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1 Introduction

Fix a prime p, and a modular residual representation ρ : GQ → GL2(Fp). Suppose f is
a normalized cuspidal Hecke eigenform of some level N and weight k that gives rise to ρ,
and let Kf denote the extension of Qp generated by the q-expansion coefficients an(f) of f .
The field Kf is a finite extension of Qp. What can one say about the extension Kf/Qp?
Buzzard [1] has made the following conjecture: if N is fixed, and k is allowed to vary, then
the degree [Kf : Qp] is bounded independently of k.

Little progress has been made on this conjecture so far; indeed, very little seems to have
been proven at all regarding the degrees [Kf : Qp]. The goal of this paper is to consider a
question somewhat orthogonal to that of Buzzard, namely, to fix the weight and vary the
level. Moreover, we only consider certain reducible representations ρ that arise in Mazur’s
study of the Eisenstein Ideal [7]. Our results suggest that the degrees [Kf : Qp] are, in
fact, arithmetically significant.

Suppose that N ≥ 5 is prime, and that p is a prime which exactly divides the numerator
of (N−1)/12. Mazur ([7], Prop. 9.6, p. 96 and Prop. 19.1, p. 140) has shown that there is a
weight two normalized cuspidal Hecke eigenform defined over Qp, unique up to conjugation

by GQp (the Galois group of Qp over Qp), satisfying the congruence

a`(f) ≡ 1 + ` mod p (1)

(where p is the maximal ideal in the ring of integers of Kf , and ` ranges over primes distinct
from N). It follows moreover from [7] (Prop. 19.1, p. 140) that Kf is a totally ramified
extension of Qp, and thus that the degree [Kf : Qp] is equal to the (absolute) ramification
degree of Kf . Denote this ramification degree by ep.

In this paper we prove the following theorem, in the case when p = 2.

Theorem 1.1 Suppose that p = 2 and that N ≡ 9 mod 16, and let f be a weight two
eigenform on Γ0(N) satisfying the congruence (1). If 2m is the largest power of 2 dividing
the class number of the field Q(

√
−N), then e2 = 2m−1 − 1.
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When p is odd, we establish the following less definitive result.

Theorem 1.2 Suppose that p is an odd prime exactly dividing the numerator of (N−1)/12.
Let f be a weight two eigenform on Γ0(N) satisfying the congruence (1).

(i) Suppose that p = 3. (Our hypothesis on N thus becomes N ≡ 10 or 19 mod 27).
Then e3 = 1 if and only if the 3-part of the class group of Q(

√
−3, N1/3) is cyclic.

(ii) Suppose that p ≥ 5. (Our hypothesis on N thus becomes p‖N − 1). Then ep = 1 if
the p-part of the class group of Q(N1/p) is cyclic.

The question of computing ep has been addressed previously, in the paper [9] of Merel.
In this work, Merel establishes a necessary and sufficient criterion for ep = 1. Merel’s
criterion for ep = 1 is not expressed in terms of class groups; rather, it is expressed in
terms of whether or not the congruence class modulo N of a certain explicit expression is
a pth power.

When p = 2, Merel, using classical results from algebraic number theory, was able to
reinterpret his explicit criterion for e2 = 1 so as to prove that e2 = 1 if and only if m = 2.
(It is known that m ≥ 2 if and only if N ≡ 1 mod 8; see Proposition 4.1 below.) Theorem
1.1 strengthens this result, by relating the value of e2 in all cases to the order of the 2-part
of the class group of Q(

√
−N).

When p is odd, Merel was not able to reinterpret his explicit criterion in algebraic
number theoretic terms. However, combining Merel’s result with Theorem 1.2 (and the
analogue of this theorem for more general primes N , i.e. those for which p divides N − 1,
but not necessarily exactly) yields the following result.

Theorem 1.3 Let N ≥ 5 be prime.

(i) Let N ≡ 1 mod 9. The 3-part of the class group of Q(
√
−3, N1/3) is cyclic if and

only if
(
N−1

3

)
! is not a cube modulo N . Equivalently, if we let N = ππ̄ denote the

factorization of N in Q(
√
−3), then the 3-part of the class group of Q(N1/3,

√
−3)

is cyclic if and only if the 9th power residue symbol
(π
π̄

)
9

is non-trivial. 1

Furthermore, if these equivalent conditions hold, then the 3-part of the class group of
Q(N1/3) (which a fortiori is cyclic of order divisible by three) has order exactly three.

(ii) Let p ≥ 5, and let N ≡ 1 mod p. If the p-part of the class group of Q(N1/p) is cyclic
then

(N−1)/2∏
`=1

``

is not a pth power modulo N .

1The claimed equivalence follows from the formula
((

N−1
3

)
!
)3 ≡ π mod π̄, which was pointed out to

us by Noam Elkies. René Schoof has told us that one can prove part (i) of Theorem 1.3 using class field
theory. It is not apparent, however, that (ii) can be proved in this way.
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The proofs of Theorems 1.1 and 1.2 depend on arguments using deformations of Galois
representations. Briefly, if T denotes the completion at its p-Eisenstein ideal of the Hecke
algebra acting on weight two modular forms on Γ0(N), then we identify T with the universal
deformation ring for a certain deformation problem. The theorems are then proved by an
explicit analysis of this deformation problem over Artinian Fp-algebras.

It may be of independent interest to note that our identification of T as a universal
deformation ring also allows us to recover all the results of Mazur proved in the reference
[7] regarding the structure of T and the Eisenstein ideal: for example, that T is monogenic
over Zp (and hence Gorenstein); that the Eisenstein ideal is principal, and is generated by
T` − (1 + `) if and only if ` 6= N is a good prime; and also that TN = 1 in T.

Let us now give a more detailed explanation of our method. For the moment, we relax
our condition on N , assuming simply that N and p are distinct primes. We begin by
defining a continuous representation ρ : GQ → GL2(Fp). If p is odd, we let

ρ =

(
χp 0
0 1

)
,

where χp is the mod p reduction of the cyclotomic character. If p is even, we let

ρ =

(
1 φ
0 1

)
,

where φ : GQ → F2 is the unique F2-valued homomorphism inducing an isomorphism
Gal(Q(

√
−1)/Q) ∼= F2.

Let V denote the two dimensional vector space on which ρ acts, and fix a line L in V
that is not invariant under GQ (equivalently, GQp).

Fix once and for all a choice of inertia group IN at N . If A is an Artinian local ring
with residue field Fp, consider the set of triples (V, L, ρ), where V is a free A-module, L is a
direct summand of V that is free of rank one over A, and ρ is a continuous homomorphism
GQ → GL(V ), satisfying the following conditions:

Def1. The triple (V, L, ρ) is a deformation of (V , L, ρ).

Def2. The representation ρ is unramified away from p and N , and is finite at p (i.e. V ,
regarded as a GQp-module, arises as the generic fibre of a finite flat group scheme
over Zp).

Def3. The inertia subgroup at N acts trivially on the submodule L of V .

Def4. The determinant of ρ is equal to the composition of the cyclotomic character χp :
GQ → Z×

p with the natural map Z×
p → A×.

If we let Def(A) denote the collection of such triples modulo strict equivalence ([8] §8,
p. 257), then Def defines a deformation functor on the category of Artinian local rings A.

3



Note that the representation ρ is reducible, and is either the direct sum of two characters
(if p is odd) or an extension of the trivial character by itself (if p = 2). Nevertheless, one
has the following result.

Proposition 1.4 The deformation functor Def is pro-representable by a complete Noethe-
rian local Zp-algebra R.

The proposition follows directly from that fact that the only endomorphisms of the
triple (V , L, ρ) are the scalars. (See for example [13], Prop. 1.2.) (The authors learned
the idea of introducing a locally invariant line to rigidify an otherwise unrepresentable
deformation problem from Mark Dickinson, who has applied it to analyse the deformation
theory of residually irreducible representations that are ordinary, but not p-distinguished,
locally at p.)

Having defined a universal deformation ring, we now introduce the corresponding Hecke
algebra. As indicated above, we let T denote the completion at its p-Eisenstein ideal of the
Z-algebra of Hecke operators acting on the space of all modular forms (i.e. the cuspforms
together with the Eisenstein series) of level Γ0(N) and weight two. (The p-Eisenstein ideal
is the maximal ideal in the Hecke algebra generated by the elements T` − (1 + `) (` 6= N),
TN − 1, and p).

The following result relates R and T.

Theorem 1.5 If ρuniv denotes the universal deformation of ρ over the universal deforma-
tion ring R, then there is an isomorphism of Zp-algebras R ∼= T, uniquely determined by
the requirement that the trace of Frobenius at ` under ρuniv (for primes ` 6= p,N) maps to
the Hecke operator T` ∈ T.

Let us now return to the setting of Theorems 1.1 and 1.2. Thus we suppose again that
p exactly divides the numerator of (N − 1)/12, and let f be as in the statements of the
theorems. If O denotes the ring of integers in Kf , and p its maximal ideal, then the results
of [7] imply (taking into account the congruence satisfied by N) that the Hecke algebra T
admits the following description:

T = {(a, b) ∈ Zp ×O | a mod p = b mod p}.

From this description of T, one easily computes that T/p is isomorphic to Fp[X]/Xep+1.
Theorem 1.5 thus yields the following charaterization of ep.

Corollary 1.6 The natural number ep is the largest integer e for which we may find a triple
(V, L, ρ) in Def(Fp[X]/Xe+1) such that the induced map R→ Fp[X]/Xe+1 is surjective.

Theorems 1.1 and 1.2 are a consequence of this corollary, together with an explicit
analysis of the deformations of (V , L, ρ) over Artinian local rings of the form Fp[X]/Xn.

If p2 divides the numerator of (N − 1)/12, then the residually Eisenstein cusp forms
of level N need not be mutually conjugate. However, one still has an isomorphism of the
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form T/p = Fp[x]/x
gp+1, where gp + 1 denotes the rank of T over Zp. (Thus gp is the rank

over Zp of the cuspidal quotient of T.) In particular, the cuspidal Hecke algebra localized
at the Eisenstein prime is isomorphic to Zp if and only if gp = 1. In this way our analysis of
deformations over Fp[X]/Xn suffices to prove Theorem 1.3. More generally, our paper can
be seen as providing a partial answer to Mazur’s question ([7], p. 140): “Is there anything
general that can be said . . . about gp?”.

The organization of the paper is as follows. In Section 2 we develop some results
about group schemes that will be required in our study of the deformation functor Def. In
Section 3 we prove Theorem 1.5, using the numerical criterion of Wiles [17] (subsequently
strengthened by Lenstra [6]). As in [16], we use the class field theory of cyclotomic fields
to obtain the required upper bound for the size of an appropriate Galois cohomology
group; the numerical criterion is then established by comparing this upper bound with the
congruence modulus of the weight two Eisenstein series on Γ0(N) (which is known by [7] to
equal the numerator of (N − 1)/12). Finally in Sections 4 (respectively 5) we perform the
analysis necessary to deduce Theorem 1.1 (respectively 1.2 and 1.3) from Corollary 1.6.

Let us close this introduction by emphasising that the only result of [7] required for
the proof of Theorem 1.5 is the computation of the congruence modulus between the
Eisenstein and cuspidal locus in the Hecke algebra of weight two and level N . (Namely,
that this congruence modulus is equal to the numerator of (N−1)/12.) As remarked upon
above, we are then able to deduce all the results of [7] regarding T and its quotient T0

from Theorem 1.5. The necessary arguments are presented at the end of Section 3.

Acknowledgments. The authors would like to thank Brian Conrad for his close reading
of an earlier version of this paper. His many remarks not only improved the exposition,
but also saved us from a blunder or two. The authors are also grateful for the comments
of the anonymous referee; these too were helpful in improving the exposition of the paper.

2 Some group scheme-theoretic calculations

Let us fix a prime p, and a natural number n. We begin with some generalities on finite
flat group schemes. All group schemes to be considered here and below will be assumed
commutative, whether or not this is explicitly noted.

For any scheme S we let Gr(S) denote the category of (commutative, in light of the
convention signalled above) finite flat group schemes over the base S. Passing from an
object of Gr(S) to the corresponding fppf sheaf that it represents embeds Gr(S) as a full
additive subcategory of the abelian category of abelian sheaves on the fppf site of S. We let
Sh(S) denote this latter category, and in this way we regard Gr(S) as a full subcategory
of Sh(S). A key point is that Gr(S) is closed under extensions in Sh(S) (see Lemma 2.3)
thus it is an exact category in the sense of Quillen [12].

We suppose from now on that S = SpecO with O a Dedekind domain whose field
of fractions K is of characteristic zero. We let η denote SpecK, fix an algebraic closure
K of K, and write GK := Gal(K/K). Since K is of characteristic zero, passing to K-
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valued points induces an equivalence between the category Gr(η) and the category of finite
discrete GK-modules (and we will freely identify an object of Gr(η) with the corresponding
GK-module). In particular, this category is abelian. Since any object of Gr(S) is equal
to the scheme theoretic closure of its generic fibre, restriction from Gr(S) to Gr(η) is a
faithful functor (although typically not fully faithful).

If M/K is a GK-module, we will refer to an object M of Gr(S) whose generic fibre is
isomorphic to M/K as a finite flat prolongation of M/K over S. The collection of such
prolongations form a category in an evident way (morphisms being morphisms in Gr(S)
that restrict to the identity on the generic fibre). Note that there is at most one morphism
between any two prolongations of M/K (since restriction to the generic fibre is faithful).
In particular, if M/K admits a prolongation that is unique up to isomorphism, then it is
unique up to unique isomorphism.

We now describe some simple but crucial aspects of the homological algebra of the
exact category Gr(S).

Lemma 2.1 If S is a Dedekind scheme of generic characteristic zero, then the category
Gr(S) admits kernels, cokernels, images, and coimages. Furthermore, the formation of
each of these is compatible with passage to the generic fibre.

Proof. Let f : G → H be a morphism in the category Gr(S). Since for a Dedekind
domain, flat coincides with torsion free, we see that the scheme-theoretic closure of the
kernel of f/K is a finite flat subgroup scheme of G, while the scheme-theoretic closure of
the image of f/K in H is a finite flat subgroup scheme of H. One checks that these are the
kernel and image respectively of f in the category Gr(S). The quotient of G by the kernel
of f is then a coimage of f in the category Gr(S), while the quotient of H by the image of
f is then a cokernel of f in the category Gr(S). �

Note that the constructions of the preceding lemma typically do not coincide with the
corresponding constructions in the larger category Sh(S). For example, take S = SpecZ,
and let f : (Z/2)/Z → (µ2)/Z be the map that induces the identity on generic fibres. Then
f has zero kernel, zero cokernel, coimage equal to (Z/2)/Z, and image equal to (µ2)/Z.

Suppose now that G is an object of Gr(S) with endomorphisms by a ring A, and suppose
that M is a finitely presented right A-module. We may define the object M ⊗AG of Gr(S)

in the following way: Choose a presentation Ar
φ−→ As −→ M → 0 of M , and define

M ⊗A G to be the cokernel of the induced map Gr φ⊗idG−→ Gs.

Lemma 2.2 The object M ⊗A G of Gr(S) is well-defined, up to natural isomorphism,
independent of the choice of presentation of M .

Proof. We leave the easy proof to the reader. �

Since the formation of cokernels is compatible with passage to the generic fibre, we see
that there is a natural isomorphism of GK-modules (M ⊗A G)/K ∼= M ⊗A (G/K). We also
record here the following lemma used implicitly throughout the rest of the text:
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Lemma 2.3 The category Gr(S) is closed under extensions in Sh(S).

Proof. This follows from [10], Cor. 17.5, III.17-7.

The following result is useful for obtaining finite flat A-module schemes. The authors
thank Brian Conrad for providing the proof.

Lemma 2.4 Suppose that M/K is a finite discrete GK-module that has a unique (up to iso-
morphism) finite flat prolongation M over S. If M/K admits an A-module structure (com-
patible with its GK-module structure), then this extends uniquely to an A-module scheme
structure on M .

Proof. Since restriction to the generic fibre is a faithful functor on Gr(S), it suffices
to show that for each a ∈ A, the corresponding endomorphism of M/K extends to an
endomorphism of M . These extensions will then necessarily be unique, and induce an
A-module scheme structure on M .

If a ∈ A, let (Γa)/K ⊂ (M ×M)/K denote the graph of the endomorphism of M/K

induced by a. This is then a Galois submodule of (M ×M)/K that maps isomorphically to
M/K under the first projection. The Zariski closure of (Γa)/K in M ×M is thus a closed
finite flat subgroup scheme Γa of M×M prolonging (Γa)/K . Our assumption that M/K has
a unique prolongation over S up to isomorphism implies that the first projection from Γa
to M is again an isomorphism, and hence that Γa is (as the notation suggests) the graph
of an endomorphism of M , which extends multiplication by a on M/K . �

There is one more homological algebra result that we will need.

Proposition 2.5 Let V/K be a finite discrete GK-module, and suppose that V/K has a
unique (up to isomorphism) prolongation to an object V of Gr(S). If M/K is any finite
discrete GK-module that admits a filtration by GK-submodules whose subquotients are iso-
morphic to V/K, and that admits a prolongation to a finite flat group scheme M over S,
then this prolongation is unique up to isomorphism. (The above discussion shows that
this isomorphism is then also necessarily unique.) Furthermore, any composition series of
M/K with successive quotients isomorphic to V/K prolongs to a composition series for M
consisting of closed finite flat subgroup schemes whose subquotients are isomorphic to V .

Proof. Let M and M ′ be two choices of a finite flat group scheme over S prolonging
M/K . The results of [14] show that we may find a prolongation of M/K that maps (in the
category of such prolongations) to each of M and M ′. Thus we may assume we are given
a map M → M ′ that induces the identity on generic fibres. By assumption we may find
an embedding V/K ⊂M/K . Passing to scheme theoretic closures in each of M and M ′, and
taking into our assumption on the uniqueness of V (up to isomorphism), this prolongs to an
embedding of V into each of M and M ′, so that the map M →M ′ restricts to the identity
map between these two copies of V . Replacing M/K by M/K/V/K , M by M/V , and M ′
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by M ′/V , and arguing by induction on the order of M , the proposition follows from the
5-lemma (applied, for example, in the category of sheaves on the fppf site over S). �

For any prime power pn, we let Gr(pn, S) denote the full, exact subcategory of Gr(S)
consisting of finite flat group schemes of exponent pn. We are primarily interested in finite
flat group schemes of exponent pn (for various p and n) that are extensions of Z/pn by
µpn,, and so we work in the categories Gr(pn, S) from now on. We write Ext1

S,pn(–, –) to
denote the first Yoneda Ext bifunctor on the exact category Gr(pn, S). (Note in particular,
then, that by stipulation, for any objects G and H of Gr(pn, S), elements of Ext1

S,pn(G,H)
correspond to extensions of the group scheme G by H that are of exponent pn.) Our base
scheme S will typically be either an open subset of SpecZ, or else SpecZp.

Lemma 2.6 The natural map Ext1
Zp,pn(Z/pn, µpn) → Ext1

Qp,pn(Z/pn, µpn), induced by re-
stricting to the generic fibre, is injective.

Proof. Kummer theory identifies the map in the statement of the lemma with the
obviously injective map Z×

p /(Z
×
p )p

n → Q×
p /(Q

×
p )p

n
. �

If p = 2, we let V min
n denote the extension of Z/2n by µ2n in the category Gr(2n,Q)

corresponding by Kummer theory to the element −1 ∈ Q×/(Q×)2n
. If p is odd, we let V min

n

denote the direct sum Z/pn
⊕

µpn in the category Gr(pn,Q). We may (and do) regard
V min
n as an object of the category of GQ-modules annihilated by pn.

More explicitly, let χp denote the p-adic cyclotomic character. Then if p = 2, the
GQ-module V min

n corresponds to the representation

ρmin
n : GQ → GL2(Z/2

n)

given by

σ 7→
(
χ2(σ) (χ2(σ)− 1)/2

0 1

)
mod 2n,

whilst if p is odd, the GQ-module V min
n corresponds to the representation

ρmin
n : GQ → GL2(Z/p

n)

given by

σ 7→
(
χp(σ) 0

0 1

)
mod pn.

(Here we have denoted by σ an element of GQ.)

Proposition 2.7 For any natural number M , the GQ-module V min
n has a unique prolon-

gation to an object of Gr(pn,Z[1/M ]).
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Proof. The Galois module V min
n is unramified away from p, and so V min

n has a unique
prolongation to a finite étale group scheme over Z[1/Mp]. It thus suffices to show that
V min
n , regarded as a GQp-module, has a unique prolongation to an object of Gr(pn,Zp). If p

is odd, then this is a direct consequence of [2], Thm. 2. Thus we assume for the remainder
of the proof that p = 2. In this case, V min

n is defined to be the extension of Z/2n by µ2n

corresponding to −1 ∈ Q×
2 . Since −1 in fact lies in Z×

2 , V min
n does prolong to a finite flat

group scheme over Z2. We must show that this prolongation is unique.
We begin with the case n = 1. Suppose that G is a finite flat group scheme over Z2

having (V min
1 )/Q2 as its associated Galois representation. The scheme-theoretic closure of

the fixed line in V min
1 yields an order two finite flat subgroup scheme H of G. Both H and

G/H are thus finite flat group schemes of order two. The results of [11] show that Z/2 and
µ2 are the only group schemes of order 2 over Z2. Thus G is an extension of either Z/2
or µ2 by either Z/2 or µ2. Since neither G nor its Cartier dual are unramified (since V min

1

is self-dual and ramified at 2), we see that both Z/2 and µ2 must appear. Since V min
1 is

a non-trivial GQ2-module, a consideration of the connected-étale exact sequence attached
to G shows that in fact G is an extension of Z/2 by µ2. The fact that G is determined
uniquely by V min

1 now follows from Lemma 2.6. The uniqueness in the case of arbitrary n
follows from the result of the preceding paragraph, together with Proposition 2.5. �

Lemma 2.8 Let Dn denote the (uniquely determined, by Proposition 2.7) prolongation of
V min
n to an object of Gr(pn,Z). We have Ext1

Z,pn(Z/pn, Dn) = 0.

Proof. Writing Dn as an extension of Z/pn by µpn , we obtain the exact sequence of
Yoneda Ext groups

Ext1
Z,pn(Z/pn, µpn) → Ext1

Z,pn(Z/pn, Dn) → Ext1
Z,pn(Z/pn,Z/pn).

The third of these groups always vanishes, since Z has no non-trivial finite étale covers.
The first group is isomorphic to Z×/Z×p, so if p is odd it vanishes, and if p = 2 it has order
two, with the non-trivial element corresponding by Kummer theory to −1 ∈ Z×. Since Dn

is itself classified by this same element when p = 2, we see that the first arrow vanishes in
all cases, and thus so does the middle group. �

Corollary 2.9 Suppose that A is an Artinian local ring with maximal ideal p and residue
field Fp, that V is a free A-module of rank two, and that ρ : GQp → GL(V ) is a deformation
of (V min

1 )/Qp that is finite flat at p. Then there is a unique up to unique isomorphism finite
flat group scheme M over Zp whose generic fibre equals V . Furthermore, the A-action
on V prolongs to an A-action on M , the connected-étale sequence of M realizes M as
the extension of an étale finite flat A-module scheme of A-rank one by a multiplicative
finite flat A-module scheme of A-rank one, and M admits a filtration by closed finite flat
sub-A-module schemes with successive quotients isomorphic to D1.

Proof. If we choose a Jordan-Hölder filtration of A as a module over itself, then this
induces a filtration of V with successive quotients isomorphic to V min

1 . Thus we are in the
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situation of Proposition 2.5, and the uniqueness of M follows, as does the existence of the
required filtration of M . (Note that this uniqueness result, together with Lemma 2.4, shows
that the A-actions on V and on each of the steps of its filtration extend respectively to an
A-action on M and on the steps of its filtration.) Finally, let 0 →M0 →M →M ét → 0 be
the connected-étale sequence of M . The functorial nature of its construction implies that
it is an exact sequence of closed finite flat A-submodule schemes of M . Thus the exact
sequence 0 → M0

/Qp
→ V → M ét

/Qp
→ 0 obtained by restricting to Qp yields a two-step

filtration of V by A-submodules. The formation of this filtration is clearly functorial in A.
Thus if we tensor M with A/p over A, and take into account that A/p ⊗A M = D1, we
find that A/p ⊗A M

0 = D0
1 = µp and that A/p ⊗A M

ét = Dét
1 = Z/p. Thus each of M0

/Qp

and M ét
/Qp

are cyclic A-modules. Since M/Qp is free of rank two over A, they must both be

free A-modules of rank one, as claimed. We also see that M0 is multiplicative, as claimed.
�

Proposition 2.10 Let A be an Artinian local Z/pn-algebra with maximal ideal p and
residue field Fp. If V is a free A-module of rank two and ρ : GQp → GL(V ) is a de-
formation of (V min

1 )/Qp that is finite at p, then the coinvariants of V with respect to the
inertia group Ip are free of rank one over A.

Proof. The preceding corollary shows that V admits a two-step filtration, with rank
one free quotients, corresponding to the connected-étale sequence of the prolongation of V
to a group scheme over Zp. In particular, the inertial coinvariants VIp admit a surjection
onto a free A-module of rank one. On the other hand, if p is the maximal ideal of A, then
(VIp)/p = (V/p)Ip = (V min

1 )Ip . This latter space is directly checked to be one dimensional
over Fp, implying that VIp is a cyclic A-module. Altogether, we find that VIp is free of rank
one over A, as claimed. �

Proposition 2.11 Let A be an Artinian local Z/pn-algebra with maximal ideal p and
residue field Fp. If V is a free A-module of rank two and ρ : GQ → GL(V ) is a de-
formation of V min

1 that is unramified away from p and finite at p, then there is an A-linear
isomorphism of GK-modules V ∼= A⊗Z/pn V min

n . (Note that we ignore for the moment the
question of whether this isomorphism can be taken to be an isomorphism of deformations
of V min

1 .)

Proof. Corollary 2.9 shows that V prolongs to a finite flat A-module scheme M over
SpecZ, which admits a filtration by closed finite flat subgroup schemes, with successive
quotients isomorphic to D1.

If p is odd, then Proposition I.4.5 of [7] shows that M is the product of a constant
finite flat closed subgroup scheme and a µ-type finite flat closed subgroup scheme. (Recall
that a finite flat group scheme is said to be of µ-type if it is Cartier dual to a constant
group scheme). Furthermore, these subgroup schemes are unique (and hence this direct
product decomposition of M is unique), since when p is odd, there are non-zero morphisms
from a constant étale group scheme to a µ-type group scheme (over Q, and hence over Z).
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Each of these subgroups is thus an A-submodule scheme of M , and we easily conclude that
V ∼= A⊗Z/pn V min

n .
If p = 2, then Propositions I.2.1 and I.3.1 of [7] show that M is the extension of a

constant group scheme by a µ-type group. Again, each of these groups is seen to be an
A-module scheme, and we easily conclude that M is in fact an extension of the constant
A-module scheme A by the µ-type A-module scheme A ⊗Z/2n µ2n . The group of all such
extensions is classified by

H1(SpecZ, A⊗Z/2n µ2n) ∼= A⊗Z/2n Z×/(Z×)2n ∼= A/2⊗F2 {±1}.

We thus see that this cohomology group is free of rank one over A/2. Since V min
1 corre-

sponds by Kummer theory to the non-trivial element of {±1}, we see that the elements
of this cohomology group corresponding to deformations of V min

1 form a principal homo-
geneous space under (A/2)×. The action of A× on H1(SpecZ, A ⊗Z/2n µ2n) corresponds
simply to “changing the basis” of A ⊗Z/2n µ2n . Thus it does not change the isomorphism
class of the finite flat group scheme underlying a given extension, and so we see that there
is is a unique finite flat group scheme over Z that deforms V min

1 over A (which must then
be A⊗Z/2n V min

n ). �

We leave it to the reader to verify the following lemma.

Lemma 2.12 If A is an Artinian local Z/pn-algebra with maximal ideal p, then the ring
of Galois equivariant endomorphisms of A⊗Z/pn V min admits the following description:

(i) If p = 2, then EndA[GQ](A⊗Z/2n V min
n ) = {

(
a b
0 a− 2b

)
| a, b ∈ A}.

(ii) If p is odd, then EndA[GQ](A⊗Z/pn V min
n ) = {

(
a 0
0 d

)
| a, d ∈ A}.

3 Proving that R = T

We let Def denote the deformation problem described in the introduction. We begin by
describing some equivalent formulations of condition 4 in the definition of Def.

Lemma 3.1 If A is an Artinian local ring with residue field Fp, and if (V, L, ρ) is a triple
satisfying conditions Def1, Def2, and Def3 in the definition of Def, then the following
conditions are equivalent:

Def4. The determinant of ρ is equal to the cyclotomic character χp.
Def4a. The determinant of ρ is unramified away from p.
Def4b. The inertia subgroup at N acts trivially on the quotient V/L.

Proof. It is obvious that Def4 implies Def4a and Def4b. By assumption ρ is unramified
away from p and N , and IN (inertia at N) acts trivially on L, from which it also fol-
lows that Def4a and Def4b are equivalent. If Def4a holds, then (by the Kronecker-Weber
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theorem) the determinant of ρ is determined by its action on inertia at p. Corollary 2.9
shows that the finite flat group scheme over Zp that prolongs V is the extension of an étale
A-module scheme of rank one over A by a multiplicative A-module scheme of rank one
over A. Consequently, the determinant of ρ, restricted to inertia at p, is equal to χp, and
so Def4a implies Def4. �

Our proof of Theorem 1.5 employs the technique introduced in [17]: namely, we first
consider a minimal deformation ρmin of (V , L, ρ) over Zp, and then verify the numerical
criterion of [17].

Let us define the minimal deformation problem Defmin, as the subfunctor of Def consist-
ing of those deformations of (V , L, ρ) that are unramified away from p. Let us also define
(Defmin)′ to be the functor that classifies all deformations of (V , ρ) that are unramified
away from p and finite at p. Forgetting the IN -fixed line L gives a natural transformation
Defmin → (Defmin)′.

Let us now define the triple (V min, Lmin, ρmin). We take V min = Zp

⊕
Zp. If p = 2, then

we let ρmin denote the representation

σ 7→
(
χ2(σ) (χ2(σ)− 1)/2

0 1

)
(here σ denotes an element of GQ), while if p is odd, we let ρmin denote the direct sum
of χp (the p-adic cyclotomic character) and 1 (the trivial character). In each case, the
pair (V min, ρmin) is certainly a lifting of (V , ρ). We take Lmin to be any free of rank one
Zp-submodule of V min lifting the line L in V .

Note that for any natural number n, we have V min/pn = V min
n (the Galois module

introduced in the preceding section).

Proposition 3.2 The natural transformation Defmin → (Defmin)′ is an isomorphism of
functors. Moreover, the deformation functor Defmin is pro-represented by (V min, Lmin, ρmin)
in Defmin(Zp).

Proof. Let A be an Artinian local Zp-algebra, and let (V, ρ) be an object of (Defmin)′(A).
Proposition 2.11 shows that there is an isomorphism V ∼= A ⊗Zp V

min. The explicit de-
scription of the endomorphisms of A ⊗Zp V

min provided by Lemma 2.12 shows that we
may furthermore choose this isomorphism so that it is strict. Thus we see that (Defmin)′

is pro-represented by Zp, with (V min, ρmin) as universal object.
Now suppose that (V, L, ρ) is an object of Defmin(A). Using Lemma 2.12 again, we see

that we may choose the strict endomorphism V ∼= A⊗Zp V
min of the preceding paragraph

in such a way that L is identified with A ⊗Zp L
min. Thus Zp also pro-represents Defmin,

with universal object (V min, Lmin, ρmin). This establishes the proposition. �

Note that the preceding lemma implies in particular that the class of (V min, Lmin, ρmin)
in Def(Zp) is independent of the choice of Lmin (provided that it lifts L).
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Let R denote the universal deformation ring that pro-represents the functor Def, and
let (V univ, Luniv, ρuniv) denote the universal deformation of (V , L, ρ) over R. Corresponding
to (V min, Lmin, ρmin) there is a homomorphism R→ Zp of Zp-algebras. We let I denote the
kernel of this homomorphism. The following more explicit description of I will be useful.

Proposition 3.3 If S is any finite set of primes containing p and N , then I is generated
by the set

{1 + `− Trace(ρuniv(Frob`)) | ` 6∈ S}.

Proof. Let IS denote the ideal generated by the stated set. Clearly IS ⊂ I. We will show
that the Galois representation GQ → GL2(R/IS) obtained by reducing ρuniv modulo IS is
unramified at N . It will follow from Proposition 3.2 that I ⊂ IS, and the proposition will
be proved. The argument is a variation of that used to prove Prop. 2.1 of [16].

Suppose first that p is odd. Let us choose a basis for V univ, and write

ρuniv(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
,

for σ ∈ GQ. We may assume that if c ∈ GQ denotes complex conjugation, then

ρuniv(c) =

(
−1 0
0 1

)
.

We find that

a(σ) =
1

2

(
Trace(ρuniv(σ))− Trace(ρuniv(cσ))

)
,

and that

d(σ) =
1

2

(
Trace(ρuniv(σ)) + Trace(ρuniv(cσ))

)
.

Since by construction Trace(ρuniv(σ)) ≡ 1 + χp(σ) mod IS, we find that

a(σ) ≡ χp(σ) mod IS,

whilst
d(σ) ≡ 1 mod IS.

In particular, if σ is an element of the inertia group IN , then

ρuniv(σ) ≡
(

1 b(σ)
c(σ) 1

)
mod IS.

The universal IN -fixed line is spanned by a vector of the form (1, x), where x ∈ R×. We
conclude that if σ ∈ IN then

(1 + b(σ)x, c(σ) + x) ≡ (1, x) mod IS,
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and thus that
b(σ) ≡ c(σ) ≡ 0 mod IS.

This implies that ρuniv mod IS is unramified at N , as required.
Consider now the case p = 2. Again, we write

ρuniv(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
,

for σ ∈ GQ. We may assume that if c ∈ GQ denotes complex conjugation, then

ρuniv(c) =

(
−1 −1
0 1

)
.

We may also assume that the universal IN -fixed line is spanned by the vector (0, 1). By
considering Trace(ρuniv(cσ)), for σ ∈ GQ, we find that

−a(σ)− c(σ) + d(σ) ≡ 1− χ2(σ) mod IS.

If σ ∈ IN , then since σ fixes (0, 1), we find that

b(σ) = 0, d(σ) = 1.

The preceding equations, the fact that det ρuniv = χ2, and the fact that χ2(σ) = 1 for
σ ∈ IN , imply that also

a(σ) ≡ 1, c(σ) ≡ 0 mod IS.

Altogether, we conclude that ρuniv mod IS is unramified at N , as required. �

The preceding result has the following important corollary.

Corollary 3.4 If S is any finite set of primes containing p and N , then the complete local
Zp-algebra R is topologically generated by the elements Trace(ρuniv(Frob`)), for ` 6∈ S.

Proof. This follows immediately from the description of I provided by Proposition 3.3,
the fact that R is I-adically complete, and the fact that R/I ∼= Zp. �

We now compute the order of I/I2, which is one of the two ingredients we will eventually
use in our verification of the Wiles-Lenstra numerical criterion.

Theorem 3.5 The order of I/I2 (which is a power of p) divides (N2 − 1)/24.

Proof. As usual, the first step of the argument involves identifying the Pontrjagin dual
of I/I2 with a certain (inductive limit of) Ext groups. We begin by describing the relevant
extensions.
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Let n be a natural number, and let (V min
n , Lmin

n , ρmin
n ) denote the reduction modulo pn

of (V min, Lmin, ρmin). We consider extensions of Galois modules

0 → (V min
n , Lmin

n ) → (E,F ) → (V min
n , Lmin

n ) → 0;

here the notation indicates that E is a Z/pn[GQ]-module that extends V min
n by itself, and

that F is a submodule of E (not assumed to be Galois invariant) that provides an extension
of Lmin

n by itself.
We let An denote the additive category of such extensions for which E is annihilated

by pn, is unramified away from p and N , is finite at p, and for which both F and E/F are
fixed (element-wise) by the inertia group IN . Morphisms between two objects (E1, F1) and
(E2, F2) of the category An are given by isomorphisms of Galois modules E1 → E2 that
take F1 to F2, and that make the diagram

0 // V min
n

//

id
V min

n
��

E1
//

��

V min
n

//

id
V min

n
��

0

0 // V min
n

// E2
// V min
n

// 0

commute. The direct sum is given by the usual Baer sum of extensions.
We let An denote the Grothendieck group of isomorphism classes of objects of An.

There are natural Galois equivariant maps (V min
n+1 , L

min
n+1) → (V min

n , Lmin
n ) and (V min

n , Lmin
n ) →

(V min
n+1 , L

min
n+1), the first being given by reduction modulo pn, and the second by regarding

the sources as the pn-torsion in the target. Pulling back by the first of these maps, and
pushing forward by the second, we obtain a functor Fn : An → An+1. Thus Fn induces a
homomorphism An → An+1 of Grothendieck groups. The usual identification of the relative
tangent space to a deformation functor with an appropriate Ext-group in an appropriate
category of Galois modules shows that

Hom(I/I2,Qp/Zp) ∼= lim
−→

An. (2)

(Note that we are using the equivalence of conditions Def4 and Def4b in the definition of
Def provided by Lemma 3.1.)

We will prove the lemma by showing that the right hand side of this isomorphism has
order dividing (N2 − 1)/24. In fact, we will not work directly with the rather complicated
Ext groups An. Rather, we fill construct an injection of inductive systems {An}n≥1 →
{Bn}n≥1, with each Bn being a simpler Ext group, and investigate the limit lim

−→
Bn instead.

If (E,F ) is an object of An, then since Z/pn (with the trivial GQ-action) is a quotient
of V min

n , whilst µpn (with its natural GQ-action) is a submodule of V min
n , the extension E

determines an extension E ′ of GQ modules

0 → Z/pn → E ′ → µpn → 0. (3)

Let Bn denote the group of isomorphism classes of extensions of GQ-modules of the
form (3) that are unramified away from p and N , and that prolong over Zp to an extension
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of the finite flat group scheme µpn by the finite flat group scheme Z/pn. The natural maps
µpn+1 → µpn and Z/pn → Z/pn+1, given respectively by raising to the pth power and by
multiplication by p, induce a map Bn → Bn+1. Thus the Bn form an inductive system.
The passage from E to E ′ gives rise to a homomorphism of inductive sequences

{An}n≥1 → {Bn}n≥1, (4)

which we will next show is injective.

Lemma 3.6 If (E,F ) is an object of An for which E is a trivial extension, then the pair
(E,F ) is also a trivial extension.

Proof. Let us remind the reader that if E is the trivial extension of V min
n by itself, then

the automorphisms of E (as an object of An) are of the form

(
Id A
0 Id

)
, where A is an

element of EndGQ
(V min

n ). This being said, the lemma is easily checked using Lemma 2.12.
Alternatively, we may appeal to Proposition 3.2. Since E is assumed to be a trivial

extension, it is in particular unramified at N , and thus corresponds to a deformation for the
subproblem Defmin of Def. The triviality of E implies that this deformation is trivial, when
regarded as an deformation for the problem (Defmin)′. Since Defmin maps isomorphically
to (Defmin)′, we obtain the assertion of the lemma. �

Lemma 3.7 If (E,F ) is an object of An for which the corresponding extension E ′ in Bn

is trivial, then E is also a trivial extension.

Proof. We begin by pointing out the category An has a natural involution, given by
passing to Cartier duals. Indeed, since V min

n is Cartier self-dual by construction, if (E,F )
is an object of An, then the Cartier dual E∗ is itself an extension of V min

n by itself in a
natural way. We define F ∗ to be the annihilator of F in E∗; our assumptions then make it
clear that (E∗, F ∗) is again an object of An. (Note that V min

n is identified with its Cartier
dual (V min

n )∗ via the alternating pairing ∧ : V min
n ×V min

n → det(V min
n ) ∼= χp mod pn, which

implies that (Lmin
n )∗ = Lmin

n .) It is clear that the extension (E∗)′ of µpn by Z/pn arising
from E∗ is obtained by taking the Cartier dual of the extension E ′ arising from E. Thus
if E ′ is trivial, so is (E∗)′.

We now prove the lemma. Let Dn denote the (unique, by Proposition 2.7) prolongation
of V min

n to a finite flat group scheme over Z[1/N ]. Proposition 2.5 shows that E has a unique
prolongation to a finite flat group scheme E over Z[1/N ], that provides an extension of Dn

by itself. We let D
(1)
n denote the copy of Dn that appears as a submodule of E , and let D

(2)
n

denote the copy of Dn that appears as a quotient. Also, we let µ
(i)
pn (respectively (Z/pn)(i))

denote the copy of µpn (respectively Z/pn) that appears as a subgroup scheme (respectively

a quotient group scheme) of D
(i)
n , for i = 1, 2. The extension (3) corresponding to E thus

prolongs to an extension E ′ of µpn by Z/pn as finite flat groups schemes over Z[1/N ].
We begin by observing that our hypothesis that E ′ is a trivial extension implies that

E ′ is also a trivial extension. Indeed, since E ′ is étale over Z[1/Np], the splitting of the
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extension of Galois modules E ′ implies the splitting of the corresponding extension of group
schemes E ′ over Z[1/Np]. Also, a consideration of the connected-étale sequence shows that
E ′|Zp

is a split extension (for any E ′!). Thus E ′ splits over Z[1/N ], as claimed.

The quotient E/µ(1)
pn is an extension of D

(2)
n by (Z/pn)(1). Thus it yields a class e ∈

ExtZ[1/N ],pn(D
(2)
n , (Z/pn)(1)). This latter group sits in the exact sequence

ExtZ[1/N ],pn((Z/pn)(2), (Z/pn)(1)) → ExtZ[1/N ],pn(D
(2)
n , (Z/pn)(1))

→ ExtZ[1/N ],pn(µ
(2)
pn , (Z/pn)(1)).

(5)
The image of e under the second arrow of (5) classifies the extension E ′, and thus vanishes.
Thus there is a class e′ ∈ ExtZ[1/N ],pn((Z/pn)(2), (Z/pn)(1)) that maps to e under the first
arrow of (5). We can construct such an extension class e′ concretely as follows: Since the

image of e vanishes, we may choose a lift of µ
(2)
pn to a subgroup scheme µ of E/µ(1)

pn . The

quotient (E/µ(1)
pn )/µ is then an extension of (Z/pn)(2) by (Z/pn)(1), which gives a realization

of a class e′ mapping to e. Our assumption on the submodule F of E implies that it maps
surjectively onto (E/µ

(1)
pn )/µ (the generic fibre of (E/µ(1)

pn )/µ), and thus that the action of

inertia at N on (E/µ
(1)
pn )/µ is trivial. Thus (E/µ(1)

pn )/µ has a prolongation to a finite flat
group scheme over Z, yielding an extension of Z/pn by itself. There are no such non-trivial
extensions that are finite flat over Z, and thus the extension class e′ is trivial. Hence the
extension class e is also trivial, and so E/µ(1)

pn is a split extension of D
(2)
n by (Z/pn)(1).

If Ẽ denotes the preimage in E of the subgroup µ
(2)
pn ⊂ D

(2)
n , then we find that Ẽ is

Cartier dual to E∗/µ(1)
pn . (Where we are momentarily applying the notation µ

(1)
pn not to E ,

but to its Cartier dual E∗.) The observations at the beginning of the argument show that

the reasoning of the preceding paragraph applies equally well to E∗, and thus that E∗/µ(1)
pn

is a split extension of D
(2)
n by (Z/pn)(1). Consequently, passing back from E∗ to E , we

conclude that Ẽ is a split extension of µ
(2)
pn by D

(1)
n . Consider the exact sequence

ExtZ[1/N ],pn((Z/pn)(2), D
(1)
n ) → ExtZ[1/N ],pn(D

(2)
n , D

(1)
n )

→ ExtZ[1/N ],pn(µ
(2)
pn , D

(1)
n )

(6)
If e′′ denotes the class of E in the middle group, then we have just seen that its image under
the second arrow of (6) vanishes. Thus we may find a class e′′′ ∈ ExtZ[1/N ],pn((Z/pn)(2), D

(1)
n )

mapping to e′′ under the first arrow of (6). We can construct such a class e′′′ concretely

as follows: Since the image of e′′ vanishes, we may lift µ
(2)
pn to a subgroup scheme µ′ of Ẽ .

The quotient E/µ′ then provides an extension of (Z/pn)(2) by D
(1)
n whose extension class

e′′′ maps to e′′. Our assumption on F implies that its image in E/µ′ (the generic fibre of
E/µ′) projects isomorphically onto (Z/pn)(2), and thus that inertia at N acts trivially on
E/µ′, and so E/µ′ has a prolongation to a finite flat group scheme over Z that extends
Z/pn by Dn. Lemma 2.8 shows that any such extension is split, and thus that e′′′ vanishes.
Consequently e′′ also vanishes, and so E is a split extension, as claimed. �
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The preceding two results show that the map (4) is injective for each n, as claimed.
Passing to the direct limit in n yields an injective map

lim
−→

An → lim
−→

Bn. (7)

Lemma 3.8 The group lim
−→

Bn is finite, of order at most the p-power part of (N2− 1)/24.

Proof. It suffices to show that Bn is of order at most the p-power part of (N2 − 1)/24
for sufficiently large values of n. Let Σ = {p,N,∞}, and let GΣ denote the Galois group
of the maximal extension of Q in Q unramified away from the elements of Σ. Extensions
of the form (3) are classified by the Galois cohomology group H1(GΣ, µ

⊗−1
pn ). If such an

extension prolongs to an extension of finite flat groups over Zp, then it is in fact trivial
locally at p, since the connected group scheme µpn cannot have a non-trivial extension over
the étale group scheme Z/pn. Thus Bn is equal to the kernel of the natural map

H1(GΣ, µ
⊗−1
pn ) → H1(GQp , µ

⊗−1
pn ).

Let Kn denote the extension of Q obtained by adjoining all pnth roots of unity in Q.
Let H denote the normal subgroup of GΣ which fixes Kn; the quotient GΣ/H is naturally
isomorphic to (Z/pn)×. The prime p is totally ramified in Kn. Thus, if π denotes the
unique prime of Kn lying over p, the quotient GQp/GKn,π also maps isomorphically to
(Z/pn)×. The inflation-restriction exact sequence gives a diagram

0 // H1((Z/pn)×, µ⊗−1
pn ) // H1(GΣ, µ

⊗−1
pn ) //

��

H1(H,µ⊗−1
pn )(Z/pn)×

��

0 // H1((Z/pn)×, µ⊗−1
pn ) // H1(GQp , µ

⊗−1
pn ) // H1(GKn,π , µ

⊗−1
pn )(Z/pn)× .

Taking into account the discussion of the preceding paragraph, this diagram in turn induces
an injection

Bn ↪→ ker (H1(H,µ⊗−1
pn )(Z/pn)× → H1(GKn,π , µ

⊗−1
pn )(Z/pn)×).

Since H acts trivially on µ⊗−1
pn , there is an isomorphism

H1(H,µ⊗−1
pn )(Z/pn)× ∼= Hom(Z/pn)×(H,µ⊗−1

pn ).

Thus Bn injects into the subgroup of Hom(Z/pn)×(H,µ⊗−1
pn ) consisting of homomorphisms

that are trivial on GKn,π .
Any element of Hom(Z/pn)×(H,µ⊗−1

pn ) that is trivial on GKn,π factors through the Galois
group Gal(Ln/Kn), where Ln is the extension ofKn defined in the statement of the following
lemma. Lemma 3.8 is now seen to follow from the conclusion of that lemma. �
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Lemma 3.9 Let Ln denote the maximal abelian extension of Kn of exponent dividing pn

that is unramified away from N , in which the prime lying over p splits completely, and on
whose Galois group (Z/pn)× = Gal(Kn/Q) acts via χ−1

p . Then Ln is a cyclic extension of
Kn, and the degree [Ln : Kn] divides the p-power part of (N2 − 1)/24.

Proof. In the following proof, for an abelian group G, let G/{m} = G/Gm denote the
quotient of G by all mth powers in G. For integers a, b let G/{(a, b)} = G/{m}, where m
is the greatest common divisor of a and b. Let ζ be a choice of primitive pnth root of unity.
If On denotes the ring of integers in Kn, then 1− ζ generates the unique prime ideal of On

lying above p. Let ((On/N)×/{pn})(−1) denote the maximal quotient of (On/N)×/{pn} on
which Gal(Kn/Q) acts via χ−1

p . Since Herbrand’s criterion shows that the χ−1
p -eigenspace

in the p-part of the class group of Kn vanishes, global class field theory shows that the
Galois group of Ln/Kn is equal to the cokernel of the composite

On[(1− ζ)−1]× → (On/N)× → ((On/N)×/{pn})(−1).

Fix a prime n ofKn lying overN . We first claim that the injection (On/n)× ↪→ (On/N)×

(coming from the Chinese remainder theorem) induces an isomorphism

(On/n)×/{(pn, N2 − 1)} ∼= ((On/N)×/{pn})(−1). (8)

To see this, we first recall that χp induces an isomorphism Gal(Kn/Q) ∼= (Z/pn)×; we will
write σa to denote the Galois element corresponding to a ∈ (Z/pn)× via χp. The group
Gal(Kn/Q) acts transitively on the primes of Kn lying over N , and the stabilizer of any
one of these primes (and so in particular of n) is identified by χp with the cyclic subgroup
〈N〉 generated by N of (Z/pn)×. Thus if {a1, . . . , ar} is a set of coset representatives for
〈N〉 in Z/pn (labelled so that a1 represents the identity coset), then (taking into account
that {a−1

1 , . . . , a−1
r } also gives a set of coset representatives) the Chinese remainder theorem

provides an isomorphism
r∏
i=1

(On/σa−1
i

(n))× ∼= (On/N)×. (9)

If x, y ∈ (On/N)×/pn, write x ∼ y if x and y have the same image in ((On/N)×/{pn})(−1).
Using the isomorphism (9) to write x = (x1, . . . , xr), with xi ∈ (On/σai

)×/{pn}, we see
that

x = (x1, . . . , xr) ∼ (
r∏
i=1

σa−1
i

(xi)
a−1

i , 1, . . . , 1).

Taking into account the fact that σN acts on (On/N)× as the Frobenius automorphism,
i.e. via raising to Nth powers, we see that (8) is indeed an isomorphism, and that the
inverse isomorphism is given by the map

image of x = (x1, . . . , xr) in ((On/N)/pn)(−1)

7→ image of
∏r

i=1 σai
(xi)

ai in (On/n)×/{(pn, N2 − 1)}. (10)

Of course, this map is independent of the particular choice of coset representatives {ai}.
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Since (On/n)× is a cyclic group, the isomorphism (8) shows that ((On/N)×/{pn})(−1)

has order bounded by the p-part of N2 − 1. Thus if p ≥ 5 the lemma is proved.
We now perform a more refined analysis, which will prove the lemma in the remaining

cases (i.e. p = 2 or 3). The formula (10) shows that under the isomorphism (8), the
subgroup of

((On/N)×/{pn})(−1)

generated by (1− ζ) corresponds to the subgroup of (On/n)×/{(pn, N2− 1)} generated by∏
a∈(Z/pn)×/〈N〉

(1− ζa)a.

(Here and below, in expressions such as this, we will suppress the particular choice of coset
representatives for elements of (Z/pn)×/〈N〉; the product is well-defined as an element of
(On/n)×/{(pn, N2 − 1)}, independently of this choice.)

Suppose first that p is odd, and writeN = ω(N)N1 in Zp, where ω(N) is the Teichmüller
lift and N1 is a 1-unit. Let c denote the order of (Z/p)/〈ω(N)〉; note that c is prime to p.
If pf denotes the exact power of p dividing N2 − 1, and pf

′
denotes the exact power of p

dividing N1 − 1, then f ′ ≥ f, with equality if p = 3. Let us assume that n ≥ f ′, so that
(On/n)×/{(pn, N2 − 1)} is cyclic of order pf , generated by the image of ζ, or of −ζ.

Since 2c is prime to p, the subgroup of (On/n)×/{(pn, N2 − 1)} generated by∏
a∈(Z/pn)×/〈N〉

(1− ζa)a

coincides with the subgroup generated by ∏
a∈(Z/pn)×/〈N〉

(1− ζa)a

2c

=

 ∏
a∈(Z/pn)×/〈N1〉

(1− ζa)a

2

=
∏

a∈(Z/pn)×/〈N1〉

(1− ζa)a(1− ζ−a)−a =
∏

a∈(Z/pf ′ )×

(−ζ)a2

.

(The above expressions are all well-defined as elements of, and the equalities all hold in,
the quotient (On/n)×/{(pn, N2 − 1)}.)

If p ≥ 5, then since there are quadratic residues distinct from 1 in (Z/p)×, we com-
pute that

∑
a∈(Z/pf ′ )× a

2 ≡ 0 mod pf
′
, and so

∏
a∈(Z/pn)×/〈N〉(1− ζa)a generates the trivial

subgroup of the group (On/n)×/{(pn, N2 − 1)}. In this case, our “refined analysis” adds
no further restrictions to the degree of Ln over Kn. However, if p = 3, then 1 is the only
quadratic residue in (Z/3)×, and one computes that the power of 3 dividing

∑
a∈(Z/pf ′ )× a

2

is exactly 3f
′−1 = 3f−1. Thus we find that the degree [Ln : Kn] is bounded above by 3f−1.

This is the exact power of 3 dividing (N2 − 1)/24, and thus we have proved the lemma in
the case p = 3.
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Suppose now that p = 2. Write N = ±1 · N1, where N1 ≡ 1 mod 4. Let 2f be the
exact power of 2 dividing N2 − 1, and let 2f

′
be the exact power of 2 dividing N1 − 1.

Note that f = f ′ + 1. Also, assume that n ≥ f . In particular, n ≥ 2, and so −ζ is also a
primitive 2nth root of unity. The quotient (On/n)×/{(2n, N2 − 1)} is then cyclic of order
2f , generated by ζ, or by −ζ.

We may rewrite
∏

a∈(Z/2n)×/〈N〉(1− ζa)a in the form∏
a∈(Z/2n)×/〈N〉

(1− ζa)a =
∏

a∈(1+4Z/2n)/〈N1〉

(1− ζa)a(1− ζ−a)−a =
∏

a∈(1+4Z/2n)/(1+2f ′Z/2n)

(−ζ)a2

.

(The above expressions are all well-defined as elements of, and the equalities all hold in,
the quotient (On/n)×/{(2n, N2 − 1)}.) One computes that the largest power of 2 dividing∑

a∈(1+4Z/2n)/(1+2f ′Z/2n) a
2 is 2f

′−2 = 2f−3. Thus the degree [Ln : Kn] is bounded above by

2f−3. This is the exact power of 2 dividing (N2− 1)/24, and so we have proved the lemma
in the case p = 2. �

Conclusion of proof of Theorem 3.5: The Theorem follows from the isomorphism (2),
the injectivity of (7), and Lemma 3.8. �

The reduced Zariski tangent space of the deformation ring R can be computed via
a calculation similar to that used to prove Theorem 3.5. We state the result here, but
postpone the details of the calculation to the following sections. (See Proposition 4.11 for
the case p = 2, and Proposition 5.5 for the case of odd p.)

Proposition 3.10 If p denotes the maximal ideal of R, then the reduced Zariski tangent
space p/(p2, p) of R is of dimension at most one over Fp. More precisely, p/(p2, p) vanishes
unless p divides the numerator of (N − 1)/12, in which case it has dimension one over Fp.

Having introduced the deformation ring R, we now turn to constructing the correspond-
ing Hecke ring T. We consider the space M2(N) of all modular forms of weight two on
Γ0(N) defined over Qp, and the commutative Zp-algebra H of endomorphisms of M2(N)
generated by the Hecke operators Tn. We define the p-Eisenstein maximal ideal of the
algebra H to be the ideal generated by the elements Tn− σ∗(n) (where σ∗(n) =

∑
0<d|n

(d,N)=1
d

for any positive integer n) together with the prime p, and let T denote the completion
of H at its p-Eisenstein maximal ideal. Then T is a reduced Zp-algebra. We let J denote
the kernel of the surjection T → Zp describing the action of T on the Eisenstein series E∗

2 ,
where

E∗
2 = 1−N − 24

∞∑
n=1

qnσ∗(n).

Let T0 denote the quotient of T that acts faithfully on cuspforms, and let J0 denote the
image of J in T0. (This is the localization at p of the famous Eisenstein ideal of [7].)
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Lemma 3.11 The order of T0/J0 (which is a power of p) is equal to the p-power part of
the numerator of (N − 1)/12.

Proof. This is Proposition II.9.7 of [7]. �

Proposition 3.12 There is an object (V, L, ρ) of Def(T), uniquely determined by the prop-
erty that Trace(ρ(Frob`)) = T`, for ` 6= p,N . Furthermore, the diagram

R

��

// T

��
R/I Zp T/J

is commutative.

Proof. Since, by Corollary 3.4, the universal deformation ring R is topologically generated
by the traces Trace(ρuniv(Frob`)), there is at most one object (V, L, ρ) of Def(T) satisfying
the condition Trace(ρ(Frob`)) = T` for ` 6= p,N . This gives the uniqueness statement of
the proposition. In order to construct the required object (V, L, ρ), we proceed in several
steps.

Lemma 3.13 Let V
′
be a two dimensional discrete GQ-module over a finite extension k of

Fp. Suppose that V
′
is finite at p, unramified away from p and N , contains an IN -fixed line

that is not GQ-stable, and has semi-simplification isomorphic to the semi-simplification of

k ⊗Fp V . Then V
′ ∼= k ⊗Fp V .

Proof. Since V
′

and k ⊗Fp V have isomorphic semi-simplifications, we see that V
′

is an extension of one of k ⊗Fp µp or k ⊗Fp Z/p (thought of as étale groups schemes
over Q, or equivalently as GQ-representations) by the other. Both these one dimensional

representations are unramified at N , and V
′
contains one or the other as a GQ-submodule.

It also contains an IN -fixed line which is not a GQ-submodule. Thus V
′
is in fact spanned

by IN -fixed lines, and so is unramified at N . By assumption it is finite at p, and so it has
a prolongation to a finite flat group scheme over Z.

If p is odd, then V must prolong to an extension of one of k⊗Fp µp or k⊗Fp Z/p by the
other as a group scheme over SpecZ (since by [2], Thm. 2, p-power order group schemes
over Z are determined by their associated Galois representations). There are no such non-
trivial extensions ([7], Ch. I for k = Fp, from which the result can easily be deduced), and

thus V
′ ∼= k⊗Fp V . In the case that p = 2, note first that since both k⊗F2 µ2 and k⊗F2 Z/2

yield the trivial character of GQ, the module V cannot be the direct sum of these two
characters; if it were, every line (including the IN -fixed line appearing in the statement of
the lemma) would be GQ-stable. Taking this into account, it is easily seen (again using

the results of [7], Ch. I) that V
′ ∼= k ⊗F2 V . �
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Lemma 3.14 Let K be a finite extension of Qp, with ring of integers O. Let k denote the
residue field of O, and let O′ denote the order in O consisting of elements whose image
in k lies in the prime subfield Fp of k. Suppose one is given a two dimensional K-vector
space W , and a continuous representation GQ → GL(W ) that is finite at p (in the sense
that one, or equivalently any, GQ-invariant O-lattice in W is finite at p), semistable at N
(in the sense that W contains an IN -fixed line), unramified away from p and N , such that
the semi-simple residual representation attached to W is isomorphic to the direct sum of
the trivial character and the mod p cyclotomic character.

If W is irreducible, then we may find a free O′-module of rank two V , equipped with a
continuous representation ρ : GQ → GL(V ), and containing an IN -fixed line L, such that
the triple (V, L, ρ) deforms (V , L, ρ), and such that K ⊗O′ V ∼= W as GQ-modules.

Proof. Choose any GQ-stable lattice V ′ in W , and let L′ denote the intersection of V ′

with the IN -fixed line in W . Since W is irreducible, the line L′ is not GQ-stable. Thus we
may find a non-negative integer n such that L′/pn is GQ-stable in V ′/pn, but such that
L′/pn+1 is not GQ-stable in V ′/pn+1. If we define V ′′ to be the preimage in V ′ of L′/pn, then
we see that L′/p, when regarded as a subspace of V ′′/p, is not GQ-stable. Lemma 3.13
implies that V ′′/p ∼= k ⊗Fp V . Using the description of the automorphisms of k ⊗Fp V
afforded by Lemma 2.12, we deduce easily that in fact there is an isomorphism of pairs
(V ′′/p, L′/p) ∼= k⊗Fp (V , L). If we choose a basis for (V ′′, L′) over O that reduces to an Fp

basis for (V , L), then the O′-span of this basis gives rise to the required pair (V, L). �

If T̃ denotes the normalization of T, then we may write T̃ =
∏d

i=1Oi, where each Oi

is a discrete valuation ring, of finite index over Zp. The rings Oi are in bijection with
the conjugacy classes of normalized eigenforms fi in M2(N) that satisfy the congruence
fi ≡ E∗

2 mod pi (where pi denotes the maximal ideal of Oi); as before, E∗
2 denotes the

weight two Eisenstein series on Γ0(N). The ring Oi is the ring of integers in the subfield

of Qp generated by the Fourier coefficients of fi. The injection T → T̃ =
∏d

i=1Oi is
characterised by the property Tn 7→ (an(fi))i=1,...,d. Note that E∗

2 is one such form fi. We
may choose the labeling so that E∗

2 = f1; then O1 = Zp = T/J .
As in the statement of Lemma 3.14, for each i = 1, . . . , d, define O′

i to be the order in
Oi obtained as the preimage under the map to the residue field of the prime subfield Fp.
By construction O′

i is a complete Noetherian local ring with residue field Fp. Also, the
natural map T → Oi factors through O′

i.

Lemma 3.15 For each i = 1, . . . , d, we may construct an object (Vi, Li, ρi) ∈ Def(O′
i) with

the property that Trace(ρi(Frob`)) is equal to the image of T` in O′
i, for each ` 6= p,N .

Proof. If i = 1, so that O′
i = Zp, we take (V1, L1, ρ1) to be the triple (V min, Lmin, ρmin).

Suppose now that i ≥ 2, so that Oi corresponds to a cuspform fi. If we consider the
usual irreducible Galois representation into GL2(Qp ⊗Zp Oi) attached to fi, and apply
Lemma 3.14, then we again obtain the required triple. �
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Conclusion of proof of Proposition 3.12: Each of the triples (Vi, Li, ρi) constructed in
the previous lemma corresponds to a homomorphism φi : R → O′

i. The product of all
these yields a homomorphism φ : R →

∏d
i=1O′

i. Since R is topologically generated by
the elements Trace(ρuniv(Frob`)) (` 6= p,N), we see that φ factors through T. The map
φ in turn corresponds to a triple (V, L, ρ) ∈ Def(T), satisfying the requirements of the
proposition. By construction, the diagram appearing in the statement of the proposition
commutes. �

Let T′ denote the image in T of the map constructed in Proposition 3.12. Our ultimate
goal is to prove that this map is an isomorphism, and so in particular that T′ = T. However,
we will proceed in stages.

Write J ′ = T′⋂ J , let (T′)0 denote the image of T′ in T0, and let (J ′)0 denote the
image of J ′ in (T′)0. We have the morphism of short exact sequences

0 // T′ //

��

Zp

⊕
(T′)0 (x,y) 7→x−y //

��

(T′)0/(J ′)0 //

��

0

0 // T // Zp

⊕
T0 (x,y) 7→x−y // T0/J0 // 0.

Applying the snake lemma we obtain the following exact sequence:

0 −→ ker((T′)0/(J ′)0 → T0/J0) −→ coker(T′ → T)
−→ coker((T′)0 → T0) −→ coker((T′)0/(J ′)0 → T0/J0) −→ 0.

We also have the following tautological exact sequence:

0 −→ ker((T′)0/(J ′)0 → T0/J0) −→ (T′)0/(J ′)0

−→ T0/J0 −→ coker((T′)0/(J ′)0 → T0/J0) −→ 0.

Thus we find that

#(T′)0/(J ′)0 −#(T0/J0) = # coker(T′ → T)−# coker((T′)0 → T0). (11)

Since T → T0 is surjective, we conclude that the right hand side of (11) is non-negative,
and thus that the order of (T′)0/(J ′)0 is at least equal to that of T0/J0. By Lemma 3.11,
the order of this latter group has order equal to the p-power part of the numerator of
(N − 1)/12. Thus the order of (T′)0/(J ′)0 is at least equal to this number.

Suppose now that N 6≡ −1 mod 2p. The p-power part of (N2 − 1)/24 is then equal
to the p-power part of the numerator of (N − 1)/12. Theorem 3.5 thus shows that the
numerical criterion of [17] (as strengthened in [6]) applies to prove that the surjection
R → T′ of the preceding proposition is an isomorphism of local complete intersections.
Furthermore, we conclude that in fact (T′)0/(J ′)0 has order exactly equal to the power of
p dividing the numerator of (N − 1)/12, that is, to the order of T0/J0. The equation (11)
then shows that T′ = T if and only if (T′)0 = T0.
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Lemma 3.16 The inclusion T′ → T is an isomorphism.

Proof. It follows from Corollary 3.4, together with the construction of the map R → T
of Proposition 3.12, that T′ contains T` for all ` 6= N, p. Proposition 2.10 shows that
ρuniv has a rank one space of Ip-coinvariants, on which Frobp then acts as multiplication
by a unit. It follows from the construction of R → T, and the known structure of Galois
representations attached to weight two modular forms, that the image of this unit in T is
equal to the Hecke operator Tp. Thus T′ contains Tp.

It remains to show that TN lies in T′. By the remark preceding the statement of the
lemma, it in fact suffices to show that TN lies in (T′)0. The surjection R→ (T′)0 induces an
object (V 0, L0, ρ0) ∈ Def((T′)0). The concrete construction of the map R→ T (and hence
the map R → T0) shows that this representation is built out of Galois representations
attached to weight two cuspforms on Γ0(N), which are (so to speak) genuinely semi-stable
atN . In particular, the line L0 is not only fixed by IN , but is stable under the decomposition
group at N . Standard properties of Galois representations attached to weight two cusp
forms show that the eigenvalue of FrobN on this line is furthermore equal to TN . Thus
TN ∈ (T′)0, and so we see that (T′)0 = T0, as required. �

The preceding lemma completes the proof of Theorem 1.5 in the case when N 6≡ −1
mod 2p. If, on the other hand, we have N ≡ −1 mod 2p, then Proposition 3.10 shows that
the Zariski tangent space of R is trivial. In this case, the map R→ Zp is an isomorphism.
Also, Lemma 3.11 then implies that T0 = 0, and hence that T = Zp. Thus the map R→ T
is certainly an isomorphism in this case, and we have completely proved Theorem 1.5 of
the introduction.

Let us make two remarks:

(A) An alternative approach to proving Proposition 3.12 is as follows. The results of [7],
Section II.16, show that if V 0 denotes the p-Eisenstein part of the p-adic Tate module of
J0(N), then V 0 is free of rank two over T0, and the GQ-action on V 0 yields a deformation
ρ0 of ρ over T0. The IN -invariants in this representation form a rank one free submodule L0

of this representation. The discussion of [7], Section II.11 shows that both the cuspidal and
Shimura subgroup map isomorphically onto the connected component group of the fibre
over N of the Néron model of J0(N), and this in turn implies that (V 0, L0, ρ0) provides an
object of Def(T0). Thus we obtain a corresponding map R → T0. Taking the product of
this with the map R→ R/I = Zp, we obtain the required map R→ T of Proposition 3.12.
Finally, the explicit description of T0 provided by [7], Cor. II.16.2 assures us that the map
R→ T is surjective.

We have chosen to present the alternative argument above both because it is more
elementary (the only ingredient required from [7], Ch. II, is the computation of the order
of T0/J0), and because we are then able to recover the results of [7], Sections II.16, II.17,
as we explain below.

(B) In the proof of Lemma 3.16, we have struggled slightly to prove that TN in fact
lies in T′. This is somewhat amusing, since actually TN = 1 in T! This follows from [7],
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Prop. II.17.10. When p is odd, the argument is straightforward: namely, since T 2
N = 1 for

general reasons (the Galois representations attached to modular forms of weight two on
Γ0(N) are semi-stable at N and Cartier self-dual), it suffices to note that TN ≡ 1 modulo
the maximal ideal of T. When p = 2, Mazur’s proof of this result depends on his detailed
analysis of the 2-Eisenstein torsion in J0(N). We present an alternative proof below, using
the deformation theoretic techniques of this paper.

We close this section by explaining how Theorem 1.5 allows us to recover the main
results of Section II of [7].

Corollary 3.17 The Zp-algebra T (and consequently also its quotient T0) is generated by
a single element over Zp. In particular, both T and T0 are local complete intersections,
and hence Gorenstein.

Proof. Theorem 1.5 shows that it suffices to verify the analogous statement for the
deformation ring R. Proposition 3.10 shows that if p denotes the maximal ideal of R, then
p/(p2, p) has dimension at most one over Fp, and the corollary follows. �

The fact that T0 is monogenic over Zp was originally proved by Mazur ([7], Cor. 16.2).
Since T is reduced, finite flat, and monogenic over Zp, and is equipped with a map T →
T/J ∼= Zp, we see that we may write T ∼= Zp[X]/Xf(X), where X generates the ideal J
in T, the monic polynomial f(X) ∈ Zp[X] satisfies f(X) ≡ Xgp mod p, and there is an
isomorphism T0 ∼= Zp[X]/f(X). (Here we follow [7] in letting gp denote the rank of T0

over Zp.) The image of X in Zp[X]/f(X) generates the ideal J0 in T0.
In [7], Prop. II.18.10, Mazur treats the questions of exhibiting explicit generators of

J0 (or equivalently, explicit choices for the element “X” of the preceding paragraph). We
recall his result here, and give a deformation-theoretic proof.

Proposition 3.18 Suppose that p divides the numerator of (N − 1)/12. Let ` be a prime
different from N . Say that ` is good (with respect to the pair (p,N)) if (i) one of ` or
p is odd, ` is not a pth power modulo N , and (` − 1)/2 6≡ 0 mod p (note that this last
expression makes sense, since either ` is odd, in which case (`− 1)/2 is an integer, or else
p is odd, in which case 1/2 is well-defined modulo p); or (ii) ` = p = 2 and −4 is not an
8th power modulo N . 2 Then T` − (1 + `) generates the ideal J0 if and only if ` is a good
prime.

2This definition originally appeared in [7], p. 124. However, condition (ii) is misstated there. In
particular, on page 139 Mazur writes that (for ` = 2 and ` = x2 mod N)(

`− 1
2

)
ϕ(`) = ϕ(x).

In reality this equality is only valid up to an element of H+/IH+ killed by 2 (recall there is a non-
canonical isomorphism H+/IH+ ' Z/nZ). This ambiguity can not be avoided by replacing x by −x,
since ϕ(−1) = 0. If 4|n, however, then this equality suffices to determine when ε+(2) generates the
2-primary subgroup of H+/IH+; thus our criterion agrees with Mazur’s when N ≡ 1 mod 16.
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Proof. Let R ∼= T → Fp[X]/X2 be a map that classifies a (unique up to scaling, by
Proposition 3.10) non-trivial element in the reduced Zariski tangent space of R. If ` is
distinct from p, then we must show that T` − (1 + `) = Trace(ρuniv(Frob`)) − (1 + `) has
non-zero image under this map if and only if ` is a good prime. If αp ∈ R ∼= T denotes
the scalar by which Frobp acts on the rank one quotient module of Ip-coinvariants of V univ,
then Tp = αp, and so we must also show that αp − (1 + p) has non-zero image under this
map if and only if p is a good prime. Both cases follow from Proposition 4.11 in the case
when p = 2, and from Proposition 5.5 in the case of odd p. �

As was remarked upon above, the next result (and the final result of this section) is
also originally due to Mazur.

Proposition 3.19 In T we have the equality TN = 1.

Proof. As we recalled above, this result is straightforward when p is odd. Thus we
assume that p = 2. The TN -eigenvalue of E∗

2 is equal to 1. Thus, in order to show that
TN = 1, it suffices to show that for each cuspform fi (i = 2, . . . , d – we are using the
notation introduced during the proof of Proposition 3.12), the image of TN in Oi is equal
to 1. If N 6≡ 1 mod 8, then there are no cuspforms to consider (by Proposition 3.10 and
Theorem 1.5, for example, or by Proposition II.9.7 of [7]), and hence there is nothing to
prove. Thus we assume for the remainder of the argument that N ≡ 1 mod 8.

Fix a cuspform fi, and let S denote the local ring

S = {(a, b) ∈ Z/4×Oi/2pi | a mod 2 = b mod pi}.

The objects (V min
2 , Lmin

2 , ρmin
2 ) ∈ Def(Z/4) and the object in Def(O′

i/2pi) obtained by
reducing modulo 2pi the object (Vi, Li, ρi) ∈ Def(O′

i) (the latter was constructed in the
course of proving Proposition 3.12) glue to yield an object (V, L, ρ) ∈ Def(S). Since N ≡ 1
mod 8, we see that GQN

acts trivially on V min
2 . Since (Vi, Li, ρi) is constructed from the

Galois representation attached to the cuspform fi, we see that GQN
stabilises Li, and FrobN

acts as multiplication by TN on Li. Thus the line L is stabilized by GQN
(in addition to

being fixed by IN), and FrobN acts as multiplication by the image of TN in S. If the image
of TN in Oi is equal to −1, then we see that the image of TN in S is equal to (1,−1).
Now (1,−1) 6≡ (1, 1) mod 2S. Thus the object (V/2, L/2, ρ/2) ∈ Def(S/2) obtained by
reducing (V, L, ρ) modulo 2 has the property that L is stable, but not trivial, under the
action of GQN

. On the other hand, Theorem 4.4, together with Lemma 4.2, shows that
there are no such elements of Def(S/2). This contradiction proves the proposition. �

4 Explicit deformation theory: p = 2

Let us begin by fixing an odd prime N , and recalling some class field theory of the field
K = Q(

√
(−1)(N+1)/2N). We let H denote the 2-power part of the strict class group

Cl(OK) of the ring of integers OK of K, and let E denote the corresponding cyclic 2-power
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extension of K, which is unramified at all finite primes. Genus theory shows that H is
cyclic, and non-trivial. Thus E is a non-trivial cyclic 2-power extension of K; its unique
quadratic subextension is equal to K(

√
−1). We let πK denote the unique prime of K lying

over 2; its image in H generates the two-torsion subgroup H[2] of H, if N 6≡ −1 mod 8.
The following result is classical, but we will recall a proof for the benefit of the reader.

Proposition 4.1 The order of H is divisible by four if and only if N ≡ 1 mod 8. The
order of H is divisible by eight if and only if furthermore −4 is an 8th power modulo N .

Proof. If N ≡ −1 mod 4, then K is a real quadratic field. If E+ denotes the 2-Hilbert
class field of K (so E+ is the maximal totally real subextension of E), then we see that E
is equal to the compositum of E+ and K(

√
−1). Since E is cyclic over K, we deduce that

E+ must in fact be trivial. Thus in this case H is of order two.
Suppose now that N ≡ 1 mod 4, and that E contains a degree four sub-extension.

Since E/K is cyclic, this sub-extension is unique, and hence Galois over Q. It must
contain Q(

√
−1), and one sees easily that it is in fact a biquadratic extension of Q(

√
−1),

unramified away fromN . Since it is Galois over Q, it must be of the form Q(
√
−1,

√
ν,
√
ν̄),

where ν is an element of Z[
√
−1] (and ν̄ is its conjugate) satisfying νν̄ = N.

However, for the extension Q(
√
−1,

√
ν,
√
ν̄)/Q(

√
−1) to actually be unramified at 2,

it must be that ν ≡ 1 mod 4. The element ν can be chosen in this manner if and only if
N ≡ 1 mod 8. Thus we see that E has a degree four subfield if and only if N satisfies this
congruence.

Finally, let us consider the question of whether the order of H is divisible by eight.
This is the case if and only if the two-torsion subgroup H[2] of H has trivial image in H/4;
equivalently, if and only if πK has trivial image in H/4. This holds, in turn, if and only if
πK splits completely in Q(

√
−1,

√
ν,
√
ν̄). Clearly, this is true if and only if the ideal (1+ i)

splits completely in this field, regarded as an extension of Q(
√
−1). This holds, in turn, if

and only if (1 + i) is a quadratic residue modulo ν (or equivalently module ν̄). Raising to
4th powers, and taking into account the isomorphism Z/N ∼= Z[

√
−1]/ν, we see that this

is equivalent to −4 being an 8th power modulo N . �

The following lemma is used in the proof of Proposition 3.19.

Lemma 4.2 The inertia group IN and the decomposition group GQN
have the same image

in Gal(E/Q).

Proof. There is a unique prime lying above N in K, and it is principal. Thus this prime
splits completely in the 2-Hilbert class field E of K, and so IN and GQN

both have trivial
image in Gal(E/K). Since N is ramified in K/Q, the lemma follows. �

Let H ′ denote the 2-power part of the strict ray class group of K of conductor π2
K , and

let H ′′ denote the 2-power part of the strict ray class group of K of conductor π3
K . (Here

“strict” means that in the case when K is real quadratic, we allow ramification at infinity.)
We let E ′ and E ′′ denote the corresponding abelian extensions of K.
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Proposition 4.3 (i) The natural surjection H ′′ → H ′ is an isomorphism.
(ii) If N ≡ −1 mod 4, the natural surjection H ′ → H is an isomorphism and E = E ′.

If N ≡ 1 mod 4, the kernel of this surjection has order two and E ′/E is a quadratic
extension that is ramified at two.

(iii) The group H ′ is cyclic.
(iv) Let D2(E

′/Q) denote the decomposition group of some prime of E ′ lying over 2,
and let I2(E

′/Q) denote the inertia subgroup of D2(E
′/Q). Then I2(E

′/Q) has index at
most two in D2(E

′/Q). If furthermore E ′/E is a quadratic extension, then D2(E
′/Q) is

dihedral of order 8.

Proof. The groups H ′ and H ′′ sit inside the following exact diagram:

O×
K

// (OK/π
3
K)× //

ψ

��

H ′′ //

��

H // 0

O×
K

// (OK/π
2
K)× // H ′ // H // 0.

To prove that the map H ′′ → H ′ is an isomorphism, it suffices to show that the kernel of
ψ maps to zero in H ′′; in other words, that the kernel of ψ consists of the images of global
units. Since π2

K = (2), we see that the kernel of ψ is equal to {±1}; this completes the
proof of (i).

The proof of (ii) is even more straightforward: it follows immediately from a consider-
ation of the units in OK and the exact sequence

O×
K → (OK/π

2
K)× = (OK/2)× → H ′ → H → 0.

We now turn to proving (iii). For this, it suffices to prove that H ′/2 ∼= Z/2. Note
that since the non-trivial element of Gal(K/Q) acts on H ′ via h 7→ h−1, we see that the
extension K ′ of K corresponding by class field theory to H ′/2 is abelian over Q. If H ′/2
were isomorphic to Z/2⊕ Z/2 (rather than Z/2), then since H is cyclic, this would imply
that there exists a subextension of K ′, quadratic over K and of conductor 2. Such an
extension would again be abelian over Q. Using the Kronecker-Weber theorem, it is easy
to check that there are no such quadratic extensions of K. Thus H ′ must be cyclic, as
claimed.

If N ≡ −1 mod 4 then E ′ = E = K(
√
−1) and (iv) is obvious. If E ′/E is a quadratic

extension, then N ≡ 1 mod 4 and the class of πK has order two in H. Thus the decom-
position group D2(E/K) at 2 in the Hilbert class field has order exactly 2. Since K/Q is
ramified at 2, we see that the decomposition group D2(E/Q) has order four, and that the
inertia subgroup I2(E/Q) has order two. If E ′ = E then this completes the proof of (iv).
If instead E ′/E is quadratic, then E ′/E is ramified at 2, implying that D2(E

′/Q) has order
8, and that I2(E

′/Q) has order 4. Since D2(E
′/K) ⊆ Gal(E ′/K) ∼= H ′ is cyclic, by (iii),

and since Gal(E ′/Q) is dihedral, it follows that D2(E
′/Q) is dihedral of order 8. �
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Let (V, L, ρ) be an object of Def(A) for some Artinian local F2-algebra, and let F
denote compositum of K with the fixed field of the kernel of ρ. The following result
greatly restricts the possibilities for F .

Theorem 4.4 The field F is contained in the strict 2-Hilbert class field E of K.

Proof. Since A is assumed to be of characteristic 2, the natural map Z×
2 → A× has trivial

image, and thus the image of ρ is contained in SL2(A). Since IN acts trivially on both L
and V/L, we deduce that inertia at N acts through an abelian group of exponent 2, and
thus through a cyclic group of order at most 2.

Lemma 4.5 The extension F/K is unramified at all finite primes outside πK. Moreover,
if Kab/K is the maximal abelian extension of K contained in F , then the finite part of the
conductor of Kab/K divides π3

K.

Proof. The Galois group Gal(F/Q) embeds into Gal(K/Q)× ρ(GQ). In particular, it is
of 2-power order, and so the image of an inertia group IN at N in Gal(F/Q) is cyclic of
two-power order. As observed above, ρ(IN) is a quotient of IN of order at most two. On
the other hand, since K/Q is a quadratic extension that is ramified at N , we see that IN
surjects onto the order two group Gal(K/Q). It follows that the image of IN in Gal(F/Q)
has trivial intersection with Gal(F/K), and so F/K is unramified at the prime above N .

By definition, ρ is unramified outside 2 and N , and so it remains to prove the result
about the conductor of Kab/K. Since the compositum of extensions of conductor dividing
π3
K has conductor at most π3

K , it suffices to prove the result for extensions K ′/K with cyclic
Galois group. Suppose such an extension K ′/K with Galois group Z/2kZ had conductor
divisible by π4

K . Then the conductor discriminant formula says that the discriminant ∆K′/K

is the product over all characters of Z/2kZ of the corresponding conductor:

∆K′/K =
∏
χ

fχ.

Since Z/2kZ has exactly 2k−1 faithful characters, restricting the product to this set we find
that the discriminant is divisible by at least (πK)4·2k−1

. Recall that the root discriminant
of a number field L/Q is defined to be the positive real number δL := |∆L/Q|1/[L:Q]. Let
∆L/Q,p be the largest power of p diving ∆L/Q. Define the p-root discriminant δL,p of L/Q
to be |∆L/Q,p|1/[L:Q]. The divisibility of discriminants proved above implies a lower bound
for the 2-root discriminant of K ′, and thus of F . Explicitly,

δF,2 ≥ δK′,2 = δK,2NK/Q(∆K′/K)1/[K′:Q] ≥ 2 · 2 = 4.

Yet the Fontaine bound ([3], Theorem 1) for finite flat group schemes over Z2 killed by 2

implies that δF,2 < 21+ 1
2−1 = 4. Thus the result follows by contradiction. �

We will strengthen this lemma step-by-step, until we eventually establish the theorem.
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Lemma 4.6 The extension F/K is cyclic, and is contained in the field E ′.

Proof. The preceding lemma, together with part (i) of Proposition 4.3, shows that the
extension of K cut out by any abelian quotient of Gal(F/K) is contained in E ′′ = E ′.
Part (iii) of the same proposition then implies that any such quotient is cyclic. Thus
Gal(F/K) is a 2-group with no non-cyclic abelian quotients, and so is itself cyclic. The
result follows. �

We now turn to a more careful study of the ramification at 2. Corollary 2.9 shows that
V/Q2 has a unique prolongation to a finite flat group scheme M/Z2 , that the action of A on
V prolongs to an action of A on M , and that the connected-étale sequence

0 →M0 →M →M ét → 0

induces a two-step filtration of V by free A-modules of rank one.

Lemma 4.7 The action of inertia at 2 on M0(Q2) and M ét(Q2) is trivial.

Proof. This is clear for M ét(Q2), since étale implies unramified. It follows for M0(Q2)
from the Cartier self-duality of M/Q2

. �

Lemma 4.8 If σ ∈ GQ2 then σ2 acts trivially on V .

Proof. Let us choose a basis of V compatible with its filtration arising from the connected-
étale sequence of M , and write the action of σ on V as a matrix over A in terms of this
basis:

σ =

(
1 + a b

0 1 + c

)
Part (iv) of Proposition 4.3 implies that σ2 lies in the inertia subgroup. Thus it must
fix M0(Q2) and M ét(Q2). Computing σ2, we find that (1 + a)2 = (1 + c)2 = 1, and so
a2 = c2 = 0. Since the determinant of σ is 1, we see that (1 + c) = (1 + a)−1 = 1 + a. Now
computing σ2 we find that it is trivial. �

Conclusion of proof of Theorem 4.4: If E ′ = E, then by Lemma 4.6 there is nothing
more to prove. Otherwise, Proposition 4.3 implies that the D2(E

′/Q) is dihedral of order
8. We have seen that for any σ ∈ GQ2 , the element σ2 acts trivially. Thus the image ρ|GQ2

factors through an exponent 2 group, which is therefore abelian. Yet the dihedral group
of order 8 is not abelian, and hence F is contained in a proper subfield of E ′ that is Galois
over Q. All such subfields lie inside E. �

Corollary 4.9 If 2m denotes the order of H, then there exists a surjection R→ F2[X]/Xn

if and only if n ≤ 2m−1. Furthermore, any such surjection is unique up to applying an
automorphism of F2[X]/Xn.
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Proof. Corollary 3.4 implies that there exists a surjection R → F2[X]/Xn if and only
if there exits (V, L, ρ) ∈ Def(F2[X]/Xn) with the property that the traces of ρ generate
F2[X]/Xn as an F2-algebra (or equivalently, with the property that there is an element of
GQ whose image under ρ has trace congruent to X mod X2.)

Lemma 4.10 Let A be an F2-algebra, and let U ∈ SL2(A).
(i) U2 = I + Trace(U)U.
(ii) For any k ≥ 1, we have that Trace(Uk) ∈ Trace(U)A.
(iii) If U ∈ SL2(A), then

U2k

=

(
k−1∑
i=0

Trace(U)2k−2k−i

)
I + Trace(U)2k−1U,

for any k ≥ 1.

Proof. Any 2 × 2 matrix U over the ring A satisfies the identity U2 = Det(U)I +
Trace(U)U. Part (i) is a particular case of this identity, and parts (ii) and (iii) follow by
induction. �

Theorem 4.4 shows that ρ factors as

GQ → Gal(E/Q) → SL2(F2[X]/Xn).

Now Gal(E/Q) is a dihedral group of order 2m+1; indeed, we may write

Gal(E/Q) = 〈σ, τ |σ2m

= τ 2 = (στ)2 = 1〉, (12)

where σ generates Gal(E/K), and τ generates the image of IN in Gal(E/Q).
Part (i) of Lemma 4.10 shows that any element of order two in the image of ρ has

vanishing trace. Since any element of Gal(E/Q) that is not of order two is a power of σ, we
conclude from part (ii) of the same lemma that all the traces of ρ lie in the ideal of F2[X]/Xn

generated by Trace(ρ(σ)). Since the trace of any element in the image of ρ is zero, we see
that this ideal is contained in the maximal ideal of F2[X]/Xn. Applying part (iii) of
Lemma 4.10, we deduce that Trace(σ)2m−1

= 0 (since σ2m
= 1, and so ρ(σ2m

) = I).
Thus, on the one hand, the only way that X can arise as a trace of ρ is if Trace(σ) ≡ X

mod X2. On the other hand, if this condition holds, then X2m−1
= 0, and hence n ≤ 2m−1.

This proves one direction of the “if and only if” statement of the corollary.
Let us now prove the uniqueness assertion, assuming that we are given a surjective map

R→ F2[X]/Xn. Since the corresponding triple (V, L, ρ) deforms (V , L, ρ), and since σ has
non-trivial image in Gal(Q(

√
−1)/Q), while τ generates the image of IN in Gal(E/Q), we

may choose a basis of V such that σ and τ act through matrices in SL2(F2[X]/Xn) of the
form

ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
≡
(

1 1
0 1

)
mod X , ρ(τ) =

(
a(τ) 0
c(τ) d(τ)

)
≡
(

1 0
0 1

)
mod X.
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Now conjugating by matrices in ker(GL2(F2[X]/Xn) → GL2(F2)) of the form(
α 0
γ δ

)
,

it is easy to show that we may change our basis so that

ρ(σ) =

(
1 + uX 1
uX 1

)
, ρ(τ) =

(
1 0
uX 1

)
,

for some u ∈ (F2[X]/Xn)×. Thus, after applying the inverse of the automorphism of
F2[X]/Xn induced by the map X 7→ uX, we see that we may put ρ in the form

ρ(σ) =

(
1 +X 1
X 1

)
, ρ(τ) =

(
1 0
X 1

)
. (13)

This proves the uniqueness statement.
Finally, one checks that the preceding formula gives a well-defined homomorphism

ρ : Gal(E/Q) → SL2(F2[X]/Xn), so long as n ≤ 2m−1, and that it deforms ρ. It is certainly
finite flat at 2, since the inertia group at two acts through its image in Gal(Q(

√
−1)/Q).

Thus, if we let L denote the line spanned by the vector (0, 1), then we obtain an object of
Def(F2[X]/Xn) of the required sort (since Trace(ρ(σ)) = X). This completes the proof of
the corollary. �

Let us consider the particular case n = 2 of the preceding corollary.

Proposition 4.11 If N 6≡ 1 mod 8, then Def(F2[X]/X2) = 0. If N ≡ 1 mod 8, then
Def(F2[X]/X2) is one dimensional over F2. Furthermore, if (V, L, ρ) corresponds to the
non-trivial element, then we have the following formulas for the traces of ρ:

(i) If ` is an odd prime distinct from N , then

Trace(ρ(Frob`)) =

{
0 if ` ≡ 1 mod 4 or ` is a square mod N

X otherwise
.

(ii) If α2 denotes the eigenvalue of Frob2 on the rank one F2[X]/X2-module of I2-
coinvariants of V , then

α2 =

{
1 if − 4 is an 8th power mod N

1 +X if not
.

Proof. If N 6≡ 1 mod 8 then Proposition 4.1 shows that H has order two, and Corol-
lary 4.9 shows that any map R → F2[X]/X2 factors through the map R → F2. Thus in
this case Def(F2[X]/X2) = 0, as claimed.
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If N ≡ 1 mod 8, then conversely we conclude from Proposition 4.1 that H has order
divisible by 4. Corollary 4.9 then shows that there is a unique surjection R→ F2[X]/X2,
and thus that Def(F2[X]/X2) is one dimensional over F2. If F denotes the subextension
of E over K cut out by this non-trivial deformation, then F is a dihedral extension of Q
of degree 8, unramified over K, containing K(

√
−1). (Concretely, as we saw in the proof

of Proposition 4.1, the field F has the form Q(
√
−1,

√
ν,
√
ν̄), for appropriate ν, ν̄.)

Recall the presentation (12) of Gal(E/Q). If we let σ̄ and τ̄ denote the image of σ
and τ under the surjection Gal(E/Q) → Gal(F/Q), then Gal(F/Q) has the following
presentation:

Gal(F/Q) = 〈σ̄, τ̄ |σ̄4 = τ̄ 2 = (σ̄τ̄)2 = 1〉.

Recall from the proof of Corollary 4.9 that the only elements of Gal(F/Q) whose images
under ρ have non-zero trace (which is then equal to X) are σ̄±1; that is, the elements of
Gal(F/Q) that are of order 4.

If ` is an odd prime distinct from N , then ` is unramified in F . The final remark of
the preceding paragraph shows that

Trace(ρ(Frob`)) =

{
0 if Frob` has order 1 or 2

X if Frob` has order 4
.

Now K is the maximal subfield of F fixed by σ̄, while one checks that any element of
Gal(F/Q) of order two fixes at least one of the subfields Q(

√
−1) or Q(

√
N) of F . Thus

we see that ρ(Frob`) has trace zero (as opposed to trace X) if and only if ` splits in at
least one of the fields Q(

√
−1) or Q(

√
N). This establishes (i).

Again referring to the presentation (12) of Gal(E/Q), one easily checks thatD2(E/Q) is
generated by στ and σ2m−1

, with I2(E/Q) being generated by στ . (Recall that 2m denotes
the order of H.) Thus D2(F/Q) is generated by σ̄τ̄ and σ̄2m−1

. Thus if m ≥ 3, then we see
that D2(F/Q) = I2(F/Q), while if m = 2, then D2(F/Q)/I2(F/Q) is generated by the
image of σ̄2.

In terms of the explicit model (13) for ρ, we see that the coinvariants of I2(F/Q) = 〈σ̄τ̄〉
on V are spanned by the image of the basis vector (0, 1), and that σ̄2 (which is central in
Gal(F/Q), and so does act on the space of coinvariants) acts on the image of this vector as
multiplication by 1 +X. Combining this computation with the discussion of the previous
paragraph proves part (ii), once we recall from Proposition 4.1 that m ≥ 3 if and only if
−4 is an 8th power modulo N . �

The quotient R/2 is the universal deformation ring classifying deformations of (V , L, ρ)
in characteristic 2. The preceding two results together imply that R/2 ∼= F2[X]/X2m−1

,
where 2m is the order of H; formula (13) then gives an explicit model for the universal
deformation over R/2.

We close this section by observing that Theorem 1.1 follows from Corollaries 1.6 and 4.9
taken together. More generally, we see that g2 = 2m−1 − 1.
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5 Explicit deformation theory: p odd

In this section we suppose that p ≥ 3, and that N is prime to p. We begin by considering
the problem of analyzing deformations (V, L, ρ) ∈ Def(A), where A is an Artinian local
Fp-algebra with residue field Fp. Our results will be less definitive than those obtained in
the case of p = 2.

Let ∆ denote the following subgroup of GL2(Fp) ⊂ GL2(A):

∆ =

{(
α 0
0 1

)
| α ∈ F×

p

}
,

and let G′ denote the kernel of the map SL2(A) → SL2(Fp) induced by reduction modulo p

(the maximal ideal of A); note that G′ is a normal subgroup of GL2(A). If we let G denote
the subgroup of GL2(A) generated by G′ and ∆, then G is isomorphic to the semi-direct
product G′ × ∆, where ∆ acts on G′ via conjugation. Explicitly, one computes that(

α 0
0 1

)(
a b
c d

)(
α−1 0
0 1

)
=

(
a αb

α−1c d

)
. (14)

Lemma 5.1 Let (V, L, ρ) be an object of Def(A), and let M denotes the finite flat group
scheme over Zp whose generic fibre equals V . If 0 → M0 → M → M ét → 0 denotes the
connected-étale exact sequence of M , then there is a basis for V over A such that

(i) The representation ρ : GQ → GL2(A) has image lying in G.

(ii) The submodule M0(Qp) of V (which is free of rank one, by Corollary 2.9) is spanned
by the vector (1, 0).

(iii) The line L is spanned by the vector (1, 1).

Proof. By definition of the deformation problem Def, the determinant of ρ is equal to
χp. Thus im(ρ) sits in the exact sequence of groups

0 → G′ → im(ρ) → F×
p → 0.

The order of F×
p is coprime to the order of G′, and so this exact sequence splits. If we

fix a splitting s, then one easily sees that we may choose an eigenbasis for the action of
s(F×

p ) so that this group acts via the matrices in ∆. Thus condition (i) is satisfied for this
basis. Condition (ii) follow directly from condition (i). The stipulations of the deformation
problem Def then imply that L is spanned by a vector of the form (1, u), for some unit
u ∈ A×. Rescaling the second basis vector by u, we may assume that L is in fact spanned
by (1, 1). �

From now on, we fix an object (V, L, ρ) ∈ Def(A), and choose a basis of V as in the
preceding lemma. Thus we may regard ρ as a homomorphism GQ → G ⊂ GL2(A).
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Lemma 5.2 If (V, L, ρ) is a non-trivial deformation, then the image of IN under ρ is a

cyclic subgroup of G′ of order p. Furthermore, if

(
a b
c d

)
is a generator of this cyclic group,

then neither b nor c vanishes, and neither a nor d equals 1.

Proof. Since the image under ρ of inertia at N acts trivially on each of the lines L
and V/L (the determinant of ρ equals χp, which is trivial on IN), we see that IN acts via
an abelian group of exponent p. Since tame inertia is pro-cyclic, inertia at N must act
through a group of order dividing p. If IN has trivial image, then Proposition 3.2 shows
that V = A ⊗Fp V , and thus that (V, L, ρ) is the trivial deformation, contradicting our
assumption. Thus IN has image of order p.

The line L is spanned by the vector (1, 1). Thus if γ =

(
a b
c d

)
is a generator of the

image of IN , it fixes such a vector. Since the determinant of ρ equals χp, we see that
det(γ) = 1. If a (respectively d) equals 1 then we conclude that b (respectively c) equals
0. If either b or c vanishes, one easily checks that γ must be the identity, contradicting the
fact that IN has non-trivial image. �

If F denotes the extension of Q cut out by the kernel of ρ, then F contains Q(ζp)
(where ζp denotes a primitive pth root of unity), since det(ρ) = χp. We let F ab denote the
maximal subextension of F abelian over Q(ζp).

Lemma 5.3 The p-part of the conductor of F ab/Q(ζp) divides π2, where π = (1−ζp)Z[ζp],
and the extension F/Q(ζp) has inertial degree dividing p at N and is unramified outside N
and π.

Proof. Lemma 5.2 shows that the image under ρ of inertia at N is a cyclic group of order
dividing p. Therefore it suffices to prove the conductor bound at π.

The image under ρ of GQ(ζp) lies in G′, a p-group, and so we see that Gal(F ab/Q(ζp)) is
an abelian p-group. Thus it is a compositum of cyclic extensions of p-power degree. The
conductor of a compositum of cyclic extensions is equal to the g.c.d. of the conductors of
the individual cyclic extensions, and thus it suffices to bound the conductor of a cyclic
subextension of F ab of degree pk, for some k ≥ 1.

Let F ′ be such a subextension, and suppose that the conductor of F ′ is divisible by π3.
There are (p − 1)pk−1 faithful characters of Z/pk, and so by the conductor discriminant
formula, the discriminant ∆F ′/Q(ζp) is divisible by π3(p−1)pk−1

. Thus the p-root discriminant
of F ′ (as defined in the proof of Lemma 4.5) satisfies

δF ′,p ≥ δQ(ζp)NQ(ζp)/Q(π3(p−1)pk−1

)1/[F ′:Q] = p(p−2)/(p−1) · p3(p−1)/(p(p−1))

and thus

vp(δF ′,p) ≥ 1 +
1

p− 1
+

p− 3

p(p− 1)
.

This violates Fontaine’s bound [3] when p ≥ 3. The result follows for F ab. �

36



In order to apply this result, we will need to classify the relevant class fields of Q(ζp)
that can arise in the situation of the preceding lemma.

Proposition 5.4 Let p be an odd prime, and let N be a prime distinct from p. For any
value of i, let K(i) denote the maximal abelian extension of Q(ζp) satisfying the following
conditions: K(i) has conductor dividing π2N ; the Galois group Gal(K(i)/Qp(ζp)) has expo-
nent p; the Galois group Gal(Qp(ζp)/Q) acts on Gal(K(i)/Qp(ζp)) through the ith power of
the mod p cyclotomic character χp. Then:

(i) K(1) = Q(ζp, N
1/p);

(ii) K(0) =

{
the degree p subextension of Qp(ζp, ζN)/Qp(ζp) if N ≡ 1 mod p

Q(ζp) otherwise
;

(iii) K(−1) =

{
a degree p extension of Qp(ζp) if N2 ≡ 1 mod p

Q(ζp) otherwise
.

Proof. Let E(i) denote the unramified extension of Q(ζp) of exponent p correspond-
ing to the maximal elementary p-abelian quotient of the class group of Q(ζp) on which
Gal(Q(ζp)/Q) acts through χip. Then we have the short exact sequence of abelian Galois
groups

0 → Gal(K(i)/E(i)) → Gal(K(i)/Q(ζp)) → Gal(E(i)/Q(ζp)) → 0.

Global class field theory allows us to compute the group Gal(Ki/E(i)). Indeed, it sits in
the exact sequence

(Z[ζp])
× −→

((
Z[ζp]/π

2 × Z[ζp]/N
)×
/{p}

)
(i)
−→ Gal(K(i)/E(i)) −→ 0;

here the subscript (i) denotes the maximal quotient on which Gal(Q(ζp)/Q) acts via χip,
and G/{m} denotes G/Gm.

Since the reduction mod π2 of the global unit ζp = 1 + (ζp − 1) generates the p-power
part of (Z[ζp]/π

2)×, we may eliminate this factor from the second term of the preceding
exact sequence. If we fix a prime n over N in Z[ζp], then as in the proof of Lemma 3.9, we
obtain a surjection

(Z[ζp]/n)×/{(p,N1−i − 1)} → Gal(K(i)/E(i)).

Consequently, we find that Gal(K(i)/E(i)) is either trivial (when N (1−i) 6≡ 1 mod p) or of
order p (when N (1−i) ≡ 1 mod p).

Let us now consider the particular cases i = 1, 0,−1. The 1, 0 and −1 eigenspaces
inside the class group of Q(ζp) are trivial by Kummer theory, abelian class field theory and
Herbrand’s theorem respectively. Thus for these values of i, we have Ei = Q(ζp), and so the
preceding paragraph yields a computation of Gal(K(i)/Q(ζp)). The explicit descriptions of
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K(i) in the case when i = 1 or 0 are easily verified, and so we leave this verification to the
reader. �

We are now in a position to determine the reduced Zariski tangent space to the de-
formation functor Def. We will also record some useful information regarding non-trivial
elements of this tangent space (assuming that they exist).

Proposition 5.5 If p does not divide the numerator of (N−1)/12, then Def(Fp[X]/X2) =
0; otherwise, Def(Fp[X]/X2) is one dimensional over Fp. Suppose for the remainder of the
statement of the proposition that we are in the second case, and let (V, L, ρ) correspond to
a non-trivial element of Def(Fp[X]/X2).

(i) If as above F denotes the extension of Q cut out by the kernel of ρ, then F is equal
to the compositum K(1)K(0)K(−1) (where the class fields K(i) of Q(ζp) are defined as in the
statement of the previous proposition).

(ii) If p = 3, then Gal(F/Q(ζp)) ∼= Gal(K1/Q(ζp))×Gal(K0/Q(ζp)), and the image of
an appropriately chosen generator of the first (respectively second) factor under ρ has the

form

(
1 −rX
rX 1

)
(respectively

(
1 + rX 0

0 1− rX

)
) for some r ∈ F×

p .

(iii) If p ≥ 5, then Gal(F/Q(ζp)) ∼= Gal(K1/Q(ζp))×Gal(K0/Q(ζp))×Gal(K1/Q(ζp)),
and the image of an appropriately chosen generator of the first (respectively second, re-

spectively third) factor under ρ has the form

(
1 −rX
0 1

)
(respectively

(
1 + rX 0

0 1− rX

)
,

respectively

(
1 0
rX 1

)
) for some r ∈ F×

p .

(iv) We have the following formulas for the traces of ρ:

(iv.i) If ` is a prime distinct from N and p, then

Trace(ρ(Frob`)) =

{
1 + ` if ` ≡ 1 mod p or ` is a pth power mod N

1 + `+ uX otherwise
;

here u denotes an element of F×
p .

(iv.ii) If αp denotes the eigenvalue of Frobp on the rank one Fp[X]/X2-module of Ip-
coinvariants of V , then

αp =

{
1 if p is a pth power mod N

1 + uX if not
;

again, u denotes an element of F×
p .

Proof. Let (V, L, ρ) be a non-trivial element of Def(Fp[X]/X2), cutting out the extension
F of Q. As above, we choose the basis of V so that the conditions of Lemma 5.1 are
satisfied. Since G′ is abelian, we see that F = F ab. Equation 14, together with Lemma 5.3,
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thus shows that F is contained in the compositum K(1)K(0)K(−1). Lemma 5.2 then shows
that in fact F must be equal to this compositum, proving part (i) of the proposition; that
furthermore, each of the extensions K(1), K(0) and K(−1) of Q(ζp) must be non-trivial, and
thus that N ≡ 1 mod p, by proposition 5.4; and that either part (ii) or part (iii) of the
proposition is satisfied, depending on whether p = 3 or p ≥ 5. (We choose the generator of
each group Gal(K(i)/Q(ζp)) to be the image of some fixed generator of the inertia group
IN .)

Suppose conversely that N ≡ 1 mod p, so that each of K(1), K(0) and K(−1) is a non-
trivial extension of Q(ζp). Write F = K(1)K(0)K(−1). If we fix an element r ∈ F×

p , then we
may use the formulas of parts (ii) and (iii) to define a representation ρ : Gal(F/Q) → G ⊂
GL2(Fp[X]/X2). If we let L denote the line spanned by (1, 1), then this representation
will deform the representation (V, L). Thus it will provide an element of Def(Fp[X]/X2)
provided that it is finite at p. An argument as in the proof of Lemmas 3.8 and 3.9 shows
that this is automatically the case when p ≥ 5, and holds provided p divides (N − 1)/12,
when p = 3. This establishes the initial claim of the proposition.

It remains to prove part (iv) of the proposition. Suppose first that ` is a prime distinct
from p and N . We may write

ρ(Frob`) =

(
` 0
0 1

)(
1 + aX bX
cX 1− aX

)
,

for some elements a, b, c ∈ Fp. Thus Trace(ρ(Frob`)) = 1 + `+ (`− 1)aX. This is distinct
from 1+` if and only if ` 6≡ 1 mod p and a 6= 0. The latter occurs if and only if the primes
over ` are not split in the extension K(0)/Q(ζp), which in turn is the case if and only if `
is not a pth power mod N . (Here we have taken into account the explicit description of
K(0) provided by Proposition 5.4.) Thus we proved part (iv.i).

Since the vector (1, 0) spans the subspace M0(Qp) of V , the space of Ip-inertial coin-
variants is spanned by the image of the vector (0, 1). The Frobenius element Frobp acts
non-trivially on the image of this vector if and only if the prime over p is not split in the
extension K(0) of Q(ζp), which is the case if and only if p is not a pth power mod N . This
proves part (iv.ii). �

As we will see below, for p ≥ 3, the rank gp + 1 of T/p over Fp is no longer explained
by an abelian extension of number fields (and hence by a single class group), as it is in the
case p = 2, but by certain more complicated solvable extensions. However, the question
of whether or not gp = 1 is somewhat tractable. Indeed, from Corollary 1.6 we deduce the
following criterion.

Lemma 5.6 The rank gp of the parabolic Hecke algebra T0/p over Fp is greater than one
(equivalently, T0 6= Zp) if and only if there exists a (V, L, ρ) in Def(Fp[X]/X3) whose
traces generate Fp[X]/X3.

In order to apply this lemma, we now assume that A = Fp[X]/X3, so that (V, L, ρ)
lies in Def(Fp[X]/X3). As always, we assume that the basis of V is chosen so as to satisfy
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the conditions of Lemma 5.1. We let ρn denote the composition of ρ with the natural
surjection GL2(Fp[X]/X3) → GL2(Fp[X]/Xn), for n ≤ 3. Requiring the traces of ρ to
generate Fp[X]/X3 is equivalent to requiring the traces of ρ2 to generate Fp[X]/X2, which
in turn is equivalent is to requiring that ρ2 be a non-trivial deformation. We assume this
to be the case. Also, we let Fn denote the extension cut out by the kernel of ρn. Thus
F1 = Q(ζp), and F3 = F .

Since we are assuming that ρ2 is non-trivial, Proposition 5.5 shows that p divides the
numerator of (N − 1)/12, and that F2 is equal to the compositum of the class fields K(i)

(for i = 1, 0,−1).

Lemma 5.7 (i) We have F2 = F ab, and Gal(F2/F1) ∼= (Z/p)2 (respectively (Z/p)3) if
p = 3 (respectively p ≥ 5).

(ii) F/F2 is unramified at N .

Proof. Since p ≥ 3, we see that G′ has exponent p. Lemma 5.3 and equation (14)
then imply that F ab ⊂ K(1)K(0)K(−1) = F2. Certainly F2 ⊂ F ab, and so we have the
equality stated in (i). The claims regarding Gal(F2/F1) follow from parts (ii) and (iii) of
Proposition 5.5.

Part (ii) follows from the Lemma 5.2 and the fact that F2/F1 is ramified at N . �

We now separate our analysis into two cases: p = 3, and p ≥ 5.

5.1 p = 3

Throughout this subsection we set p = 3.

Lemma 5.8 The extension F/F2 is unramified everywhere and has degree exactly three.

Proof. The image of ρ|GQ(
√
−3)

is a subgroup of G′ = ker(GL2(F3[X]/X3) → GL2(F3))

whose image in GL2(F3[X]/X2) is isomorphic to (Z/3)2, by Lemma 5.7. Thus the com-
mutator subgroup of the image of ρ|GQ(

√
−3)

is either trivial or cyclic of order three. Thus

the extension F/F2 has degree at most three.
Consider the representation ρ2, which factors through Gal(F2/Q). By assumption

this yields a non-trivial element of Def(F3[X]/X2). Part (ii) of Lemma 5.5 thus shows
that the image under ρ2 of the element of order three coming from the χ1

p extension

K(1) = Q(
√
−3, 3

√
N) of Q(

√
−3) must be of the form(

1 −rX
rX 1

)
,

and that the image under ρ2 of the element of order three coming from the χ0
p extension

K(0) of Q(
√
−3) is of the form (

1 + rX 0
0 1− rX

)
,
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for some r ∈ F×
3 . Lifting these two elements (in any way) to GL2(F3[X]/X3) and taking

their commutator, we produce a new element in Gal(F/Q) which has a lower left-hand
entry equal to r2X2 = X2. This element cannot be in the decomposition group at 3
because it doesn’t preserve M0(Q3), which is generated by (1, 0). Thus F/F2 has order
exactly three and is unramified at all primes above three. Part (ii) of Lemma 5.7 shows
that the extension F/F2 is also unramified at all primes above N , and the lemma is proved.
�

Let K = Q( 3
√
N), and as above write K(1) = Kgal = K(

√
−3). The extension F/K(1)

has degree 9, and Gal(F/K(1)) = (Z/3Z)2. Moreover, F/K(1) is unramified everywhere.
The following lemma shows that the existence of such an extension F is sufficient for the
construction of a deformation ρ of the type considered here. This completes the proof of
part one of each of Theorems 1.2 and 1.3.

Lemma 5.9 If N ≡ 1 mod 9, then the class group of K(1) = Q(
√
−3, 3

√
N) has 3-rank

greater than or equal (equivalently, equal) to two if and only if there exists a surjection
R → F3[X]/X3; the kernel of the corresponding deformation ρ : GQ → GL2(Fp[X]/X3)
then cuts out the (3, 3) unramified class field F of K(1).

Proof. The preceding discussion establishes the “if” claim, and so it suffices to prove the
“only if” claim. Genus theory and a consideration of the ambiguous class predicts that the
3-rank of the class group of K(1) is either one or two, and hence by assumption this rank
is exactly two (see for example [4]). We let F denote the corresponding unramified (3, 3)-
extension of K(1), and (as above) let F ab denote the unique subextension of F abelian over
Q(
√
−3). It is easily checked that F ab is in fact the maximal abelian 3-power extension of

Q(
√
−3) that is unramified over K(1), and that F ab = K(1)K(0).

Proposition 5.5 yields a Galois representation Gal(F ab/Q) → GL2(F3[X]/X2), while
lemma 5.10 below shows that Gal(F/Q(

√
−3)) is the unique non-abelian group of order

27 and of exponent three. It is then easy to see that one can lift the representation of
Gal(F ab/Q) to a representation ρ : Gal(F/Q) → GL2(F3[X]/X3). Furthermore one checks
that for any such lift, the image of IN fixes an appropriate line.

To show that we have constructed an element of Def(F3[X]/X3), as required, it remains
to show that this representation extends to a finite flat group scheme at 3, For this, it suf-
fices to work over the maximal unramified extension of Q3. Since F/Q(

√
−3) is unramified

at 3 (because N ≡ 1 mod 9), the representation ρ|Qur
3

factors through a group of order
two, and explicitly prolongs to a product of trivial and multiplicative group schemes. Thus
ρ is indeed finite at the prime 3. �

Lemma 5.10 The Galois group Gal(F/Q(
√
−3)) is the (unique up to isomorphism) non-

abelian group of order 27 and of exponent three.

Proof. Let Γ = Gal(K(1)/Q(
√
−3)) = 〈γ〉. The 3-class group H of K(1) is naturally a

Z3[Γ]-module. From class field theory we have that H/(γ−1)H is isomorphic to the Galois
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group overK(1) of the maximal abelian 3-extension of Q(
√
−3) that is unramified overK(1);

that is, to Gal(F ab/K(1)), a cyclic group of order 3. Thus by Nakayama’s lemma H is a
cyclic Z3[Γ]-module. By class field theory, the quotient H/3 is isomorphic to Gal(F/K(1)).

Note that Gal(F/Q(
√
−3)) sits in the exact sequence:

0 → Gal(F/K(1)) −→ Gal(F/Q(
√
−3)) −→ Gal(K(1)/Q(

√
−3)) −→ 0,

which is an extension of Γ ∼= Z/3Z by H/3 ∼= (Z/3Z)2. The action via conjugation of Γ
on H/3 is non-trivial, since otherwise H could not be cyclic as a Γ-module. Already this
shows that Gal(F/Q(

√
−3)) is one of the two non-abelian groups of order 27. To pin down

the group precisely, we must show that it has exponent three. For this, it suffices to find
a splitting of the above exact sequence (a section from Γ = Gal(K(1)/Q(

√
−3)) back to

Gal(F/Q(
√
−3))). Since the inertia group above N in Gal(F/Q(

√
−3)) has order exactly

three, and maps isomorphically to Γ, the required splitting exists. �

The final result of this section provides a relation between the rank of the 3-class group
of K(1) and the power of 3 dividing the class number of K.

Lemma 5.11 The 3-class group of K(1) = Q(
√
−3, 3

√
N) has three rank two if the 3-class

group of K = Q( 3
√
N) (which is cyclic) is divisible by nine.

Proof. One has a class number relation between K and K(1) given by hK(1)
= h2

K/3 · q,
where q is the index of the units in K(1) coming from K, Kγ, and Q(

√
−3) inside the

full unit group. This was initially proven using analytic means by Scholz [15] (for a more
recent algebraic proof, see [5]). Here, as above, γ denotes a generator of the cyclic group
Γ = Gal(K(1)/Q(

√
−3)). If 9|hK , then 27|hK(1)

. Recall from the proof of the previous
lemma that the 3-part H of the class group of K(1) is a cyclic Z3[Γ]-module, and satisfies
the condition that H/(γ − 1)H is cyclic of order 3.

Now Z3[Γ] admits no quotients H ′ that are cyclic groups of order 27 with the property
that H ′/(γ−1)H ′ is of order 3. It follows that if H is of order divisible by 27, then it must
be non-cyclic, as claimed. �

We conjecture that the converse to the preceding lemma is also true. To prove this, it
would suffice to show that whenever 3‖hK , the unit index q is always equal to one. We
have verified this for all primes less than 50,000 for which 3‖hK .

5.2 p ≥ 5

Throughout this section we assume that p ≥ 5, and that we are given a deformation
to Fp[X]/X3 as in the discussion following Lemma 5.6. Proposition 5.5 and Lemma 5.7
together show that F2 = K(1)K(0)K(−1), that Gal(F2/F1) = (Z/p)3, and that F2 = F ab.
We see that F2/F1 is unramified at p if and only if N ≡ 1 mod p2.
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It follows from our determination of F2 that Gal(F/F1) is the full kernel of the map
from SL2(Fp[x]/x

3) to SL2(Fp), since all the elements of

Ker(SL2(Fp[x]/x
3) → SL2(Fp[x]/x

2))

are generated by commutators of lifts of elements of Ker(SL2(Fp[x]/x
2) → SL2(Fp)).

Lemma 5.12 If E is a degree p Galois extension of F2 inside F3 on which the matrix(
1 + x2 0

0 1− x2

)
acts non-trivially, then E/F2 is everywhere unramified.

Proof. Part (ii) of Lemma 5.7 shows that this extension is unramified at primes above
N . To see that it is unramified at primes above p, it suffices to note that the matrix(

1 + x2 0
0 1− x2

)
does not fix the vector (1, 0) (which spans M0(Qp)). �

Let K = Q(N1/p) and L = Kgal = K(ζp) = K(1).

Lemma 5.13 The Hilbert class field of K has p-rank at least two.

Proof. Let us first consider the extension Gal(F/K). One sees that Gal(F/K)ab ∼=
(Z/pZ)2 × (Z/p)× is explicitly generated by the images of(

1 + xk 0
0 (1 + xk)−1

)
,

for k = 1, 2, together with the image of ∆. We let H be the (p, p)-extension of K contained
in F that is fixed by ∆. We will show that H is unramified over K.

We may write H as a compositum H = H1H2, where for each of k = 1, 2, we let

Hk denote a p-extension of K contained in F , on which the matrix

(
1 + xk 0

0 (1 + xk)−1

)
acts non-trivially. If we let ζ+

N denote an element of Q(ζN) that generates the degree p
subextension over Q (so that K(0) = Q(ζp, ζ

+
N)), then we may take H1 to be K(ζ+

N), which
is clearly unramified everywhere over K (it is the genus field). We will show that H2 is is
also unramified everywhere over K. Lemma 5.2 takes care of the primes above N , and so
it remains to treat the primes above p.

We begin by proving thatH2(ζp)/L is unramified. Lemma 5.12 shows that the extension
H2 ·F2/F2 is unramified. Since F2/L is unramified, it follows that H2(ζp)/L is unramified,
as claimed. We now use the fact that H2(ζp)/L is unramified to show that H2/K is
unramified. We consider two cases. Suppose first that p‖N −1. Then K is totally ramified
at p, and thus if H2/K is ramified we deduce that since H2 is Galois over K, ep(H2) = p2,
contradicting the fact that H2(ζp)/L is unramified. If instead N ≡ 1 mod p2, then things
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are even easier: If H2/K is ramified at at least one prime p above p, then again using
the fact that H2/K is Galois we deduce that p|ep(H2). Yet p is tamely ramified in L and
therefore also in H2(ζp). Thus H2/K is unramified everywhere, and K has p-rank at least
two. �

This completes the proof of parts two of Theorem 1.2 and Theorem 1.3. We expect
(based on the numerical evidence) that the condition that the class group of K has p-rank
two is equivalent to the existence of an appropriate group scheme, and thus to gp > 1.
Part of this could perhaps be proved by more sophisticated versions of Lemmas 5.9, 5.10,
and 5.11.

6 Examples

The first example in Mazur’s table [7] where e2 > 1 occurs when N = 41. The class group
of Q(

√
−41) is Z/8Z. Thus one has e2 = 3. Using gp one finds that that the class group

of Q(
√
−21929) is Z/256Z. Indepedendly, using William Stein’s programmes, one finds

that e2 = 127 for N = 21929. In Mazur’s table, e3 always equals 1 or 2. One has to go
quite some distance before finding an example where e3 > 2. For N = 2143, however,
one has e3 = 3. This is related to the fact that 2143 is the smallest prime congruent to 1
mod 9 such that the class group of the corresponding extension K(0) of Q(

√
−3) (in the

terminology of Proposition 5.4) has an element of order 9. The corresponding class field
contributes to the maximal unramified solvable extension of K = Q( 3

√
2143). Finally, let us

note that when p = 3, Lemmas 5.9 and 5.11 show that the value of gp is related to the size
of the 3-power part of the class group of Q( 3

√
N), whereas for p ≥ 5, Lemma 5.13 shows

that this value is related to the p-rank of the class group of Q( p
√
N). As an illustration,

when N = 4261, one computes that the class group of Q( 5
√

4261) is Z/25Z. However, since
the 5-rank of Z/25Z is one, it follows that e5 = 1.
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