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An introduction to the Riemann-Hilbert

Correspondence for Unit F -Crystals.

Matthew Emerton and Mark Kisin

In memory of Bernie Dwork

Introduction

Let X be a smooth scheme over C, and (M,∇) an integrable differential equation
on X. That is, M is a locally free OX -module of finite rank, equipped with an
integrable connection ∇ : M → M⊗OX

Ω1
X . The sheaf of local solutions of this

differential equation forms a local system L of C-vector spaces on X. One can
recover (M,∇) as L ⊗C OX .

The Riemann-Hilbert correspondence extends the correspondence (M,∇) ↔ L
to the situation where the differential equation (M,∇) may have singular points.
The desirability of such an extension may be seen in geometry. If f : Y −→ X is a
smooth proper map of smooth C-schemes, then for any non-negative integer i, the
relative De Rham cohomology Rif∗Ω•Y/X carries a connection called the Gauss-
Manin connection, with sheaf of solutions naturally isomorphic to the higher direct
image sheaf Rif∗C. If f is not smooth, or not proper, however, then the sheaves
Rif∗C are not local systems in general; they are merely constructible sheaves. One
would like to construct a “singular differential equation” on X, of which Rif∗C is
the sheaf of solutions.

The notion of singular differential equations is introduced in a precise way
through the category of regular holonomic D-modules. The solutions of a regular
holonomic D-module are indeed a constructible sheaf. To obtain an equivalence of
categories, however, one must pass to derived categories. Making this transition,
one finds that the derived solutions functor induces an equivalence of triangulated
categories between the derived category of regular holonomic D-modules and the
derived category of constructible sheaves. Furthermore, this equivalence respects

Grothendieck’s six operations f !, f!, f
∗, f∗, Rhom,

L
⊗ . (In particular, if f : Y →

X is a map of smooth C-schemes, not necessarily smooth or projective, then
the complex Rf∗C is naturally isomorphic to the derived solutions of a complex
of regular holonomic D-modules, usually denoted f+OY .) This result, known as
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the “Riemann-Hilbert correspondence”, was first proved by Kashiwara and by
Mebkhout (See [Bo] for an algebraic proof.)

The purpose of this paper is to describe some results whose proof is the subject
of the papers [EK1], [EK2], and which provide a p-adic analogue of the Riemann-
Hilbert correspondence. Our starting point is a theorem of Nick Katz [Ka, Prop.
4.1.1], which provides the analogue of the correspondence between differential
equations and local systems.

Theorem 0.1. (Katz) Let k be a perfect field of characteristic p. If X is a smooth
scheme over Wn(k), the ring of Witt vectors of length n, and if FX is a lift to X
of the Frobenius on Wn(k), then there is an equivalence of categories between the
category of étale sheaves of locally free Z/pn modules E of finite rank, and the
category of locally free OX modules E of finite rank, equipped with an OX linear
isomorphism F ∗XE−̃→E . The equivalence is realized by associating E = E ⊗Wn(k)

OX to E.

The sheaves E appearing in Katz’s theorem are the analogues of differential
equations. The analogue of D-modules turn out to be sheaves over certain rings
OF,X (when n = 1) and DF,X (in general). The first three sections of this paper
outline the Riemann-Hilbert correspondence for unit OF,X -modules proved in [EK
1]. We assume that n = 1, so that X is a smooth k-scheme. As in the case of
differential equations, we obtain not just an (anti-)equivalence of triangulated
categories, but also its compatibility with certain cohomological functors.

A consequence of the Riemann-Hilbert correspondence over C is that one ob-
tains a distinguished class of complexes of constructible C-vector spaces, which
correspond to a single regular holonomic D-module. These are called “perverse
sheaves.” They form an abelian category, and have a description in term of the so
called “middle extension”. In §4, we complete the results of [EK, §11] regarding
the structure of “perverse sheaves” in our context, and show that they have a
similar description in terms of middle extension.

In §5 we sketch the applications to L-functions that are the subject of [EK, §12].
Finally in §6 we explain the results of [EK 2] on the Riemann-Hilbert correspon-
dence for a smooth Wn(k)-scheme. This relies heavily on the theory of arithmetic
D-modules developed by Berthelot [Be].

To keep the paper a reasonable length, we have had to omit many details, and
refinements. However we have tried to give indications of proofs where possible,
and have included some typical calculations.

The study of unit root F -crystals and in particular their degeneration and L-
functions was pioneered by Bernard Dwork. We dedicate this paper to his memory.

1. OF,X-modules

1.1. Let k be a perfect field of characteristic p. For any k-algebra R, we denote by
R[F ] the non-commutative polynomial ring in a formal variable F, which satisfies
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the relation Fa = apF for a ∈ R. For any k-scheme X, we denote by OF,X

the quasi-coherent sheaf of non-commutative rings which over on an affine open
Spec R takes the value R[F ]. As an (OX ,OX)-bimodule OF,X is isomorphic to
⊕∞i=0F

i∗OX , where F denotes the absolute Frobenius on X. Using this description,
one sees that to give an OF,X -module M is the same as giving the underlying OX -
module M together with the map

φM : F ∗M = F ∗OX ⊗OX
M→M (1.1.1)

1.2. An OF,X -module M is called a unit OF,X -module if M is quasi-coherent as
an OX -module, and if the map φM is an isomorphism. There is a general technique
for constructing unit OF,X -modules, due to Lyubeznik [Lyu, 1.9]. Consider a
quasi-coherent OX -module M, and a map β : M → F ∗M. Set M = lim

→
F i∗M

where the transition maps are given by F i∗β. Then M has a natural structure of
a unit OF,X -module, obtained by taking φM to be the limit of the maps

F ∗(F i∗M)−̃→F i+1∗M

Conversely, any unit OF,X -module can be obtained in this way, since we may take
M = M and β = φ−1

M . We say that the morphism β generates M.
For our purposes the category of unit OF,X which are, locally on X, finitely

generated over OF,X will be very important. They are the analogue, in our present
situation, of holonomic D-modules. Over smooth schemes, one has the following
characterisation of such modules [EK 1, 6.1.3]

Proposition 1.2.1. Let X be a smooth k-scheme, andM anOF,X -module. Then
M is a locally finitely generated unit OF,X -module if and only if there exists an
injective generator β : M → F ∗M for M, with M a coherent OX -module.

In the situation of (1.2.1) an injective generator β : M → F ∗M with M
coherent is called a “root” of M. From now on we will assume that X is a smooth
k-scheme. We abbreviate the phrase “locally finitely generated unit” to “lfgu”.
As an application of (1.2.1), we have the following structural result, which often
enables one to make excision arguments.

Corollary 1.2.2. Let M be an lfgu OF,X -module. There exists a dense open
U ⊂ X, such that M|U is a finite, locally free OX -module.

Proof. Let β : M → F ∗M be a root of M. Then we may choose U so that M is
locally free over U and β is an isomorphism. ut

The following result shows that the subset U ⊂ X can be taken to be the
biggest open subset over which M is coherent.

Proposition 1.2.3. Let M be a unit OF,X -module, which is coherent as an OX -
module. Then M is locally free over OX .
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Proof. One proof may be found in [EK 1, 6.9.3]. Another, slicker, proof is as
follows: We may work locally, and assume that X = Spec R for some integral
domain R. The isomorphism φM implies that the Fitting ideals of M and F ∗M
are equal. But if Ik is the k-th Fitting ideal of M then the k-th Fitting ideal of
F ∗M is F (Ik)R. This implies that Ik is either 0 or R. If k0 is the smallest integer
such that Ik0 = R, then M is locally free of rank k0. ut

A coherent unit OF,X -module is called an F -crystal.

1.3. Suppose that M is an OF,X module. Then we have the OX -linear map

−φM ⊕ id : F ∗M→M⊕ F ∗M⊂ ⊕∞i=0F
∗iM = OF,X ⊗OX

M

Extending this mapOF,X -linearly one gets a mapOF,X⊗OX
F ∗M→OF,X⊗OX

M
and it is not hard to check that this map sits in an exact sequence

0 → OF,X ⊗OX
F ∗M→OF,X ⊗OX

M→M→ 0 (1.3.1)

Thus (1.3.1) provides a canonical resolution of any OF,X -module, by OF,X mod-
ules of the form OF,X⊗OX

N. This resolution is an important tool in cohomological
calculations. As a first simple application we have (cf. [EK 1, 1.8.4])

Lemma 1.3.2. Let M be an OF,X -module. Then M has Tor-dimension at most
dim X + 1.

Proof. The assertion is that for any right OF,X -module N , Tori
OF,X

(M,N ) van-
ishes for i > d + 1. These Tor groups may be computed by taking a resolution of
M by locally free OF,X modules [EK, 1.6.2]. To see that they vanish, it suffices,
using the resolution (1.3.1), to check that they vanish for i > d when we replace
M by OF,X ⊗OX

M. However, this follows because M has Tor-dimension at most
d as an OX -module (Serre’s theorem), together with the fact that OF,X is flat as
a right OX -module. ut

1.3.3. When M is a unit module, we may identify M with F ∗M via the isomor-
phism φM, and replace F ∗M by M in (1.3.1). Then the map −φM ⊕ id becomes
−id⊕β : M→M⊕F ∗M where β = φ−1

M . There is a useful generalisation of this
construction: Let β : M → F ∗M be any generator of M. Then we have a map
−id ⊕ β : M → M ⊕ F ∗M, which induces a map OF,X ⊗OX

M → OF,X ⊗OX
M

as above, sitting in a short exact sequence

0 → OF,X ⊗OX
M → OF,X ⊗OX

M →M→ 0 (1.3.4)

In particular, if M is an lfgu OF,X -module, then M can be taken to be coherent.



An introduction to the Riemann Hilbert correspondence for unit F -crystals 5

2. Cohomological Operations

2.1. Let • be one of +, −, b or ∅. Denote by D•(OF,X) the derived category
of complexes of OF,X modules with the indicated boundedness condition. We
denote by D•qc(X,OF,X) (resp. D•u(OF,X), resp. D•lfgu(OF,X)) the full subcategory
of D•(OF,X) consisting of complexes with quasi-coherent (resp. unit, resp. lfgu)
cohomology sheaves. If is easy to see that D•qc(OF,X) is a triangulated subcategory
of D•(OF,X). For D•u(OF,X) and D•lfgu(OF,X) this follows from the following result
[EK 1, 5.2, 6.2.3]

Lemma 2.1.1. Let

M1 →M2 →M3 →M4 →M5

be an exact sequence of OF,X -modules. If each of M1, M2, M4, and M5 is a unit
(resp. lfgu) OF,X -module, then M3 is a unit (resp. lfgu) OF,X -module.

2.2. Let M and N be OF,X -modules. Then we have a natural map

F ∗(M⊗OX
N )−̃→F ∗M⊗OX

F ∗N φM⊗φN−→ M⊗N

Thus M⊗OX
N has a natural structure of OF,X -module.

We already remarked in the proof of (1.3.2) above, that any OF,X module has
a resolution by locally free OF,X -modules, and that the terms of such a resolution
are flat over OX . Thus we can define the derived functor

L
⊗OX

: D−(OF,X)×D−(OF,X) → D−(OF,X)

and (1.3.2) implies (in particular) that this restricts to

L
⊗OX

: Db(OF,X)×Db(OF,X) → Db(OF,X)

This bifunctor respects the subcategories Dqc, Du and Dlfgu [EK 1, 1.9.4, 5.5.2,
6.4.1]

Proposition 2.2.1. Let ∗ be one of qc, u or lfgu. Then
L
⊗OX

restricts to

L
⊗OX

: D−∗ (OF,X)×D−∗ (OF,X) → D−∗ (OF,X)

2.3. Let f : Y → X be a morphism of smooth k-schemes. There is a map
of rings f−1(OF,X) → OF,Y induced by the natural map f−1OX → OY . Using
this map we regard OF,Y as a right f−1OF,X -module, and it has a natural struc-
ture as a left OF,Y -module We denote by OF,Y→X the ring OF,Y considered as a
(OF,Y , f−1OF,X)-bimodule.

We denote by dX the function which to a point x ∈ X assigns the dimension
of the connected component containing x. We set dY/X = dY − dX ◦ f
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For M in D−(OF,X), we set f !M• = OF,Y→X

L
⊗f−1OF,X

f−1M•[dY/X ]. In
fact (1.3.2) can be used to show that f ! is even well defined for M• in D(OF,X).
It also implies that f ! restricts to a functor

f ! : Db(OF,X) → Db(OF,Y )

We have [EK 1, 2.3.2, 5.8, 6.7]

Proposition 2.3.1. Let ∗ be one of qc, u or lfgu. Then f ! induces a functor

f ! : D−∗ (OF,X) → D−∗ (OF,Y )

Sketch of proof. The case ∗ = qc follows from the fact that on underlying com-

plexes of OX -modules, f ! is given by OY

L
⊗OX

– followed by a shift. For the case
∗ = u, or lfgu one reduces to the case of a single module M, and X affine. If
β : M → F ∗M is an injective generator for M, we may take a resolution P • of
M by finite free OX -modules, and lift β to a map β′ : P • → F ∗P •. If P• denotes
the complex of unit OF,X modules generated by β′, then one easily checks that
P• is a resolution of M and that, up to a shift, f !P• is the complex generated by
f∗β. In particular, f !M has unit cohomology sheaves. If in addition, M is locally
finitely generated, then (1.2.1) implies that we may take M, and hence the terms
of P •, to be coherent. In this case f !P• is a complex of lfgu OF,X -modules, and
in particular has cohomology sheaves with are lfgu OF,Y -modules ut

We record two more properties of the functor f ! [EK 1, 2.4, 2.5]

Proposition 2.3.2. 1. If g : Z → Y and f : Y → X are maps of smooth
k-schemes, then there exists a natural isomorphism (fg)!−̃→g!f !

2. If M• and N • are in D−(OF,X) then there exists a canonical isomorphism

f !(M• L
⊗OX

N •)−̃→f !M• ⊗OY
f !N •[−dY/X ]

2.4. Let f : Y → X be a map of smooth k-schemes. We denote by ωY/X the rel-
ative dualising sheaf. This is isomorphic to ωY ⊗OY

f∗ω−1
X , which is a line bundle,

since X and Y are smooth. The (f−1OF,X ,OY )-bimodule f−1OF,X ⊗f−1OX
ωY/X

can be given the structure of a (f−1OF,X ,OF,Y )-bimodule [EK 1, 3.3.1]. The con-
struction involves the formalism of duality theory for quasi-coherent sheaves, and
especially the Cartier operator. Rather than giving it in generality, we describe
the bimodule structure explicitly in two special cases.

In the first example, we take OY = OX/a, where a cuts out the smooth divisor
Y of X. In this case we have an exact sequence

0 → OY · da → f∗Ω1
X → Ω1

Y → 0

so that ωY/X = OY · (da)−1. The required right OF,Y -module structure is then
given by [EK 1, 3.3.4]

bFn(da)−1 ·F7→ bapn(p−1)Fn+1(da)−1
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where b is a section of OX .
Next suppose that Y → X is smooth of relative dimension 1. Then locally,

Y admits an étale map to the X-scheme, Gm × X. If t denotes the canonical
co-ordinate on Gm, then this induces an invertible section t of OY , and ωY/X is
generated by dt/t. The required right OF,Y -module structure is then given by

aFntidt/t
·F7→ aFn+1ti/pdt/t

where a is a section of f−1OX , and ti/p = 0 if p - i.
We denote the (f−1OF,X ,OF,Y )-bimodule f−1OF,X⊗f−1OX

ωY/X by OF,X←Y .
If g : Z → Y is another morphism of smooth k-schemes, then the natural isomor-
phism ωZ/X−̃→ωZ/Y ⊗OZ

g∗ωY/X induces an isomorphism of ((fg)−1OF,X ,OZ)-
bimodules

OF,X←Z−̃→g−1OF,X←Y ⊗g−1OF,Y
OF,Y←Z (2.4.1)

In fact this map is an isomorphism of (f−1OF,X ,OF,Z)-bimodules [EK 1, 3.3.3].
The calculation of the general right OF,Y -module structure on OF,X←Y can be
reduced to the two special cases considered above, by locally factoring any map
Y → X as a composite of a closed embedding, and smooth curve fibrations, and
using the isomorphism (2.4.1).

We define a functor

f+ : D−(OF,Y ) → D−(OF,X)

by

f+M• = Rf∗(OF,X←Y

L
⊗OF,Y

M•)

By (1.3.2), and the fact that Rf∗ has finite cohomological dimension, f+ is well
defined (in fact we could have even worked with unbounded complexes). Moreover,
it induces a functor

f+ : Db(OF,Y ) → Db(OF,X)

As for f !, we have the following result [EK 1, 3.5.3, 5.8, 6.8.4]

Proposition 2.4.2. Let ∗ be one of qc, u, or lfgu. Then f+ restrict to a functor

f+ : D−∗ (OF,Y ) → D−∗ (OF,X)

We record some other properties of f+

Proposition 2.4.3. If f : Y → X and g : Z → Y are morphisms of smooth
k-schemes, then

1. There exists a canonical isomorphism (fg)+−̃→g+f+.

2. If M• is in D−(OF,Y ) and N • is in D−qc(OF,X) then we have the projection
formula

f+(M• L
⊗OY

f !N •)−̃→M•[dY/X ]
L
⊗OX

f+f !N •
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3. If M• is in D−(OF,X) and N • is in Db(OF,Y ), and f is an open immersion,
then there is a canonical isomorphism

Rf∗RhomOF,Y
(f !M•,N •)−̃→RhomOF,X

(M•, f+N •)

4. If M• is in D−qc(OF,Y ) and N • is in Db
qc(OF,X), and f is a proper map, then

there is a canonical isomorphism

RhomOF,X
(f+M•,N •)−̃→Rf∗RhomOF,Y

(M•, f !N •)

Proof. (1) is a formal consequence of the isomorphism (2.4.1). (2) and (3) are
formal consequences of respectively, the projection formula and the adjointness
between Rf∗ and f−1 for Zariski sheaves [EK 1, 4.2, 4.3]. The proof of (4) is one of
most delicate points in the whole theory, and uses Grothendieck duality, expressed
on the level of residual complexes [Ha, Ch VI]. A key point is the construction of
the trace map, explained in the following lemma [EK 1, 4.4.9]. ut

Lemma 2.4.4. Let f : Y → X be a proper map of smooth k-schemes. Then
the complex of OF,X -modules f+OF,Y has a natural structure of an object in the
derived category of (OF,X ,OF,X)-bimodules, and there exists a map

trF,f : f+OF,Y [dY/X ] → OF,X

in this derived category, which on the level of complexes of OF,X -modules becomes
the map

f+OF,Y [dY/X ] = OF,X ⊗OX
Rf∗ωY/X [dY/X ]

1⊗trf→ OF,X

where trf : Rf∗ωY/X [dY/X ] → OX is the trace map of Grothendieck-Serre duality.

2.5. In this section we explain the analogue of Kashiwara’s theorem for unit
modules. The following result is proved in [EK 1, 5.10.1, 5.10.3]

Theorem 2.5.1. Let f : Y → X be a closed immersion of smooth k schemes.

1. If M is a unit OF,X -module supported on Y, then H0(f !M)−̃→f !M.

2. If M is a unit OF,Y -module then H0(f+M)−̃→f+M.

3. The functors H0(f !M) and H0(f+M) induce an equivalence between the
category of unit OF,Y modules, and the category of unit OF,X -modules sup-
ported on Y.

4. If M is any unit OF,X , then adjunction map f+f !M → M induced by
the adjointness of (2.4.3)(4) induces an inclusion f+H0(f !M) ⊂ M which
identifies f+H0(f !)M with the subsheaf ΓY (M) of M, consisting of sections
supported on Y.
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We also have an analogous result for the derived category [EK 1, 5.11.3,
5.11.5].To explain it, for any closed subset Y ⊂ X, denote by D−u,Y (OF,X) the
full (triangulated) subcategory of D−u (OF,X) consisting of complexes whose coho-
mology sheaves are supported on Y.

Corollary 2.5.2. Let f : Y → X be a closed immersion of smooth k-schemes.

1. The functor

f+ : D−u (OF,Y ) → D−u (OF,X)

induces an equivalence of D−u (OF,Y ) with D−u,Y (OF,X). The functor f ! pro-
vides a quasi-inverse.

2. If M• is in Db
u(OF,X), then RΓY (M•) has a natural structure of an object

of Du,Y (OF,X), and there is an isomorphism

RΓY (M•)−̃→f+f !M•)

The following result is often used in [EK 1] to make arguments by induction
on the support of M• [EK 1, 5.12.1]

Corollary 2.5.3. Let M• be in D−u (OF,X), and let Y be the support of the
cohomology sheaves of M. Then for any smooth open subscheme U ⊂ Y, if f :
U → X denotes the natural map, then there is a natural map M• → f+f !M•

whose cone is supported on Y \U.

Proof. Let W = X \ (Y \ U). Then U is closed in W and W is open in X. Let
i : U → W and j : W → X denote the corresponding immersions, so that f = ji.
Then by (2.4.3)(3), there is the natural morphism of adjunction M• → j+j!M•.
Since M• is supported on Y , we see that j!M• is supported on Y ∩W = U. Thus
by (2.5.2) we see that

j!M•−̃→i+i!j!M• (2.5.4)

Thus we get maps

M• → j+j!M• ∼→ j+i+i!j!M•−̃→f+f !M•

Applying j! to the composite of these maps recovers the isomorphism (2.5.4), so
this composite map has cone supported on X \W = Z \ U. ut

3. The Riemann-Hilbert correspondence

3.1. We now move from working in the Zariski site, to the étale site. If X is
a smooth k-scheme, we denote by πX : Xét → XZar the natural morphism of
sites. We set OF,Xét

= π∗XOF,X . We call a OF,Xét
-module unit (resp. lfgu) if it has
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this property when restricted to the Zariski site of an étale covering of X. Recall
that the exact functors π∗X and π∗X induce quasi-inverse equivalences of categories
between quasi-coherent sheaves on Xét and quasi-coherent sheaves on XZar. Using
this one sees easily that every unit (resp. lfgu) OF,Xét

-module Mét has the form
Mét = π∗XM for some unit (resp. lfgu) OF,X -module.

For • equal to one of ∅, +, −, or b, and ∗ one of ∅, qc, u, or lfgu we denote by
D•∗(OF,Xét

) the derived category ofOF,Xét
-modules with the indicated boundedness

condition, and whose cohomology sheaves satisfy the condition ∗. If ∗ is one of qc,
u or lfgu, then π∗X induces an equivalence of triangulated categories between this
category and D•∗(OF,X) [EK 1, 7.3.2]. This essentially follows from descent, and
a theorem of Bernstein which implies that any complex in Db(OF,Xét

) is quasi-
isomorphic to a complex of quasi-coherent OF,X -modules.

For a map of smooth k-schemes f : Y → X, we can define the bimodules
OF,Y→X and OF,X←Y , and the functors ⊗OXét

, f ! and f+. When restricted to
bounded complexes with quasi-coherent cohomology, these satisfy

π∗X(–⊗OX
–)−̃→π∗X(–)⊗OXét

π∗X(–), π∗Y f !−̃→f !π∗X and π∗Xf+−̃→π∗Y f+

3.2. For • as above, we denote by D•(Xét, Z/pZ) the derived category of étale
sheaves of Z/pZ-modules on X with the indicated boundedness condition. We
denote by D•c (Xét, Z/pZ) the full triangulated subcategory of D•(Xét) consisting
of complexes with constructible cohomology sheaves.

Now define the functor

Solét(–) = RhomOF,Xét
(–,OXét

)[dX ] : D−lfgu(OF,Xét
) → D+(Xét, Z/pZ)

This functor has the following properties [EK 1, 9.3, 9.7.1, 9.8, 9.9]

Proposition 3.2.1. Let f : Y → X be a morphism of smooth k-schemes.

1. There is a natural isomorphism f−1 Solét −̃→Solét f !

2. If f is quasi-projective, there is a natural isomorphism Solét f+−̃→f! Solét .

3. There is a natural isomorphism

Solét(–)
L
⊗Z/pZ Solét(–)−̃→Solét(–

L
⊗OXét

–)[dX ]

4. Solét restricts to a functor

Solét : Db
lfgu(OF,Xét

) → Db
c(Xét, Z/pZ)

Sketch of proof. Each of these claims is non-trivial. For (1), the required natural
transformation is deduced from the map

RhomOF,Xét
(M•,OXét

) → RhomOF,Yét
(f !M•, f !OXét

)

and the remark that f !OXét
= OYét

[dY/X ].
We will explain how to check that this map is an isomorphism in the special

case that Y is a smooth divisor, cut out by a section a of OX , and M• is a single
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lfgu OF,X -module, with a generator of the form µ : On
Xét

→ On
Xét

. The general
case can be reduced to this one using various formal arguments, and the technique
explained in the proof of (2.3.1).

Using the resolution (1.3.4) to compute Solét, one sees that what we have to
show is that the natural map

f−1(On
Xét

1−µF→ On
Xét

) → (On
Yét

1−µF→ On
Yét

) (3.2.2)

is a quasi-isomorphism. Both sides of (3.2.2) are surjective in the étale topology
(because the differential of 1 − µF is the identity), so we have to show (3.2.2)
induces an isomorphism on kernels.

Suppose that a section (axi) of aOn
Xét

satisfies (1−µF )(axi) = 0. Then (axi) =
µF (axi) = apµF (xi), and

(xi) = ap−1µF (xi) = ap−1µF (ap−1µF (xi))

= a(p+1)(p−1)µFµF (ap−1µF (xi)) = . . . . (3.2.3)

Continuing, we find that the xi are divisible by arbitrarily high powers of a, and
so vanish. This shows that (3.2.2) induces an injective map on kernels. To see
the surjectivity, suppose that (x̄i) are sections of (OXét

/a)n which satisfy (1 −
µF r)(x̄i) = 0. Let (xi) be a section of On

Xét
lifting (x̄i). Then (1−µF )(xi) = (ax′i)

for some section (x′i) of OXét
. Now étale locally, we may find a section (yi) of On

Xét

solving (1− ap−1µF )(yi) = (x′i). Then xi − ayi = x̄i modulo a, and

(1− µF )(xi − ayi) = (ax′i − ax′i) = 0

For the proof of (2) one considers separately the case of a proper map, and
of an open immersion. The general isomorphism is then constructed by factoring
a quasi-projective map as a composite of such maps (one has to work to check
that the result is independent of the factorisation). The case of a proper map can
be deduced from the adjointness in (2.4.3)(4). For the case of f, an open immer-
sion, we have a natural isomorphism f−1 Solét(f+M•)−̃→Solét(M•), because the
definition of Solét is local on X. By adjointness of f! and f−1, this gives a map
Solét(f+M•)−̃→f! Solét(M•). To show this is an isomorphism one has to show
that the stalks of Solét(f+M•) have vanishing cohomology at points of X\Y. This
is done (after some reductions) by an explicit calculation, similar to the one we
explained in the proof of (1).

The proofs of (3) and (4) proceed by induction on the support of (the coho-
mology sheaves of) M•, using (1.2.2) and (2.5.3). This argument uses (1) and (2).
Note that when M is an F -crystal (i.e. a unit module, which is finite flat over
OXét

) of rank n, then computing Solét(M) by using the resolution (1.3.4), with
the root µ = φ−1

M , one sees that

Solét(M) = (M 1−µF→ M)[dX ]

Then Katz’s theorem, mentioned in the introduction, implies that Solét(M) =
L[dX ] where L is a locally constant étale sheaf of Z/pZ-modules of rank n. ut
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3.3. We define a functor

Mét = RhomZ/pZ(–,OXét
)[dX ] : Db

c(Xét, Z/pZ) → D+(OF,Xét
)

We have the following result [EK 1, 10.4]

Proposition 3.3.1. The functor Mét induces a functor

Mét : Db
c(Xét, Z/pZ) → Db

lfgu(OF,Xét
)

The proof of (3.3.1) uses excision and induction on the dimension of the support
of (the cohomology sheaves) of a complex L• in Db

c(Xét, Z/pZ), together with the
fact that if L is an étale local system, then Mét(L) is easily seen to be an F -crystal.
As in the proof of (3.2.1), in order to carry out this excision argument, one first
has to prove that in certain special cases, Mét exchanges f+ and f!, and f ! and
f−1.

3.4. Now using (3.2.1)(4) and (3.3.1) we can define functors

Sol = Solét ◦π∗X : Db
lfgu(OF,X) → Db

c(Xét, Z/pZ)

and

M = RπX∗ ◦Mét : Db
c(Xét, Z/pZ) → Db

lfgu(OF,X)

The natural map

M• → RhomZ/pZ(RhomOF,Xét
(M•,OXét

),OXét
)

induces a natural transformation ζ : id → M ◦Sol . Similarly, we get a natural
transformation η : id → Sol ◦M . We have the following theorem [EK 1, 11.3]

Theorem 3.4.1. The natural transformations ζ and η are isomorphisms. In par-
ticular M and Sol induce quasi-inverse anti-equivalences of triangulated categories.

They exchange the functors
L
⊗Z/pZ and

L
⊗OX

(up to a shift), and f−1 and f !. If f
is quasi-projective they exchange f! and f+.

Sketch of proof. That Sol takes f !, f+ and
L
⊗OX

into f−1 f! and
L
⊗Z/pZ follows

from (3.2.1). The analogous claim for M follows once we know that ζ and η are
isomorphisms. This is established by an excision argument. ut

4. Perverse Sheaves

4.1. The canonical t-structure on Db
lfgu(OF,X) induces via the anti-equivalence

of categories in (3.4.1), a t-structure on Db
c(Xét, Z/pZ). To describe this exotic

t-structure explicitly we recall the notion of a perversity function.
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Let X be a k-scheme. For x ∈ X, denote by ix : x → X the natural inclusion.
Recall that the “middle perversity” function on X is defined by p(x) = −dim {x}.
Define full sub-categories pD≤0 and pD≥0 of Db

c(Xét,Λ) by the conditions:
F• is in pD≤0 if and only if for all x ∈ X, Hi(i−1

x F•) = 0 for i > p(x).
F• is in pD≥0 if and only if for all x ∈ X, Hi(i!xF•) = 0 for i < p(x).
Gabber has shown that the subcategories pD≤0 and pD≥0 underlie a (neces-

sarily unique) t-structure on Db
c(Xét, Z/pZ) [Ga]. (In fact, Gabber establishes this

more generally for perversity functions p having the property that p(x) ≤ p(y)+1
whenever x is an immediate specialisation of y.) In [EK 1, 11.5] we show that this
t-structure is equal to the one induced on Db

c(Xét, Z/pZ) by the anti-equivalence of
categories in (3.4.1). In particular, the analysis there gives an independent proof
that the categories pD≤0 and pD≥0 underlie a t-structure on Db

c(Xét, Z/pZ).
In this section we want to supplement the results of loc. cit. by proving a struc-

ture theorem for complexes in the heart of this t-structure – “perverse sheaves”
– and showing that there is a reasonable theory of middle extension. These re-
sults were motivated by those of Blickle’s thesis [Bl], which constructs the middle
extension in certain cases.

4.2. The next result follows immediately from [Lyu, Thm. 3.2]

Proposition 4.2.1. Let X be a smooth k-scheme. The category of lfgu OF,X -
modules is Artinian.

Corollary 4.2.2. Let j : U → X be a locally closed immersion of smooth k-
schemes. If M is an lfgu OF,U -module, then the set of lfgu OF,X -submodules
M̃ ⊂ H0(j+M) such that j!M̃ = M has a smallest element.

Proof. If M̃1 and M̃2 are two such submodules, then we have an exact sequence

0 → M̃1 ∩ M̃2 → H0(j+M) → H0(j+M)/M̃1 ⊕H0(j+M)/M̃2

By (2.1.1) the right most term is lfgu, so applying (2.1.1) again shows that
M̃1 ∩ M̃2 is an lfgu OF,X -module. Now the corollary follows from (4.2.1). ut

We denote the minimal extension M̃ in (4.2.2) by j!+M. We call an lfgu OF,X -
module simple if it has no non-trivial, proper lfgu OF,X -submodules.

Corollary 4.2.3. Every simple lfgu OF,X -module on X is of the form j!+N for
a locally closed immersion j : U → X, and some simple F -crystal N on U.

Proof. Suppose that N is a simple F -crystal on U. Let M⊂ j!+N be a non-zero
submodule. Let Y denote the closure of U in X, set W = X\(Y \U), and let
h : W → X and i : U → W denote the natural (open, resp. closed) immersions.
First we claim that M is not supported on Y \U. Indeed, the composite M →
H0(j+N ) → j+N−̃→h+i+N (in which the isomorphism is provided by (2.4.3)(1))
corresponds, by the adjointness of (2.4.3)(3), to a map h!M → i+N . If M were
supported on Y \U, then h!M would vanish, hence the map M→ h+i+N = j+N
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would also vanish, and thus M would vanish, contradicting our assumption. Thus
j!M is a non-zero submodule of N . Since N is simple, it follows that j!M = N ,
which implies that M = j!+N as the latter module is minimal.

Conversely, suppose that M is a simple lfgu OF,X -module. Let Y be the
support of M and choose a dense open U ⊂ Y such that, if j : U → X denotes the
natural map, then j!M is an F -crystal. Now the map M→ j+j!M is non-zero,
as it becomes an isomorphism after applying j!. Since M is simple, this map must
be an injection, whence j!+j!M ⊂M. Since M is simple, this inclusion must be
an isomorphism. Finally if N ⊂ j!M is a non-zero subcrystal, then j!+N ⊂ M,
and this must be an isomorphism, as M is simple, so that N = j!M. Thus, j!M
is simple. ut

4.3. It remains to translate the results of the previous section into statements
involving Db

c(Xét, Z/pZ). We call a complex L• in Db
c(Xét, Z/pZ) a perverse sheaf

if it is of the form Solét(M) for a single lfgu OF,X -moduleM. We begin by showing
that the construction on perverse sheaves, which corresponds to the functor j!+,
has a familiar description.

The conditions given in (4.1) to define pD≤0 and pD≥0 may be applied equally
well to complexes of sheaves in Db(X, Z/pZ), and it is shown in [Ga] that they
determine a t-structure on this category. (Indeed, Gabber’s strategy is to con-
struct this t-structure first, and then to show that it restricts to a t-structure on
Db

c(X, Z/pZ), by showing that the perverse truncation of a complex with con-
structible cohomology sheaves again has constructible cohomology sheaves.) We
denote the cohomology functors of this t-structure by pHi. If j : U → X is a
locally closed immersion, and L• is a perverse sheaf in Db

c(Uét, Z/pZ), then we set

j!∗L• = Im(pH0(j!L•) → pH0(Rj∗L•)).

Lemma 4.3.1. Let j : U → X be a locally closed immersion, and M an lfgu
OF,U -module. If L• = Sol(M) is the perverse sheaf corresponding to M then

1. j!L• is in pD≤0 and Rj∗L• is in pD≥0

2. We have a canonical isomorphism Sol(j!+M)−̃→j!∗L•

Proof. To prove (1) let ix : x → X be the inclusion of a point of X. We have to
check that Hi(i−1

x j!L•) = 0 for i > p(x) and Hi(i!xRj∗L•) = 0 for i < p(x). Let Y
be the closure of U in X. If x /∈ Y \U then these equalities follow from the analogous
facts for the perverse sheaf L•. If x ∈ Y \U, then we have i−1

x j!L• = i!xRj∗L• = 0,
so these equalities are trivial.

Next we prove (2). Let L′• ⊂ pH0(j!L•) be a perverse subsheaf. Consider the
composite map

L′• → pH0(j!L•) → pH0(Rj∗L•) (4.3.2)

If the map (4.3.2) vanishes then L′• is supported on Y \U because j−1j!∗L• = L•.
Conversely, if L′• is supported on Y \U, then we claim that (4.3.2) vanishes.
By (1) it suffices to check that the map obtained by composing (4.3.2) with
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pH0(Rj∗L•) → Rj∗L• vanishes. Since L′• is supported on Y \U this last map
factors through a map

L′• → i∗i
!Rj∗L• = 0,

where i : Y \U → X denotes the inclusion.
It follows that j!∗L• is equal to the quotient of pH0(j!L•) by its maximal per-

verse subsheaf supported on Y \U. Now (2) follows from (3.4.1) and the definition
of j!+M. ut

Corollary 4.3.3. The category of perverse sheaves is Artinian. A perverse sheaf
is irreducible if and only if it is of the form j!∗L[dU ], where j : U → X is a locally
closed immersion, and L is an irreducible local system of Z/pZ-sheaves on U.

Proof. The first claim follows from (4.2.1). The second claim follows from (4.2.3)
and (4.3.1)(2), keeping in mind that M 7→ H0(Sol(M)[−dU ]) establishes an equiv-
alence between the category of F -crystals on U, and the category of locally constant
étale sheaves of finite Z/pZ-modules (cf. the proof of (3.2.1)). ut

We remark that in the notes [Ga], Gabber gives another proof that the category
of perverse sheaves is Artinian.

5. L-functions

5.1. In this section we will define L-functions for lfgu OF,X -modules and explain
some of their properties. The theory explained in previous sections has its strongest
applications to L-functions if it is first generalised to include “coefficients”. Thus,
in this section we let Λ be a Noetherian Fp-algebra, and we set OΛ

X = Λ ⊗Fp
OX

and OΛ
F,X = Λ⊗Fp

OF,X . We define OΛ
Xét

and OΛ
F,Xét

similarly.
We say that a OΛ

F,X is “unit” (resp. quasi-coherent) if its underlying OF,X -
module is unit (resp. quasi-coherent). We say that a OΛ

F,X -module is lfgu if it is
unit, and if, locally on X, it is finitely generated over OΛ

F,X .

For • = ∅, −, +, or b, and ∗ one of qc, u or lfgu we define D•∗(OΛ
F,X) to be

the full (triangulated) subcategory of D•(OΛ
F,X) consisting of complexes whose

cohomology sheaves satisfy the condition ∗.

5.2. If f : Y → X is a morphism of smooth k-schemes, we can define functors

f ! : D−(OΛ
F,X) → D−(OΛ

F,Y )

and

f+ : D−(OΛ
F,X) → D−(OΛ

F,X)

using the same definitions as in §2. These functors also preserve the conditions qc,
u, and lfgu (except for the last case, this is a formal consequence of the results
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cited in §2). For proofs of these results we refer to the same references in [EK 1]
cited in §2. We also have a bifunctor

–
L
⊗OΛ

X
– : D−(OΛ

F,X)×D−(OΛ
F,X) → D−(OΛ

F,X)

but we will not need this in what follows.
Having introduced coefficients, we can also define functors corresponding to

extension of scalars: Let Λ → Λ′ be a morphism of Noetherian Fp-algebras. Then
we have a functor

L
⊗Λ Λ′ : D−(OΛ

F,X) → D−(OΛ′

F,X)

We have the following result

Proposition 5.2.1. If ∗ is one of qc, u or lfgu, then
L
⊗Λ Λ′ induces a functor

L
⊗Λ Λ′ : D−∗ (OΛ

F,X) → D−∗ (OΛ′

F,X)

Moreover, –
L
⊗Λ Λ′ commutes with f ! and f+.

Proof. For the first claim see [EK 1, 1.13, 5.6, 6.5], and for the second [EK 1, 2.8,
3.10] ut

5.3. If Λ is a finite ring we have a version of the Riemann-Hilbert correspondence.
To explain it, we denote by Db

lfgu(OΛ
F,X)◦ the full subcategory of Db

lfgu(OΛ
F,X)

consisting of complexes which have finite Tor dimension when viewed as complexes
of OΛ

X -modules. Note that if Λ is regular, then OΛ
X is a sheaf of regular rings, and

this finiteness condition is automatic.
We denote by Db

ctf (Xét,Λ) the full subcategory of Db
c(Xét,Λ) consisting of

complexes of sheaves of Λ-modules which have finite Tor dimension.
We define functors

Sol(–) = RhomOΛ
F,Xét

(π∗X–,OΛ
Xét

) : Db
lfgu(OΛ

F,X)◦ → D(Xét,Λ)

M(–) = RπX∗RhomΛ(–,OΛ
Xét

) : Db
ctf (Xét,Λ) → D(OΛ

F,X)

The Riemann-Hilbert correspondence with “Λ-coefficients” then takes the form
(with the same references in [EK 1] cited in §3)

Theorem 5.3.1. Suppose Λ is a finite ring. The functors Sol and M induce
quasi-inverse anti-equivalences of triangulated categories between Db

lfgu(OΛ
F,X)◦

and Db
ctf (Xét,Λ). It exchanges the functors

L
⊗OΛ

X
and

L
⊗Λ (up to a shift), and

f ! and f−1. If f is quasi-projective, it exchanges f+ and f!. The equivalence is

compatible with –
L
⊗Λ Λ′ for any map of finite Fp-algebras Λ → Λ′.
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5.4. We now begin our definition of L-functions. We assume from now on that k
is a finite field. Suppose first that Λ is a product of finitely many fields, and that
X = x = Spec k(x) where k(x) is a finite extension of k.

Let M be a lfgu OΛ
F,x.-module. Then M is actually finite as a Λ⊗Fp

k′-module.
This follows from the Λ-coefficient version of (1.2.1). Alternatively, in this very
simple situation, it follows from the fact that M is finitely generated over Λ[F ],
and is also a module over the commutative ring Λ[F, F−1]. Since Λ is a finite
product of fields, M is finite projective over Λ⊗Fp k(x). Let |k(x)| = ps for some
integer s. The structural isomorphism φM : F ∗M−̃→M induces a map

φ−1
M,x : F s−1∗φ−1

M ◦ F s−2∗φ−1
M ◦ · · · ◦ φ−1

M : M−̃→F s∗M→M

We define

Lu(x,M) = det
Λ⊗Fpk(x)

(1− φ−1
M,xT s|M)−1

A priori Lu(x,M) lies in Λ ⊗Fp
k(x)[[T ]] but one can show that it actually lies in

Λ[[T ]] [EK 1, 12.1.2].
More generally, for M• in Db

lfgu(OΛ
F,x) we define

Lu(x,M•) =
∏

i

Lu(x, Hi(M•))(−1)i

Next if X is any smooth k-scheme, and M• is in Db
lfgu(OΛ

F,X) we define

Lu(X,M•) =
∏

x∈|X|

Lu(x, i!xM•)

where |X| denotes the set of closed points in X, and ix : x → X denotes the
inclusion.

Finally, if Λ is any reduced ring, we denote by Q(Λ) its total ring of fractions
and for M• in Db

lfgu(OΛ
F,X), we define

Lu(X,M•) = Lu(X,M• L
⊗Λ Q(Λ))

5.5. If Λ is finite we have the following result [EK 1, 12.3.1]

Proposition 5.5.1. Suppose Λ is a finite reduced ring (i.e a product of finite
fields), let M• be in Db

lfgu(OΛ
F,X) and set L• = Sol(M•). Then we have

Lu(X,M•) = Lét(X,L•) (5.5.2)

where the right hand side is the L-function defined in [De, p. 116].

For the proof one reduces immediately to the case where X is a point, and the
result is then a simple computation.

In fact the right hand side of (5.5.2) is defined for more general Λ, so one might
ask if (5.5.2) holds for any (i.e not necessarily reduced) finite Fp-algebra Λ. For
this one first needs a definition of the left hand side. Such a definition is given in
[EK 1, 12.1.5], and (5.5.2) then holds. However, we will not need this below.
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One initial draw back of the definition of Lu(X,M•) we have given is that it
is not a priori clear that Lu(X,M•) is compatible with change of rings, or that it
lies in Λ[[T ]]. The key to overcoming these difficulties is the following result which
proves this in a special case

Proposition 5.5.3. Let λ : Λ → Λ′ be a map of reduced Noetherian Fp-algebras,
and suppose that Λ is regular. If M• is in Db

lfgu(OΛ
F,X) then Lu(X,M•) lies in

Λ[[T ]], and we have

Lu(X,M• L
⊗Λ Λ′) = λ(Lu(X,M•))

The main point of the proof is that, because Λ has finite projective dimension,
one can compute Lu(X,M•) without passing to Q(Λ).

As a consequence of (5.5.3) one deduces [EK 1, 12.4.5, 12.4.6]

Theorem 5.5.4. Let λ : Λ → Λ′ be a morphism of Noetherian, reduced Fp-
algebras, and M in Db

lfgu(OΛ
F,X). Then

1. If Λ is normal, then Lu(X,M•) is in Λ[[T ]].

2. If Λ is of finite type over Fp, M• is in Db
lfgu(OΛ

F,X)◦, and Lu(X,M•) lies in
Λ[[T ]] then

Lu(X,M• L
⊗Λ Λ′) = λ(Lu(X,M•))

Sketch of proof. For (1), note that Λ is a product of normal domains, and it suffices
to consider the case where Λ is a normal domain. Then for every height one prime
p of Λ we have that Lu(X,M•) is in Λp[[T ]] by (5.5.3). On the other hand we have
Λ = ∩pΛp.

The proof of (2) is more involved, and uses de Jong’s theorem on resolution of
singularities to reduce to the case Λ regular, when one can apply (5.5.3). ut

It is now easy to deduce the following result [EK 1, 12.4.3]

Theorem 5.5.5. Let f : Y → X be a morphism of smooth k-schemes, Λ a
reduced Noetherian k-algebra, and M• in Db

lfgu(OΛ
F,X). Then we have

Lu(X,M•) = Lu(X, f+M•) (5.5.6)

Sketch of proof. To prove the theorem one first reduces by a limit argument to the
case where Λ is of finite type over Fp, and then to the case where Λ is smooth
over Fp. It suffices to show (5.5.6) holds after specialising both sides modulo every
maximal ideal of Λ. Thus (5.5.3) implies that we may assume that Λ is a finite
field. Then (5.5.6) follows from (5.3.1) and an analogous formula for complexes of
constructible étale Λ-sheaves [De, 2.2, p. 116]. ut

As a consequence of this theorem we have the following result which includes
a conjecture of Goss proved by Taguchi-Wan [TW].
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Corollary 5.5.7. LetM• be in Db
lfgu(OΛ

F,X). Then Lu(X,M•) is a rational func-
tion.

6. DF,X-modules

6.1. We again let k be any perfect field. In this section we explain how to use
arithmetic D-modules [Be] to generalise the results of §1 - 3 to schemes which are
smooth over Wn(k) for some positive integer n. Before giving the formal definitions,
we explain the basic idea.

Let X be a smooth Wn(k) scheme. Suppose first that X admits a local system
of co-ordinates x1, . . . , xd, - i.e an étale map X → Ad

Wn(k). Consider the ring
DAd

/Qp
of differential operators on d-dimensional affine space A/Qp

over Qp. This is
a “twisted polynomial ring”:

DAd
/Qp

= Qp[x1, . . . , xd, ∂x1 , . . . , ∂xd
],

with the commutation relations [∂xi , xj ] = δij . (Here δij denotes the usual Kro-
necker delta.) For any multi-index I = (i1, · · · , id), let ∂[I] = 1

i1!···id!∂
i1
x1
· · · ∂id

xd
.

Then the Zp-submodule of DAd
/Qp

generated by monomials in the elements xi (as

i ranges between 1 and d) and ∂[I] (as I ranges over all multi-indices) forms a
Zp-subalgebra of DAd

/Qp
, which is in fact the ring of differential operators DAd

/Zp
on

d-dimensional affine space over Zp.
Now consider the composite map h : X → Ad

Wn(k) → Ad
W (k) → Ad

Zp
We set

DX = OX ⊗h−1OAd
Zp

h−1DAd
Zp

. This is the full ring of differential operators on X,

and does not depend on the choice of co-ordinates.
Next let F be a lift of Frobenius to X. Such a lift can be constructed by

choosing a lift of Frobenius to An
Wn(k) (e.g xi 7→ xp

i ), which then lifts uniquely to
X by étaleness.

We denote by DF,X the sheaf of rings obtained from DX by adjoining an inde-
terminate F which satisfies the commutation relations

Fxi = F (xi)F, and ∂xi
F = ∂xi

(F (xi))F∂xi
.

where x is a section of OX . The key observation is that DF,X does not depend on
the choice of the Frobenius lift F : If F ′ is a second lift then, F ′ can be expressed
by Taylor’s formula

F ′ =
∑

I

(F ′(xi)− F (xi))IF∂[I]

6.2. As a result of the independence of DF,X of Frobenius lift, we can define a
sheaf DF,X for any smooth Wn(k)-scheme X, without assuming the existence of a
global Frobenius lift.
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The construction of DF,X can be efficiently expressed in terms of Berthelot’s
interpretation of Frobenius descent [Be 2, §2.2]. Namely, Berthelot shows that
there is always a functor F ∗ taking DX -modules to DX , and which locally on
X realises pullback by Frobenius. Thus, we may set DF,X = ⊕i≥0F

∗iDX . By
functoriality F i∗DX is a (DX ,DX)-bimodule, and the multiplication in DF,X is
defined via the isomorphism.

F i∗DX ⊗DX
F j∗DX−̃→F i+j∗DX

One checks [EK 2, 1.4.5] that this makes DF,X into an associative sheaf of DX -
algebras.

The following result result describes DF,X -modules, in terms of DX -modules,
and is useful for transporting information from one theory to the other [EK 2,
1.4.7, 1.6.4]

Proposition 6.2.1. 1. To give a left DF,X -module is equivalent to giving a
left DX -module M, and a map of left DX -modules φM : F ∗M→M.

2. To give a right DF,X -module is equivalent to giving a right DX -module M
and a map of right DF,X -modules M→ F !M.

Here F ! is the functor of coherent duality theory, and we have used that if M
is a right DX=module, then F !M has a canonical structure of right DX -module
[Be 2, §2.4], [EK 2, 1.5.1].

6.3. We call a (left) DF,X -module M a unit DF,X -module if M is quasi-coherent
as an OX -module, and the map φM in (6.2.1)(1) is an isomorphism. We call
M an lfgu DF,X -module if it is a unit module, and is locally finitely generated
over DF,X . The connection between these notions and the corresponding ones for
OF,X -modules is given by the following result [EK 2, 3.2.3]

Proposition 6.3.1. Let X be a smooth k-scheme.

1. For any unit OF,X -module M there is a natural isomorphism

M 1⊗id→ DF,X

L
⊗OF,X

M

In particular, M has a natural DF,X -module structure.

2. The functor M 7→ DF,X ⊗OF,X
M induces an equivalence between the cate-

gory of unit OF,X -modules, and the category of unit DF,X -modules.

3. If M is a unit DF,X -module then M is locally finitely generated as a DF,X -
module if and only if it is locally finitely generated as an OF,X -module.

6.4. As usual we let • denote one of ∅, +, −, or b, and ∗ one of ∅, qc, u or lfgu.
We denote by D•(DF,X) the derived category of DF,X -modules with the indicated
bounded condition. We denote by D•∗(DF,X) the full subcategory of D•(DF,X)
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consisting of complexes whose cohomology sheaves satisfy the condition indicated
by ∗. As in §2, each of these subcategories is triangulated [EK 2, 3.1.2, 3.3.4].

In addition to these categories, we denote by Db
∗(DF,X)◦ the full (triangulated)

subcategory of Db
∗(DF,X) consisting of complexes which have finite Tor dimension

as complexes of OX -modules.
As in §2, we have a bifunctor

–
L
⊗OX

– : D−(DF,X)×D−(DF,X) → D−(DF,X)

We also define, for a map of smooth Wn(k)-schemes f : Y → X, functors f ! and
f+. As in §2, the key point is to define the appropriate bimodules.

To construct f ! we remark that for any DF,X -module M, f∗M has a natural
structure of DF,Y -module [EK 2, 2.2.2]. In fact, f∗M is natural a DY -module [Be,
§2.1], and we have a map

F ∗f∗M−̃→f∗F ∗M f∗φM→ f∗M

which makes f∗M a DF,Y -module by (5.2.1)(1).
In particular DF,Y→X := f∗DF,X is a (DF,Y , f−1DF,X)-bimodule by functori-

ality, and we define a functor

f ! : D−(DF,X) → D−(DF,Y )

by

f !(M•) = DF,Y→X

L
⊗f−1DF,X

f−1M•[dY/X ]

The definition of the (f−1DF,X ,DF,Y )-bimodule DF,X←Y used to define f+ is
more delicate [EK 2, 2.3.6]. Let us only mention that its underlying left f−1DX -
module is f∗(DF,X ⊗OX

ω−1
X ) ⊗OY

ωY . The key points in constructing the right
DF,Y -module structure is first to note that this module has a right DY -module
structure, by the same argument as in [Be, 2.4.1], and then use the fact that there
is an isomorphism of DY -modules F !ωY −̃→ωY (obtained from the compatibility
of “(–)!” with composition), together with (6.2.1)(2). We define the functor

f+ : D−(DF,Y ) → D−(DF,X)

by

f+M• = Rf∗(DF,X←Y

L
⊗DF,Y

M•)

We remark that on underlying DY -modules this functor agrees with the one of
[Be, §2.4].

Proposition 6.4.1. Let • be one of b or −, and ∗ one of ∅, qc, u, or lfgu. Also if
• = b, let × be one of ∅ or ◦, and ∅ otherwise. If f : Y → X is a map of smooth
Wn(k)-schemes then the functors f ! and f+ restrict to functors

f ! : D•∗(DF,X)× → D•∗(DF,Y )×.
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and

f+ : D•∗(DF,Y )× → D•∗(DF,X)×.

The bifunctor –
L
⊗OX

– restricts to a functor

–
L
⊗OX

– : D•∗(DF,X)× ×Db
∗(DF,X)◦ → D•∗(DF,X)×.

Proof. See [EK 2, 2.2.6, 2.3.13, 2.6, 3.5.1]. ut

The functors
L
⊗OX

f !, and f+ satisfy analogues of the properties listed in §2
for the case of OF,X -modules. In particular there is an analogue of Kashiwara’s
theorem, and f+ is left adjoint to f ! for proper maps. Rather than repeat the
statements, we refer the reader to [EK 2, §2, 3].

6.5. Let X be a smooth Wn(k)-scheme. As in (3.1), we denote by πX : Xét →
XZar the natural morphism of sites, and we set OXét

= π∗X , and DF,Xét
= π∗XDF,X .

We denote by Db
ctf (Xét, Z/pnZ) the full (triangulated) subcategory of the category

Db(Xét, Z/pnZ), consisting of complexes which have constructible cohomology, and
finite Tor dimension over Z/pnZ.

The sheaf OXét
is naturally a sheaf of DF,Xét

-modules, and so we may define
the functors

Sol(–) = RhomDF,Xét
(π∗X–,OXét

) : Db
lfgu(DF,X)◦ → D(Xét, Z/pnZ)

and

M(–) = RπX∗RhomZ/pnZ(–,OXét
) : Db

ctf (Xét, Z/pnZ) → D(DF,X)

The Riemann-Hilbert correspondence for unit DF,X -modules is the following
result [EK 2, 4.2.8]

Theorem 6.5.1. The functors Sol and M induce quasi-inverse, anti-equivalences
of triangulated categories between Db

lfgu(DF,X)◦ and Db
ctf (Xét, Z/pnZ). They ex-

change the functors
L
⊗Z/pnZ and

L
⊗OX

(up to a shift) and f−1 and f !. If f is
quasi-projective, they exchange f! and f+.

The proof of the theorem uses a dévissage technique to reduce to the case n = 1,
when one can apply the results of [EK 1], thanks to (6.3.1).
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