) and

(ξ, β), where ξ is a p-adic system of Hecke eigenvalues associated to λ, and

X2 − λ(T`)X + λ(`S`) = (X − α)(X − β).

Unless α = β (which, as we already noted, is expected to be impossible unless k = 1),

we see that the image of (14) admits a double point at ξ. Thus the image of (14) is a

very complicated curve, with an infinite number of double points. It is known as the

infinite fern [32, 21]. The following theorem, due to Gouvêa and Mazur [21], shows

that it is a kind of “space-filling curve” in (Spec T)an.

Theorem 2.27. — Each component of the Zariski closure of the infinite fern in

(Spec T)an is at least two-dimensional.

Sketch of proof. — Since C is defined to be the Zariski closure of X , we see that

the Zariski closure of the image of (14) is equal to the Zariski closure of the set ξ of

classical p-adic systems of Hecke eigenvalues. Suppose that this Zariski closure contains
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a component Z that is one-dimensional. Since the singular locus of Z is a Zariski closed

proper subset of Z, we may find a classical ξ lying in the smooth locus of Z. Since Z
is one-dimensional, the map C → Z must be surjective in a neighbourhood of ξ. Let

λ : Tk → Zp, for some k ≥ 1, be the system of eigenvalues giving rise to ξ, and let α

and β be the two roots of the pth Hecke polynomial of λ. Then (unless α = β), the

image of C is branched at ξ, contradicting the fact that Z is smooth at ξ.

If α = β, then by appealing to the result of Coleman mentioned in Remark 2.26, it

is easy to see that we may find arbitrarily small perturbations ξ′ of ξ, for which ξ′ is

classical and such that the corresponding roots α′ and β′ of the pth Hecke polynomial

are distinct. Then we may apply the above argument to ξ′ instead, and again derive a

contradiction.

The previous result has the following corollary on the Krull dimension of Spec T,

which is again due to Gouvêa and Mazur [21].

Corollary 2.28. — The Krull dimension of each component of Spec T is at least 4.

Sketch of proof. — It is equivalent to show that each component of the associated

rigid analytic space (Spec T)an is at least three-dimensional. Any such component Y
contains a component Z of the image of (14), which is two-dimensional. Twisting

by characters of p-power conductor then provides a one-dimensional deformation of Z
inside Y , showing that the Y is at least three-dimensional.

2.6. Galois representations over Hida families and the eigencurve

The following result, due to Mazur–Wiles [34] and Wiles [44], gives a Galois-theoretic

interpretation of the points of Cord, and in particular, of the Gm-coordinate. Be-

fore stating it, we note that the chosen embedding ıp : Q ↪→ Qp induces a map

GQp → GQ → GQ,Σ (where we have written GQp and GQ to denote Gal(Qp/Qp) and

Gal(Q/Q) respectively, and where the second arrow is the natural surjection). For any

representation ρ of GQ,Σ, we write ρ|GQp
to denote the restriction of ρ to a representa-

tion of GQp via this map. Recall that GQp contains a normal subgroup Ip (the inertia

subgroup), such that GQp/Ip
∼−→ GFp , the absolute Galois group of Fp. This latter

group is topologically generated by the Frobenius automorphism Frobp. We say that

a representation of GQp is unramified if it is trivial when restricted to Ip; any such

representation is then endowed with an action of Frobp.

Theorem 2.29. — If (ξ, α) is Zp-valued point of Cord, then ρξ |GQp
admits a one-

dimensional unramified quotient on which Frobp acts with eigenvalue α.

One has the following conjecture, which is an analogue for Cord of Conjecture 2.12.

It was first made by Mazur and Tilouine [33].
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Conjecture 2.30. — If Σ is any finite set of primes containing p, and if

ρ : GQ,Σ → GL2(Qp)

is a continuous, semi-simple, and odd representation whose restriction to GQp admits

a one-dimensional unramified quotient on which Frobp acts through the eigenvalue α,

then there is a Zp-valued point (ξ, α) in the Hida family for some level N divisible only

by primes in Σ distinct from p such that ρ = ρξ.

In their papers [40, 41], Skinner and Wiles have established this conjecture in a large

number of cases.

Theorem 2.31. — Let ρ and α be as in the statement of Conjecture 2.30, and let

ρ : GQ,Σ → GL2(Fp) be the representation obtained by descending ρ to Zp and then

reducing modulo the maximal ideal of Zp. If det ρ|Ip = ψχk−1 for some finite order

character ψ and some integer k ≥ 2 (recall that χ denotes the p-adic cyclotomic charac-

ter), and if the semi-simplification of ρ |GQp
(which is necessarily the direct sum of two

characters, and which is well-defined independently of the choice of Zp-model of ρ giving

rise to ρ) is the direct sum of distinct characters, then Conjecture 2.30 holds for ρ.

Remark 2.32. — Suppose that ρ and α are as in the preceding result, and let (ξ, α)

be the point on the Hida family (of an appropriately chosen level), whose existence is

given by the theorem, for which ρ = ρξ. The assumption on det ρ in the theorem (and

in particular, the assumption that k ≥ 2) implies, by the result of Hida recalled above,

that ξ is obtained from a system of eigenvalues λ : Tk(Np) → Zp. Thus, in the context

of this result, one concludes that ρ actually arises from the system of Hecke eigenvalues

attached to a classical modular form (of level possibly divisible by p).

The following result gives a Galois-theoretic interpretation of the points on C, anal-

ogous to Theorem 2.29. It is due to Kisin [28]. The statement requires the language

of Fontaine’s theory [17]. Recall that Fontaine has defined a ring B+
cris, equipped with

commuting actions of the group GQp and of a “Frobenius” operator ϕ. If V is any

representation of GQp over Qp, then D+
cris(V ) := (B+

cris⊗Qp V )GQp is a Qp-vector space of

dimension at most that of V , equipped with an operator ϕ induced by the operator ϕ

on B+
cris.

Theorem 2.33. — If (ξ, α) is a Qp-valued point of C, and if ρ∨ξ |GQp
denotes the con-

tragredient representation to ρξ |GQp
, then D+

cris(ρ
∨
ξ |GQp

) contains a one-dimensional sub-

space on which ϕ acts via α.

Sketch of proof. — If the p-adic system of Hecke eigenvalues ξ is classical, arising from

a system of Hecke eigenvalues λ : Tk → Zp attached to some modular form of weight

k ≥ 1, then the representation ρ∨ξ |GQp
is in fact crystalline, with Hodge–Tate weights

equal to 0 and 1−k, and so D+
cris(ρ

∨
ξ |GQp

) is two-dimensional over Qp. In this context, it

is known that the characteristic polynomial of ϕ is equal to the pth Hecke polynomial
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of λ [36]. Thus, if α and β are the two roots of this polynomial, then we see that

D+
cris(ρ

∨
ξ |GQp

)ϕ=α and D+
cris(ρ

∨
ξ |GQp

)ϕ=β are both non-zero. The theorem is then proved

by showing that these non-zero spaces interpolate over the curve C.

Remark 2.34. — In the context of Theorem 2.33, if α ∈ Z×p , then D+
cris(ρ

∨
ξ |GQp

)ϕ=α is

non-zero if and only if ρξ |GQp
contains an unramified quotient on which Frobp acts via α.

Thus Theorem 2.29 is a consequence of Theorem 2.33.

The following conjecture is analogous to Conjecture 2.30 in the ordinary case. (See

the hope expressed in Remark (2) of [28, p. 450].)

Conjecture 2.35. — If Σ is any finite set of primes containing p, and if

ρ : GQ,Σ → GL2(Qp)

is a continuous, semi-simple, and odd representation such that D+
cris(ρ

∨
ξ |GQp

)ϕ=α is non-

zero, then there is a Qp-valued point (ξ, α) in C for some level N divisible only by primes

in Σ distinct from p such that ρ = ρξ.

There has been recent progress on this conjecture (see the corollary on p. 3 of [30] as

well as the forthcoming paper [16]).
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