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Abstract
Much of the analysis of the Schramm-Loewner evolution (SLE) boils down to

estimates about the Bessel process. This is a self-contained summary of the one-
dimensional Bessel process. Although the motivation and choice of topics come from
applications to SLE, these notes do not use any facts about SLE. The notes do
assume familiarity with stochastic calculus including Itô’s formula, the product rule,
Girsanov’s theorem, and time changes of diffusions.

1 Introduction

This is an adaptation of one of the chapters of a long, far from finished, project about
conformally invariant processes and the Schramm-Loewner evolution (SLE). Although the
motivation and the choice of topics for these notes come from applications to SLE, the topic
is the one-dimensional Bessel process. No SLE is assumed or discussed. It is assumed that
the reader has a background in stochastic calculus including Itô’s formula, the product rule,
Girsanov’s theorem, and time changes of diffusions. The Girsanov perspective is taken from
the beginning.

The Bessel process is one of the most important one-dimensional diffusion processes.
There are many ways that if arises. We will start by viewing the Bessel process as a Brownian
motion “tilted” by a function of the current value.

We will give a summary of what is contained here as well as some discussion of the
relevance to the Schramm-Loewner evolution (SLE). For an introduction to SLE, see [1].
The discussion here is for people who know about SLE; we emphasize that knowledge of
SLE is not required for this paper.

The chordal Schramm-Loewner evolution with parameter κ = 2/a > 0 (SLEκ) is the
random path γ(t) from 0 to infinity in the upper half-plane H defined as follows. Let Ht

denote the unbounded component of H \ γ(0, t] and let gt : Ht → H be the unique conformal
transformation with g(x) = z = o(1) as z →∞. Then

∂tgt(z) =
a

gt(z) +Bt

, g0(z) = z,
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where Bt is a standard Brownian motion. In fact, gt can be extended by Schwarz reflection
to a conformal transformation on H∗t , defined to be the unbounded component of the com-
plement of {z : z ∈ γ[0, t] or z ∈ γ[0, t]}. Note that H∗0 = C \ {0} and for fixed z ∈ H∗0 , the
solution of the equation above exists for t < Tz ∈ (0,∞]. In our parametrization,

gt(z) = z +
at

|z|
+O(|z|−2), z →∞.

If x > 0 and Xt = Xx
t = gt(z) +Bt, then Xt satisfies

dXt =
a

Xt

dt+ dBt, X0 = x.

This is the first place that the Bessel process arises; although only a > 0 is relevant here,
other applications in SLE require understanding the equation for negative values as well, so
we define the Bessel process for all a ∈ R. We use a as our parameter throughout because
it is easiest; however there two other more common choices: the index ν = a − 1

2
or the

dimension d = 2a + 1. The latter terminology comes from the fact that the absolute value
of a d-dimensional Brownian motion is a Bessel process with parameter a = (d− 1)/2.

In the first section we consider the process only for t < T0, that is, killed when it reaches
the origin. While the process can be defined by the equation, we derive the equation by
starting with Xt as a Brownian motion and then “weighting locally” by Xa

t . The equation
comes from the Girsanov theorem. We start with some basic properties: scaling, the Radon-
Nikodym derivative with respect to Brownian motion, and the phase transition at a = 1/2
for recurrence and transience (which corresponds to the phase transition at κ = 4 between
simple paths and self-intersecting paths for SLE). Here we also consider the logarithm of
the Bessel process and demonstrate the technique of using random time changes to help
understand the process.

The transition density for the killed process is given in Section 2.2. It involves a special
function; rather than writing it in terms of the modified Bessel function, we choose to write
it in terms of the “entire” part of the special function that we label as ha. The Radon-
Nikodym derivative gives the duality between the process with parameters a and 1− a and
allow us to compute the density only for a ≥ 1/2. From this the density for the hitting time
T0 for a < 1/2 follows easily. We then consider the Green’s function and also the process
on geometric time scales which is natural when looking at the large time behavior of the
process.

In Section 2.5, the Bessel process Xx
t is viewed as a function of its starting position x;

indeed, this is how it appears in the Schramm-Loewner evolution. Here we prove when
it is possible for the process starting at different points to reach the origin at the same
time. For SLE, this corresponds to the phase transition at κ = 2/a = 8 between plane
filling curves and non-plane filling curves. in the following subsection, we show how to give
expectations of a certain functional for Brownian motion and Bessel process; this functional
appears as a power of the spatial derivative of Xx

t . There is a basic technique to finding the
asymptotic value of these functionals: use a (local) martingale of the form of the functional
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times a function of the current value of the process; find the limiting distribution under
this martingale; then compute the expected value of the reciprocal of the function in the
invariant distribution.

The next section discusses the reflecting Bessel process for −1/2 < a < 1/2. If a ≥ 1/2,
the process does not reach the origin and if a ≤ −1/2 the pull towards the origin is too
strong to allowed a reflected process to be defined. There are various ways to define the
process that is characterized by:

• Away from the origin it acts like a Bessel process.

• The Lebesgue measure of the amount of time spent at the origin is zero.

We start by just stating what the transition density is. Proving that it is a valid transition
density requires only computing some integrals (we make use of integral tables [2, 3] here) and
this can be used to construct the process by defining on dyadics and establishing continuity
of the paths. The form of the density also shows that for each t, the probability of being
at the origin at time t is zero. We then show how one could derive this density from the
knowledge of the density starting at the origin — if we start away from the origin we proceed
as in the Bessel process stopped at time 0 and then we continue.

In the following two subsections we consider two other constructions of the reflecting
process both of which are useful for applications:

• First construct the times at which the process is at the origin (a random Cantor set)
and then define the process at other times using Bessel excursions. For a = 0, this
is the Itô excursion construction for reflecting Brownian motion. Constructing Bessel
excursions is an application of the Girsanov theorem.

• Consider the flow of particles {Xx
t : x > 0} doing coupled Bessel processes stopped at

the origin and define the reflected process by

inf{Xx
t : Tx > t}.

The Bessel process relates to the chordal, or half-plane, Loewner equation. For the radial
equation for which curves approach an interior point, a similar equation, the radial Bessel
equation arises. It is an equation restricted to (0, π) and the value often represents one-half
times the argument of a process on the unit circle. We generalize some to consider processes
that locally look like Bessel processes near 0 and π (the more general processes also arise in
SLE.) The basic assumption is that the drift of the process looks like the Bessel process up
to the first two terms of the expansion. In this case, the process can be defined in terms of
the Radon-Nikodym derivative (locally) to a Bessel process. This approach also allows us
to define a reflected process for −1/2 < a < 1/2. A key fact about the radial Bessel process
is the exponentially fast convergence of the distribution to the invariant distribution. This
is used to estimate functionals of the process and these are important in the study of radial
SLE and related processes.

In the final section, we discuss the necessary facts about special functions that we use,
again relying on some integral tables in [2, 3].
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2 The Bessel process (up to first visit to zero)

Suppose (Ω,F ,P) is a probability space on which is defined a standard one-dimensional
Brownian motion Xt with filtration {Ft} with X0 > 0. Let Tx = inf{t : Xt = x}. Let
a ∈ R, and let Zt = Xa

t . The Bessel process with parameter a will be the Brownian motion
“weighted locally by Xa

t ”. If a > 0, then the Bessel process will favor larger values while for
a < 0 it will favor smaller values. The value a = 0 will correspond to the usual Brownian
motion. In this section we will stop the process at the time T0 when it reaches the origin.

Itô’s formula shows that if f(x) = xa, then

dZt = f ′(Xt) dXt +
1

2
f ′′(Xt) dt

= Zt

[
a

Xt

dXt +
a(a− 1)

2X2
t

dt

]
, t < T0.

For the moment, we will not consider t ≥ T0. Let

Nt = Nt,a =

[
Xt

X0

]a
exp

{
−(a− 1)a

2

∫ t

0

ds

X2
s

}
, t < T0. (1)

Then the product rule combined with the Itô calculation above shows that Nt is a local
martingale for t < T0 satisfying

dNt =
a

Xt

Nt dXt, N0 = 1.

Suppose 0 < ε < X0 < R and let τ = τε,R = Tε ∧ TR. For fixed ε, R and t < ∞, we can see
that Ns∧τ is uniformly bounded for s ≤ t satisfying

dNt∧τ =
a

Xt∧τ
1{t < τ}Nt∧τ dXt.

In particular, Nt∧τ is a positive continuous martingale.
We will use Girsanov’s theorem and we assume the reader is familiar with this. This is a

theorem about positive martingales that can also be used to study positive local martingales.
We discuss now in some detail how to do this, but later on we will not say as much. For
each t, ε, R, we define the probability measure P̂a,ε,R,t on Ft∧τ by

dP̂a,ε,R,t
dP

= Nt∧τ , τ = τε,R.

Since Nt∧τ is a martingale, we can see that if s < t, then P̂a,ε,R,t restricted to Fs∧τ is P̂a,ε,R,s.
For this reason, we write just P̂a,ε,R. Girsanov’s theorem states that if

Bt = Bt,a = Xt −
∫ t

0

a ds

Xs

, t < τ,
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then Bt is a standard Brownian motion with respect to P̂a,ε,R, stopped at time τ . In other
words,

dXt =
a

Xt

dt+ dBt, t ≤ τ.

Note that as Xt gets large, the drift term a/Xt gets smaller. By comparison with a Brownian
motion with drift, we can therefore see that as R→∞,

lim
R→∞

P̂a,ε,R{t ∧ τ = TR} → 0,

uniformly in ε. Hence we can write P̂a,ε, and see that

dXt =
a

Xt

dt+ dBt, t ≤ Tε.

Note that this equation does not depend on ε except in the specification of the allowed values
of t. For this reason, we can write P̂a, and let ε ↓ 0 and state that

dXt =
a

Xt

dt+ dBt, t < T0,

where in this case we define T0 = limε↓0 Tε. This leads to the definition.

Definition Xt is a Bessel process starting at x0 > 0 with parameter a stopped when it
reaches the origin, if it satisfies

dXt =
a

Xt

dt+ dBt, t < T0, X0 = x0, (2)

where Bt is a standard Brownian motion.

We have written the parameter a to make the equation as simple as possible. However,
there are two more common ways to parametrize the family of Bessel process.

• The dimension d,

a =
d− 1

2
, da = 2a+ 1.

This terminology comes from the fact that if Wt is a standard d-dimensional Brownian
motion, then the process Xt = |Wt| satisfies the Bessel process with a = (d− 1)/2. We
sketch the argument here. First note that

dX2
t =

d∑
j=1

d[(W j
t )2] = 2

d∑
j−1

W j
t dW

j
t + d dt,

which we can write as
dX2

t = d dt+ 2Xt dZt,
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for the standard Brownian motion

Zt =
d∑
j=1

∫ t

0

|W j
s |

Xs

dW j
s .

(To see that Zt is a standard Brownian motion, check that Zt is a continuous martingale
with 〈Z〉t = t.) We can also use Itô’s formula to write

dX2
t = 2Xt dXt + d〈X〉t.

Equating the two expressions for dX2
t , we see that

dXt =
d−1

2

Xt

dt+ dZt.

The process X2
t is called the d-dimensional squared-Bessel process.

• The index ν,

a =
2ν + 1

2
, νa =

2a− 1

2
.

Note that ν1−a = −νa. We will see below that there is a strong relationship between
Bessel processes of parameter a and parameter 1− a.

As we have seen, to construct a Bessel process, we can start with a standard Brownian
motion Xt on (Ω,P,F), and then consider the probability measure P̂a. Equivalently, we
can start with a Brownian motion Bt on (Ω,P,F) and define Xt to be the solution of the
equation (2). There is a technical issue that the next proposition handles. The measure P̂a
is defined only up to time T0+. The next proposition shows that we can replace this with T0

and get continuity at time T0.

Proposition 2.1. Let T0+ = limr↓0 Tr.

1. If a ≥ 1/2, then for each x > 0, t > 0.

P̂xa{T0+ ≤ t} = 0.

2. If a < 1/2, then for each t > 0,

P̂xa{T0+ ≤ t} > 0.

Moreover, on the event {T0+ ≤ t}, except on an event of P̂a-probability zero,

lim
t↑T0

Xt = 0.
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Proof. If 0 < r < x < R <∞, let τ = Tr ∧ TR. Define φ(x) = φ(x; r, R, a) by

φ(x) =
x1−2a − r1−2a

R1−2a − r1−2a
, a 6= 1/2,

φ(x) =
log x− log r

logR− log r
, a = 1/2.

This is the unique function on [r, R] satisfying the boundary value problem

xφ′′(x) = −2a φ′(x), φ(r) = 0, φ(R) = 1. (3)

Using Itô’s formula and (3), we can see that φ(Xt∧τ ) is a bounded continuous P̂a-
martingale, and hence by the optional sampling theorem

φ(x) = Êxa [φ(Xτ )] = P̂xa{TR < Tr}.

Therefore,

P̂xa{TR < Tr} =
x1−2a − r1−2a

R1−2a − r1−2a
, a 6= 1/2, (4)

P̂xa{TR < Tr} =
log x− log r

logR− log r
, a = 1/2.

In particular, if x > r > 0,

P̂xa{Tr <∞} = lim
R→∞

P̂xa{Tr < TR} =

{
(r/x)2a−1, a > 1/2

1, a ≤ 1/2,
(5)

and if x < R,

P̂xa{TR < T0+} = lim
r↓0

P̂xa{TR < Tr} =

{
(x/R)1−2a, a < 1/2

1, a ≥ 1/2.
(6)

If a ≥ 1/2, then (5) implies that for each t, R <∞,

P̂xa{T0+ ≤ t} ≤ P̂xa{T0+ < TR}+ P̂xa{TR < T0+;TR < t}.

Letting R→∞ (and doing an easy comparison with Brownian motion for the second term
on the right), shows that for all t,

P̂xa{T0+ ≤ t} = 0,

and hence, P̂xa{T0+ <∞} = 0.
If a < 1/2, let τn = T2−2n and σn = inf{t > τn : Xt = 2−n}. Then if x > 2−2n, (6) implies

that
P̂xa{σn < T0+} = 2n(2a−1).
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In particular,
∞∑
n=0

P̂xa{σn < T0+} <∞,

and by the Borel-Cantelli lemma, with Pxa-probability one, T0+ < σn for all n sufficiently
large. On the event that this happens, we see that

lim
t↑T0+

Xt = 0,

and hence T0 = T0+. On this event, we have max0≤t≤T0 Xt <∞, and hence

P̂xa{T0+ =∞} ≤ P̂xa
{

sup
0≤t<T0+

Xt =∞
}
≤ lim

R→∞
P̂xa{T0+ < TR} = 0.

With this proposition, we can view P̂xa for each t as a probability measure on continuous
paths Xs, 0 ≤ s ≤ t ∧ T0.

Proposition 2.2. For each x, t > 0 and a ∈ R, the measures Px and P̂xa, considered as
measures on paths Xs, 0 ≤ s ≤ t, restricted to the event {T0 > t} are mutually absolutely
continuous with Radon-Nikodym derivative

dP̂xa
dPx

=

[
Xt

x

]a
exp

{
−(a− 1)a

2

∫ t

0

ds

X2
s

}
. (7)

In particular,
dP̂xa
dPx1−a

=

[
Xt

x

]2a−1

. (8)

Proof. The first equality is a restatement of what we have already done. and the second
follows by noting that the exponential term in (7) is not changed if we replace a with 1−a.

Corollary 2.3. Suppose x < y and a ≥ 1/2. Consider the measure P̃ya conditioned on the
event {Tx < Ty}, considered as a measure on paths Xt, 0 ≤ t ≤ Tx. Then P̃ya is the same as
P̃y1−a, again considered as a measure on paths Xt, 0 ≤ t ≤ Tx.

Proof. Using (7), we can see that the Radon-Nikodym derivative of the conditioned measure
is proportional to the exponential term (the other term is the same for all paths). We also
see from (8), a rederivation of the fact that P̃ya{Tx <∞} = (x/y)2a−1.

For fixed t, on the event {T0 > t}, the measures Px and P̂xa are mutually absolutely
continuous. Indeed, if 0 < r < x < R, and τ = Tr ∧ TR, then Px and P̂x are mutually
absolutely continuous on Fτ with

dP̂x

dPx
= Nτ,a ∈ (0,∞).

However, if a < b < 1/2, the measures P̂a and P̂b viewed as measure on on curves Xt, 0 ≤
t ≤ T0, can be shown to be singular with respect to each other.
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Proposition 2.4 (Brownian scaling). Suppose Xt is a Bessel process satisfying (2), r > 0,
and

Yt = r−1Xr2t, t ≤ r−2 T0.

Then Yt is a Bessel process with parameter a stopped at the origin.

Proof. This follows from the fact that Yt satisfies

dYt =
a

Yt
dt+ dWt,

where Wt = r−1Br2t is a standard Brownian motion.

2.1 Logarithm

When one takes the logarithm of the Bessel process, the parameter ν = a − 1
2

becomes the
natural one to use. Suppose Xt satisfies

dXt =
ν + 1

2

Xt

dt+ dBt, X0 = x0 > 0.

If Lt = logXt, then Itô’s formula shows that

dLt =
1

Xt

dXt −
1

2X2
t

dt =
ν

X2
t

dt+
1

Xt

dBt.

Let

σ(s) = inf

{
t :

∫ t

0

dr

X2
r

= s

}
, L̂s := Lσ(s).

Then L̂s satisfies

dL̂s = ν ds+ dWs, Ws :=

∫ σ(s)

0

dBr

Xr

,

Here Ws is a standard Brownian motion. In other words the logarithm of the Bessel process
is a time change of a Brownian motion with constant drift. Note that σ(∞) = T0. If ν < 0, it
takes an infinite amount of time for the logarithm to reach −∞ in the new parametrization,
but it only takes a finite amount of time in the original parametrization.

2.2 Density

For most of the remainder of this paper, we will now drop the bulky notation P̂xa and use P
or Px. We assume that Bt is a standard Brownian motion and Xt satisfies

dXt =
a

Xt

dt+ dBt, X0 = x > 0
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This is valid until time T = T0 = inf{t : Xt = 0}. When a is fixed, we will write L,L∗ for
the generator and its adjoint, that is, the operators

Lf(x) =
a

x
f ′(x) +

1

2
f ′′(x),

L∗f(x) = −
[
af(x)

x

]′
+

1

2
f ′′(x) =

a

x2
f(x)− a

x
f ′(x) +

1

2
f ′′(x).

For x, y > 0, let qt(x, y; a) denote the transition density for the Bessel process stopped
when it reaches the origin. In other words, if I ⊂ (0,∞) is an interval,

Px{T > t;Xt ∈ I} =

∫
I

qt(x, y; a) dy.

In particular, ∫ ∞
0

qt(x, y; a) dy = Px{T > t}
{

= 1, a ≥ 1/2,
< 1, a < 1/2

.

If a = 0, this is the density of Brownian motion killed at the origin for which we know that
qt(x, y; 0) = qt(y, x; 0). We can give an explicit form of the density by solving either of the
“heat equations”

∂tqt(x, y; a) = Lxqt(x, y; a), ∂tqt(x, y; a) = L∗yqt(x, y; a),

with appropriate initial and boundary conditions. The subscripts on L,L∗ denote which
variable is being differentiated with the other variables remaining fixed. The solution is
given in terms of a special function which arises as a solution to a second order linear ODE.
We will leave some of the computations to an appendix, but we include the important facts
in the next proposition. We will use the following elementary fact: if a nonnegative random
variable T has density f(t) and r > 0, then the density of rT is

r−1 f(t/r). (9)

Proposition 2.5. Let qt(x, y; a) denote the density of the Bessel process with parameter a
stopped when it reaches the origin. Then for all x, y, t, r > 0,

qt(x, y; 1− a) = (y/x)1−2a qt(x, y; a), (10)

qt(x, y; a) = qt(y, x; a) (y/x)2a, (11)

qr2t(rx, ry; a) = r−1 qt(x, y; a). (12)

Moreover, if a ≥ 1/2,

q1(x, y; a) = y2a exp

{
−x

2 + y2

2

}
ha(xy), (13)
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where ha is the entire function

ha(z) =
∞∑
k=0

z2k

2a+2k− 1
2 k! Γ(k + a+ 1

2
)
. (14)

In particular,

q1(0, y; a) := q1(0+, y, a) =
2

1
2
−a

Γ(a+ 1
2
)
y2a e−y

2/2, a ≥ 1/2. (15)

In the proposition we defined ha by its series expansion (14), but it can also be defined
as the solution of a particular boundary value problem.

Lemma 2.6. ha is the unique solution of the second order linear differential equation

z h′′(z) + 2a h′(z)− z h(z) = 0. (16)

with h(0) = 2
1
2
−a/Γ(a+ 1

2
), h′(0) = 0.

Proof. See Proposition 5.1.

Remarks.

• By combining (12) and (13) we get for a ≥ 1/2,

qt(x, y; a) =
1√
t
q1

(
x√
t
,
y√
t
; a

)
=

y2a

ta+ 1
2

exp

{
−x

2 + y2

2t

}
ha

(xy
t

)
. (17)

• The density is often written in terms of the modified Bessel function. If ν = a − 1
2
,

then Iν(x) := xν hν+ 1
2
(x) is the modified Bessel function of the first kind of index ν.

This function satisfies the modified Bessel equation

x2 I ′′(x) + x I ′(x)− [ν2 + x2] I(x) = 0.

• The expressions (13) and (17) hold only for a ≥ 1/2. For a < 1/2, we can use (10) to
get

qt(x, y; a) =
1√
t
q1

(
x√
t
,
y√
t
; a

)
= (y/x)2a−1 1√

t
q1

(
x√
t
,
y√
t
; 1− a

)
=

y

x2a−1 t
3
2
−a

exp

{
−x

2 + y2

2t

}
h1−a

(xy
t

)
.
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• In the case a = 1/2, we can use the fact that the radial part of a two-dimensional
Brownian motion is a Bessel process and write

q1(x, y; 1/2) =
y

2π

∫ 2π

0

exp

{
(x− y cos θ)2 + (y sin θ)2

2

}
dθ = y e−(x2+y2)/2 h1/2(xy),

where

h1/2(r) =
1

2π

∫ 2π

0

er cos θ dθ = I0(r).

The last equality is found by consulting an integral table. Note that h1/2(0) =
1, h′1/2(0) = 0.

• We can write (15) as

cd y
d−1 e−y

2/2 d = 2a+ 1,

which for positive integer d can readily be seen to be the density of the radial part of a
random vector in Rd with density proportional to exp{−|x|2/2}. This makes this the
natural guess for all d for which cd can be chosen to make this a probability density,
that is, a > −1/2. For −1/2 < a < 1/2, we will see that this is the density of the
Bessel process reflected (rather than killed) at the origin.

• Given the theorem, we can determine the asymptotics of ha(x) as x→∞. Note that

lim
x→∞

q1(x, x; a) =
1√
2π
,

since for large x and small time, the Bessel process looks like a standard Brownian
motion. Therefore,

lim
x→∞

x2a e−x
2

ha(x
2) =

1√
2π
,

and hence

ha(x) ∼ 1√
2π

x−a ex, x→∞.

In fact, there is an entire function ua with ua(0) = 1/
√

2π such that for all x > 0,

ha(x) = u(1/x)x−a ex.

See Proposition 5.3 for details. This is equivalent to a well known asymptotic behavior
for Iν ,

Iν(x) = xν hν+ 1
2
(x) ∼ ex√

2πx
.

• The asymptotics implies that for each a ≥ 1/2, there exist 0 < c1 < c2 <∞ such that
for all 0 < x, y, t <∞,

c1

[y
x

]2a 1√
t
e−(x−y)2/2t ≤ qt(x, y; a) ≤ c2

[y
x

]2a 1√
t
e−(x−y)2/2t, t ≤ xy, (18)
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c1

[
y√
t

]2a
1√
t
e−(x2+y2)/2t ≤ qt(x, y; a) ≤ c2

[
y√
t

]2a
1√
t
e−(x2+y2)/2t, t ≥ xy, (19)

Proof. The relation (10) follows from (8). The relation (11) follows from the fact that the
exponential term in the compensator Nt,a for a reversed path is the same as for the path.
The scaling rule (12) follows from Proposition 2.4 and (9).

For the remainder, we fix a ≥ 1/2 and let qt(x, y) = qt(x, y; a). The heat equations give
the equations

∂tqt(x, y; a) =
a

x
∂x qt(x, y; a) +

1

2
∂xx qt(x, y; a), (20)

∂tqt(x, y; a) =
a

y2
qt(x, y; a)− a

y
∂y qt(x, y; a) +

1

2
∂yy qt(x, y; a), (21)

In our case, direct computation (See Proposition 5.2) shows that if ha satisfies (16) and
qt is defined as in (15), then qt satisfies (20) and (21). We need to establish the boundary
conditions on ha. Let

qt(0, y; a) = lim
x↓0

qt(x, y; a)

Since

1 =

∫ ∞
0

q1(0+, y; a) dy =

∫ ∞
0

ha(0) y2a e−y
2/2 dy,

we see that

1

ha(0)
=

∫ ∞
0

y2a e−y
2/2 dy =

∫ ∞
0

(2u)a e−u
du√
2u

= 2a−
1
2 Γ

(
a+

1

2

)
.

Note that
q1(x, 1; a) = q1(0, 1; a) + xh′a(0) e−1/2 +O(x2), x ↓ 0.

Hence to show that h′a(0) = 0, it suffices to show that q1(x, 1; 0) = q1(0, 1; a)+o(x). Suppose
0 < r < x, and we start the Bessel process at r. Let τx be the the first time that the process
reaches x. Then by the strong Markov property we have

q1(r, 1; a) =

∫ 1

0

q1−s(x; 1; 0) dF (s),

where F is the distribution function for τx. Using (20), we see that q1−s(x; 1; 0) = q1(x, 1; 0)+
O(s). Therefore,

|q1(x, 1; a)− q1(r, 1; a)| ≤ c

∫ 1

0

s dF (s) ≤ cEr[τx].

Using the scaling rule, we can see that Er[τx] = O(x2).

13



We note that one standard way to solve a heat equation

∂tf(t, x) = Lxf(t, x),

with zero boundary conditions and given initial conditions, is to find a complete set of
eigenfunctions for L

Lφj(x) = −λj φj(x),

and to write the general solution as

∞∑
j=1

cj e
−λjt φj(x).

The coefficients cj are found using the initial condition. This gives a series solution. This
could be done for the Bessel process, but we had the advantage of the scaling rule (12),
which allows the solution to be given in terms of a single special function ha.

There are other interesting examples that will not have this exact scaling. Some of these,
such as the radial Bessel process below, look like the Bessel process near the endpoints. We
will use facts about the density of the Bessel process to conclude facts about the density
of these other processes. The next proposition gives a useful estimate — it shows that the
density of a Bessel process at y ∈ (0, π/2] is comparable to that one would get by killing the
process when it reaches level 7π/8. (The numbers 3π/4 < 7π/8 can be replaced with other
values, of course, but the constants depend on the values chosen. These values will be used
in discussion of the radial Bessel process.)

Proposition 2.7. Let q̂t(x, y; a) be the density of the Bessel process stopped at time T =
T0 ∧ T7π/8. If a ≥ 1/2, then for every 0 < t1 < t2 < ∞, there exist 0 < c1 < c2 < ∞ such
that if t1 ≤ t ≤ t2 and 0 < x, y ≤ 3π/4, then

c1 y
2a ≤ q̂t(x, y; a) ≤ qt(x, y; a) ≤ c2 y

2a.

This is an immediate corollary of the following.

Proposition 2.8. Let q̂t(x, y; a) be the density of the Bessel process stopped at time T =
T0 ∧ T7π/8. For every a ≥ 1/2 and t0 > 0, there exists 0 < c1 < c2 < ∞ such that for all
0 ≤ x, y ≤ 3π/4 and t ≥ t0,

q̂t(x, y; a) ≥ c e−βt qt(x, y; a).

c1Px{T > t− t0;Xt ≤ 3π/4} ≤ y−2a q̂t(x, y; a) ≤ c2 Px{T > t− t0}.

Proof. It suffices to prove this for t0 sufficiently small. Note that the difference qt(x, y; a)−
q̂t(x, y; a) represents the contribution to qt(x, y; a) by paths that visit 7π/8 some time before
t. Therefore, using the strong Markov property, we can see that

qt(x, y; a)− q̂t(x, y; a) ≤ sup
0≤s≤t

[qs(x, y; a)− q̂s(x, y; a)] ≤ sup
0≤s≤t

qs(3π/4, y; a).

14



Using the explicit form of qt(x, y; a) (actually it suffices to use the up-to-constants bounds
(18) and (19)), we can find t′ > 0 such that

c1 y
2a ≤ q̂t(x, y; a) ≤ c2 y

2a, t′ ≤ t ≤ 2t′, 0 < x, y ≤ π/2.

If s ≥ 0, and t′ ≤ t ≤ 2t′,

q̂s+t(x, y; a) =

∫ 7π/8

0

q̂s(x, z; a) q̂t(z, y; a) dy

≤ cPx{T > s} sup
0≤z≤7π/8

qt(z, y; a)

≤ cPx{T > s} y2a,

q̂s+t(x, y; a) ≥
∫ 3π/4

0

q̂s(x, z; a) q̂t(z, y; a) dy

≥ cPx{T > s,Xs ≤ 3π/4} inf
0≤z≤1

q̂t(z, y; a)

≥ cPx{T > s,Xs ≤ 3π/4} y2a.

Proposition 2.9. Suppose Xt is a Bessel process with parameter a < 1/2 with X0 = x, then
the density of T0 is

2a−
1
2

Γ(1
2
− a)

x1−2a ta−
3
2 exp{−x2/2t}, (22)

Proof. The distribution of T0 given that X0 = x is the same as the distribution of x2 T0 given
that X0 = 1. Hence by (9), we may assume x = 1. Let

F (t) = P{T0 ≤ t | X0 = 1} = P{T0 ≤ tx2 | X0 = x}.

Then the strong Markov property implies that

s−1 P{t < T0 ≤ t+ s} = s−1

∫ ∞
0

qt(1, y; a)F (s/y2) dy

=

∫ ∞
0

[x
√
s]−1qt(1,

√
s x; a)xF (1/x) dx.

Hence the density is

lim
s↓0

∫ ∞
0

[x
√
s]−1qt(1,

√
s x; a)xF (1/x) dx.

We write yt = y/
√
t Using Proposition 2.5, we see that

y−1 qt(1, y; a) = t−1/2 y−1 q1(t−1/2, yt; a)

= t−1/2 y2a−1 q1(yt, t
−1/2; a)

= t−1/2 q1(yt, t
−1/2; 1− a).

15



Therefore,

lim
y↓0

y−1 qt(1, y; a) = t−1/2 lim
z↓0

q1(z, t−1/2; 1− a) = h1−a(0) ta−
3
2 e−1/2t.

This establishes the density up to a constant which is determined by∫ ∞
0

ta−
3
2 e−1/2t dt = 2

1
2
−a
∫ ∞

0

u−
1
2
−a e−u du = 2

1
2
−a Γ

(
1

2
− a
)
.

2.3 Geometric time scale

It is often instructive to consider the scaled Bessel process at geometric times (this is some-
times called the Ornstein-Uhlenbeck scaling). For this section we will assume a ≥ 1/2
although much of what we say is valid for a < 1/2 up to the time that the process reaches
the origin and for −1/2 < a < 1/2 for the reflected process.

Suppose Xt satisfies

dXt =
a

Xt

dt+ dBt,

and let

Yt = e−t/2Xet Wt =

∫ et

0

e−s/2 dBs.

Note that

dXet =
a et

Xet
dt+ et/2 dBet = et/2

[
a

Yt
dt+ dBet

]
,

or

dYt =

[
a

Yt
− Yt

2

]
dt+ dWt. (23)

This process looks like the usual Bessel process near the origin, and it is not hard to see that
processes satisfying (23) with a ≥ 1/2, never reaches the origin. Of course, we knew this
fact from the definition of Yt and the fact that Xt does not reach the origin.

Not as obvious is the fact that Yt is a recurrent process, in fact, a positive recurrent
process with an invariant density. Let us show this in two ways. First, note that the process
Yt is the same as a process obtained by starting with a Brownian motion Yt and weighting
locally by the function

φ(x) = xa e−x
2/4.

Indeed, using Itô’s formula and the calculations,

φ′(x) =
[a
x
− x

2

]
φ(x),

φ′′(x) =

([a
x
− x

2

]2

− a

x2
− 1

2

)
φ(x) =

[
a2 − a
x2

− (a+
1

2
) +

x2

4

]
φ(x),
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we see that if

Mt = φ(Xt) exp

{∫ t

0

(
a− a2

Y 2
s

+ (a+
1

2
)− Y 2

s

4

)
ds

}
,

then Mt is a local martingale satisfying

dMt =

[
a

Yt
− Yt

2

]
Mt dYt.

The invariant probability density for this process is given by

f(x) = c φ(x)2 =
2

1
2
−a

Γ(a+ 1
2
)
x2ae−x

2/2. (24)

where the constant is chosen to make this a probability density. The equation for an invariant
density is L∗f(x) = 0, where L∗ is the adjoint of the generator

L∗f(x) = −
([a
x
− x

2

]
f(x)

)′
+

1

2
f ′′(x)

=

(
a

x2
+

1

2

)
f(x) +

[x
2
− a

x

]
f ′(x) +

1

2
f ′′(x).

Direct differentiation of (24) gives

f ′(x) =

[
2a

x
− x
]
f(x),

f ′′(x) =

([
2a

x
− x
]2

− 2a

x2
− 1

)
f(x) =

[
4a2 − 2a

x2
− 4a− 1 + x2

]
f(x),

so the equation L∗f(x) = 0 comes down to

a

x2
+

1

2
+
[x

2
− a

x

] [2a

x
− x
]

+
1

2

[
4a2 − 2a

x2
− 4a− 1 + x2

]
= 0,

which is readily checked.
Let φt(x, y) denote the density of a process satisfying (23). Then

φt(x, y) = et/2 qet
(
x, et/2 y; a

)
= y2a exp

{
−e
−t x2 + y2

2

}
ha
(
e−t/2 xy

)
.

In particular,

lim
t→∞

φt(x, y) = q1(0, y; a) =
2

1
2
−a

Γ(a+ 1
2
)
y2a e−y

2/2 = f(y).
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2.4 Green’s function

We define the Green’s function (with Dirichlet boundary conditions) for the Bessel process
by

G(x, y; a) =

∫ ∞
0

qt(x, y; a) dt.

If a ≥ 1/2, then

G(x, y; a) =

∫ ∞
0

qt(x, y; a) dt =
2

1
2
−a

Γ(a+ 1
2
)

∫ ∞
0

y2a

ta+ 1
2

exp

{
−x

2 + y2

2t

}
ha

(xy
t

)
,

and

G1−a(x, y; a) =

∫ ∞
0

qt(x, y; 1− a) dt = (y/x)1−2a

∫ ∞
0

qt(x, y; a) dt = (y/x)1−2aG(x, y; a).

In particular,

G(1, 1; a) = G(1, 1; 1− a) =
2

1
2
−a

Γ(a+ 1
2
)

∫ ∞
0

1

ta+ 1
2

e−1/t ha(1/t) dt

=
2

1
2
−a

Γ(a+ 1
2
)

∫ ∞
0

1

u
3
2
−a
e−u ha(u) du.

Proposition 2.10. For all a, x, y,

G(x, y; a) = (x/y)1−2aG(x, y; 1− a).

G(x, y; a) = (y/x)2aG(y, x; a),

If a = 1/2, G(x, y; a) =∞ for all x, y. If a > 1/2, then

G(r, ry; a) = Ca r
[
1 ∧ y1−2a

]
,

where

Ca =
2

1
2
−a

Γ(a+ 1
2
)

∫ ∞
0

1

u
3
2
−a
e−u ha(u) du <∞.

Proof.

G(x, y; 1− a) =

∫ ∞
0

qt(x, y; 1− a) dt

= (y/x)1−2a

∫ ∞
0

qt(x, y; a) dt = (y/x)1−2aG(x, y; a).

G(x, y; a) =

∫ ∞
0

qt(x, y; a) dt = (y/x)2a

∫ ∞
0

qt(y, x; a) dt = (y/x)2aG(y, x; a).
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G(rx, ry; a) =

∫ ∞
0

qt(rx, ry; a) dt

=

∫ ∞
0

1

r
qt/r2(x, y; a) dt

=

∫ ∞
0

r qs(x, y; a) ds = r G(x, y; a).

We assume that a ≥ 1/2 and note that the strong Markov property implies that

G(x, 1; a) = Px{T1 <∞} G(1, 1; a) =
[
1 ∧ x1−2a

]
G(1, 1; a).

G(1, 1; a) =

∫ ∞
0

1

t(1−a)+ 1
2

e−1/t h1−a(1/t) dt.

2.5 Another viewpoint

The Bessel equation is

dXt =
a

Xt

dt+ dBt,

where Bt is a Brownian motion and a ∈ R. In this section we fix a and the Brownian motion
Bt but vary the initial condition x. In other words, let Xx

t be the solution to

dXx
t =

a

Xx
t

dt+ dBt, X0 = x, (25)

which is valid until time T x0 = inf{t : Xx
t = 0}. The collection {Xx

t } is an example of a
stochastic flow. If t < T x0 , we can write

Xx
t = x+Bt +

∫ t

0

a

Xx
s

ds.

If x < y, then

Xy
t −Xx

t = y − x+

∫ t

0

[
a

Xy
s
− a

Xy
s

]
ds = y − x−

∫ t

0

[
a(Xy

s −Xx
s )

Xx
s X

x
s

]
ds. (26)

In other words, if t < T x0 ∧ T
y
0 , then Xy

t −Xx
t is differentiable in t with

∂t [Xy
t −Xx

t ] = −[Xy
t −Xx

t ]
a

Xx
t X

y
t

,

which implies that

Xy
t −Xx

t = (y − x) exp

{
−a
∫ t

0

ds

Xx
s X

y
s

}
.
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From this we see that Xy
t > Xx

t for all t < T x0 and hence T x0 ≤ T y0 . By letting y → x we see
that

∂xX
x
t = exp

{
−a
∫ t

0

ds

(Xx
s )2

}
. (27)

Although Xx
t < Xy

t for all t > T x0 , as we will see, it is possible for T x0 = T y0 .

Proposition 2.11. Suppose 0 < x < y <∞ and Xx
t , X

y
t satisfy (25) with Xx

0 = x,Xy
0 = y.

1. If a ≥ 1/2, then P{T x0 =∞ for all x} = 1.

2. If 1/4 < a < 1/2 and x < y, then

P{T x0 = T y0 } > 0.

3. If a ≤ 1/4, then with probability one for all x < y, T x0 < T y0 .

Proof. If a ≥ 1/2, then Proposition 2.1 implies that for each x, P{T x0 = ∞} = 1 and hence
P{T x0 =∞ for all rational x} = 1. Since T x0 ≤ T y0 for x ≤ y, we get the first assertion.

For the remainder we assume that a < 1/2. Let us write Xt = Xx
t , Yt = Xy

t , T
x =

T x0 , T
y = T y0 . Let h(x, y) = h(x, y; a) = P{T x = T y}. By scaling we see that h(x, y) =

h(x/y) := h(x/y, 1). Hence, we may assume y = 1. We claim that h(0+, 1) = 0. Indeed,
T r has the same distribution as r2 T 1 and hence for every ε > 0 we can find r, δ such that
P{T r ≥ δ} ≤ ε/2,P{T 1 ≤ δ} ≤ ε/2, and hence P{T 1 = T r} ≤ ε.

Let u = supt<Tx Yt/Xt. We claim that

P{T x < T 1;u <∞} = 0.

P{T x = T 1;u =∞} = 0.

The first equality is immediate; indeed, if Yt ≤ cXt for all t, then T 1 = T x. For the second
equality, let σN = inf{t : Yt/Xt = N}. Then,

P{u ≥ N ;T 1 = T x} ≤ P{T 1 = T x | σN <∞} = h(1/N) −→ 0, N →∞.

Let

Lt = log

(
Yt
Xt

− 1

)
= log(Yt −Xt)− logXt.

Note that
d log(Yt −Xt) = − a

Xt Yt
dt,

d logXt =
1

Xt

dXt −
1

2X2
t

dt =
a− 1

2

X2
t

dt+
1

Xt

dBt,
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and hence

dLt =

[ 1
2
− a
X2
t

− a

Xt Yt

]
dt− 1

Xt

dBt

=
1

X2
t

[
1

2
− a− a

eLt + 1

]
dt− 1

Xt

dBt. (28)

In order to understand this equation, let us change the time parametrization so that the
Brownian term has variance one. More precisely, define σ(t),Wt by∫ σ(t)

0

ds

X2
s

= t, Wt = −
∫ σ(t)

0

1

Xs

dBs.

Then Wt is a standard Brownian motion and L̃t := Lσ(t) satisfies

dL̃t =

[
1

2
− a−

aXσ(t)

Ỹσ(t)

]
dt+ dWt =

[
1

2
− a− a

eL̃t + 1

]
dt+ dWt.

For every a < 1/2, there exists u > 0 and K <∞ such that if L̃t ≥ K, then

1

2
− a− a

eL̃t + 1
> u.

Hence, by comparison with a Brownian motion with drift u, we can see that if L̃t ≥ K + 1,
then with positive probability, L̃t →∞ and hence Yt/Xt →∞. Hence starting at any initial
value L̃t = l there is a positive probability (depending on l) that L̃t →∞.

If a > 1/4, then there exists u > 0 and K <∞ such that if L̃t ≤ −K, then

1

2
− a− a

eL̃t + 1
< −u.

Hence by comparison with a Brownian motion with drift−u, we can see that if L̃t ≤ −(K+1),
then with positive probability, L̃t → −∞. Hence starting at any initial value L̃t = l there is
a positive probability (depending on l) that L̃t → −∞.

If a ≤ 1/4, then
1

2
− a− a

eL̃t + 1
> 0,

and hence by comparison with driftless Brownian motion, we see that

lim sup L̃t →∞. (29)

But as mentioned before, if L̃t ≥ K + 1 for some K there is a positive probability that
L̃t → ∞. Since (29) shows that we get an “infinite number of tries” we see that L̃t → ∞
with probability one.
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Using this argument, we also see that for 1/4 < a < 1/2, then with probability one either
L̃t → −∞ or L̃t →∞. Therefore,

lim
t↑Tx

Xt

Yt
∈ {0, 1}. (30)

We note that by closer examination, we can see that if 1/4 < a < 1/2, then

lim
y↓x

P{T x0 = T y0 } = 1.

Proposition 2.12. In the notation of the previous proposition, if 1/4 < a < 1/2 and
0 < x < y = 1. Then,

ψ(x) := P{T x0 6= T 1
0 } =

Γ(2a)

Γ(4a− 1) Γ(1− 2a)

∫ x

0

ds

(1− s)2−4a s2a
.

Proof. We note that ψ(x) is the solution of the boundary value problem

1

2
ψ′′(x) +

[
1− 2a

1− x
− a

x

]
ψ′(x) = 0, ψ(0) = 0, ψ(1) = 1. (31)

In the notation of the previous proof, let Rt = Xt/Yt,. Itô’s formula and the product
rule give

dXt = Xt

[
a

X2
t

dt+
1

Xt

dBt

]
,

d

[
1

Yt

]
= − 1

Y 2
t

dYt +
1

Y 3
t

d〈Y 〉t

=
1

Yt

[
1− a
Y 2
t

dt− 1

Yt
dBt

]
.

dRt = Rt

[
1

X2
t

(
a+ (1− a) R2

t −Rt

)
dt+

1

Xt

(1−Rt) dBt

]
= Rt

[
1

X2
t

((1− a)Rt − a)(Rt − 1) dt+
1

Xt

(1−Rt) dBt

]

After a suitable time change, we see that R̂t := Rσ(t) satisfies

dR̂t =
(1− a)R̂t − a
R̂t (1− R̂t)

dt+ dWt =

[
1− 2a

1− R̂t

− a

R̂t

]
dt+ dWt,

where Wt is a standard Brownian motion. Using (31), we see that ψ(R̂t) is a bounded
martingale, and using the optional sampling theorem and (30) we get the result.
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2.6 Functionals of Brownian motion and Bessel process

In the analysis of the Schramm-Loewner evolution, one often has to evaluate or estimate
expectations of certain functionals of Brownian motion or the Bessel process. One of the most
important functionals is the one that arises as the compensator in the change-of-measure
formulas for the Bessel process.

Suppose Xt is a Brownian motion with Xt = x > 0 and let

Jt =

∫ t

0

ds

X2
s

, Kt = e−Jt = exp

{
−
∫ t

0

ds

X2
s

}
,

which are positive and finite for 0 < t < T0. We have seen Kt in (27). Let It denote the
indicator function of the event {T0 > t}. The local martingale from (1) is

Nt,a = (Xt/X0)aKλa
t , where λa =

a(a− 1)

2
.

Note that

a =
1

2
± 1

2

√
1 + 8λa ≥

1

2
. (32)

In this section, we write E for Brownian expectations and Êa for the corresponding ex-
pectation with respect to the Bessel process with parameter a. In particular, if Y is an
Ft-measurable random variable,

Êxa [V It] = Ex [V ItNt,a] .

Proposition 2.13. Suppose λ ≥ −1/8 and

a =
1

2
+

1

2

√
1 + 8λ ≥ 1

2
,

is the larger root of the polynomial a2−a−2λ. If Xt is a Brownian motion with X0 = x > 0,
then

Ex[Kλ
t It] = xa Êxa

[
X−at It

]
= xa

∫ ∞
0

qt(x, y; a) y−a dy.

In particular, if x = 1, as t→∞,

E1[Kλ
t It] = t−

a
2

Γ(a
2

+ 1
2
)

2a/2 Γ(a+ 1
2
)

[1 +O(t−1)].

Proof.

Ex
[
Kλ
t It
]

= Ex
[
Nt,a (Xt/X0)−a It

]
= xa Êxa

[
X−at It

]
= xa

∫ ∞
0

qt(x, y; a) y−a dy.
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Since qt(x, y; a) � y2a as y ↓ 0, the integral is finite.
We now set x = 1 and use Proposition 2.5 to get the asymptotics as t → ∞. Note that

for a ≥ 1/2,∫ ∞
0

qt(1, y; a) y−a dy = t−1/2

∫ ∞
0

q1(1/
√
t, y/
√
t; a) y−a dy

= t−(a+ 1
2

) e−1/2t

∫ ∞
0

ya e−y
2/2t h

(y
t

)
dy

= t−(a+ 1
2

) e−1/2t

∫ ∞
0

(
√
tu)a e−u

2/2h

(
u√
t

) √
t du

= t−
a
2 [1 +O(t−1)]

∫ ∞
0

2
1
2
−a

Γ(a+ 1
2
)
ua e−u

2/2 [1 +O(u2/t)] du

= t−
a
2

Γ(a
2

+ 1
2
)

2a/2 Γ(a+ 1
2
)

[1 +O(t−1)].

The next proposition is similar computing the same expectation for a Bessel process.

Proposition 2.14. Suppose b ∈ R and

λ+ λb ≥ −
1

8
. (33)

Let

a =
1

2
+

1

2

√
1 + 8(λ+ λb) ≥

1

2
. (34)

and assume that a + b > −1. Then, if Xt is a Bessel process with parameter b starting at
x > 0,

Êxb [Kλ
t It] = xa−b Êxa

[
Xb−a
t

]
= xa−b

∫ ∞
0

yb−a qt(x, y; a) dy.

Note that if b > −3/2, then the condition a + b > −1 is automatically satisfied. If
b ≤ −3/2, then the condition a + b > −1 can be considered a stronger condition on λ than
(33). If b ≤ −3/2, then the condition on λ is

λ > 1 + 2b.

Proof. By comparing (32) and (34), we can see that

Êxb [Kλ
t It] = x−b Ex

[
Kλb+λ
t Xb

t It

]
= xa−b Ex

[
Nt,aX

b−a
t It

]
= xa−b Êxa

[
Xb−a
t

]
= xa−b

∫ ∞
0

yb−a qt(x, y; a) dy.
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In the third equation, we drop the It since It = 1 with P̂a-probability one. The condition
a+ b > −1 is needed to make the integral finite.

Proposition 2.15. Let λ > −1/8 and let

a =
1

2
− 1

2

√
1 + 8λ ≤ 1

2
,

be the smaller root of the polynomial a2− a− 2λ. Then if Xt is a Brownian motion starting
at x > 0 and 0 < y < x,

Ex
[
Kλ
Ty

]
= (x/y)a.

Proof. Let n > x and let τn = Ty ∧ Tn. Note that

Ex
[
Kλ
τn

]
= xa Ex

[
Nτn,aX

−a
τn

]
= xa Êxa

[
X−aτn

]
and similarly,

Ex
[
Kλ
τn ;Ty < Tn

]
= xa Êxa

[
X−aTy ;Ty < Tn

]
= (x/y)a P̂xa {Ty < Tn} ,

Ex
[
Kλ
τn ;Ty > Tn

]
= xa Êxa

[
X−aTn ;Ty > Tn

]
= (x/n)a P̂xa {Ty > Tn} .

Using (4), we see that

lim
n→∞

Ex
[
Kλ
t∧τn ;Ty > Tn

]
= lim

n→∞
(x/n)a P̂xa {Ty > Tn}

= lim
n→∞

(x/n)a
x1−2a − y1−2a

n1−2a − y1−2a
= 0.

Therefore,

Ex
[
Kλ
Ty

]
= lim

n→∞
Ex
[
Kλ
Ty ;Ty < Tn

]
= (x/y)a lim

n→∞
P̂xa {Ty < Tn} = (x/y)a.

The first equality uses the monotone convergence theorem and the last equality uses a ≤ 1/2.

Proposition 2.16. Suppose b ∈ R and λ+ λb ≥ −1/8. Let

a =
1

2
− 1

2

√
1 + 8(λ+ λb) ≤

1

2
,

the smaller root of the polynomial a2 − a − 2(λ + λb). Then if Xt is a Bessel process with
parameter b starting at x > 0 and 0 < y < x,

Êxb
[
Kλ
Ty ;Ty <∞

]
= (x/y)a−b.
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A special case of this proposition occurs when b ≥ 1/2, λ = 0. Then a = 1− b and

Êxb
[
Kλ
Ty ;Ty <∞

]
= Pxb{Ty <∞} = (x/y)a−b = (y/x)2b−1,

which is (5).

Proof.

Êxb
[
Kλ
Ty ;Ty <∞

]
= x−b Ex

[
Kλ
Ty K

λb
Ty
Xb
Ty ;Ty <∞

]
= (y/x)b Ex

[
Kλa
Ty

]
= (x/y)a−b.

It is convenient to view the random variable Jt on geometric scales. Let us assume that
X0 = 1 and let

Ĵt = Je−t .

Then if n is a positive integer, we can write

Ĵn =
n∑
j=1

[Ĵj − Ĵj−1].

Scaling shows that the random variables Ĵj−Ĵj−1 are independent and identically distributed.

More generally, we see that Ĵt is an increasing Lévy process, that is, it has independent,
stationary increments. We will assume that a ≤ 1/2 and write a = 1

2
− b with b = −ν ≥ 0.

Let Ψa denote the characteristic exponent for this Lévy process, which is defined by

E[eiλĴt ] = exp{tΨa(λ)}.

It turns out that ν = a− 1
2

is a nicer parametrization for the next proposition so we will
use it.

Proposition 2.17. Suppose b ≥ 0 and Xt satisfies

dXt =
1
2
− b
Xt

dt+ dBt, X0 = 1.

Then if λ ∈ R,

Ex
[
exp

{
iλ

∫ Ty

0

ds

X2
s

}]
= y−r,

where
r = b−

√
b2 − 2iλ.

is the root of the polynomial r2− 2br+ 2iλ with smaller real part. In other words, if a ≤ 1/2

Ψ 1
2
−b(λ) = b−

√
b2 − 2iλ,

where the square root denotes the root with positive real part. In particular,

E
[
Ĵt

]
=
t

b
. (35)
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Proof. We will assume λ 6= 0 since the λ = 0 case is trivial. If r−, r+ denote the two roots
of the polynomial ordered by their real part, then Re(r−) < b,Re(r+) > 2b; we have chosen
r = r−.

Let τk = Ty ∧ Tk. Using Itô’s formula, we see that Mt∧τk is a bounded martingale where

Mt = exp

{
iλ

∫ t

0

ds

X2
s

}
Xr
t .

Therefore,
E[Mτk ] = 1.

If b > 0.

E [|Mτk |;Tk < Ty] ≤ kRe(r) P{Tk < Ty} ≤ c(y) kRe(r) k2a−1 = c(r) kRe(r) k−2b,

and hence,
lim
k→∞

E [|Mτk |;Tk < Ty] = 0.

(One may note that if λ 6= 0 and we had used r+, then Re(r+) > 2b and this term does not
go to zero.) Similarly, if b = 0,

lim
k→∞

E [|Mτk |;Tk < Ty] = 0.

Therefore,

1 = lim
k→∞

E [Mτk ;Tk > Ty] = E[MTy ] = yr E
[
exp

{
iλ

∫ Ty

0

ds

X2
s

}]
.

The last assertion (35) follows by differentiating the characteristic function of Ĵt at the
origin.

The moment generating function case is similar but we have to be a little more careful
because the martingale is not bounded for λ > 0.

Proposition 2.18. Suppose b > 0, Xt satisfies

dXt =
1
2
− b
Xt

dt+ dBt, X0 = 1,

and 2λ < b2. Then, if 0 < y < 1,

Ex
[
exp

{
λ

∫ Ty

0

ds

X2
s

}]
= y−r,

where
r = b−

√
b2 − 2λ.

is the smaller root of the polynomial r2 − 2br + 2λ.
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Proof. By scaling, it suffices to prove this result when y = 1. Let τ = T1 and let

Kt = exp

{
λ

∫ t

0

ds

X2
s

}
, Mt = KtX

r
t .

By Itô’s formula, we can see that Mt is a local martingale for t < τ satisfying

dMt =
r

Xt

Mt dt, M0 = 1.

If we use Girsanov and weight by the local martingale Mt, we see that

dXt =
r + ν + 1

2

Xt

dt+ dWt, t < τ

where Wt is a standard Brownian motion in the new measure which we denote by P̂ with
expectations Ê. Since r + ν < 0, then with probability one in the new measure P̂x{τ <
∞} = 1, and hence

Ex [Kτ ; τ <∞] = xr Ex [Mτ ; τ <∞] = xr Êx[1{τ <∞}] = xr.

We can do some “multifractal” or “large deviation” analysis. We start with the moment
generating function calculation

E
[
eλĴt
]

= ekξ(λ),

where

ξ(λ) = ξb(λ) = b−
√
b2 − 2λ, ξ′(λ) =

1√
b2 − 2λ

, ξ′′(λ) =
1

(b2 − 2λ)3/2
.

This is valid provided that λ < b2/2. Recall that E[Ĵt] = t/b. If θ > 1/b, then

P{Ĵt ≥ θt} ≤ e−λθt E[eλĴt ] = exp {t[ξ(λ)− λθ]} , .

This estimate is most useful for the value λ that minimizes the right-hand side, that is, at
the value λθ satisfying ξ′(λθ) = θ, that is,

λθ =
1

2

[
b2 − θ−2

]
, ξ(λθ) = b− 1

θ

Therefore,

P{Ĵt ≥ θt} ≤ exp {tρ(θ)} , where ρ(θ) = b− 1

2θ
− θb2

2

While this is only an inequality, one can show (using the fact that ξ is C2 and strictly concave
in a neighborhood of λθ),

P{Ĵt ≥ θt} � P{θt ≤ Ĵt ≤ θt+ 1} � t−1/2 exp {tρ(θ)} .
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Similarly, if θ < 1/b,

P{Ĵt ≤ θt} ≤ eλθt E[e−λ Ĵt ] = exp {k[ξ(−λ) + λθ]} , .

The right-hand side is minimized when ξ′(−λ) = θ, that is, when

λθ =
1

2

[
θ−2 − b2

]
, ξ(−λθ) = b−

√
2b2 − θ−2

P{Ĵt ≤ θt} ≤ exp {tρ(θ)} , where ρ(θ) =
1

2θ
− θb2

2
+ b−

√
2b2 − θ−2

3 The reflected Bessel process for −1/2 < a < 1/2

The Bessel process can be defined with reflection at the origin in this range. Before defining
the process formally, let us describe some of of the properties. In this section, we assume
that −1/2 < a < 1/2.

• The reflected Bessel process Xt is a strong Markov process with continuous paths
taking values in [0,∞). It has transition density

ψt(x, y; a) =
1√
t
ψ1

(
x√
t
,
y√
t
; a

)
=

y2a

ta+ 1
2

exp

{
−x

2 + y2

2t

}
ha

(xy
t

)
. (36)

Note that this is exactly the same formula as for qt(x, y; a) when a ≥ 1/2. We use a
new notation in order not to conflict with our use of qt(x, y; a) for the density of the
Bessel process killed when it reaches the origin. We have already done the calculations
that show that

∂tψt(x, y; a) = Lxψt(x, y; a),

and
∂xψt(x, y; a) |x=0= 0.

However, if a ≤ 1/2, it is not the case that

∂yψt(x, y; a) |y=0= 0.

In fact, for a < 1/2, the derivative does not exists at y = 0.

• Note that

ψ1(0, y; a) =
2

1
2
−a

Γ(a+ 1
2
)
y2a e−y

2/2,

and hence

ψt(0, y; a) = t−1/2 ψ1(0, y/
√
t; a) =

2
1
2
−a

Γ(a+ 1
2
)
t−

1
2
−a y2a e−y

2/2t. (37)
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• We have the time reversal formula for x, y > 0.

ψt(x, y; a) = (y/x)2a ψt(y, x; a). (38)

Because of the singularity of the density at the origin we do not write ψt(x, 0; a).

• A calculation (see Proposition 5.4) shows that for x > 0,∫ ∞
0

ψt(x, y; a) dy = 1. (39)

We can view the process as being “reflected at 0” in a way so that the the total mass
on (0,∞) is always 1.

• Another calculation (see Proposition 5.6) shows that the ψt give transition probabilities
for a Markov chain on [0,∞).

ψt+s(x, y; a) =

∫ ∞
0

ψt(x, z; a)ψs(z, y; a) dz.

Note that this calculation only needs to consider values of ψt(x, y; z) with y > 0.

• With probability one, the amount of time spent at the origin is zero, that is,∫ ∞
0

1{Xt = 0} dt = 0.

This follows from (39) which implies that∫ k

0

1{Xt > 0} dt =

∫ k

0

∫ ∞
0

ψt(x, y; a) dy dt = k.

• For each t, x > 0, if σ = inf{s ≥ t : Xs = 0}, the distribution of Xs, t ≤ s ≤ σ, given
Xt, is that of a Bessel process with parameter a starting at Xt stopped when it reaches
the origin.

• The process satisfies the Brownian scaling rule: if Xt is the reflected Bessel process
started at x and r > 0, then Yt = r−1Xr2t is a reflected Bessel process started at x/r.

• To construct the process, we can first restrict to dyadic rational times and use standard
methods to show the existence of such a process. With probability one, this process is
not at the origin for any dyadic rational t (except maybe the starting point). Then, as
for Brownian motion, one can show that with probability one, the paths are uniformly
continuous on every compact interval and hence can be extended to t ∈ [0,∞) by
continuity. (If one is away from the origin, one can argue continuity as for Brownian
motion. If one is “stuck” near the origin, then the path is continuous since it is near
zero.) The continuous extensions do hit the origin although at a measure zero set of
times.
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Here we explain why we need the condition a > −1/2. Assume that we have such a
process for a < 1/2. Let e(x) = e(x; a) = E0[Tx] and j(x) = j(x; a) = Ex[T0 ∧T2x]. We
first note that e(1) <∞; indeed, it is obvious that there exists δ > 0, s <∞ such that
P0{T1 < s} ≥ δ and hence Px{Tx < s} ≥ δ for every 0 ≤ x < 1. By iterating this, we
see that P0{T1 ≥ ns} ≤ (1− δ)n, and hence E0[T1] <∞. The scaling rule implies that
e(2x) = 4e(x), j(2x) = 4j(x). Also, the Markov property implies that

e(2x) = e(x) + j(x) + Px{T0 < T2x}e(2x),

which gives

4e(x) = e(2x) =
e(x) + j(x)

Px{T0 ≥ T2x}
.

By (6), we know that
Px{T0 ≥ T2x} = min{22a−1, 1}.

If a ≤ −1/2, then Px{T0 ≥ T2x} ≤ 1/4, which is a contradiction since j(x) > 0.

There are several ways to construct this process. In the bullets above we outline one which
starts with the transition probabilities and then constructs a process with these transitions.
In the next subsection, we will do another one which constructs the process in terms of
excursions. In this section, we will not worry about the construction, but rather we will give
the properties. We will write the measure as P̂xa (this is the same notation as for the Bessel
process killed at the origin — indeed, it is the same process just continued onward in time).

If x > 0, the scaling rule will imply

ψt(x, y; a) = t−1/2 ψ1(x/
√
t, y/
√
t; a),

so we need only give ψ1(x, y; a). What we will show now is that if we assume that (37) holds
and gives ψt(0; y; a), then the value ψt(x, y; a) must hold for all x. We will use T0, the first
time that the process reaches the origin and write

ψ1(x, y; a) = ψ̃1(x, y; a) + q1(x, y; a)

= ψ̃1(x, y; a) + (y/x)2a−1 q1(x, y; 1− a)

where

ψ̃1(x, y; a) =

∫ 1

0

ψ1−s(0, y; a) dPx{T0 = s}. (40)

The term q1(x, y; a) gives the contribution from paths that do not visit the origin before
time 1, and ψ̃1(x, y; a) gives the contribution of those that do visit. The next proposition
is a calculation. The purpose is to show that our formula for ψ1(x, y; a) must be valid for
x > 0 provided that it is true for x = 0.
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Proposition 3.1. If −1
2
< a < 1

2
, then

ψ̃1(x, y; a) = y2a e−(x2+y2)/2
[
ha(xy)− (xy)1−2a h1−a(xy)

]
.

Proof. Using (22), we see that

dPx{T0 = s} =
2a−

1
2

Γ(1
2
− a)

x1−2a sa−
3
2 exp{−x2/2s} ds,

and hence if (37) holds. Using equation 2.3.16 #1 of [2] (see also the top of page 790), and
a well known identity for the Gamma function, we see that∫ ∞

0

r−ν−1e−rz/2 e−z/2r dr =
π

sin(−πν)
[Iν(z)− I−ν(z)]

= Γ(ν) Γ(1 + ν) [Iν(z)− I−ν(z)]

= Γ

(
a− 1

2

)
Γ

(
1

2
− a
) [

za−
1
2 ha(z)− z

1
2
−a h1−a(z)

]
.

Hence,

ψ̃1(x, y; a)

=
1

Γ(1
2
− a) Γ(1

2
+ a)

∫ 1

0

sa−
3
2 (1− s)−a−

1
2x1−2a y2a e−x

2/2s e−y
2/2(1−s) ds

=
x1−2a y2a e−(x2+y2)/2

Γ(1
2
− a) Γ(1

2
+ a)

∫ 1

0

(
1− s
s

)−a− 1
2

exp

{
−x

2

2

1− s
s

}
exp

{
−y

2

2

s

1− s

}
s−2 ds

=
x1−2a y2a e−(x2+y2)/2

Γ(1
2
− a) Γ(1

2
+ a)

∫ ∞
0

u−a−
1
2 exp

{
−x

2u

2

}
exp

{
− y

2

2u

}
du

=
x

1
2
−a ya+ 1

2 e−(x2+y2)/2

Γ(1
2
− a) Γ(1

2
+ a)

∫ ∞
0

r−a−
1
2 exp

{
−xyr

2

}
exp

{
−xy

2r

}
dr

= y2a e−(x2+y2)/2
[
ha(xy)− (xy)1−2a h1−a(xy)

]
.

From the expression, we see that ψ̃1(x, y; a) is a decreasing function of x. Indeed, we could
give another argument for this fact using coupling. Let us start two independent copies of
the process at x1 < x2. We let the processes run until they collide at which time they run
together. By the time the process starting at x2 has reached the origin, the processes must
have collided.

Recall that we are assuming −1/2 < a < 1/2. We will describe the measure on paths
that we will write as P̂xa. Let ψt(x, y; a), x ≥ 0, y > 0, t > 0 denote the transition probability
for the process. We will derive a formula for this using properties we expect the process to
have. First, the reversibility rule (11) will hold: if x, y > 0, then

ψt(x, y; a) = (y/x)2a ψt(y, x; a).
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In particular, we expect that ψt(1, x; a) � x2a as x ↓ 0. Suppose that Xt = 0 for some
1 − ε ≤ t ≤ ε. By Brownian scaling, we would expect the maximum value of Xt on that
interval to be of order

√
ε and hence∫ 1

1−ε
1{|Xt| ≤

√
ε} dt � ε.

But,

E
[∫ 1

1−ε
1{|Xt| ≤

√
ε} dt

]
=

∫ 1

1−ε

∫ √ε
0

ψt(0, x; a) dx dt ∼ c εa+ 3
2 .

Hence, we see that we should expect P̂xa{Xt = 0 for some 1− ε ≤ t ≤ 1 ∼ c′ ε
1
2

+a. Brownian
scaling implies that P̂0

a{Xt = 0 for some ru ≤ t ≤ r} is independent of r and from this we
see that there should be a constant c = c(a) such that

P̂xa{Xt = 0 for some 1− ε ≤ t ≤ 1} ∼ c ε
1
2

+a.

In fact, our construction will show that we can define a local time at the origin. In other
words, there is a process Lt that is a normalized version of “amount of time spent at the
origin by time t” with the following properties. Let Z = {s : Xs = 0} be the zero set for the
process.

• Lt is continuous, nondecreasing, and has derivative zero on [0,∞) \ Z.

• As ε ↓ 0,
P0{Z ∩ [1− ε, 1] 6= ∅} = P0{L1 > L1−ε} � ε

1
2

+a.

• The Hausdorff dimension of Z is 1
2
− a.

•
E[Lt] = c

∫ t

0

s−
1
2
−a ds =

c
1
2
− a

t
1
2
−a.

We will use a “last-exit decomposition” to derive the formula for ψt(0, x; a).

Proposition 3.2. If y > 0, then

ψ1(0, y; a) =
y

Γ(1
2
− a) Γ(1

2
+ a)

∫ 1

0

s−
1
2
−a(1− s)a−

3
2 e−y

2/2(1−s) ds. (41)
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The proof of this proposition is a simple calculation,∫ 1

0

s−
1
2
−a(1− s)a−

3
2 e−y

2/2(1−s) ds =

∫ 1

0

(1− s)−
1
2
−asa−

3
2 e−y

2/2s ds

= e−y
2/2

∫ 1

0

[
1− s
s

]− 1
2
−a

exp

{
−y

2

2

1− s
s

}
s−2 ds

= e−y
2/2

∫ ∞
0

u−
1
2
−a e−u y

2/2 du

= 2a+ 1
2 y2a e−y

2/2

∫ ∞
0

(uy2/2)−
1
2
−a e−uy

2/2 d(uy2/2)

= 2
1
2
−a y2a−1

∫ ∞
0

v−
1
2
−a e−v dv

= 2
1
2
−a y2a−1 Γ

(
1

2
− a
)
.

We would like to interpret the formula (41) in terms of a “last-exit” decomposition. What
we have done is to split paths from 0 to t at the largest time s < t at which Xs = 0. We
think of s−

1
2
−a as being a normalized version of ψs(0, 0) and then ta−

3
2 e−y

2/2t represents the
normalized probability of getting to y at time t with no later return to the origin. To be
more precise, let

q∗t (y; a) = lim
x↓0

x2a−1 qt(x, y; a),

and note that

q∗1(y; a) = lim
x↓0

x2a−1 q1(x, y; a)

= lim
x↓0

x2a−1 (y/x)2a−1 q1(x, y; 1− a)

= y2a−1 q1(0, y; 1− a) = c y e−y
2/2.

q∗t (y; a) = lim
x↓0

x2a−1 qt(x, y; a)

= t−
1
2 lim
x↓0

x2a−1q1(x/
√
t, y/
√
t; a)

= ta−1 lim
z↓0

z2a−1q1(z, y/
√
t; a)

= ta−1 q∗1(y/
√
t; a)

= c ta−
3
2 y e−y

2/(2t).

Proposition 3.3. For every 0 < t1 < t2 < ∞ and y0 < ∞, there exists c such that if
t1 ≤ t ≤ t2 and 0 ≤ x, y ≤ y0, then

c1 y
2a ≤ ψt(x, y; a) ≤ c2 y

2a.
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Proof. Fix t1, t2 and y0 and allow constants to depend on these parameter. It follows im-
mediately from (37) that there exist 0 < c1 < c2 < ∞ such that if t1/2 ≤ t ≤ t2 and
y ≤ y0,

c1 y
2a ≤ ψt(0, y; a) ≤ c2 y

2a.

We also know that

ψt(x, y; a) = ψ̃t(x, y; a) + qt(x, y; a) ≤ ψ̃t(0, y; a) + qt(x, y; a).

Using (10) and Proposition 2.7, we see that

qt(x, y; a) = (y/x)2a−1 qt(x, y; 1− a) ≤ c y2a−1 y2(1−a) = cy ≤ c y2a.

Also,

ψ̃t(x, y; a) ≥ Px{T0 ≤ t1/2} inf
t1/2≤s≤t2

ψs(0, y; a) ≥ c y2a ≥ c y2a Py0{T0 ≤ t1/2} ≥ c y2a.

For later reference, we prove the following.

Proposition 3.4. There exists c <∞ such that if x ≥ 3π/4 and y ≤ π/2, then for all t ≥ 0,

ψt(x, y; a) ≤ c y2a. (42)

Proof. Let z = 3π/4. It suffices to prove the estimate for x = z. By (38),

(z/y)2a ψt(z, y; a) = ψt(y, z; a) ≤ qt(y, z; a) + inf
0≤s<∞

ψt(0, z; a) ≤ c.

3.1 Excursion construction of reflected Bessel process

In this section we show how we can construct the reflected Bessel process using excursions.
In the case a = 0 this is the Itô construction of the reflected Brownian motion in terms of
local time and Brownian excursions. Let 0 < r = a+ 1

2
< 1 and let K denote a Poisson point

process from measure
(r t−r−1 dt)× Lebesgue .

Note that the expected number of pairs (t, x) with 0 ≤ x ≤ x0 and 2−n ≤ t ≤ 2−n+1 is

x0

∫ 2−n+1

2−n
r t−r−1 dr = x0 (1− 2−r) 2rn,

which goes to infinity as n→∞. However,

E

 ∑
(t,x)∈K;x≤x0,t≤1

t

 = x0

∫ 1

0

r t−r dr =
r x0

1− r
<∞.
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In other words, the expected number of excursions in K by time one is infinite (and a simple
argument shows, in fact, that the number is infinite with probability one), but the expected
number by time one of time duration at least ε > 0 is finite. Also, the expected amount of
time spent in excursions by time 1 of time duration at most one is finite. Let

Tx =
∑

(t,x′)∈K;x′≤x

t.

Then with probability one, Tx < ∞. Note that Tx is increasing, right continuous, and has
left limits. It is discontinuous at x such that (t, x) ∈ K for some t. In this case Tx = Tx−+ t.
Indeed, the expected number of pairs (t, x′) with x′ ≤ x, t ≥ 1 is finite and hence with
probability one the number of loops of time duration at least 1 is finite. We define Lt to be
the “inverse” of Tx in the sense that

Lt = x if Tx− ≤ t ≤ Tx.

Then Lt is a continuous, increasing function whose derivative is zero almost everywhere.
The density rt−r−1 is not a probability density because the integral diverges near zero.

However we can still consider the conditional distribution of a random variable conditioned
that it is at least k. Indeed we write

P{T ≤ t | T ≥ k} =

∫ t
k
rs−r−1∫∞

k
rs−r−1 ds

= 1−
(
k

t

)r
,

which means that the “hazard function” is r/k,

P{T ≤ k + dt | T ≥ k} = (r/k) dt+ o(dt).

3.2 Excursions and bridges

Here we study the Bessel process with parameter a < 1/2 started at x > 0 “conditioned so
that T0 = t”. We write

dXt =
a

Xt

dt+ dBt, t < T.

where Bt is a standard Brownian motion on (Ω,F ,P), and T = T0 is the first hitting time
of the origin. This is conditioning on an event of measure zero, but we can make sense of it
using the Girsanov formula. Let

F (x, t) = x1−2a ta−
3
2 exp{−x2/2t}.

Up to a multiplicative constant, F (x, ·) is the density of T0 given X0 = x (see (22)). Let
Ms = F (Xs, t − s); heuristically, we think of Ms as the probability that T = t given Fs.
Given this interpretation, it is reasonable to expect that Ms is a local martingale for s < t.
Indeed, if we let Et = Et,ε be the event Et = {t ≤ T0 ≤ t+ ε}, and we weight by

Fε(x, t) = c P̂xa(Et),
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then Fε(Xs, t− s) = c P̂xa(Et | Fs) which is a martingale. We can also verify this using Itô’s
formula which gives

dMs = Ms

[
1− 2a

Xs

− Xs

t− s

]
dBs.

Hence, if we tilt by the local martingale Ms, we see that

dXs =

[
1− a
Xs

− Xs

t− s

]
ds+ dWt, (43)

where Wt is a Brownian motion in the new measure P∗.
One may note that the SDE (43) gives the same process that one obtains by starting with

a Bessel processXt with parameter 1−a > 1/2 and weighting locally by Js := exp{−X2
t /2(t−

s)}. Itô’s formula shows that if Xs satisfies

dXs =
1− a
Xs

ds+ dBs,

then

dJs = Js

[
− Xs

t− s
dBs +

a− 3
2

t− s
ds

]
,

which shows that

Ns =

(
t

t− s

) 3
2
−a

Js,

is a local martingale for s < t satisfying

dNs = − Xs

t− s
Ns dBs.

There is no problem defining this process with initial condition X0 = 0, and hence we have
the distribution of a Bessel excursion from 0 to 0.

We can see from this that if a < 1/2, then the distribution of an excursion Xs with
X0 = Xt = 0 and Xs > 0 for 0 < s < t is the same as the distribution of a Bessel process
with parameter 1− a “conditioned to be at the origin at time t”. More precisely, if we
consider the paths up to time t−δ, then the Radon-Nikodym derivative of the excursion
with respect to a Bessel with parameter 1− a is proportional to exp{−X2

t−δ/2(t− δ)}.

There are several equivalent ways of viewing the excursion measure. Above we have
described the probability measure associated to excursions starting and ending at the origin
of time duration t. Let us write µ#(t; a) for this measure. Then the excursion measure can
be given by

c

∫ ∞
0

µ#(t, a) ta−
3
2 dt.
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The constant c is arbitary. This is an infinite measure on paths but can be viewed as the
limit of the measure on paths of time duration at least s,

c

∫ ∞
s

µ#(t, a) ta−
3
2 dt,

which has total mass

c

∫ ∞
s

ta−
3
2 dt =

c
1
2
− a

sa−
1
2 .

Another way to get this measure is to consider the usual Bessel process started at ε > 0
stopped when it reaches the origin. This is a probability measure on paths that we will denote
by µ̃#(ε; a). The density of the hitting time T is a constant times ε1−2a ta−

3
2 exp{−ε2/2t}.

Then the excursion measure can be obtained as

lim
ε↓0

ε2a−1 µ̃#(ε; a).

From this perspective it is easier to see that in the excursion measure has the following
property: the distribution of the remainder of an excursion given that the time duration is
at least s and Xs = y is that of a Bessel process with parameter a started at y stopped when
it reaches the origin.

We can also consider mt which is the excursion measure restricted to paths with T > t
viewed as a measure on the paths 0 ≤ Xs ≤ t, 0 < s ≤ t. For each t this is a finite measure
on paths, The density of the endpoint at time t (up to an arbitrary multiplicative constant)
is given by

ψt(x) = lim
ε↓0

ε2a−1qt(ε, x; a) = lim
ε↓0

x2a−1 qt(ε, x; 1− a) = x2a−1 qt(0, x; 1− a) = x t
1
2
−a e−x

2/2t.

Note that ψt is not a probability density; indeed,∫ ∞
0

ψt(x) dx =

∫ ∞
0

x t
1
2
−a e−x

2/2t dx = t
3
2
−a.

Note that ψt satisfies the Chapman-Kolomogorov equations

ψt+s(x) =

∫ ∞
0

ψt(y) qs(y, x; a) dx.

For example if s = 1− t, then this identity is the same as

x e−x
2/2 =

∫ ∞
0

y t
1
2
−a (1− t) e−x2/2t (y/x)2a−1 q1−t(x, y; 1− a) dy

=

∫ ∞
0

y t
1
2
−a e−x

2/2t (y/x)2a−1 y2−2a

(1− t) 3
2
−a

exp

{
−x

2 + y2

1− t

}
ha(xy/1− t).
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3.3 Another construction

Let us give another description of the reflected Bessel process using a single Brownian motion
Bt. Suppose a ∈ R, Bt is a standard Brownian motion, and for x > 0 let Xx

t satisfy

dXx
t =

a

Xx
t

dt+ dBt, Xx
0 = x. (44)

For a given x, this is valid up to time T x = inf{t : Xx
t > 0}. We define

Yt = inf{Xy
t : y > 0, t < T y}, .

We state the main result of the section here.

Theorem 1.

• If a ≥ 1/2, then Yt has the distribution of the Bessel process with parameter a starting
at the origin.

• If −1/2 < a < 1/2, then Yt has the distribution of the reflected Bessel process starting
at the origin.

• If a ≤ −1/2, then with probability one Yt = 0 for all t.

For a ≥ 1/2, this result is easy. By (26), if x > 0, then

Xx
t − x ≤ Yt ≤ Xx

t .

Hence, for every t > 0, the distribution of Ys, s ≥ t, is that of the Bessel process starting at
Yt. It is not hard to see that P{Yt > 0} = 1 for each t > 0; indeed the density of Yt is given
by (15).

For the remainder of this section, we assume that a < 1/2. Note that this process is
coalescing in the sense that if

Y x
t = inf{Xy

t : y > x, t < T y},

then

Y x
t =

{
Xx
t t ≤ T x

Yt t ≥ T x

As an example, let us consider the case a = 0 for which the reflected Bessel process is
the same as reflected Brownian motion. In this case Xx

t = x+Bt, and

T x = inf{t : Bt = −x}.

The set of times {T x : x > 0} are exactly the same as the set of times t at which the
Brownian motion obtains a minimum, that is, Bt < Bs, 0 ≤ s < t. This is also the set of
times t at which Bt ≤ Bs, 0 ≤ s < t (this is not obvious). The distribution of this set is the
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same as the distribution of the zero set of Brownian motion and is a topological Cantor set
of Hausdorff dimension 1/2.

We will set up some notation. If Bt is a standard Brownian motion, and t ≥ 0, we let
Bs,t = Bt+s−Bt. Let Gt be the “future” σ-algebra at time t, that is, the σ-algebra generated
by {Bs,t : s ≥ 0}. Note that Gt is independent of Ft, the σ-algebra generated by {Bs : s ≤ t}.
If x > 0 we write Xx

s,t for the (Gt-measurable) solution of

dXx
s,t =

a

Xx
s

ds+ dBs,t, Xx
0,t = x.

This is valid up to time T x0,t = inf{s : Xx
s,t = 0} and for s < T x0,t, we have

Xx
s,t = Bs,t + a

∫ s

0

dr

Xx
r,t

.

The Markov property can be written as

Xx
s+r,t = X

Xx
s,t

r,t+s, s+ r < T x0,t.

If τ > 0, we will say that t is a τ -escape time if for all x > 0,

Xx
s,t > 0, 0 ≤ s ≤ τ.

We say that t is an escape time if it is a τ -escape time for some τ > 0. Note that if Yt > 0
and

z = inf{x : Xx
t > 0},

then Tz < t < infz<z′ Tz′ . In particular, Tz is an escape time. The next proposition proves
our main theorem in the a ≤ −1/2 case.

Proposition 3.5. If a ≤ −1/2, then with probability one there are no τ -escape times for
any τ > 0.

Proof. By scaling it suffices to prove that there are no 1-escape times t with t ≤ 1. For
each integer n, let Jk,n be the indicator function that T 2−n

0,k2−2n ≥ 1/2. Note that Jk,nis

Gk2−2n-measurable. Using (22) we can see that that E[Jk,n] = E[J0,n] � 2(2a−1)n, and if

Jn =
22n∑
k=0

J(k, n),

then E[Jn] � 2(2a+1)n. If a < −1/2, this immediately implies that

P{Jn ≥ 1} ≤ E[Jn] ≤ c 2(2a+1)n.

We claim that

P{Jn ≥ 1} ≤ c

n
, a = −1

2
. (45)
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To see this, on the event Jn ≥ 1, let q = qn be the largest index k ≤ 22n such that J(k, n) = 1
Note that

P{Jn ≥ 1; q ≤ 2n} ≤
2n∑
k=1

E[J(k, n)] ≤ c 2−n.

Now consider the Gk2−2n-measurable event E(k, n) = {Jn ≥ 1, q = k}. Using the fact that
E(k, n) is independent of Fk2−2n and using (22), we get

P{J(k − j, n) = 1 | E(k, n)} ≥ P2−n{T0 ≥ (k − j) 2−2n;T(k−j) 2−2n ≥ 2−n}
= P1{T0 ≥ (k − j);Tk−j ≥ 1}
≥ c/j.

By summing over j, we see that

E[Jn | Jn ≥ 1, q > 2n} ≥ c n,

and this gives (45).
We now consider the event that there exists a t ≤ 1 that is a 1-escape time. It is not

hard to see that the set of such t is closed and hence we can define σ to be the largest t.
Note that σ is a backwards stopping time, that is, the event {σ ≥ t} is Gt-measurable. If we
take the largest dyadics smaller than σ for a given n, then we can see that given σ there is
a positive probability of Jn > 0 (uniform in n for n large). But this contradicts the previous
paragraph.

Proposition 3.6. If −1/2 < a < 1/2, then with probability one, the set of escape times is
a dense set of Hausdorff dimension 1

2
+ a. In particular, it is a non-empty set of Lebesgue

measure zero.

Proof. We will only consider t ∈ [0, 1] and let Rτ denote the set of τ -escape times in [0, 1].
If R is the set of escape times in [0, 1], then

R =
∞⋃
n=1

R1/n.

Let us first fix τ . Let Qn denote the set of dyadic rationals in (0, 1] with denominator 2n,

Qn =

{
k

2n
: k = 1, 2, . . . , 2n

}
.

We write I(k, n) for the interval [(k− 1)2−n, k2n]. We say that the interval I(k, n) is good if

there exists a time t ∈ I(k, n) such that X2−n/2
s,t > 0 for 0 ≤ s ≤ 1. Let

In =
⋃

I(k,n) good

I(k, n), I =
∞⋂
n=1

In.
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Note that I1 ⊃ I2 ⊃ · · · , and for each n, R1 ⊂ In. We also claim that I ⊂ R1/2. Indeed,
suppose that t 6∈ R1/2. Then there exists x > 0 such that T x0,t ≤ 1/2, and hence T y0,t ≤ 1/2
for 0 < y ≤ x. Using continuity of the Brownian motion, we see that there exists y > 0 and
ε > 0 (depending on the realization of the Brownian motion Bt), such that T y0,s ≤ 3/4 for
|t − s| ≤ ε. (The argument is slightly different for s < t and s > t.) Therefore, t 6∈ In if
2−n < ε.

Let J(k, n) denote the corresponding indicator function of the event {I(k, n) good}. We
will show that there exist 0 < c1 < c2 <∞ such that

c1 2n(a− 1
2

) ≤ E [J(j, n)] ≤ c2 2n(a− 1
2

), (46)

E[[J(j, n) J(k, n)] ≤ c3 2n(a− 1
2

) [|j − k] + 1]a−
1
2 . (47)

Using standard techniques (see, e.g., [1, Section A.3]), (46) implies that P{dimh(R1) ≤
a+ 1

2
} = 1 and (46) and (47) imply that there exists ρ = ρ(c1, c2, c3, a) > 0 such that

P
{

dimh(R1/2) ≥ a+
1

2

}
≥ P

{
dimh(I) ≥ a+

1

2

}
≥ ρ.

Using stationarity of Brownian increments, it suffices to prove (46) and (47) for j = 1
and k ≥ 3. Let us fix n and write x = xn = 2−n/2, t = tn = 2−n. The lower bound in (46)
follows from

E[J(1, n)] ≥ P{T x0,0 ≥ 1} � 2n(a− 1
2

).

Using a ≤ 1/2, we can see that 0 ≤ s ≤ t,

X̄ := max
0≤s≤t

Xx
t−s,s ≤ x+

x

2
+ max

0≤s≤t
[Bt −Bs].

Note that (for n ≥ 1)

E[J(1, n) | X̄ = z] ≤ cP{T z0,t ≥ 1− t} ≤ c (z ∧ 1)1−2a.

We then get the upper bound in (46) using a standard estimate (say, using the reflection
principle) for the distribution of the maximum of a Brownian path.

For the second moment, let us consider the event that I(1, n) and I(k, n) are both good.
Let Vk denote the event that there exists 0 ≤ s ≤ 2−n such that T xs,(k−1)t−s > 0. Then Vk is

independent of the event {I(k, n) good} and

{I(1, n) good, I(k, n) good} ⊂ Vk ∩ {I(k, n) good}}.

Using the argument for the upper bound in the previous paragraph and scaling, we see that

P(Vk) ≤ c ka−
1
2 .

Using Brownian scaling, we see that the upper bound implies that for all τ > 0,

P{dimh(Rτ ) ≤ a+
1

2
} = 1,
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and hence with probability one dimh(R) ≤ a+ 1
2
.. We claim that

P
{

dimh(R) = a+
1

2

}
= 1.

Indeed, if we consider the events

Ej,n =

{
dimh[R2−(n+1)/2 ∩ I(j, n)] ≥ a+

1

2

}
, j = 1, 2, 3, . . . , 2n−1,

then these are independent events each with probability at least ρ. Therefore,

P {E1,n ∪ E3,n ∪ · · · ∪ E2n−1,n} ≥ 1− (1− ρ)2n−1

.

Using this and scaling we see that with probability one for all rationals 0 ≤ p < q ≤ 1,
dim(R ∩ [p, q]) = a+ 1

2
.

Proof of Proposition 1. We follow the same outline as the previous proof, except that we
define I(k, n) to be β-good if if there exists t ∈ I(k, n) such that X2−n/2

s,t > 0 for 0 ≤ s ≤ 1
and

X2−n/2

s,t ≥ 2β,
1

4
≤ s ≤ 1.

Arguing as before, we get the estimates (46) and (47), although the constant c1 now depends
on β. Let R1/2,β be the set of t ∈ R1/2 such that

lim
x↓0

Xx
1/2,t ≥ β.

Then R1/2,β ⊂ Iβ where

Iβn =
⋃

I(k,n)β-good

I(K,n), Iβ =
∞⋂
n=1

Iβn .

There exists ρβ > 0 such that

P
{

dimh(R1/2,β) =
1

2
+ a

}
≥ ρβ.

For each time t ∈ R, we define

X0
s,t = inf{Xx

s,t, x > 0}

where the right-hand side is defined to be zero if T x0,t ≤ s for some x > 0. Recall that

X̃t = inf{Xx
t : T x0 > t}.
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Note that for every 0 ≤ t ≤ 1,
X̃1 ≥ X0

1−t,t.

We claim: with probability one, there exists t < 1 such that X0
1−t,t > 0. To see this, consider

the events Vn defined by

Vn = {∃t ∈ I(2n − 1, n) with X1−t,0 > 2−n/2}.

The argument above combined with scaling shows that P(Vn) is the same and positive for
each n. Also if we choose a sequence n1 < n2 < n3 < · · · going to infinity sufficiently quickly,
the events Vnj are almost independent. To be more precise, Let

V j = {∃t ∈ I(2nj − 1, nj) with X1−t−2−(n+1),t > 2 · 2−nj/2}.

Then the events V 1, V 2, . . . are independent and there exists ρ > 0 with P(V j) > 0. Hence
P{V j i.o.} = 1. If we choose the sequence nj to grow fast enough we can see that

∞∑
j=1

P(V j \ Vnj) <∞,

and hence, P{Vnj i.o.} > 0.

4 Radial Bessel and similar processes

We will now consider similar processes that live on the bounded interval [0, π] and arise in
the study of the radial Schramm-Loewner evolution. These processes look like the Bessel
process near the boundaries. One main example is the radial Bessel process. We will first
consider the process restricted to the open interval (0, π) and then discuss possible reflections
on the boundary. As in the case of the Bessel process, we will define our process by starting
with a Brownian motion and then weighting by a particular function.

4.1 Weighted Brownian motion on [0, π]

We will consider Brownian motion on the interval [0, π] “weighted locally” by a positive
function Φ. Suppose m : (0, π) → R is a C1 function and let Φ : (0, π) → (0,∞) be the C2

function

Φ(x) = c exp

{
−
∫ π/2

x

m(y) dy

}
.

Here c is any positive constant. Everything we do will be independent of the choice of c
so we can choose c = 1 for convenience. Also, π/2 is chosen for convenience; choosing a
different limit for the integral will change Φ by a constant. Note that

Φ′(x) = m(x) Φ(x), Φ′′(x) = [m(x)2 +m′(x)] Φ(x).
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Let Xt be a standard Brownian motion with 0 < X0 < π, Ty = inf{t : Xt = y} and
T = T0 ∧ Tπ = inf{t : Xt = 0 or Xt = π}. For t < T , let

Mt = Mt,Φ =
Φ(Xt)

Φ(X0)
Kt, Kt = Kt,Φ = exp

{
−1

2

∫ t

0

[
m(Xs)

2 +m′(Xs)
]
ds

}
. (48)

Then Itô’s formula shows that Mt is a local martingale for t < T satisfying

dMt = m(Xt)Mt dXt, M0 = 1.

Using the Girsanov theorem (being a little careful since this is only a local martingale), we
get a probability measure on paths Xt, 0 ≤ t < T which we denote by PΦ. To be precise, if
0 < ε < π/2, τ = τε = inf{t : Xt ≤ ε or Xt ≥ π− ε}, then Mt∧τ is a positive martingale with
M0 = 1. Moreover, if V is a random variable depending only on Xs, 0 ≤ s ≤ t ∧ τ , then

ExΦ [V ] = Ex [Mt∧τ V ] .

The Girsanov theorem implies that

dXt = m(Xt) dt+ dBt, t < T,

where Bt is a standard Brownian motion with respect to PΦ.
Examples

• If
Φ(x) = xa, m(x) =

a

x
,

then Xt is the Bessel process with parameter a.

• If
Φ(x) = (sin x)a, m(x) = a cotx,

then Xt is called the radial Bessel process with parameter a.

Note that the Bessel process and the radial Bessel process with the same parameter are
very similar near the origin. The next definition makes this idea precise.

Definition

• We say that Φ (or the process generated by Φ) is asymptotically Bessel-a at the origin
if there exists c <∞ such that for 0 < x ≤ π/2,∣∣∣m(x)− a

x

∣∣∣ ≤ c x,
∣∣∣m′(x) +

a

x2

∣∣∣ ≤ c.

Similarly, we say that Φ is asymptotically Bessel-a at π if Φ̃(x) := Φ(π − x) is asymp-
totically Bessel-a at the origin.
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• We let X (a, b) be the set of Φ that are asymptotically Bessel-a at the origin and
Asymptotically Bessel-b at π.

If Φ ∈ X (a, b), then as x ↓ 0∫ π/2

x

m(y) dy = −a log x+ C +O(x2), C =

∫ π/2

0

[
m(y)− a

y

]
dy,

and hence
Φ(x) = e−C xa

[
1 +O(x2)

]
.

In particular, if 0 < r < 1,
Φ(x) = ra Φ(rx)

[
1 +O(x2)

]
.

Examples

• The radial Bessel-a process is in X (a, a).

• If
Φ(x) = [sinx]a [1− cosx]v, m(x) = (a+ v) cot x+

v

sinx
,

then Φ is in X (a, a+ 2v).

Lemma 4.1. Suppose Φ ∈ X (a, b) with martingale Mt = Mt,Φ and let Φ̃(x) = a/x with
corresponding martingale M̃t. There exists c < ∞ such that the following holds. Suppose
0 < x < y ≤ 7π/8, X0 = x, τ = t ∧ T0 ∧ Ty. Then,

| logMτ − log M̃τ | ≤ c [t+ y2].

Proof. This follows from ∣∣∣∣∫ τ

0

[
m(Xs)

2 − a2

X2
s

]
ds

∣∣∣∣ ≤ c t,∣∣∣∣∫ τ

0

[
m′(Xs) +

a

X2
s

]
ds

∣∣∣∣ ≤ ct

Φ(Xτ )

Φ(X0)
=
Xa
τ

Xa
0

[
1 +O(y2)

]
.

Lemma 4.2. For every Φ ∈ X (a, b) with a ≥ 1/2, there exists c <∞ such that the following
holds. Suppose 0 < x < y ≤ 7π/8 and let µ denote the measure on paths Xt, 0 ≤ t ≤ Ty. Let
µ̃ be the measure obtained by replacing Xt with a Bessel process X̃t with parameter a. Then
the variation distance between µ and µ̃ is less than c y2.
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Proof. For the Bessel process there exists ρ > 0 such that for z < y, Pz{Ty ≤ y2} ≥ ρ. By
Iterating this, we see that for every positive integer k

Pz{Ty ≥ ky2} ≤ ρk.

On the event {(k − 1) y2 < Ty ≤ y2}, we have

Mτ = M̃τ [1 +O(ky2)].

and hence the variation distance between µ and µ̃ on the event {(k− 1)y2 < Ty ≤ ky} is less
than c ρk ky2. Summing over k gives the result.

It is sometimes more convenient to compare the asymptotically Bessel process to a Bessel
process rather than to a Brownian motion. Suppose a, b ≥ 1/2 and let us define the Bessel-
(a, b) process on (0, π) as follows. Let

σ0 = 0, τ0 = inf{t ≥ 0 : Xt ≥ 7π/8},

and recursively,

σk = inf{t > τk−1 : Xt = π/8}, τk = inf{t > σk : Xt = 7π/8}.

Then the Bessel-(a, b) process on (0, π) is defined to be the process Xt such that

• if σj ≤ t < τj, then Xt evolves as a Bessel process with parameter a;

• if τj ≤ t < σj, then π −Xt evolves as a Bessel with parameter b.

If Φ ∈ X (a, b) with corresponding m, then we define the martingale Mt by M0 = 1 and

Mt = Mσj

Φ(Xt)/Φ(Xσj)

(Xt/Xσj)
a

exp

{
−1

2

∫ t

σj

[
m(Xs)

2 +m′(Xs)−
a(a− 1)

X2
s

]
ds

}
,

if σj ≤ t ≤ τj, and if τj ≤ t ≤ σj+1,

Mt = Mτj

Φ(Xt)/Φ(Xτj)

(Xt/Xτj)
b

exp

{
−1

2

∫ t

τj

[
m(Xs)

2 +m′(Xs)−
b(b− 1)

(π −Xs)2

]
ds

}
,

Note that there exists β with e−βt ≤ Mt ≤ eβt, so this is a martingale. We can say that
the process titled by Φ is mutually absolutely continuous with the Bessel-(a, b) process with
Radon-Nikodym derivative Mt. If a < 1/2 or b < 1/2 we can similarly define the Φ-process
up to the first time that it leaves [0, π].

Let

F (x) = FΦ(x) =

∫ x

π/2

dy

Φ(y)2
,

and note that

F ′(x) =
1

Φ(x)2
, F ′′(x) = −2 Φ′(x)

Φ(x)3
= −2m(x)

Φ(x)2
.

Using this and Itô’s formula we see that F (Xt) is a PxΦ local martingale for t < T .
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Proposition 4.3. If Φ ∈ X (a, b), 0 < x < z < π, then

lim
ε↓0

PxΦ{Tε < Tz} = 0

if and only if a ≥ 1/2. Similarly

lim
ε↓0

PzΦ{Tπ−ε < Tx} = 0

if and only if b ≥ 1/2.

Proof. We will prove the first; the second follows similarly. If Φ ∈ X (a, b),

Φ(x)−2 ∼ c1 x
−2a [1 +O(x2)],

Note that F is strictly increasing on (0, π) with F (π/2) = 0 and F (0) = −∞ if and only if
a ≥ 1/2. Let τ = Tε ∧ Tz. Since F (Xt∧τ ) is a bounded martingale, the optional sampling
theorem implies that.

F (x) = F (z)P{Tz < Tε}+ F (ε)P{Tε < Tz} = F (ε)P{Tε < Tz},

lim
ε↓0

P{Tε < Tz} = lim
ε↓0

F (z)− F (x)

F (z)− F (ε)
=
F (z)− F (x)

F (z)− F (0)
.

4.2 a, b > 1/2

In this section we consider Φ ∈ X (a, b) with a, b ≥ 1/2 so that the process does not hit the
origin. Let

f(x) = cΦ(x)2, 0 < x < π

where c is chosen so that f is a probability density. We will show that f is the invariant
density for the process and the convergence to equilibrium is exponentially fast uniformly
over the starting position.

The form of the invariant density follows almost immediately from the fact that the
process is obtained from Brownian motion by tilting by Φ. Let p̃t(x, y) denote the density of
a Brownian motion killed when it reaches {0, π} and let qt(x, y) denote the transition density
for Xt. Then

qt(x, y) =
Φ(y)

Φ(x)
p̃t(x, y)E∗[Kt],

where Kt is as above, and E∗ is the process corresponding to Brownian motion starting at x
conditioned to be at y at time t and having not left the interval (0, π) by that time. Using
reversibility of Brownian motion, we see that

f(x) qt(x, y) = f(y) qt(y, x),
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and hence ∫ π

0

f(x) pt(x, y) dx =

∫ π

0

f(y) pt(y, x) dx = f(y).

The key to exponentially fast convergence to equilibrium is the following lemma.

Proposition 4.4. If Φ ∈ X (a, b) with a, b ≥ 1/2 and t0 > 0, then there exist 0 < c1 < c2 <
∞ such that for all x, y ∈ (0, π), and t ≥ t0,

c1 f(y) ≤ qt(x, y) ≤ c2 f(y). (49)

Proof. Let

I1 =

[
π

4
,
7π

4

]
, I2 =

[
π

8
,
7π

8

]
, I3 =

[
π

16
,
15π

16

]
.

For x, y ∈ I3, let q̃t(x, y) be the density for the process killed when it leaves I3. We claim
that there exist c1, c2 such that

c1 ≤ q̃t(x, y) ≤ c2,
1

4
≤ t ≤ 1, x, y ∈ I2, (50)

q̃t(x, y) ≤ c2, t > 0, x ∈ ∂I2, y ∈ I1. (51)

Indeed this is standard for Brownian motion killed when it leaves I3 and the martingale is
bounded uniformly away from 0 and ∞. To get an upper bound for qt(x, y) we split into
excursions. Let

σ1 = inf{t : Xt ∈ ∂I3}, τ1 = inf{t > σ1 : Xt ∈ I2},

and recursively,

σj = inf{t > τj−1 : Xt ∈ ∂I3}, τj = inf{t > σj : Xt ∈ I2}.

Then if t ≤ 1, x, y ∈ I2,

qt(x, y) = q̃t(x, y) + C

∞∑
j=1

Px{τj < 1},

where
C = max{q̃t(z, w) : t ≥ 1, z ∈ ∂I2, w ∈ I1}.

Since the process starting on ∂I3 has positive probability of not reaching I2 by time 1, we
see there exists ρ < 1 such that Px{τj < 1} ≤ ρj. Hence we get (50) and (51) with q̃t(x, y)
replaced by qt(x, y) with a different value of c2.

Since there exists uniform δ > 0 such that for x ∈ (0, π) \ I3, P{σ1 ≤ 1/4} > δ, we can
use the strong Markov property to conclude that

q1/2(x, y) ≥ c3, x ∈ (0, π), y ∈ I1
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and hence also, q1/2(y, x) ≥ c4 f(x) for these x, y. More generally, if x, y ∈ (0, π),

q1(x, y) ≥
∫
I1

q1/2(x, z) q1/2(z, y) dz ≥ c f(y).

We have upper bounds if one of x or y is in I1 and if x ≥ π/4, y ≥ 3π/4, we can use the
strong Markov property stopping the process at time Tπ/4. The last case is the upper bound
for x, y ≤ π/4 (or x, y ≥ 7π/4 that is done similarly). For this we compare to the Bessel
process with parameter a using the estimates in Proposition 2.7.

Proposition 4.5. If Φ ∈ X (a, b) with a, b ≥ 1/2, then there exist c, β such that for all t ≥ 1
and 0 < x, y < π,

[1− ce−βt] f(y) ≤ qt(x, y) ≤ [1 + ce−βt] f(y).

In particular, if g : (0, π)→ [0,∞) with

ḡ :=

∫ π

0

g(x) f(x) dx <∞,

then
ḡ [1− ce−βt] ≤ Ex[g(Xt)] ≤ ḡ [1 + ce−βt].

Proof. It suffices to prove the result for positive integer t. Let us write the 1− c1 in the last
proposition with t0 = 1 as e−β. Let us fix x and write ft(y) = qt(x, y). Then (49) implies
that we can write

f1(y) = [1− e−β] f(y) + e−β g1(y),

for some probability density g1. By iterating this and using the fact that f is invariant, we
see that we we can write for integer t

ft(y) = [1− e−βt] f(y) + e−βt gt(y)

for a probability density gt. Note at this point we have used only the lower bound in (49).
From this equation we can conclude that the variation distance between the distribution at
time t and the invariant measure decays exponentially. However, our claim is stronger. We
appeal to the upper bound to get

[1− e−βt] f(y) ≤ ft+1(y) ≤ [1− e−βt + c2e
−βt] f(y).

Proposition 4.6. Suppose Φ ∈ X (a, b) and Mt = Mt,Φ, Kt = Kt,Φ is as defined in (48).
There exists β > 0 such that if Xt is a standard Brownian motion, then

Ex[Kt,Φ;T > t] = c∗Φ(x) [1 +O(e−βt)], c∗ =

∫ π
0

Φ(y) dy∫ π
0

Φ(y)2 dy
.
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Proof.

Ex[Kt,Φ;T > t] = Φ(x)Ex
[
Φ(Xt)

−1Mt,Φ;T > t
]

= Φ(x)ExΦ
[
Φ(Xt)

−1;T > t
]

= Φ(x)ExΦ
[
Φ(Xt)

−1
]

= c∗Φ(x) [1 +O(e−βt)]

The third equality uses PxΦ{T > t} = 1.

Example. Suppose Φ(x) = (sin x)a with a ≥ 1/2. Then,

m(x)2 +m′(x) = a2 cot2 x− a

sin2 x
=
a(a− 1)

sin2 x
− a2,

Kt = ea
2t/2 exp

{
a(1− a)

2

∫ t

0

ds

sin2Xs

}
.

We therefore get

Ex
[
exp

{
a(1− a)

2

∫ t

0

ds

sin2Xs

}
;T > t

]
= e−a

2t/2 Ex[Kt;T > t]

= e−a
2t/2 c∗ [sinx]a [1 +O(e−βt)],

where

c∗ =

∫ π
0

[sin y]a dy∫ π
0

[sin y]2a dy
.

4.3 Reflected process for a, b > −1/2

For future reference, we note that the unique cubic polynomial g(x) satisfying g(0) =
0, g′(0) = 0, g(ε) = ε γ, g′(ε) = θ is

g(x) = ε [θ − 2γ] (x/ε)3 + ε[3γ − θ] (x/ε)2.

Note that for |x| ≤ ε,
|g(x)|+ ε |g′(x)| ≤ ε [17|γ|+ 7|θ|] . (52)

Here we will discuss how to define the reflecting Φ-process for Φ ∈ X (a, b) with a, b >
−1/2. As our definition we will give the Radon-Nikodym derivative with respect to the
reflecting Bessel process. We start by defining the reflecting Bessel-(a, b) process Xt on
(0, π) in the same way that the Bessel-(a, b) was defined in Section 4.1 where the “Bessel
process with parameter a (or b)” is defined to the the reflecting process. We then define the
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Φ-process to be the process with Radon-Nikodym derivative given by the martingale defined
by M0 = 1 and

Mt = Mσj

Φ(Xt)/Φ(Xσj)

(Xt/Xσj)
a

exp

{
−1

2

∫ t

σj

[
m(Xs)

2 +m′(Xs)−
a(a− 1)

X2
s

]
ds

}
,

if σj ≤ t ≤ τj, and if τj ≤ t ≤ σj+1,

Mt = Mτj

Φ(Xt)/Φ(Xτj)

(Xt/Xτj)
b

exp

{
−1

2

∫ t

τj

[
m(Xs)

2 +m′(Xs)−
b(b− 1)

(π −Xs)2

]
ds

}
,

Note that there exists β with e−βt ≤ Mt ≤ eβt, so this is a martingale. We can see that
the process tilted by Φ is mutually absolutely continuous with the Bessel-(a, b) process with
Radon-Nikodym derivative Mt.

A technical issue here that might concern us is the fact that the proof that Mt is a
martingale uses the Girsanov theorem. This is valid locally away from the boundary, but it
may not be clear that it works at the boundary. If it were the case that for some ε > 0

m(x) =
a

x
, m(π − x) = − b

π − x
, 0 < x < ε,

then this would not be a problem, since the process Mt would not change when Xt < ε or
Xt > π − ε. More generally, we can find a sequence mn such that

mn(x) =
a

x
, mn(π − x) = − b

π − x
, 0 < x < 2−n,

mn(x) = m(x), 2−n+1 ≤ x ≤ π − 2−n+1,

and such that for all x ≤ 2−n+1,

|mn(x)−m(x)|+ |mn(π − x)−m(π − x)| ≤ c x,

|m′n(x)−m′(x)|+ |m′n(π − x)−m′(π − x)| ≤ c.

The comment above about cubic polynomials is useful in constructing a particular example.

One can check that the proof required more than the fact that x ∼ sinx near the
origin. We needed that

sinx = x
[
1−O(x2)

]
.

An error term of O(x) would have not been good enough.

We can now describe how to construct the reflecting radial Bessel process.
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• Run the paths until time τ = T3π/4. Then

dPa
dP̂a

= Kτ .

• Let σ = inf{t ≥ τ : Xt = π/4}. The measure on Xt, τ ≤ t ≤ σ is defined to be the
measure obtained in the first step by reflecting the paths around x = π/2.

• Continue in the same way.

Let φt(x, y; a) denote the transition probability for the reflected process which is defined
for 0 < x, y < π and t > 0. This is also defined for x = 0 and x = π by taking the limit, but
we restrict to 0 < y < π. We will will use pt(x, y; a) for the transition probability for the
process killed at 0.

If µ0 is any probability distributition on [0, π], let Φtµ denote the distribution of Xt given
X0 has distribution µ0.

Lemma 4.7. If −1/2 < a < 1/2, there exists c, β and a probability distribution µ such that
if µ0 is any initial distribution and µt = Φtµ0, then

‖µ− µt‖ ≤ c e−βt. (53)

Proof. This uses a standard coupling argument. The key fact is that there exists ρ > 0 such
that for every x ∈ [0, π], the probability that the process starting at x visits 0 by time 1 is
at least ρ.

Suppose µ1, µ2 are two different initial distributions. We start processes X1, X2 indepen-
dently with distributions µ1, µ2. When the particles meet we coalesce the particles and they
run together. If X1 ≤ X2, then the coalescence time will be smaller than the time for X2

to reach the origin. If X1 ≥ X2, the time will be smaller than the time for X1 to reach the
origin. Hence the coalescence time is stochastically bounded by the time to reach the origin.
Using the strong Markov property and the previous paragraph, the probability that T > n
is bounded above by (1 − ρ)n = e−βn and ‖µ1

t − µ2
t‖ is bounded above by the probability

that the paths have not coalesced by time t. If s > t, we can apply the same argument using
initial probability distributions µ1

s−t, µ
2
0 to see that

‖µ1
s − µ2

t‖ ≤ c e−βt, s ≥ t.

Using completeness, we see that the limit measure

µ = lim
n→∞

µ1
n

exists and satisfies (53).
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The construction of the reflected process shows that {t : sinXt = 0} has zero measure
which shows that the limiting measure must be carried on (0, π).

We claim that the invariant density is given again by fa = C2a (sinx)2a. As mentioned
before, it satisfies the adjoint equation

−[m(x)fa(x)]′ +
1

2
f ′′a (x) = 0. where m(x) = a cotx.

Another way to see that the invariant density is proportional to (sinx)2a is to consider
the process reflected at π/2. Let pt(z, x) = pt(z, x) + pt(z, π − x) be the probability
density for this reflected process. Suppose that 0 < x < y < π/2 and consider the
relative amounts of time spent at x and y during an excursion from zero. If an excursion
is to visit either x or y, it must start by visiting x. Given that it is x, the amount of
time spent at x before the excursion ends is∫ ∞

0
p̄t(x, x; a) dt,

and the amount of time spent at y before the excursion ends is∫ ∞
0

p̄t(x, y; a) dt =

[
sin y

sinx

]2a ∫ ∞
0

p̄t(y, x; a) dt.

The integral on the right-hand side gives the expected amount of time spent at x before
reaching zero for the process starting at y. However, if it starts at y it must hit x before
reaching the origin. Hence by the strong Markov property,∫ ∞

0
p̄t(y, x; a) dt =

∫ ∞
0

p̄t(x, x; a) dt,

and hence, ∫ ∞
0

p̄t(x, y; a) dt =

[
sin y

sinx

]2a ∫ ∞
0

p̄t(x, x; a) dt.

An important property of the radial Bessel process is the exponential rate of convergence
to the equilibrium density. The next proposition gives a Harnack-type inequality that states
within time one that one is within a multiplicative constant of the invariant density.

Proposition 4.8. For every −1/2 < a < 1/2 and t0 > 0, there exists c = c <∞ such that
for every 0 < x, y < 2π and every t ≥ t0,

c−1 [sinx]2a ≤ φt(y, x; a) ≤ c [sinx]2a.
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Proof. By the Markov property it suffices to show that for each s > 0 there exists c = c(s) <
∞ such that

c−1 [sinx]2a ≤ φs(y, x; a) ≤ c [sinx]2a.

We fix s and allow constants to depend on s. We write z = π/2. By symmetry, we may
assume that x ≤ π/2. for which sinx � x.

By comparison with Brownian motion, it is easy to see that

inf{φt(z, y) : s/3 ≤ t ≤ s, π/4 ≤ y ≤ 3π/4} > 0.

Therefore, for any 0 ≤ x ≤ π/2, 2s/3 ≤ t ≤ s, π/4 ≤ y ≤ 3π/4,

φt(x, y; a) ≥ Pxa{Tz ≤ s/3} inf{φr(z, y) : s/3 ≤ r ≤ s, π/4 ≤ y ≤ 3π/4} ≥ c,

and hence for such t, using ???,

φt(z, x; a) = (x/z)2a φt(x, z; a) ≥ c x2a.

Hence, for every 0 ≤ y ≤ π,

x−2a φs(y, x; a) ≥ Pya{Tz ≤ s/3} inf{x−2a φr(z, x) : s/3 ≤ r ≤ s, 0 ≤ y ≤ π} ≥ c.

This gives the lower bound.
Our next claim is if w = 3π/4 and

θ1 := sup{x−2a φt(w, x) : 0 ≤ t ≤ s, 0 ≤ x ≤ π/2},

then θ1 <∞. To see this let φ∗t (y, x) be the density of the process Xt∧T7π/8 . Using (42) and
absolute continuity, we can see that

φ∗t (w, x) ≤ c x2a.

However, by the strong Markov property, we can see that

x−2a φt(y, x) ≤ x−2a φ∗t (y, x) + P7π/8{Tw ≤ s} θ1v,≤ x−2a φ∗t (w, x) + (1− ρ) θ1,

for some ρ > 1. Hence θ1 ≤ x−2a φ∗t (w, x) ≤ c/ρ <∞.
We now invoke Proposition 3.3 and absolute continuity,to see that for all 0 ≤ y ≤ 3π/4

φ∗s(y, x) ≤ c x2a. Hence, by the Markov property,

φs(y, x) ≤ φ∗s(y, x) + sup{φt(w, x) : 0 ≤ t ≤ s} ≤ c x2a.

Proposition 4.9. For every −1/2 < a < 1/2, there exists β > 0 such that for all t ≥ 1 and
all 0 < x, y < π,

φt(x, y; a) = fa(y)
[
1 +O(e−tβ)

]
.

More precisely, for every t0 > 0, there exists c <∞ such that for all x, y and all t ≥ t0,

fa(y) [1− ce−βt] ≤ φt(x, y; a) ≤ fa(y) [1 + ce−βt].

Proof. Exactly as in Proposition 4.5.
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4.4 Functionals of Brownian motion

Now suppose Xt is a Brownian motion with X0 = x ∈ (0, π). Let T = inf{t : Θt = 0 or π}
and let It denote the indicator function of the event {T > t}. Suppose that λ > −1/8 and
let

a =
1

2
+

1

2

√
1 + 8λ ≥ 1

2
,

be the larger root of the polynomial a2 − a− 2λ. Let

Jt = exp

{
−
∫ t

0

ds

S2
s

}
.

If Mt,a denotes the martingale in (48), then we can write

Mt,a =

[
St
S0

]a
Jλa , where λa =

a(a− 1)

2

Proposition 4.10. Suppose λ ≥ −1/8. Then there exists β = β(λ) > 0 such that

Ex[Jλt It] = [C2a/Ca] (sinx)a e−at [1 +O(e−βt)],

where

a =
1

2
+

1

2

√
1 + 8λ ≥ 1

2
. (54)

Proof. Let a be defined as in (54). Then,

Ex[Jλt It] = (sinx)a e−at Ex
[
Mt,a It S

−a
t

]
= (sinx)a e−at Exa

[
It S

−a
t

]
= (sinx)a e−at

∫ π

0

pt(x, y; a) [sin y]−a dy.

= c′ (sinx)a e−at [1 +O(e−βt)].

Here β = βa is the exponent from Proposition 4.5 and

c′ =

∫ π

0

fa(y) [sin y]−a dy = C2a/Ca.

Note that in the third line we could drop the It term since Pxa{It = 1} = 1.

Proposition 4.11. Suppose b ∈ R and

λ+ λb ≥ −
1

8
. (55)

Let

a =
1

2
+

1

2

√
1 + 8(λ+ λb) ≥

1

2
. (56)

and assume that a+ b > −1. Then, there exists β = β(λ, b) > 0 such that

Exb [Jλt It] = [C2a/Ca+b] (sinx)a−b e(b−a)t [1 +O(e−βt)].
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Proof. Let a be as in (56) and note that λa = λ+ λb.

Exb [Jλt It] = Ex[Mt,b J
λ
t It]

= (sin x)−b ebt Ex[Sbt J
λb+λ
t It]

= (sin x)a−b e(b−a)t Ex[Sb−at Mt,a It]

= (sin x)a−b e(b−a)t Exa[Sb−at ]

= (sin x)a−b e(b−a)t

∫ π

0

pt(x, y; a) [sin y]b−a dy

= c′ (sinx)a−b e(b−a)t [1 +O(e−βt)].

Here β = βa is the exponent from Proposition 4.5 and

c′ =

∫ π

0

fa(y) [sin y]b−a dy = C2a/Ca+b.

The fourth equality uses the fact that Pxa{It = 1} = 1.

4.5 Example

We consider Brownian motion on (0, π) weighted locally by

Φ(x) = [sinx]u [1− cosx]v, m(x) =
v

sinx
+ (u+ v) cot x.

When we tilt by the appropriate local martingale, we get

dXt =

[
v

sinXt

+ (u+ v) cotXt

]
dt+ dBt. (57)

This process is asymptotically Bessel-(u+2v) at the origin and asymptotically Bessel-u at π.
we will assume that u > −1/2 and if 1/2 < u < 1/2, we will consider the reflected process.

If u, u+ v > −1/2, we have the invariant density

fu,v(x) = cu,v Φ(x)2 = cu,v [sinx]2u [1− cosx]2v,

where

cu,v =

[∫ π

0

[sinx]2u [1− cosx]2v dx

]−1

=
Γ(2u+ 2v + 1)

22u+2v Γ(u+ 2v + 1
2
) Γ(u+ 1

2
)
.
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We have used an integral identity. By first substituting θ = x/2 and then y = sin2 θ
we see that∫ π

0
[sinx]2r [1− cosx]s dx = 2

∫ π/2

0
[sin 2θ]2r [1− cos 2θ]s dθ

= 2

∫ π/2

0
[2 sin θ cos θ]2r [2 sin2 θ]s dθ

= 22r+s

∫ π/2

0
[sin2 θ]r+s−

1
2 [cos2 θ]r−

1
2 [2 sin θ cos θ dθ]

= 22r+s

∫ 1

0
yr+s−

1
2 (1− y)r−

1
2 dy

= 22r+s Beta

(
r + s+

1

2
, r +

1

2

)
= 22r+s Γ(r + s+ 1

2) Γ(r + 1
2)

Γ(2r + s+ 1)
.

Proposition 4.12. Suppose u, u+v > −1/2, and Xt satisfies (57). There exists α > 0 such
that if pt(x, y) denotes the density of Xt given X0 = x, then for t ≥ 1,

pt(x, y) = fu,v(y) [1 +O(e−αt)].

In particular, if F is a nonnegative function with

Eu,v(F ) :=

∫ ∞
0

F (y) fu,v(y) dy <∞

then
E[Xt | X0 = x] = Eu,v(F )

[
1 +O(e−αt)

]
.

For later reference, we note that if k > −1− u− v, and

F (x) =

[
1− cosx

2

]k
,

then

Eu,v(F ) =

∫ π

0

cu,v [sinx]2u [1− cosx]2v
[

1− cosx

2

]k
dx

= 2−k
cu,v
cu,v+ k

2

=
Γ(2u+ 2v + 1) Γ(u+ 2v + k + 1

2
)

Γ(u+ 2v + 1
2
) Γ(2u+ 2v + k + 1)

. (58)
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5 Identities for special functions

5.1 Asymptotics of ha

Suppose a > −1/2 and

ha(z) =
∞∑
k=0

ck z
2k where ck = ck,a =

1

2a+2k− 1
2 k! Γ(k + a+ 1

2
)
.

We note that the modified Bessel function of the first kind of order ν is given by Iν(z) =
zν hν+ 1

2
(z). What we are discussing in this appendix are well known facts about Iν , but we

will state and prove them for the analytic function ha. Since ck decays like [2k k!]−2, is easy
to see that the series has an infinite radius of convergence, and hence ha is an entire function.
Note that the ck are given recursively by

c0 =
2

1
2
−a

Γ(a+ 1
2
)
, ck+1 =

ck
(2k + 2) (2k + 2a+ 1)

. (59)

Proposition 5.1. ha is the unique solution to

z h′′(z) + 2a h′(z)− z h(z) = 0. (60)

with

h(0) =
2

1
2
−a

Γ(a+ 1
2
)
, h′(0) = 0.

Proof. Using term-by-term differentiation and (59), we see that ha satisfies (60). A second,
linearly independent solution of (60) can be given by

h̃a(z) =
∞∑
k=1

c̃k−1z
2k−1,

where c̃k are defined recursively by

c̃0 = 1, c̃k =
c̃k−1

(2k + 1) (2k + 2a)
.

Note that h̃a(0) = 0, h̃′a(0) = 1. By the uniqueness of second-order linear differential equa-
tions, every solution to (60) can be written as h(z) = λha(z)+ λ̃ h̃a(z), and only λ = 1, λ̃ = 0
satisfies the initial condition.

Proposition 5.2. Suppose h satisfies (60), and

φ(x, y) = y2a exp

{
−x

2 + y2

2

}
h(xy).
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Let

qt(x, y; a) =
1√
t
φ(x/

√
t, y/
√
t).

Then for every t,
∂tqt(x, y : a) = Lxqt(x, y; a) = L∗yqt(x, y; a),

where

Lf(x) =
a

x
f ′(x) +

1

2
f ′′(x),

L∗f(x) =
a

x2
f(x)− a

x
f ′(x) +

1

2
f ′′(x).

Proof. This is a straightforward computation. We first establish the equalities at t = 1.
Note that

∂tqt(x, y; a) |t=1= −1

2
[φ(x, y) + xφx(x, y) + y φy(x, y)] .

Hence we need to show that

φxx(x, y) +

[
2a

x
+ x

]
φx(x, y) + y φy(x, y) + φ(x, y) = 0,

φyy(x, y) + xφx(x, y) +

[
y − 2a

y

]
φy(x, y) +

[
2a

y2
+ 1

]
φ(x, y) = 0

Direct computation gives

φx(x, y) =

[
−x+ y

h′(xy)

h(xy)

]
φ(x, y),

φxx(x, y) =

[
−1 +

h′′(xy)

h(xy)
y2 − 2xy

h′(xy)

h(xy)
+ x2

]
φ(x, y),

φy(x, y) =

[
2a

y
− y + x

h′(xy)

h(xy)

]
φ(x, y),

φyy(x, y) =

[
−1− 4a+

4a2 − 2a

y2
+ y2 + x2 h

′′(xy)

h(xy)
+

(
4ax

y
− 2xy

)
h′(xy)

h(xy)

]
φ(x, y).

If h satisfies (16), then
h′′(xy)

h(xy)
= 1− 2a

xy

h′(xy)

h(xy)
,

so we can write

φxx(x, y) =

[
−1 + x2 + y2 +

(
−2xy − 2ay

x

)
h′(xy)

h(xy)

]
φ(x, y),

φyy(x, y) =

[
−1− 4a+ x2 + y2 +

4a2 − 2a

y2
+

(
4ax

y
− 2xy

)
h′(xy)

h(xy)

]
.
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This gives the required relation.
For more general t, note that

∂tqt(z, w; a) =
1

2t3/2

[
φ(z/
√
t, w/

√
t; a)− φx(z/

√
t, w/

√
t; a)− φy(z/

√
t, w/

√
t; a)

]
.

∂xqt(z, w; a) =
1

t
φx(z/

√
t, w/

√
t; a),

∂xxqt(z, w; a) =
1

t3/2
φxx(z/

√
t, w/

√
t; a),

∂yqt(z, w; a) =
1

t
φy(z/

√
t, w/

√
t; a),

∂yyqt(z, w; a) =
1

t3/2
φyy(z/

√
t, w/

√
t; a),

Lxqt(z, w; a) =
a

(z/
√
t)

1

t3/2
φx(z/

√
t, w/

√
t; a) +

1

2

1

t3/2
φxx(z/

√
t, w/

√
t; a),

L∗yqt(z, w; a) =

a

(w/
√
t)2

1

t3/2
φ(z/
√
t, w/

√
t; a)− a

(w/
√
t)

1

t3/2
φy(z/

√
t, w/

√
t; a)+

1

2

1

t3/2
φyy(z/

√
t, w/

√
t; a),

Proposition 5.3. If h satisfies (60), then exist an analytic function u with u(0) 6= 0 such
that for all x > 0,

h(x) = x−a ex u(1/x).

Proof. Let
v(x) = e−x xa ha(x).

Then,

v′(x) = v(x)

[
−1 +

a

x
+
h′a(x)

ha(x)

]
,

v′′(x) = v(x)

([
−1 +

a

x
+
h′a(x)

ha(x)

]2

− a

x2
+
h′′a(x)

ha(x)
− h′a(x)2

ha(x)2

)

= v(x)

[
1 +

a2 − a
x2

− 2a

x
+

(
2a

x
− 2

)
h′a(x)

ha(x)
+
h′′a(x)

ha(x)

]
= v(x)

[
2 +

a2 − a
x2

− 2a

x
− 2

h′a(x)

ha(x)

]
= −2v′(x) +

a2 − a
x2

v(x).
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The third equality uses the fact that ha satisfies (60). If ua(x) = v(1/x), then

u′(x) = − 1

x2
v′(1/x),

u′′a((x) =
2

x3
v′(1/x) +

1

x4
v′′(1/x)

=

[
2

x3
− 2

x4

]
v′(1/x) +

a2 − a
x2

v(1/x)

=

[
2

x2
− 2

x

]
u′a((x) +

a2 − a
x2

ua((x).

In other words, u satisfies the equation

x2 u′′(x) + (2− 2x)u′(x) + (a2 − a)u(x) = 0.

We can find two linearly independent entire solutions to this equation of the form

u(z) =
∞∑
k=0

bk z
k

by choosing b0 = 1, b1 = 0 or b0 = 0, b1 = 1, and the recursively,

bk+2 =
(2k + a− a2) bk − 2 (k + 1) bk+1

(k + 1)(k + 2)
.

Then,

u(z) =
∞∑
k=0

bk z
k,

u′(x) =
∞∑
k=0

(k + 1)bk+1 z
k,

zu′(z) =
∞∑
k=1

k bkz
k,

u′′(z) =
∞∑
k=0

(k + 1) (k + 2) bk+2z
k,

then the differential equation induces the relation

bk+2 =
(2k + a− a2) bk − 2 (k + 1) bk+1

(k + 1)(k + 2)
.

Note that

|bk+2| ≤
2

k + 2
[|bk|+ |bk+1|],

from which we can conclude that the power series converges absolutely for all z. By unique-
ness ua(x) must be a linear combination of these solutions and hence must be the restriction
of an entire function to the real line.
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5.2 Some integral identities

In this subsection we establish two “obvious” facts about the density by direct computation.
We first prove that ψt(x, ·; a) is a probability density.

Proposition 5.4. For every a > −1/2 and x > 0,∫ ∞
0

ψt(x, y; a) dy = 1.

We use a known relation about special functions, that we state here.

Lemma 5.5. If a > −1/2 and x > 0,∫ ∞
0

z2a exp

{
− z2

2x2

}
ha(z) dz = x2a−1 ex

2/2.

Proof. If we let ν = a− 1
2

and r = x2, we see this is equivalent to∫ ∞
0

zν+1 exp

{
−z

2

2r

}
Iν(z) dz = rν+1 er/2.

Equation 1.15.5 #4 of [3] gives the formula∫ ∞
0

xb−1 e−px
2

Iν(x) dx = 2−ν−1 p−
b+ν
2

Γ( b+ν
2

)

Γ(ν + 1)
1F1

(
b+ ν

2
, ν + 1,

1

4p

)
,

where 1F1 is the confluent hypergeometric function. In our case, b = ν + 2, p = 1/(2r), so
the right-hand side equals

2−ν−1 (1/2r)−ν−1
1F1 (ν + 1, ν + 1, r/2) = rν+1 er/2.

where the last equality comes from the well-known identity 1F1(b, b, z) = ez.

Proof of 5.4. Since∫ ∞
0

ψt(x, y; a) dy =

∫ ∞
0

t−1/2 ψ1

(
x/
√
t, y/
√
t; a
)
dy =

∫ ∞
0

ψ1(x/
√
t, z; a) dz,

it suffices to show that for all x, ∫ ∞
0

ψ(x, y) dy = 1

where

ψ(x, y) = ψ1(x, y; a) = y2a exp

{
−x

2 + y2

2

}
ha(xy).
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Using the substitution xy = z, we see that∫ ∞
0

ψ(x, y) dy = e−x
2/2

∫ ∞
0

y2a exp

{
−y

2

2

}
ha(xy) dy

= x−2a−1 e−x
2/2

∫ ∞
0

z2a exp

{
− z2

2x2

}
ha(z) dz = 1

We now show that ψt(x, y; a) satisfies the Chapman-Kolomogrov equations.

Proposition 5.6. if a > −1/2, 0 < t < 1 and x > 0, then∫ ∞
0

ψt(x, z; a)ψ1−t(z, y; a) dz = ψ1(x, y; a).

Proof. Using (36), we see that the proposition is equivalent to the identity

[t(1− t)]−a−
1
2

∫ ∞
0

z2a exp

{
−x

2 + z2

2t

}
exp

{
− z

2 + y2

2(1− t)

}
ha

(xz
t

)
ha

(
zy

1− t

)
dz =

exp

{
−x

2 + y2

2

}
ha(xy).

We will use one integral identity which is equation 2.15.20 #8 in [3]: if ν > −1, and b, c > 0,∫ ∞
0

x e−x
2/2 Iν(bx) Iν(cx) dx = exp

{
b2 + c2

2

}
Iν(bc). (61)

If we set ν = a− 1
2
, we have∫ ∞

0

z2a exp

{
− z2

2t(1− t)

}
ha

(xz
t

)
ha

(
zy

1− t

)
dz

=

(
t

x

)a− 1
2
(

1− t
y

)a− 1
2
∫ ∞

0

z exp

{
− z2

2t(1− t)

}
Iν

(xz
t

)
Iν

(
zy

1− t

)
dz

=

(
t

x

)a− 1
2
(

1− t
y

)a− 1
2

t(1− t)
∫ ∞

0

u e−u
2/2 Iν

(
ux
√

1− t√
t

)
Iν

(
uy
√
t√

1− t

)
du

= [t(1− t)]a+ 1
2 exp

{
x2(1− t)

2t
+

y2t

2(1− t)

}
(xy)

1
2
−a Iν(xy)

= [t(1− t)]a+ 1
2 exp

{
x2(1− t)

2t
+

y2t

2(1− t)

}
ha(xy)
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