
Appendix: the case of a surface

A1. Below R is a commutative coefficient ring. Denote by LR the Picard
groupoid of Z-graded super R-lines. So an object of LR is a pair (L,degL), where
L is an invertible R-module, degL ∈ ZSpecR := the group of Z-valued locally con-
stant function on Spec R; the operation on LR is (L,degL) ⊗ (L′,degL′) := (L ⊗
L′,degL +degL′) with the commutativity corrected by the super sign (−1)degL degL′ .

Our X is a compact real-analytic surface with boundary Y whose connected
components are denoted by Yα, α ∈ A. Let F be a complex of sheaves of R-
modules on X whose fibers are perfect and the restriction of its cohomology to
X r Y , and to Y minus finitely many points, is locally constant. Then RΓ(X, F )
is a perfect R-complex, so we have detRΓ(X, F ) ∈ LR. Let ν be any continuous
nowhere vanishing 1-form on X r Y . Our aim is to assign to each component Yα

a graded super R-line E(F )νYα
which has local origin, i.e., depends only on the

restriction of our datum to a neighborhood of Yα, and define the ε-factorization
isomorphism

(A1.1) ⊗αE(F )νYα

∼→ det RΓ(X, F ).

The constructions are presented in A6; they are based on a theorem from A5.

A2. A shot of abstract nonsense. Let A be a Boolean algebra. Recall that it is
realized canonically as the Boolean algebra of open compact subsets of a pro-finite
set P = SpecA.1

Let L be a Picard groupoid;2 we write the operation in L as ⊗. The group of
isomorphism classes of objects in L is denoted by π0L, the group of automorphisms
of the unit object 1L is denoted by π1L; these groups are commutative (and written
multiplicatively). For any L ∈ L one has a canonical identification π1L

∼→ AutL,
φ 7→ idL ⊗ φ. There is a natural homomorphism ε : π0L → π1L which sends an
object L ∈ L to the symmetric constraint symmetry of L⊗L; L is said to be even if
ε(L) = 1 and odd otherwise; let Lev ⊂ L be the Picard subgroupoid of even objects.
L is said to be discrete if its π1L is trivial; such an L amounts to an abelian group.
For any L there is an evident morphism of Picard groupoids L → π0L.

(a) An L-measure (λ, m) on A (or on P) is a rule that assigns to every Q ∈ A
an object λ(Q) ∈ L, and to every finite set {Qi} ⊂ A such that Qi ∩ Qi′ = ∅ for
i 6= i′, an identification m : ⊗λ(Qi)

∼→ λ(∪Qi). One demands m to be transitive in
the obvious sense. We often drop m from the notation.

L-valued measures form a Picard groupoid which we denote by Meas(A,L) or
Meas(P,L). It is functorial with respect to morphisms of P’s and L’s. Notice that
π1Meas(P,L) = Meas(P, π1L) (the usual group of π1L-valued measures on P);
the projection L → π0L yields a homomorphism π0Meas(P,L) →Meas(P, π0L)
which is bijective if A is countable or if π1L is finite.

Exercise. Let ZP be the group of Z-valued locally constant functions on P; for
Q ∈ A let 1Q ∈ ZP be the characteristic function of Q ⊂ P. Consider the Picard

1Here A is considered as a commutative Z/2-algebra with the operations QQ′ := Q ∩ Q′,
Q + Q′ := (Q ∪Q′) r (Q ∩Q′).

2I.e., a symmetric monoidal category all of whose objects and morphisms are invertible.
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groupoid Hom(ZP ,L) of Picard groupoid morphisms φ : ZP → L. There is a
fully faithful embedding of Picard groupoids Hom(ZP ,L) ↪→Meas(P,L), φ 7→ λφ,
where λφ(Q) = φ(1Q) and m comes since 1tQi = Σ1Qi . Show that its essential
image equals Meas(P,L)ev = Meas(P,Lev), i.e., in the L-setting an outright
integration of functions makes sense only for even λ’s.

Remark. Suppose that we write P as the projective limit of a directed family
of finite sets Pα and surjections παα′ : Pα′ � Pα, α′ ≥ α; so for every b ∈ Pα we
have an open Qαb ⊂ P. An L-measure λ is the same as a datum of objects λα(b) =
λ(Qαb) ∈ L, a ∈ Pα, together with identifications mαα′b : ⊗λα′(b′) ∼→ λα(b), where
b ∈ Pα and b′ run the set of all elements of Pα′ such that παα′(b′) = b; the mαα′ ’s
should satisfy the transitivity property.

(b) Inclusion-exclusion formula: Take Q ∈ A and a finite collection {Qβ}, β ∈ B,
such that Q = ∪Qβ . For a non-empty subset S ⊂ B set QS := ∩

β∈S
Qβ .

Lemma. If all λ(QS) are even, then one has a canonical isomorphism

(A2.1) µ
{Qβ}
Q : ⊗

∅6=S⊂B
λ(QS)⊗(−1)|S|+1 ∼→ λ(Q).

Proof. For a non-empty S ⊂ B let Q(S) be the complement in QS to the union
of QS′ where S′ ⊃ S, S′ 6= S. Then Q is the disjoint union of all Q(S)’s, S ⊂ B.
Intersecting our datum with Q(S), we are reduced to the situation where all Qβ ’s
are equal. Here (A2.1) is immediate. �

Remark. Let Q = ∪Qγ , γ ∈ Γ, be another presentation of Q such that λ(QT ) ∈
Lev for every non-empty T ⊂ Γ. Let us compare µB := µ

{Qβ}
Q and µΓ := µ

{Qγ}
Q . De-

note by LB , LΓ their sources, and set LBΓ := ⊗λ(QS∩QT )(−1)(|S|+1)(|T |+1)
, the ten-

sor product is indexed by all non-empty S ⊂ B, T ⊂ Γ. There is a natural morphism
νB : LBΓ

∼→ LB defined as the tensor product of morphisms (µ{Qγ∩QS}
QS

)⊗(−1)|S|+1

for ∅ 6= S ⊂ B, and a similarly defined morphism νΓ : LBΓ
∼→ LΓ. Now one has

µBνB = µΓνΓ; to prove this, one reduces the statement to the case when all Qβ

and Qγ coincide, where the statement is obvious.

(c) Let I ⊂ A be a Boolean ideal, and A/I the quotient Boolean algebra, so
SpecA/I =: P ′ is a closed subset in P, and I consists of open compact subsets
of P r P ′. Let Meas(A,L)I be the Picard groupoid of pairs (λ, ι) where λ is an
L-valued measure on A and ι is a trivialization of the restriction λ|I of λ to I.3

So ι is a datum of identifications ι(Q) : λ(Q) ∼→ 1L, Q ∈ I, multiplicative with
respect to disjoint union decompositions of Q’s. The pull-back functor yields an
equivalence of the Picard groupoids Meas(A/I,L) ∼→Meas(A,L)I .

Take any (λ, ι) as above, and let Q, {Qb} be a datum as in (b) such that Q, {Qb}
lie in I. Since λ is trivial on I, the lemma in (b) is applicable, so we have isomor-
phism (A2.1). Now ι trivializes both objects in (A2.1), and one has

(A2.2) ⊗
S⊂B

ι(QS)⊗(−1)|S|+1
= ι(Q).

3In the definition of L-measure we need not assume that the Boolean algebra is unital, so one

has the Picard groupoid Meas(I,L) of L-measures on P r P ′, and ι is an identification of λ|I
with the trivial object of this Picard groupoid.
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(d) Let I be as in (c), and D ⊂ I be a subset closed under ∩ such that every
Q ∈ I can be represented as ∪Qβ with {Qβ} ⊂ D.

Lemma. Let λ be any L-measure on A and ι be any datum of trivializations
ι(Q) : λ(Q) ∼→ 1L defined for Q ∈ D. If (A2.2) holds whenever Q, {Qb} are in D,
then ι extends in a unique manner to a trivialization ι of λ|I .

Proof. It is clear that λ|I takes values in trivial objects of I, so (A2.1) makes
sense there. Take any Q ∈ I and represent it as ∪Qβ , β ∈ B, for {Qβ} ⊂ D. Let
ι{Qβ}(Q) be a trivialization of λ(Q) defined, using (A2.1), as ⊗

S⊂B
ι(QS)⊗(−1)|S|+1

.

The comparison picture from Remark in (b) shows that ι{Qβ}(Q) does not depend
on the choice of particular {Qβ}. Set ι(Q) = ι{Qβ}(Q); it is immediate that ι is
multiplicative, and we are done. �

A3. We return to the setting of A1. Below a curve is a subset C ⊂ X whose
closure C̄ is a semi-analytic curve, C̄ r C is finite, and C̄ ∩ Y = ∅. A stratification
of X is always assumed to be semi-analytic (its 1-strata are curves) and such that
no 0 strata lie on Y (i.e., each Yα lies in an open stratum). A constructible set
in X is a union of strata of a stratification. Denote by C the Boolean algebra of
constructible sets.

For every locally closed constructible subset Q ⊂ X, we have a perfect com-
plex RΓc(Q,F ) := RΓc(Q, i∗QF ), hence a graded super R-line det RΓc(Q, F ) of the
degree equal to the Euler characteristics χ(Q,F ). If Q1 ↪→ Q is an open embed-
ding where Q1 is also constructible, and Q2 := Q r Q1, then the exact triangle
RΓc(Q1, F ) → RΓc(Q,F ) → RΓc(Q2, F ) yields an isomorphism

(A3.1) detRΓc(Q1, F )⊗ detRΓc(Q2, F ) ∼→ det RΓc(Q, F ).

Proposition. There is an LR-measure λF on C together with identifications
τ = τQ : λF (Q) ∼→ detRΓc(Q,F ) for each locally closed constructible Q ⊂ X, such
that for every Q, Q1, Q2 as above, the τ identify the isomorphism from (A3.1) with
the structure isomorphism m : λF (Q1) ⊗ λF (Q2)

∼→ λF (Q). The datum (λF , τ) is
unique up to a unique isomorphism.

Proof. Use Remark in A2(a): Our α’s run the set of all constructible stratifi-
cations with its usual ordering, Pα is the set of strata of the stratification. Then
τ specifies each line λα(b), b ∈ Pα, and (A3.1) defines the datum of mαα′ . The
details are left to the reader. �

Remarks. (i) If Q is a constructible subset which is not locally closed, then Q is
not locally compact, so RΓc(Q,F ) is not defined.

(ii) λF has local origin: For an open U ⊂ X, let C(U) ⊂ C be the Boolean ideal
of constructible Q’s such that Q̄ ⊂ U . Then the restriction of λF to C(U) depends
only on F |U .

A4. Now let us switch in ν. We need an auxiliary datum of a ν-cone N , which
is a continuous family of non-degenerate closed sectors Nx ⊂ TxX, x ∈ X rY , such
that 〈νx, Nx r {0}〉 < 0.
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A curve C is said to be N -transversal if for every x ∈ C̄ each tangent line to C̄
at x intersects Nx ∪ −Nx by {0}. A stratification is N -transversal if such are its
1-strata. A constructible set Q is said to be:

- N -transversal, if it is a union of strata in an N -constructible stratification;

- N -special, if it is N -transversal and a point x ∈ ∂Q lies in Q if and only there
are points y ∈ Int (Q) close to x and such that y − x ∈ Nx (in the evident sense);

- N -lens, if Q is N -special, locally closed, and Q̄ is homeomorphic to a disc.

Let C̃N ⊃ CN ⊃ CN
0 be the subsets of C that consist of those Q that are,

respectively, N -transversal, N -special, N -special and satisfisfy Q̄ ∩ Y = ∅. Let
JN ⊂ C be the subset of N -transversal Q’s of dimension ≤ 1.

Proposition. (i) C̃N , CN are Boolean subalgebras of C, JN is a Boolean ideal
in C, and CN

0 is a Boolean ideal in CN . Every N -lens lies in CN
0 .

(ii) If Q is N -special, then Int (Q) equals Int (Q̄), and it is dense in Q.

(iii) The composition CN ↪→ C̃N � C̃N/JN is a bijection.

Denote the inverse Boolean algebras isomorphism C̃N/JN ∼→ CN by V 7→ V +.

(iv) Each point in X r Y admits a base of neighborhoods formed by N -lenses.

(v) Any Q ∈ CN
0 can be written as a union of finitely many N -lenses.

(vi) If Q is an N -lens, then Q̄ r Q is a closed interval in the circle ∂Q̄.

(vii) Suppose that P ∈ CN
0 is locally closed and is contained in an N -lens. Then

each connected component of P is an N -lens. In particular, all the connected com-
ponents of an intersection of finitely many N -lenses are N -lenses.

Proof. (i), (ii), (iii) are straightforward.

(iv) Take any a ∈ X r Y ; choose a real analytic local coordinate system (x, y)
at a such that a = (0, 0) and νa = dy. For R, δ > 0 let URδ be the intersection of
two open discs of radius R centered at (0,±(R− δ)). If R is very big and δ is very
small, then U+

Rδ (which is the intersection of the open disc centered at (0, R − δ)
and the closed one centered at (0, δ −R)) is an N -lens in X. These N -lenses form
a base of neighborhoods of a.

(v) We need a preliminary. Let a be a point in X r Y and C be the germ at
a of an N -transversal curve. Let (x, y) be coordinates as in (iv). By the implicit
function theorem, one has two finite sets of functions: {y = g1(x), . . . , y = gk(x)}
defined for ε > x ≥ 0, and {y = h1(x), . . . , y = hr(x)} defined for −ε < x ≤ 0,
all vanishing at x = 0, such that C is the union of their graphs. Our C is semi-
analytic, so for small enough ε all gi, hj are monotone and one can order them so
that g1(x) < . . . < g2(x) for ε > x > 0, and h1(x) < . . . < hr(x) for −ε < x < 0.
Choose R, δ as in (iv) such that U+

Rδ is an N -lens that lies in the interval −ε < x < ε.
Suppose C meets both half-planes x > 0, x < 0, i.e., both sets {gi} and {hj} are
non-empty. Then C cuts URδ into pieces {Uk} such that each U+

k is an N -lens, and
∪U+

k = U+
Rδ.

Let us return to the proof of (v). Our assertion is local: it suffices to find for any
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a ∈ Q̄ its neighborhood whose intersection with Q can be represented as a union
of N -lenses. The case a ∈ Int(Q) is covered by (iv). For a ∈ ∂Q, choose (x, y)
as above; let C be a curve defined as the germ of ∂Q at a if ∂Q intersects both
half-planes x > 0, x < 0; if not, C is the union of ∂Q and the line y = 0. Then, by
(iii), Q ∩ U+

Rδ is the union of those of the above N -lenses U+
k that meet Q, q.e.d.

(vi) Set I := Q̄rQ. Since Q is locally closed, I is a union of finitely many closed
intervals and points in the circle ∂Q = ∂Q̄ (see (ii)).

Take any a ∈ ∂Q, and choose local coordinates (x, y) as in (v). The curve ∂Q
has one branch at a, so, by (v), it is either the graph of a continuous function
y = k(x) defined for −ε < x < ε, or it lies in the half-plane x ≥ 0, where it is the
union pieces y = g1(x), y = g2(x), or it lies in the half-plane x ≤ 0, where it is
is the union of pieces y = h1(x), y = h2(x). In the first case Q equals either of
the domains y ≤ k(x), or y > k(x). In the second case, the assumption that Q is
locally closed implies that Q equals the domain g1(x) < y ≤ g2(x); similarly, in the
third case Q equals the domain h1(x) < y ≤ h2(x).

This shows, in particular, that I does not contain isolated points. In a moment
we will define a continuous retraction π : Q̄ → I. Its existence implies that I is
connected and 6= ∂Q, hence it is a single interval, and we are done.

Choose a non-vanishing smooth vector field τ on a neighborhood of Q̄ which
takes values in N . For x ∈ Q̄ follow the integral line x(t), x(0) = x, of τ . Let us
show that the trajectory x(t) meets I at certain t ≥ 0. If not, then x /∈ I and the
trajectory x(t), t > 0, stays in Int(Q). Our τ does not vanish, so, by the Poincaré-
Bendixon theorem (see e.g. [KH]),4 Int(Q) contains a periodic trajectory T of τ .
Then T is the boundary of a disc D in Int(Q), and τ |D is a non-vanishing vector
field tangent to T , which does not exist; contradiction.

Take a smallest t ≥ 0 such that x(t) ∈ I (then x((0, 1) ⊂ Int(Q)), and set π(x) :=
x(t). The above picture of Q near the boundary shows that π is a continuous
retraction onto I.

(vii) Every connected component of P is N -special, so we can assume that P is
connected. We need to show that P̄ is homeomorphic to a disc.

Let Q be an N -lens that contains P . Consider a retraction π : Q̄ → I from (vi).
By construction, π(Q) is the interior I◦ of I, and for every t ∈ I◦ the fiber Q̄t of π
is a closed interval. We orient it so that ν|Q̄t

is positive.

Set K := π(P̄ ); this is a closed interval since P̄ is connected and P is N -special.
Let t be any interior point of K, so P̄t := P̄ ∩Q̄t is a union of finitely many intervals
and points in Q̄t. Let us show that

(∗) The interior of P̄t (in Q̄t) lies in the interior of P .

If not, take any y ∈ Int(P̄t) ∩ ∂P . Since P is N -special, ∂P = ∂P̄ does not
contain isolated points and P̄t ∩ ∂P is finite. Thus a punctured neighborhood of y
in P̄t lies in Int(P ), so y ∈ P since P is N -special. Let U ⊂ Int(P ) be any open
subset with connected fibers such that y is the bottom point of the fiber Ut. For
t′ ∈ I, t′ 6= t, let s(t′) be the bottom point of the connected component of P̄t′ that

4I am grateful to Benson Farb for comments and the reference.
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contains Ut′ . These points form a subset S ⊂ ∂P . Since P is N -special, one has
S ⊂ ∂P r P . From y ∈ ∂P it follows easily that y ∈ S̄. Since P is locally closed,
this contradicts the fact that y ∈ P , and we are done.

Now let Ct be any connected component of P̄t for a generic t ∈ K. This is
an interval (since P is N -invariant). Let us move t, say, to the left. By (∗), our
component changes continuously until it degenerates into a point. Same happens
when we move t to the right. Notice that Ct r P is the bottom point of Ct, so
the two points, in which Ct degenerate, do not lie in P as well, since P is locally
closed. Thus Ct ∩ P sweep a connected component of P , so the whole P , and P̄ is
homeomorphic to a disc as stated. �

A5. If Q is an N -lens, then, by A4(vi), one has RΓc(Q, F ) = 0. Denote by ι(Q)
the corresponding trivialization of λF (Q) = det RΓc(Q,F ).

Theorem. The restriction of λF to CN
0 admits a unique trivialization ιN such

that for any N -lens Q one has ιN (Q) = ι(1Q).

Proof. The uniqueness of ι follows from A4(v)(vii). Let D be the subset of CN
0

whose elements are those Q that are locally closed and whose connected components
are N -lenses. As above, for such a Q one has RΓc(Q, F ) = 0, hence λF (Q) =
detRΓc(Q,F ) has a natural trivialization ι(Q). By A4(v)(vii), D satisfies the
assumptions of A2(d) with I = CN

0 . Therefore the theorem follows from the lemma
in A2(d) and the next statement:

Lemma. Let Q be an N -lens and {Qβ}, β ∈ B, be a finite set of N -lenses such
that ∪Qβ = Q. Then the trivializations ι(Q) and ι(QS), ∅ 6= S ⊂ B, satisfy (A2.2).

Proof. (a) To write (A2.1) explicitly, we choose an N -transversal stratification
{Kr} such that if Kr ∩ Qβ 6= ∅ for some r, β, then Kr ⊂ Qβ . For each non-
empty S ⊂ B denote by λ

(S)
F the tensor product ⊗detRΓc(Kr, F ) with respect

to all r such that Kr ⊂ Qβ if and only if β ∈ S. Then detRΓc(Q,F ) = ⊗
S

λ
(S)
F

and det RΓc(QS , F ) = ⊗
S′⊃S

λ
(S′)
F . Excluding λ

(S)
F ’s from the equations, we get the

isomorphism µ
{Qβ}
Q : ⊗

S
detRΓc(QS , F )⊗(−1)|S| ∼→ detRΓc(Q,F ).

(b) We want to check that µ
{Qβ}
Q is compatible with the trivializations ι(Q) and

ι(QS). To do this, we will find a finite filtration ∅ = E−1 ⊂ E0 ⊂ . . . ⊂ En = Q,
where Ei are closed subsets of Q, such that for every i one has (here Pi := EirEi−1):

(i) For any N -transversal locally closed K the complex RΓc(K∩Pi, F ) is perfect;

(ii) If Pi ∩Qβ 6= ∅, then Pi ⊂ Qβ ;

(iii) One has RΓc(Pi, F ) = 0.

Such a filtration yields usual factorizations det RΓc(Q,F ) = ⊗det RΓc(Pi, F ),
detRΓc(QS , F ) = ⊗det RΓc(QS ∩ Pi, F ). Now RΓc(Pi, F ), RΓc(QS ∩ Pi, F ) are
acyclic complexes by (iii) and (ii), so we have the corresponding trivializations
ι(Pi), ι(QS ∩ Pi) of their determinant lines; it is clear that ι(Q) = ⊗ι(Pi) and
ι(QS) = ⊗ι(QS ∩Pi). Our µ

{Qβ}
Q equals the tensor product of the similarly defined
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isomorphisms µ
{Qβ∩Pi}
Pi

: ⊗
S

detRΓc(QS ∩ Pi, F )⊗(−1)|S| ∼→ det RΓc(Pi, F ). Thus

the compatibility of µ
{Qβ}
Q with the trivializations ι(Q) and ι(QS) follows from the

compatibility of µ
{Qβ∩Pi}
Pi

with ι(Pi) and ι(QS ∩ Pi). The latter is evident due to
(ii), and we are done.

(c) It remains to construct Ei’s. Consider the projection π : Q → I◦ from
the proof of A4(vi)(vii). The fibers Qt, t ∈ I◦, are semi-open intervals, hence
Rπ!i

∗
Q(F ) = 0. By A4(vii), for any non-empty S ⊂ B one has R(π|QS

)!i∗QS
F = 0.

Let B ⊂ I◦ be a finite subset such that over I◦ r B all the projections QS → I◦

are locally trivial. Let Iγ be the partition of I◦ by the points in B and the open
intervals between successive points in B; set Qγ := π−1(Iγ). For any Qγ every Qβ

such that Qβ∩Qγ 6= ∅ yields two closed subspaces of Qγ that consist of points lying
below one or the other boundary components of Qβ ∩Qγ . Let {Eγ

j } be the set of
all subspaces of Qγ obtained in this manner, with Qγ itself added; we order them
by inclusion. This is a finite filtration of Qγ by closed subspaces. Notice that each
Eγ

j is a fibration over Iγ whose fibers are semi-open intervals, and P γ
j ∩ Qβ 6= ∅

implies P γ
j ⊂ Qβ ; here P γ

j := Eγ
j r Eγ

j−1. Combining Eγ
j ’s for all γ’s, we get the

promised Ei’s (with {Pi} = {P γ
j }). �

Remarks. (i) By A4(v), ιN has local origin: for an open U ⊂ X the restriction
of ιN to CN

0 (U) depends only on F |U and N |U .

(ii) If N ′ ⊂ TX is another ν-cone, then N + N ′ is also a ν-cone, CN+N ′ ⊂
CN ∩ CN ′

, same for C̃N , CN
0 , and ιN+N ′

= ιN |CN+N′
0

= ιN
′ |CN+N′

0
.

A6. Now we can make good the promise of A1.

Lemma. For any component Yα and an open Uα such that U ∩ Y = Yα there
exists Qα ∈ CN (Uα) := CN ∩ C(Uα) such that Qα ⊃ Yα.

Proof. We can assume that ∂Uα ∩ Y = ∅. Using A4(iv), cover ∂Uα by a finite
set of N -lenses {Qi}. Then Vα := Uα r ∪Qi is N -transversal; set Qα = V +

α . �

Consider the quotient Boolean algebra CN/CN
0 . We have a morphism of Boolean

algebras CN/CN
0 → 2A, Q 7→ Q∩Y ; here 2A is the Boolean algebra of all subsets of

the set A of connected components of Y . By the lemma, this is an isomorphism of
Boolean algebras; let κ : 2A ∼→ CN/CN

0 be the inverse isomorphism. The lemma also
shows that for Uα from loc. cit. the map CN (Uα)/CN

0 (Uα) → 2{α}, Q 7→ Q∩Y = Q∩
Yα, is an isomorphism as well, so we have its inverse κα : 2{α} ∼→ CN (Uα)/CN

0 (Uα).

By A2(c), (λF , ιN ) can be considered as an LR-measure λN
F on CN/CN

0 . Set
E(F )νYα

:= λN
F κα({α}); this is our ε-factor. The image of X in CN/CN

0 equals
κ(A) = tκα({α}), so one has the canonical identifications⊗E(F )νYα

= ⊗λN
F κα({α})

m→ λN
F (tκα({α})) = λN

F (κ(A)) = λF (X) a→ detRΓ(X, F ). One defines (A1.1) as
their composition.

Explicitly, E(F )νYα
= λF (Qα), where Qα is any constructible set as in the

lemma. To define (A1.1), we choose neighborhoods Uα of Yα such that different Ūα

do not intersect, a ν-cone N , and a set of N -lenses Qβ such that ∪Qβ ⊃ X r∪Uα.
Set Qα := Uα r ∪Qβ . Then E(F )νYα = λF (Qα), and (A1.1) comes from the
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isomorphism m : (⊗λF (Qα))⊗λF (∪Qβ) ∼→ λF (X) and a trivialization of λF (∪Qβ)
defined by the trivializations ι(QS) via identification (A2.1) (the latter described
explicitly in part (a) of the proof of the lemma in A5).

The construction of E(F )να and the ε-factorization does not depend on the
auxiliary datum of Uα’s and the ν-cone N : for Uα this is evident, for N use Remark
(ii) in A5. Finally, the local origin of E(F )να follows from Remark (i) in A5.

Exercise. The degree of the graded super R-line E(F )νYα equals χ(Yα, F ) +
rk(F )wα(ν), where wα(ν) ∈ Z is the winding number of ν around Yα.

Examples. Suppose Yα is a circle of radius r around 0 ∈ C and Uα equals
{z : r ≤ |z| < R}. Let us write Qα from the corollary for some forms ν explicitly:

(a) For ν = Re dz/z one can take Qα = Ūα; for ν = −Re dz/z take Qα = Uα.

(b) ν = Re zn−1dz, n > 0: Draw a cogwheel of a radius > r centered at 0
with cogs at the arguments π

2n + kπ
n , k = 1, . . . , 2n, pointing outside the circle.

Our Qα is the union of the interior of the cogwheel and the points with arguments
−π
2n + 2jπ

n < θ < π
2n + 2jπ

n , j = 1, . . . n, on its boundary.

(c) ν = Re zn−1dz, n < 0: Draw a cogwheel with cogs in the same position as
for −n, but pointing inside the circle. Our Qα is the union of the interior of the
cogwheel and the points with arguments on the boundary it is 0 for arguments
−π
2n + 2jπ

n ≤ θ ≤ π
2n + 2jπ

n on its boundary.

6. The determinant of the cohomology
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