Appendix: the case of a surface

A1. Below R is a commutative coefficient ring. Denote by \mathcal{L}_{R} the Picard groupoid of \mathbb{Z}-graded super R-lines. So an object of \mathcal{L}_{R} is a pair $\left(L, \operatorname{deg}_{L}\right)$, where L is an invertible R-module, $\operatorname{deg}_{L} \in \mathbb{Z}^{\operatorname{Spec} R}:=$ the group of \mathbb{Z}-valued locally constant function on Spec R; the operation on \mathcal{L}_{R} is $\left(L, \operatorname{deg}_{L}\right) \otimes\left(L^{\prime}, \operatorname{deg}_{L^{\prime}}\right):=(L \otimes$ $L^{\prime}, \operatorname{deg}_{L}+\operatorname{deg}_{L^{\prime}}$) with the commutativity corrected by the super sign $(-1)^{\operatorname{deg}_{L} \operatorname{deg}_{L^{\prime}}}$.

Our X is a compact real-analytic surface with boundary Y whose connected components are denoted by $Y_{\alpha}, \alpha \in A$. Let F be a complex of sheaves of R modules on X whose fibers are perfect and the restriction of its cohomology to $X \backslash Y$, and to Y minus finitely many points, is locally constant. Then $R \Gamma(X, F)$ is a perfect R-complex, so we have $\operatorname{det} R \Gamma(X, F) \in \mathcal{L}_{R}$. Let ν be any continuous nowhere vanishing 1-form on $X \backslash Y$. Our aim is to assign to each component Y_{α} a graded super R-line $\mathcal{E}(F)_{\nu Y_{\alpha}}$ which has local origin, i.e., depends only on the restriction of our datum to a neighborhood of Y_{α}, and define the ε-factorization isomorphism

$$
\begin{equation*}
\otimes_{\alpha} \mathcal{E}(F)_{\nu Y_{\alpha}} \xrightarrow{\sim} \operatorname{det} R \Gamma(X, F) . \tag{A1.1}
\end{equation*}
$$

The constructions are presented in A6; they are based on a theorem from A5.
A2. A shot of abstract nonsense. Let \mathcal{A} be a Boolean algebra. Recall that it is realized canonically as the Boolean algebra of open compact subsets of a pro-finite set $\mathcal{P}=\operatorname{Spec} \mathcal{A}{ }^{1}$

Let \mathcal{L} be a Picard groupoid; ${ }^{2}$ we write the operation in \mathcal{L} as \otimes. The group of isomorphism classes of objects in \mathcal{L} is denoted by $\pi_{0} \mathcal{L}$, the group of automorphisms of the unit object $1_{\mathcal{L}}$ is denoted by $\pi_{1} \mathcal{L}$; these groups are commutative (and written multiplicatively). For any $L \in \mathcal{L}$ one has a canonical identification $\pi_{1} L \xrightarrow{\sim} \operatorname{Aut} L$, $\phi \mapsto i d_{L} \otimes \phi$. There is a natural homomorphism $\epsilon: \pi_{0} \mathcal{L} \rightarrow \pi_{1} \mathcal{L}$ which sends an object $L \in \mathcal{L}$ to the symmetric constraint symmetry of $L \otimes L ; L$ is said to be even if $\epsilon(L)=1$ and odd otherwise; let $\mathcal{L}^{e v} \subset \mathcal{L}$ be the Picard subgroupoid of even objects. \mathcal{L} is said to be discrete if its $\pi_{1} \mathcal{L}$ is trivial; such an \mathcal{L} amounts to an abelian group. For any \mathcal{L} there is an evident morphism of Picard groupoids $\mathcal{L} \rightarrow \pi_{0} \mathcal{L}$.
(a) An \mathcal{L}-measure (λ, m) on \mathcal{A} (or on \mathcal{P}) is a rule that assigns to every $Q \in \mathcal{A}$ an object $\lambda(Q) \in \mathcal{L}$, and to every finite set $\left\{Q_{i}\right\} \subset \mathcal{A}$ such that $Q_{i} \cap Q_{i^{\prime}}=\emptyset$ for $i \neq i^{\prime}$, an identification $m: \otimes \lambda\left(Q_{i}\right) \xrightarrow{\sim} \lambda\left(\cup Q_{i}\right)$. One demands m to be transitive in the obvious sense. We often drop m from the notation.
\mathcal{L}-valued measures form a Picard groupoid which we denote by $\mathcal{M e a s}(\mathcal{A}, \mathcal{L})$ or $\mathcal{M e a s}(\mathcal{P}, \mathcal{L})$. It is functorial with respect to morphisms of \mathcal{P} 's and \mathcal{L} 's. Notice that $\pi_{1} \mathcal{M e a s}(\mathcal{P}, \mathcal{L})=\mathcal{M e a s}\left(\mathcal{P}, \pi_{1} \mathcal{L}\right)$ (the usual group of $\pi_{1} \mathcal{L}$-valued measures on $\left.\mathcal{P}\right)$; the projection $\mathcal{L} \rightarrow \pi_{0} \mathcal{L}$ yields a homomorphism $\pi_{0} \operatorname{Meas}(\mathcal{P}, \mathcal{L}) \rightarrow \mathcal{M e a s}\left(\mathcal{P}, \pi_{0} \mathcal{L}\right)$ which is bijective if \mathcal{A} is countable or if $\pi_{1} \mathcal{L}$ is finite.

Exercise. Let $\mathbb{Z}^{\mathcal{P}}$ be the group of \mathbb{Z}-valued locally constant functions on \mathcal{P}; for $Q \in \mathcal{A}$ let $1_{Q} \in \mathbb{Z}^{\mathcal{P}}$ be the characteristic function of $Q \subset \mathcal{P}$. Consider the Picard

[^0]groupoid $\operatorname{Hom}\left(\mathbb{Z}^{\mathcal{P}}, \mathcal{L}\right)$ of Picard groupoid morphisms $\phi: \mathbb{Z}^{\mathcal{P}} \rightarrow \mathcal{L}$. There is a fully faithful embedding of Picard groupoids $\operatorname{Hom}\left(\mathbb{Z}^{\mathcal{P}}, \mathcal{L}\right) \hookrightarrow \mathcal{M e a s}(\mathcal{P}, \mathcal{L}), \phi \mapsto \lambda_{\phi}$, where $\lambda_{\phi}(Q)=\phi\left(1_{Q}\right)$ and m comes since $1_{\sqcup Q_{i}}=\Sigma 1_{Q_{i}}$. Show that its essential image equals $\operatorname{Meas}(\mathcal{P}, \mathcal{L})^{e v}=\operatorname{Meas}\left(\mathcal{P}, \mathcal{L}^{e v}\right)$, i.e., in the \mathcal{L}-setting an outright integration of functions makes sense only for even λ 's.

Remark. Suppose that we write \mathcal{P} as the projective limit of a directed family of finite sets \mathcal{P}_{α} and surjections $\pi_{\alpha \alpha^{\prime}}: \mathcal{P}_{\alpha^{\prime}} \rightarrow \mathcal{P}_{\alpha}, \alpha^{\prime} \geq \alpha$; so for every $b \in \mathcal{P}_{\alpha}$ we have an open $Q_{\alpha b} \subset \mathcal{P}$. An \mathcal{L}-measure λ is the same as a datum of objects $\lambda_{\alpha}(b)=$ $\lambda\left(Q_{\alpha b}\right) \in \mathcal{L}, a \in \mathcal{P}_{\alpha}$, together with identifications $m_{\alpha \alpha^{\prime} b}: \otimes \lambda_{\alpha^{\prime}}\left(b^{\prime}\right) \xrightarrow{\sim} \lambda_{\alpha}(b)$, where $b \in \mathcal{P}_{\alpha}$ and b^{\prime} run the set of all elements of $\mathcal{P}_{\alpha^{\prime}}$ such that $\pi_{\alpha \alpha^{\prime}}\left(b^{\prime}\right)=b$; the $m_{\alpha \alpha^{\prime}}$'s should satisfy the transitivity property.
(b) Inclusion-exclusion formula: Take $Q \in \mathcal{A}$ and a finite collection $\left\{Q_{\beta}\right\}, \beta \in B$, such that $Q=\cup Q_{\beta}$. For a non-empty subset $S \subset B$ set $Q_{S}:=\bigcap_{\beta \in S} Q_{\beta}$.

Lemma. If all $\lambda\left(Q_{S}\right)$ are even, then one has a canonical isomorphism

$$
\begin{equation*}
\mu_{Q}^{\left\{Q_{\beta}\right\}}: \underset{\emptyset \neq S \subset B}{\otimes} \lambda\left(Q_{S}\right)^{\otimes(-1)^{|S|+1}} \xrightarrow{\sim} \lambda(Q) . \tag{A2.1}
\end{equation*}
$$

Proof. For a non-empty $S \subset B$ let $Q_{(S)}$ be the complement in Q_{S} to the union of $Q_{S^{\prime}}$ where $S^{\prime} \supset S, S^{\prime} \neq S$. Then Q is the disjoint union of all $Q_{(S)}$'s, $S \subset B$. Intersecting our datum with $Q_{(S)}$, we are reduced to the situation where all Q_{β} 's are equal. Here (A2.1) is immediate.

Remark. Let $Q=\cup Q_{\gamma}, \gamma \in \Gamma$, be another presentation of Q such that $\lambda\left(Q_{T}\right) \in$ $\mathcal{L}^{e v}$ for every non-empty $T \subset \Gamma$. Let us compare $\mu_{B}:=\mu_{Q}^{\left\{Q_{\beta}\right\}}$ and $\mu_{\Gamma}:=\mu_{Q}^{\left\{Q_{\gamma}\right\}}$. Denote by L_{B}, L_{Γ} their sources, and set $L_{B \Gamma}:=\otimes \lambda\left(Q_{S} \cap Q_{T}\right)^{(-1)^{(|S|+1)(|T|+1)}}$, the tensor product is indexed by all non-empty $S \subset B, T \subset \Gamma$. There is a natural morphism $\nu_{B}: L_{B \Gamma} \xrightarrow{\sim} L_{B}$ defined as the tensor product of morphisms $\left(\mu_{Q S}^{\left\{Q_{\gamma} \cap Q_{S}\right\}}\right)^{\otimes(-1)^{|S|+1}}$ for $\emptyset \neq S \subset B$, and a similarly defined morphism $\nu_{\Gamma}: L_{B \Gamma} \xrightarrow{\sim} L_{\Gamma}$. Now one has $\mu_{B} \nu_{B}=\mu_{\Gamma} \nu_{\Gamma}$; to prove this, one reduces the statement to the case when all Q_{β} and Q_{γ} coincide, where the statement is obvious.
(c) Let $\mathcal{I} \subset \mathcal{A}$ be a Boolean ideal, and $\mathcal{A} / \mathcal{I}$ the quotient Boolean algebra, so $\operatorname{Spec} \mathcal{A} / \mathcal{I}=: \mathcal{P}^{\prime}$ is a closed subset in \mathcal{P}, and \mathcal{I} consists of open compact subsets of $\mathcal{P} \backslash \mathcal{P}^{\prime}$. Let $\mathcal{M e a s}(\mathcal{A}, \mathcal{L})^{\mathcal{I}}$ be the Picard groupoid of pairs (λ, ι) where λ is an \mathcal{L}-valued measure on \mathcal{A} and ι is a trivialization of the restriction $\left.\lambda\right|_{\mathcal{I}}$ of λ to \mathcal{I}. ${ }^{3}$ So ι is a datum of identifications $\iota(Q): \lambda(Q) \xrightarrow{\sim} 1_{\mathcal{L}}, Q \in \mathcal{I}$, multiplicative with respect to disjoint union decompositions of Q 's. The pull-back functor yields an equivalence of the Picard groupoids $\mathcal{M e a s}(\mathcal{A} / \mathcal{I}, \mathcal{L}) \xrightarrow{\sim} \mathcal{M e a s}(\mathcal{A}, \mathcal{L})^{\mathcal{I}}$.

Take any (λ, ι) as above, and let $Q,\left\{Q_{b}\right\}$ be a datum as in (b) such that $Q,\left\{Q_{b}\right\}$ lie in \mathcal{I}. Since λ is trivial on \mathcal{I}, the lemma in (b) is applicable, so we have isomorphism (A2.1). Now ι trivializes both objects in (A2.1), and one has

$$
\begin{equation*}
\underset{S \subset B}{\otimes} \iota\left(Q_{S}\right)^{\otimes(-1)^{|S|+1}}=\iota(Q) . \tag{A2.2}
\end{equation*}
$$

[^1](d) Let \mathcal{I} be as in (c), and $\mathcal{D} \subset \mathcal{I}$ be a subset closed under \cap such that every $Q \in \mathcal{I}$ can be represented as $\cup Q_{\beta}$ with $\left\{Q_{\beta}\right\} \subset \mathcal{D}$.

Lemma. Let λ be any \mathcal{L}-measure on \mathcal{A} and ι be any datum of trivializations $\iota(Q): \lambda(Q) \xrightarrow{\sim} 1_{\mathcal{L}}$ defined for $Q \in \mathcal{D}$. If (A2.2) holds whenever $Q,\left\{Q_{b}\right\}$ are in \mathcal{D}, then ι extends in a unique manner to a trivialization ι of $\lambda_{\mathcal{I}}$.

Proof. It is clear that $\left.\lambda\right|_{\mathcal{I}}$ takes values in trivial objects of \mathcal{I}, so (A2.1) makes sense there. Take any $Q \in \mathcal{I}$ and represent it as $\cup Q_{\beta}, \beta \in B$, for $\left\{Q_{\beta}\right\} \subset \mathcal{D}$. Let $\iota^{\left\{Q_{\beta}\right\}}(Q)$ be a trivialization of $\lambda(Q)$ defined, using (A2.1), as $\underset{S \subset B}{\otimes} \iota\left(Q_{S}\right)^{\otimes(-1)^{|S|+1}}$. The comparison picture from Remark in (b) shows that $\iota^{\left\{Q_{\beta}\right\}}(Q)$ does not depend on the choice of particular $\left\{Q_{\beta}\right\}$. Set $\iota(Q)=\iota^{\left\{Q_{\beta}\right\}}(Q)$; it is immediate that ι is multiplicative, and we are done.

A3. We return to the setting of A1. Below a curve is a subset $C \subset X$ whose closure \bar{C} is a semi-analytic curve, $\bar{C} \backslash C$ is finite, and $\bar{C} \cap Y=\emptyset$. A stratification of X is always assumed to be semi-analytic (its 1-strata are curves) and such that no 0 strata lie on Y (i.e., each Y_{α} lies in an open stratum). A constructible set in X is a union of strata of a stratification. Denote by \mathcal{C} the Boolean algebra of constructible sets.

For every locally closed constructible subset $Q \subset X$, we have a perfect complex $R \Gamma_{c}(Q, F):=R \Gamma_{c}\left(Q, i_{Q}^{*} F\right)$, hence a graded super R-line $\operatorname{det} R \Gamma_{c}(Q, F)$ of the degree equal to the Euler characteristics $\chi(Q, F)$. If $Q_{1} \hookrightarrow Q$ is an open embedding where Q_{1} is also constructible, and $Q_{2}:=Q \backslash Q_{1}$, then the exact triangle $R \Gamma_{c}\left(Q_{1}, F\right) \rightarrow R \Gamma_{c}(Q, F) \rightarrow R \Gamma_{c}\left(Q_{2}, F\right)$ yields an isomorphism

$$
\begin{equation*}
\operatorname{det} R \Gamma_{c}\left(Q_{1}, F\right) \otimes \operatorname{det} R \Gamma_{c}\left(Q_{2}, F\right) \xrightarrow{\sim} \operatorname{det} R \Gamma_{c}(Q, F) . \tag{A3.1}
\end{equation*}
$$

Proposition. There is an \mathcal{L}_{R}-measure λ_{F} on \mathcal{C} together with identifications $\tau=\tau_{Q}: \lambda_{F}(Q) \xrightarrow{\sim} \operatorname{det} R \Gamma_{c}(Q, F)$ for each locally closed constructible $Q \subset X$, such that for every Q, Q_{1}, Q_{2} as above, the τ identify the isomorphism from (A3.1) with the structure isomorphism $m: \lambda_{F}\left(Q_{1}\right) \otimes \lambda_{F}\left(Q_{2}\right) \xrightarrow{\sim} \lambda_{F}(Q)$. The datum $\left(\lambda_{F}, \tau\right)$ is unique up to a unique isomorphism.

Proof. Use Remark in A2(a): Our α 's run the set of all constructible stratifications with its usual ordering, \mathcal{P}_{α} is the set of strata of the stratification. Then τ specifies each line $\lambda_{\alpha}(b), b \in \mathcal{P}_{\alpha}$, and (A3.1) defines the datum of $m_{\alpha \alpha^{\prime}}$. The details are left to the reader.

Remarks. (i) If Q is a constructible subset which is not locally closed, then Q is not locally compact, so $R \Gamma_{c}(Q, F)$ is not defined.
(ii) λ_{F} has local origin: For an open $U \subset X$, let $\mathcal{C}(U) \subset \mathcal{C}$ be the Boolean ideal of constructible Q 's such that $\bar{Q} \subset U$. Then the restriction of λ_{F} to $\mathcal{C}(U)$ depends only on $\left.F\right|_{U}$.

A4. Now let us switch in ν. We need an auxiliary datum of a ν-cone N, which is a continuous family of non-degenerate closed sectors $N_{x} \subset T_{x} X, x \in X \backslash Y$, such that $\left\langle\nu_{x}, N_{x} \backslash\{0\}\right\rangle<0$.

A curve C is said to be N-transversal if for every $x \in \bar{C}$ each tangent line to \bar{C} at x intersects $N_{x} \cup-N_{x}$ by $\{0\}$. A stratification is N-transversal if such are its 1-strata. A constructible set Q is said to be:

- N-transversal, if it is a union of strata in an N-constructible stratification;
- N-special, if it is N-transversal and a point $x \in \partial Q$ lies in Q if and only there are points $y \in \operatorname{Int}(Q)$ close to x and such that $y-x \in N_{x}$ (in the evident sense);
- N-lens, if Q is N-special, locally closed, and \bar{Q} is homeomorphic to a disc.

Let $\tilde{\mathcal{C}}^{N} \supset \mathcal{C}^{N} \supset \mathcal{C}_{0}^{N}$ be the subsets of \mathcal{C} that consist of those Q that are, respectively, N-transversal, N-special, N-special and satisfisfy $\bar{Q} \cap Y=\emptyset$. Let $\mathcal{J}^{N} \subset \mathcal{C}$ be the subset of N-transversal Q 's of dimension ≤ 1

Proposition. (i) $\tilde{\mathcal{C}}^{N}, \mathcal{C}^{N}$ are Boolean subalgebras of $\mathcal{C}, \mathcal{J}^{N}$ is a Boolean ideal in \mathcal{C}, and \mathcal{C}_{0}^{N} is a Boolean ideal in \mathcal{C}^{N}. Every N-lens lies in \mathcal{C}_{0}^{N}.
(ii) If Q is N-special, then Int (Q) equals Int (\bar{Q}), and it is dense in Q.
(iii) The composition $\mathcal{C}^{N} \hookrightarrow \tilde{\mathcal{C}}^{N} \rightarrow \tilde{\mathcal{C}}^{N} / \mathcal{J}^{N}$ is a bijection.

Denote the inverse Boolean algebras isomorphism $\tilde{\mathcal{C}}^{N} / \mathcal{J}^{N} \xrightarrow{\sim} \mathcal{C}^{N}$ by $V \mapsto V^{+}$.
(iv) Each point in $X \backslash Y$ admits a base of neighborhoods formed by N-lenses.
(v) Any $Q \in \mathcal{C}_{0}^{N}$ can be written as a union of finitely many N-lenses.
(vi) If Q is an N-lens, then $\bar{Q} \backslash Q$ is a closed interval in the circle $\partial \bar{Q}$.
(vii) Suppose that $P \in \mathcal{C}_{0}^{N}$ is locally closed and is contained in an N-lens. Then each connected component of P is an N-lens. In particular, all the connected components of an intersection of finitely many N-lenses are N-lenses.

Proof. (i), (ii), (iii) are straightforward.
(iv) Take any $a \in X \backslash Y$; choose a real analytic local coordinate system (x, y) at a such that $a=(0,0)$ and $\nu_{a}=d y$. For $R, \delta>0$ let $U_{R \delta}$ be the intersection of two open discs of radius R centered at $(0, \pm(R-\delta))$. If R is very big and δ is very small, then $U_{R \delta}^{+}$(which is the intersection of the open disc centered at $(0, R-\delta)$ and the closed one centered at $(0, \delta-R))$ is an N-lens in X. These N-lenses form a base of neighborhoods of a.
(v) We need a preliminary. Let a be a point in $X \backslash Y$ and C be the germ at a of an N-transversal curve. Let (x, y) be coordinates as in (iv). By the implicit function theorem, one has two finite sets of functions: $\left\{y=g_{1}(x), \ldots, y=g_{k}(x)\right\}$ defined for $\epsilon>x \geq 0$, and $\left\{y=h_{1}(x), \ldots, y=h_{r}(x)\right\}$ defined for $-\epsilon<x \leq 0$, all vanishing at $x=0$, such that C is the union of their graphs. Our C is semianalytic, so for small enough ϵ all g_{i}, h_{j} are monotone and one can order them so that $g_{1}(x)<\ldots<g_{2}(x)$ for $\epsilon>x>0$, and $h_{1}(x)<\ldots<h_{r}(x)$ for $-\epsilon<x<0$. Choose R, δ as in (iv) such that $U_{R \delta}^{+}$is an N-lens that lies in the interval $-\epsilon<x<\epsilon$. Suppose C meets both half-planes $x>0, x<0$, i.e., both sets $\left\{g_{i}\right\}$ and $\left\{h_{j}\right\}$ are non-empty. Then C cuts $U_{R \delta}$ into pieces $\left\{U_{k}\right\}$ such that each U_{k}^{+}is an N-lens, and $\cup U_{k}^{+}=U_{R \delta}^{+}$.

Let us return to the proof of (v). Our assertion is local: it suffices to find for any
$a \in \bar{Q}$ its neighborhood whose intersection with Q can be represented as a union of N-lenses. The case $a \in \operatorname{Int}(Q)$ is covered by (iv). For $a \in \partial Q$, choose (x, y) as above; let C be a curve defined as the germ of ∂Q at a if ∂Q intersects both half-planes $x>0, x<0$; if not, C is the union of ∂Q and the line $y=0$. Then, by (iii), $Q \cap U_{R \delta}^{+}$is the union of those of the above N-lenses U_{k}^{+}that meet Q, q.e.d.
(vi) Set $I:=\bar{Q} \backslash Q$. Since Q is locally closed, I is a union of finitely many closed intervals and points in the circle $\partial Q=\partial \bar{Q}$ (see (ii)).

Take any $a \in \partial Q$, and choose local coordinates (x, y) as in (v). The curve ∂Q has one branch at a, so, by (v), it is either the graph of a continuous function $y=k(x)$ defined for $-\epsilon<x<\epsilon$, or it lies in the half-plane $x \geq 0$, where it is the union pieces $y=g_{1}(x), y=g_{2}(x)$, or it lies in the half-plane $x \leq 0$, where it is is the union of pieces $y=h_{1}(x), y=h_{2}(x)$. In the first case Q equals either of the domains $y \leq k(x)$, or $y>k(x)$. In the second case, the assumption that Q is locally closed implies that Q equals the domain $g_{1}(x)<y \leq g_{2}(x)$; similarly, in the third case Q equals the domain $h_{1}(x)<y \leq h_{2}(x)$.

This shows, in particular, that I does not contain isolated points. In a moment we will define a continuous retraction $\pi: \bar{Q} \rightarrow I$. Its existence implies that I is connected and $\neq \partial Q$, hence it is a single interval, and we are done.

Choose a non-vanishing smooth vector field τ on a neighborhood of \bar{Q} which takes values in N. For $x \in \bar{Q}$ follow the integral line $x(t), x(0)=x$, of τ. Let us show that the trajectory $x(t)$ meets I at certain $t \geq 0$. If not, then $x \notin I$ and the trajectory $x(t), t>0$, stays in $\operatorname{Int}(Q)$. Our τ does not vanish, so, by the PoincaréBendixon theorem (see e.g. $[\mathrm{KH}]),{ }^{4} \operatorname{Int}(Q)$ contains a periodic trajectory T of τ. Then T is the boundary of a disc $D \operatorname{in} \operatorname{Int}(Q)$, and $\left.\tau\right|_{D}$ is a non-vanishing vector field tangent to T, which does not exist; contradiction.

Take a smallest $t \geq 0$ such that $x(t) \in I($ then $x((0,1) \subset \operatorname{Int}(Q))$, and set $\pi(x):=$ $x(t)$. The above picture of Q near the boundary shows that π is a continuous retraction onto I.
(vii) Every connected component of P is N-special, so we can assume that P is connected. We need to show that \bar{P} is homeomorphic to a disc.

Let Q be an N-lens that contains P. Consider a retraction $\pi: \bar{Q} \rightarrow I$ from (vi). By construction, $\pi(Q)$ is the interior I° of I, and for every $t \in I^{\circ}$ the fiber \bar{Q}_{t} of π is a closed interval. We orient it so that $\left.\nu\right|_{\bar{Q}_{t}}$ is positive.

Set $K:=\pi(\bar{P})$; this is a closed interval since \bar{P} is connected and P is N-special. Let t be any interior point of K, so $\bar{P}_{t}:=\bar{P} \cap \bar{Q}_{t}$ is a union of finitely many intervals and points in \bar{Q}_{t}. Let us show that
(*) The interior of $\bar{P}_{t}\left(\right.$ in $\left.\bar{Q}_{t}\right)$ lies in the interior of P.
If not, take any $y \in \operatorname{Int}\left(\bar{P}_{t}\right) \cap \partial P$. Since P is N-special, $\partial P=\partial \bar{P}$ does not contain isolated points and $\bar{P}_{t} \cap \partial P$ is finite. Thus a punctured neighborhood of y in \bar{P}_{t} lies in $\operatorname{Int}(P)$, so $y \in P$ since P is N-special. Let $U \subset \operatorname{Int}(P)$ be any open subset with connected fibers such that y is the bottom point of the fiber U_{t}. For $t^{\prime} \in I, t^{\prime} \neq t$, let $s\left(t^{\prime}\right)$ be the bottom point of the connected component of $\bar{P}_{t^{\prime}}$ that

[^2]contains $U_{t^{\prime}}$. These points form a subset $S \subset \partial P$. Since P is N-special, one has $S \subset \partial P \backslash P$. From $y \in \partial P$ it follows easily that $y \in \bar{S}$. Since P is locally closed, this contradicts the fact that $y \in P$, and we are done.

Now let C_{t} be any connected component of \bar{P}_{t} for a generic $t \in K$. This is an interval (since P is N-invariant). Let us move t, say, to the left. By (*), our component changes continuously until it degenerates into a point. Same happens when we move t to the right. Notice that $C_{t} \backslash P$ is the bottom point of C_{t}, so the two points, in which C_{t} degenerate, do not lie in P as well, since P is locally closed. Thus $C_{t} \cap P$ sweep a connected component of P, so the whole P, and \bar{P} is homeomorphic to a disc as stated.

A5. If Q is an N-lens, then, by A4(vi), one has $R \Gamma_{c}(Q, F)=0$. Denote by $\iota(Q)$ the corresponding trivialization of $\lambda_{F}(Q)=\operatorname{det} R \Gamma_{c}(Q, F)$.

Theorem. The restriction of λ_{F} to \mathcal{C}_{0}^{N} admits a unique trivialization ι^{N} such that for any N-lens Q one has $\iota^{N}(Q)=\iota\left(1_{Q}\right)$.

Proof. The uniqueness of ι follows from A4(v)(vii). Let \mathcal{D} be the subset of \mathcal{C}_{0}^{N} whose elements are those Q that are locally closed and whose connected components are N-lenses. As above, for such a Q one has $R \Gamma_{c}(Q, F)=0$, hence $\lambda_{F}(Q)=$ $\operatorname{det} R \Gamma_{c}(Q, F)$ has a natural trivialization $\iota(Q)$. By A4(v)(vii), \mathcal{D} satisfies the assumptions of A2(d) with $\mathcal{I}=\mathcal{C}_{0}^{N}$. Therefore the theorem follows from the lemma in A2(d) and the next statement:

Lemma. Let Q be an N-lens and $\left\{Q_{\beta}\right\}, \beta \in B$, be a finite set of N-lenses such that $\cup Q_{\beta}=Q$. Then the trivializations $\iota(Q)$ and $\iota\left(Q_{S}\right), \emptyset \neq S \subset B$, satisfy (A2.2).

Proof. (a) To write (A2.1) explicitly, we choose an N-transversal stratification $\left\{K_{r}\right\}$ such that if $K_{r} \cap Q_{\beta} \neq \emptyset$ for some r, β, then $K_{r} \subset Q_{\beta}$. For each nonempty $S \subset B$ denote by $\lambda_{F}^{(S)}$ the tensor product $\otimes \operatorname{det} R \Gamma_{c}\left(K_{r}, F\right)$ with respect to all r such that $K_{r} \subset Q_{\beta}$ if and only if $\beta \in S$. Then $\operatorname{det} R \Gamma_{c}(Q, F)={\underset{S}{S}}_{\otimes} \lambda_{F}^{(S)}$ and $\operatorname{det} R \Gamma_{c}\left(Q_{S}, F\right)=\underset{S^{\prime} \supset S}{\otimes} \lambda_{F}^{\left(S^{\prime}\right)}$. Excluding $\lambda_{F}^{(S)}$,s from the equations, we get the isomorphism $\mu_{Q}^{\left\{Q_{\beta}\right\}}: \underset{S}{\otimes} \operatorname{det} R \Gamma_{c}\left(Q_{S}, F\right)^{\otimes(-1)^{|S|}} \xrightarrow{\sim} \operatorname{det} R \Gamma_{c}(Q, F)$.
(b) We want to check that $\mu_{Q}^{\left\{Q_{\beta}\right\}}$ is compatible with the trivializations $\iota(Q)$ and $\iota\left(Q_{S}\right)$. To do this, we will find a finite filtration $\emptyset=E_{-1} \subset E_{0} \subset \ldots \subset E_{n}=Q$, where E_{i} are closed subsets of Q, such that for every i one has (here $P_{i}:=E_{i} \backslash E_{i-1}$):
(i) For any N-transversal locally closed K the complex $R \Gamma_{c}\left(K \cap P_{i}, F\right)$ is perfect;
(ii) If $P_{i} \cap Q_{\beta} \neq \emptyset$, then $P_{i} \subset Q_{\beta}$;
(iii) One has $R \Gamma_{c}\left(P_{i}, F\right)=0$.

Such a filtration yields usual factorizations $\operatorname{det} R \Gamma_{c}(Q, F)=\otimes \operatorname{det} R \Gamma_{c}\left(P_{i}, F\right)$, $\operatorname{det} R \Gamma_{c}\left(Q_{S}, F\right)=\otimes \operatorname{det} R \Gamma_{c}\left(Q_{S} \cap P_{i}, F\right)$. Now $R \Gamma_{c}\left(P_{i}, F\right), R \Gamma_{c}\left(Q_{S} \cap P_{i}, F\right)$ are acyclic complexes by (iii) and (ii), so we have the corresponding trivializations $\iota\left(P_{i}\right), \iota\left(Q_{S} \cap P_{i}\right)$ of their determinant lines; it is clear that $\iota(Q)=\otimes \iota\left(P_{i}\right)$ and $\iota\left(Q_{S}\right)=\otimes \iota\left(Q_{S} \cap P_{i}\right)$. Our $\mu_{Q}^{\left\{Q_{\beta}\right\}}$ equals the tensor product of the similarly defined
isomorphisms $\mu_{P_{i}}^{\left\{Q_{\beta} \cap P_{i}\right\}}: \underset{S}{\otimes} \operatorname{det} R \Gamma_{c}\left(Q_{S} \cap P_{i}, F\right)^{\otimes(-1)^{|S|}} \xrightarrow{\sim} \operatorname{det} R \Gamma_{c}\left(P_{i}, F\right)$. Thus the compatibility of $\mu_{Q}^{\left\{Q_{\beta}\right\}}$ with the trivializations $\iota(Q)$ and $\iota\left(Q_{S}\right)$ follows from the compatibility of $\mu_{P_{i}}^{\left\{Q_{\beta} \cap P_{i}\right\}}$ with $\iota\left(P_{i}\right)$ and $\iota\left(Q_{S} \cap P_{i}\right)$. The latter is evident due to (ii), and we are done.
(c) It remains to construct E_{i} 's. Consider the projection $\pi: Q \rightarrow I^{\circ}$ from the proof of $\mathrm{A} 4(\mathrm{vi})(\mathrm{vii})$. The fibers $Q_{t}, t \in I^{\circ}$, are semi-open intervals, hence $R \pi!i_{Q}^{*}(F)=0$. By A4(vii), for any non-empty $S \subset B$ one has $R\left(\left.\pi\right|_{Q_{S}}\right)!i_{Q_{S}}^{*} F=0$.

Let $B \subset I^{\circ}$ be a finite subset such that over $I^{\circ} \backslash B$ all the projections $Q_{S} \rightarrow I^{\circ}$ are locally trivial. Let I^{γ} be the partition of I° by the points in B and the open intervals between successive points in B; set $Q^{\gamma}:=\pi^{-1}\left(I^{\gamma}\right)$. For any Q^{γ} every Q_{β} such that $Q_{\beta} \cap Q_{\gamma} \neq \emptyset$ yields two closed subspaces of Q_{γ} that consist of points lying below one or the other boundary components of $Q_{\beta} \cap Q_{\gamma}$. Let $\left\{E_{j}^{\gamma}\right\}$ be the set of all subspaces of Q^{γ} obtained in this manner, with Q^{γ} itself added; we order them by inclusion. This is a finite filtration of Q^{γ} by closed subspaces. Notice that each E_{j}^{γ} is a fibration over I^{γ} whose fibers are semi-open intervals, and $P_{j}^{\gamma} \cap Q_{\beta} \neq \emptyset$ implies $P_{j}^{\gamma} \subset Q_{\beta}$; here $P_{j}^{\gamma}:=E_{j}^{\gamma} \backslash E_{j-1}^{\gamma}$. Combining E_{j}^{γ} 's for all γ 's, we get the promised E_{i} 's (with $\left\{P_{i}\right\}=\left\{P_{j}^{\gamma}\right\}$).

Remarks. (i) By A4(v), ι^{N} has local origin: for an open $U \subset X$ the restriction of ι^{N} to $\mathcal{C}_{0}^{N}(U)$ depends only on $\left.F\right|_{U}$ and $\left.N\right|_{U}$.
(ii) If $N^{\prime} \subset T X$ is another ν-cone, then $N+N^{\prime}$ is also a ν-cone, $\mathcal{C}^{N+N^{\prime}} \subset$ $\mathcal{C}^{N} \cap \mathcal{C}^{N^{\prime}}$, same for $\tilde{\mathcal{C}}^{N}, \mathcal{C}_{0}^{N}$, and $\iota^{N+N^{\prime}}=\left.\iota^{N}\right|_{\mathcal{C}_{0}^{N+N^{\prime}}}=\left.\iota^{N^{\prime}}\right|_{\mathcal{C}_{0}^{N+N^{\prime}}}$.

A6. Now we can make good the promise of A1.
Lemma. For any component Y_{α} and an open U_{α} such that $U \cap Y=Y_{\alpha}$ there exists $Q_{\alpha} \in \mathcal{C}^{N}\left(U_{\alpha}\right):=\mathcal{C}^{N} \cap \mathcal{C}\left(U_{\alpha}\right)$ such that $Q_{\alpha} \supset Y_{\alpha}$.

Proof. We can assume that $\partial U_{\alpha} \cap Y=\emptyset$. Using A4(iv), cover ∂U_{α} by a finite set of N-lenses $\left\{Q_{i}\right\}$. Then $V_{\alpha}:=U_{\alpha} \backslash \cup Q_{i}$ is N-transversal; set $Q_{\alpha}=V_{\alpha}^{+}$.

Consider the quotient Boolean algebra $\mathcal{C}^{N} / \mathcal{C}_{0}^{N}$. We have a morphism of Boolean algebras $\mathcal{C}^{N} / \mathcal{C}_{0}^{N} \rightarrow 2^{A}, Q \mapsto Q \cap Y$; here 2^{A} is the Boolean algebra of all subsets of the set A of connected components of Y. By the lemma, this is an isomorphism of Boolean algebras; let $\kappa: 2^{A} \xrightarrow{\sim} \mathcal{C}^{N} / \mathcal{C}_{0}^{N}$ be the inverse isomorphism. The lemma also shows that for U_{α} from loc. cit. the map $\mathcal{C}^{N}\left(U_{\alpha}\right) / \mathcal{C}_{0}^{N}\left(U_{\alpha}\right) \rightarrow 2^{\{\alpha\}}, Q \mapsto Q \cap Y=Q \cap$ Y_{α}, is an isomorphism as well, so we have its inverse $\kappa_{\alpha}: 2^{\{\alpha\}} \xrightarrow{\sim} \mathcal{C}^{N}\left(U_{\alpha}\right) / \mathcal{C}_{0}^{N}\left(U_{\alpha}\right)$.

By A2(c), $\left(\lambda_{F}, \iota^{N}\right)$ can be considered as an \mathcal{L}_{R}-measure λ_{F}^{N} on $\mathcal{C}^{N} / \mathcal{C}_{0}^{N}$. Set $\mathcal{E}(F)_{\nu Y_{\alpha}}:=\lambda_{F}^{N} \kappa_{\alpha}(\{\alpha\})$; this is our ε-factor. The image of X in $\mathcal{C}^{N} / \mathcal{C}_{0}^{N}$ equals $\kappa(A)=\sqcup \kappa_{\alpha}(\{\alpha\})$, so one has the canonical identifications $\otimes \mathcal{E}(F)_{\nu Y_{\alpha}}=\otimes \lambda_{F}^{N} \kappa_{\alpha}(\{\alpha\})$ $\xrightarrow{m} \lambda_{F}^{N}\left(\sqcup \kappa_{\alpha}(\{\alpha\})\right)=\lambda_{F}^{N}(\kappa(A))=\lambda_{F}(X) \xrightarrow{a} \operatorname{det} R \Gamma(X, F)$. One defines (A1.1) as their composition.

Explicitly, $\mathcal{E}(F)_{\nu Y_{\alpha}}=\lambda_{F}\left(Q_{\alpha}\right)$, where Q_{α} is any constructible set as in the lemma. To define (A1.1), we choose neighborhoods U_{α} of Y_{α} such that different \bar{U}_{α} do not intersect, a ν-cone N, and a set of N-lenses Q_{β} such that $\cup Q_{\beta} \supset X \backslash \cup U_{\alpha}$. Set $Q_{\alpha}:=U_{\alpha} \backslash \cup Q_{\beta}$. Then $\mathcal{E}(F)_{\nu Y_{\alpha}}=\lambda_{F}\left(Q_{\alpha}\right)$, and (A1.1) comes from the
isomorphism $m:\left(\otimes \lambda_{F}\left(Q_{\alpha}\right)\right) \otimes \lambda_{F}\left(\cup Q_{\beta}\right) \xrightarrow{\sim} \lambda_{F}(X)$ and a trivialization of $\lambda_{F}\left(\cup Q_{\beta}\right)$ defined by the trivializations $\iota\left(Q_{S}\right)$ via identification (A2.1) (the latter described explicitly in part (a) of the proof of the lemma in A5).

The construction of $\mathcal{E}(F)_{\nu \alpha}$ and the ε-factorization does not depend on the auxiliary datum of U_{α} 's and the ν-cone N : for U_{α} this is evident, for N use Remark (ii) in A5. Finally, the local origin of $\mathcal{E}(F)_{\nu \alpha}$ follows from Remark (i) in A5.

Exercise. The degree of the graded super R-line $\mathcal{E}(F)_{\nu Y_{\alpha}}$ equals $\chi\left(Y_{\alpha}, F\right)+$ $r k(F) w_{\alpha}(\nu)$, where $w_{\alpha}(\nu) \in \mathbb{Z}$ is the winding number of ν around Y_{α}.

Examples. Suppose Y_{α} is a circle of radius r around $0 \in \mathbb{C}$ and U_{α} equals $\{z: r \leq|z|<R\}$. Let us write Q_{α} from the corollary for some forms ν explicitly:
(a) For $\nu=\operatorname{Re} d z / z$ one can take $Q_{\alpha}=\bar{U}_{\alpha}$; for $\nu=-\operatorname{Re} d z / z$ take $Q_{\alpha}=U_{\alpha}$.
(b) $\nu=\operatorname{Re} z^{n-1} d z, n>0$: Draw a cogwheel of a radius $>r$ centered at 0 with cogs at the arguments $\frac{\pi}{2 n}+\frac{k \pi}{n}, k=1, \ldots, 2 n$, pointing outside the circle. Our Q_{α} is the union of the interior of the cogwheel and the points with arguments $\frac{-\pi}{2 n}+\frac{2 j \pi}{n}<\theta<\frac{\pi}{2 n}+\frac{2 j \pi}{n}, j=1, \ldots n$, on its boundary.
(c) $\nu=\operatorname{Re} z^{n-1} d z, n<0$: Draw a cogwheel with cogs in the same position as for $-n$, but pointing inside the circle. Our Q_{α} is the union of the interior of the cogwheel and the points with arguments on the boundary it is 0 for arguments $\frac{-\pi}{2 n}+\frac{2 j \pi}{n} \leq \theta \leq \frac{\pi}{2 n}+\frac{2 j \pi}{n}$ on its boundary.

6. The determinant of the cohomology

References

[AS] A. Abbes, T. Saito, Analyse micro-locale ℓ-adique en caracteristique $p>0$: Le cas d'un trait, math. AG/0602285 (2006).
[BBE] A. Beilinson, S. Bloch, H. Esnault, \mathcal{E}-factors for Gau β-Manin determinants, Moscow Mathematical Journal 2 (2002), no. 3, 477-532.
[BDE] S. Bloch, P. Deligne, H. Esnault, Periods for irregular connections on curves (2005).
[BF] A. Bousfield, E. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, Lect. Notes in Math. 658 (1978), Springer, Berlin, 80-130.
[C] D.-C. Cisinski, Invariance de la K-théorie par équivalences dérivées, http://www-math.univ-paris13.fr/ cisinski/ (2004).
[Del1] P. Deligne, Les constantes des equations fonctionelles des fonctions L, Lect. Notes in Math. 349 (1973), Springer-Verlag, Berlin.
[Del2] P. Deligne, Seminar on periods at IHES, notes by G. Laumon, manuscript (1984).
[Del3] P. Deligne, Le déterminant de la cohomologie, Contemp. Math. 67 (1987), AMS, Providence, RI, 93-177.
[D] A. Dubson, Formule pour l'indice des complexes constructibles et \mathcal{D}-modules holonomes, C. R. Acad. Sci., Série A 298 (1984), no. 6, 113-114.
[DHI] D. Dugger, S. Hollander, D. Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 9-51.
[DS] D. Dugger, B. Shipley, K-theory and derived equivalences, Duke Math. J. 124 (2004), no. 3, 587-617.
[DT] A. Dold, R. Thom, Quasifaserungen und unendliche symmetrische producte, Annals of Math. 68 (1958), 239-281.
[GM] M. Goresky, R. MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 14, Springer-Verlag, Berlin, 1987.
[Gr] A. Grothendieck, Pursuing stacks, http://www.grothendieck-circle.org/ (1983).
[Hi] P. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, AMS, Providence, RI, 2003.
[HSS] M. Hovey, B. Shipley, J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149-208.
[J1] J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35-87.
[J2] J. F. Jardine, Stable homotopy theory of simplicial presheaves, Canad. J. Math. 39 (1987), no. 3, 733-747.
[K] M. Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985), no. 6, 193-209.
[KS] M. Kashiwara, P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1990.
[KH] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press,, Cambridge, 1995.
[L] G. Laumon, Transformation de Fourier, constantes d'equations fonctionelles et conjecture de Weil, Publ. Math. IHES 65 (1987), 131-210.
[M] B. Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Mathematics, vol. 96, Birkhäuser, Boston, MA, 1991.
[Q] D. Quillen, Higher algebraic K-theory I, Lecture Notes in Math. 341 (1973), Springer, Berlin, 85-147.

[^0]: ${ }^{1}$ Here \mathcal{A} is considered as a commutative $\mathbb{Z} / 2$-algebra with the operations $Q Q^{\prime}:=Q \cap Q^{\prime}$, $Q+Q^{\prime}:=\left(Q \cup Q^{\prime}\right) \backslash\left(Q \cap Q^{\prime}\right)$.
 ${ }^{2}$ I.e., a symmetric monoidal category all of whose objects and morphisms are invertible.

[^1]: ${ }^{3}$ In the definition of \mathcal{L}-measure we need not assume that the Boolean algebra is unital, so one has the Picard groupoid $\mathcal{M e a s}(\mathcal{I}, \mathcal{L})$ of \mathcal{L}-measures on $\mathcal{P} \backslash \mathcal{P}^{\prime}$, and ι is an identification of $\left.\lambda\right|_{\mathcal{I}}$ with the trivial object of this Picard groupoid.

[^2]: ${ }^{4}$ I am grateful to Benson Farb for comments and the reference.

