Appendix: the case of a surface

A1. Below R is a commutative coefficient ring. Denote by \mathcal{L}_R the Picard groupoid of \mathbb{Z} -graded super R-lines. So an object of \mathcal{L}_R is a pair (L, \deg_L) , where L is an invertible R-module, $\deg_L \in \mathbb{Z}^{\operatorname{Spec} R} :=$ the group of \mathbb{Z} -valued locally constant function on $\operatorname{Spec} R$; the operation on \mathcal{L}_R is $(L, \deg_L) \otimes (L', \deg_{L'}) := (L \otimes L', \deg_L + \deg_{L'})$ with the commutativity corrected by the super sign $(-1)^{\deg_L \deg_{L'}}$.

Our X is a compact real-analytic surface with boundary Y whose connected components are denoted by Y_{α} , $\alpha \in A$. Let F be a complex of sheaves of Rmodules on X whose fibers are perfect and the restriction of its cohomology to $X \setminus Y$, and to Y minus finitely many points, is locally constant. Then $R\Gamma(X, F)$ is a perfect R-complex, so we have det $R\Gamma(X, F) \in \mathcal{L}_R$. Let ν be any continuous nowhere vanishing 1-form on $X \setminus Y$. Our aim is to assign to each component Y_{α} a graded super R-line $\mathcal{E}(F)_{\nu Y_{\alpha}}$ which has local origin, i.e., depends only on the restriction of our datum to a neighborhood of Y_{α} , and define the ε -factorization isomorphism

(A1.1)
$$\otimes_{\alpha} \mathcal{E}(F)_{\nu Y_{\alpha}} \xrightarrow{\sim} \det R\Gamma(X, F).$$

The constructions are presented in A6; they are based on a theorem from A5.

A2. A shot of abstract nonsense. Let \mathcal{A} be a Boolean algebra. Recall that it is realized canonically as the Boolean algebra of open compact subsets of a pro-finite set $\mathcal{P} = \operatorname{Spec} \mathcal{A}^{1}$

Let \mathcal{L} be a Picard groupoid;² we write the operation in \mathcal{L} as \otimes . The group of isomorphism classes of objects in \mathcal{L} is denoted by $\pi_0 \mathcal{L}$, the group of automorphisms of the unit object $1_{\mathcal{L}}$ is denoted by $\pi_1 \mathcal{L}$; these groups are commutative (and written multiplicatively). For any $L \in \mathcal{L}$ one has a canonical identification $\pi_1 L \xrightarrow{\sim} \operatorname{Aut} L$, $\phi \mapsto id_L \otimes \phi$. There is a natural homomorphism $\epsilon : \pi_0 \mathcal{L} \to \pi_1 \mathcal{L}$ which sends an object $L \in \mathcal{L}$ to the symmetric constraint symmetry of $L \otimes L$; L is said to be *even* if $\epsilon(L) = 1$ and *odd* otherwise; let $\mathcal{L}^{ev} \subset \mathcal{L}$ be the Picard subgroupoid of even objects. \mathcal{L} is said to be discrete if its $\pi_1 \mathcal{L}$ is trivial; such an \mathcal{L} amounts to an abelian group. For any \mathcal{L} there is an evident morphism of Picard groupoids $\mathcal{L} \to \pi_0 \mathcal{L}$.

(a) An \mathcal{L} -measure (λ, m) on \mathcal{A} (or on \mathcal{P}) is a rule that assigns to every $Q \in \mathcal{A}$ an object $\lambda(Q) \in \mathcal{L}$, and to every finite set $\{Q_i\} \subset \mathcal{A}$ such that $Q_i \cap Q_{i'} = \emptyset$ for $i \neq i'$, an identification $m : \otimes \lambda(Q_i) \xrightarrow{\sim} \lambda(\cup Q_i)$. One demands m to be transitive in the obvious sense. We often drop m from the notation.

 \mathcal{L} -valued measures form a Picard groupoid which we denote by $\mathcal{M}eas(\mathcal{A}, \mathcal{L})$ or $\mathcal{M}eas(\mathcal{P}, \mathcal{L})$. It is functorial with respect to morphisms of \mathcal{P} 's and \mathcal{L} 's. Notice that $\pi_1 \mathcal{M}eas(\mathcal{P}, \mathcal{L}) = \mathcal{M}eas(\mathcal{P}, \pi_1 \mathcal{L})$ (the usual group of $\pi_1 \mathcal{L}$ -valued measures on \mathcal{P}); the projection $\mathcal{L} \to \pi_0 \mathcal{L}$ yields a homomorphism $\pi_0 \mathcal{M}eas(\mathcal{P}, \mathcal{L}) \to \mathcal{M}eas(\mathcal{P}, \pi_0 \mathcal{L})$ which is bijective if \mathcal{A} is countable or if $\pi_1 \mathcal{L}$ is finite.

Exercise. Let $\mathbb{Z}^{\mathcal{P}}$ be the group of \mathbb{Z} -valued locally constant functions on \mathcal{P} ; for $Q \in \mathcal{A}$ let $1_Q \in \mathbb{Z}^{\mathcal{P}}$ be the characteristic function of $Q \subset \mathcal{P}$. Consider the Picard

¹Here \mathcal{A} is considered as a commutative $\mathbb{Z}/2$ -algebra with the operations $QQ' := Q \cap Q'$, $Q + Q' := (Q \cup Q') \smallsetminus (Q \cap Q')$.

²I.e., a symmetric monoidal category all of whose objects and morphisms are invertible.

groupoid Hom($\mathbb{Z}^{\mathcal{P}}, \mathcal{L}$) of Picard groupoid morphisms $\phi : \mathbb{Z}^{\mathcal{P}} \to \mathcal{L}$. There is a fully faithful embedding of Picard groupoids Hom($\mathbb{Z}^{\mathcal{P}}, \mathcal{L}$) $\hookrightarrow \mathcal{M}eas(\mathcal{P}, \mathcal{L}), \phi \mapsto \lambda_{\phi}$, where $\lambda_{\phi}(Q) = \phi(1_Q)$ and m comes since $1_{\sqcup Q_i} = \Sigma 1_{Q_i}$. Show that its essential image equals $\mathcal{M}eas(\mathcal{P}, \mathcal{L})^{ev} = \mathcal{M}eas(\mathcal{P}, \mathcal{L}^{ev})$, i.e., in the \mathcal{L} -setting an outright integration of functions makes sense only for even λ 's.

Remark. Suppose that we write \mathcal{P} as the projective limit of a directed family of finite sets \mathcal{P}_{α} and surjections $\pi_{\alpha\alpha'}: \mathcal{P}_{\alpha'} \to \mathcal{P}_{\alpha}, \alpha' \geq \alpha$; so for every $b \in \mathcal{P}_{\alpha}$ we have an open $Q_{\alpha b} \subset \mathcal{P}$. An \mathcal{L} -measure λ is the same as a datum of objects $\lambda_{\alpha}(b) = \lambda(Q_{\alpha b}) \in \mathcal{L}, a \in \mathcal{P}_{\alpha}$, together with identifications $m_{\alpha\alpha' b}: \otimes \lambda_{\alpha'}(b') \xrightarrow{\sim} \lambda_{\alpha}(b)$, where $b \in \mathcal{P}_{\alpha}$ and b' run the set of all elements of $\mathcal{P}_{\alpha'}$ such that $\pi_{\alpha\alpha'}(b') = b$; the $m_{\alpha\alpha'}$'s should satisfy the transitivity property.

(b) Inclusion-exclusion formula: Take $Q \in \mathcal{A}$ and a finite collection $\{Q_{\beta}\}, \beta \in B$, such that $Q = \bigcup Q_{\beta}$. For a non-empty subset $S \subset B$ set $Q_S := \bigcap_{\beta \in S} Q_{\beta}$.

Lemma. If all $\lambda(Q_S)$ are even, then one has a canonical isomorphism (A2.1) $\mu_Q^{\{Q_\beta\}} : \underset{\emptyset \neq S \subset B}{\otimes} \lambda(Q_S)^{\otimes (-1)^{|S|+1}} \xrightarrow{\sim} \lambda(Q).$

Proof. For a non-empty $S \subset B$ let $Q_{(S)}$ be the complement in Q_S to the union of $Q_{S'}$ where $S' \supset S$, $S' \neq S$. Then Q is the disjoint union of all $Q_{(S)}$'s, $S \subset B$. Intersecting our datum with $Q_{(S)}$, we are reduced to the situation where all Q_{β} 's are equal. Here (A2.1) is immediate.

Remark. Let $Q = \bigcup Q_{\gamma}, \gamma \in \Gamma$, be another presentation of Q such that $\lambda(Q_T) \in \mathcal{L}^{ev}$ for every non-empty $T \subset \Gamma$. Let us compare $\mu_B := \mu_Q^{\{Q_\beta\}}$ and $\mu_{\Gamma} := \mu_Q^{\{Q_\gamma\}}$. Denote by L_B, L_{Γ} their sources, and set $L_{B\Gamma} := \otimes \lambda(Q_S \cap Q_T)^{(-1)^{(|S|+1)(|T|+1)}}$, the tensor product is indexed by all non-empty $S \subset B, T \subset \Gamma$. There is a natural morphism $\nu_B : L_{B\Gamma} \xrightarrow{\sim} L_B$ defined as the tensor product of morphisms $(\mu_{Q_S}^{\{Q_\gamma \cap Q_S\}})^{\otimes (-1)^{|S|+1}}$ for $\emptyset \neq S \subset B$, and a similarly defined morphism $\nu_{\Gamma} : L_{B\Gamma} \xrightarrow{\sim} L_{\Gamma}$. Now one has $\mu_B \nu_B = \mu_{\Gamma} \nu_{\Gamma}$; to prove this, one reduces the statement to the case when all Q_β and Q_γ coincide, where the statement is obvious.

(c) Let $\mathcal{I} \subset \mathcal{A}$ be a Boolean ideal, and \mathcal{A}/\mathcal{I} the quotient Boolean algebra, so Spec $\mathcal{A}/\mathcal{I} =: \mathcal{P}'$ is a closed subset in \mathcal{P} , and \mathcal{I} consists of open compact subsets of $\mathcal{P} \setminus \mathcal{P}'$. Let $\mathcal{M}eas(\mathcal{A}, \mathcal{L})^{\mathcal{I}}$ be the Picard groupoid of pairs (λ, ι) where λ is an \mathcal{L} -valued measure on \mathcal{A} and ι is a trivialization of the restriction $\lambda|_{\mathcal{I}}$ of λ to $\mathcal{I}.^3$ So ι is a datum of identifications $\iota(Q) : \lambda(Q) \xrightarrow{\sim} 1_{\mathcal{L}}, Q \in \mathcal{I}$, multiplicative with respect to disjoint union decompositions of Q's. The pull-back functor yields an equivalence of the Picard groupoids $\mathcal{M}eas(\mathcal{A}/\mathcal{I}, \mathcal{L}) \xrightarrow{\sim} \mathcal{M}eas(\mathcal{A}, \mathcal{L})^{\mathcal{I}}$.

Take any (λ, ι) as above, and let Q, $\{Q_b\}$ be a datum as in (b) such that Q, $\{Q_b\}$ lie in \mathcal{I} . Since λ is trivial on \mathcal{I} , the lemma in (b) is applicable, so we have isomorphism (A2.1). Now ι trivializes both objects in (A2.1), and one has

(A2.2)
$$\bigotimes_{S \subset B} \iota(Q_S)^{\otimes (-1)^{|S|+1}} = \iota(Q).$$

³In the definition of \mathcal{L} -measure we need not assume that the Boolean algebra is unital, so one has the Picard groupoid $\mathcal{M}eas(\mathcal{I},\mathcal{L})$ of \mathcal{L} -measures on $\mathcal{P} \smallsetminus \mathcal{P}'$, and ι is an identification of $\lambda|_{\mathcal{I}}$ with the trivial object of this Picard groupoid.

(d) Let \mathcal{I} be as in (c), and $\mathcal{D} \subset \mathcal{I}$ be a subset closed under \cap such that every $Q \in \mathcal{I}$ can be represented as $\cup Q_{\beta}$ with $\{Q_{\beta}\} \subset \mathcal{D}$.

Lemma. Let λ be any \mathcal{L} -measure on \mathcal{A} and ι be any datum of trivializations $\iota(Q) : \lambda(Q) \xrightarrow{\sim} 1_{\mathcal{L}}$ defined for $Q \in \mathcal{D}$. If (A2.2) holds whenever $Q, \{Q_b\}$ are in \mathcal{D} , then ι extends in a unique manner to a trivialization ι of $\lambda|_{\mathcal{I}}$.

Proof. It is clear that $\lambda|_{\mathcal{I}}$ takes values in trivial objects of \mathcal{I} , so (A2.1) makes sense there. Take any $Q \in \mathcal{I}$ and represent it as $\cup Q_{\beta}, \beta \in B$, for $\{Q_{\beta}\} \subset \mathcal{D}$. Let $\iota^{\{Q_{\beta}\}}(Q)$ be a trivialization of $\lambda(Q)$ defined, using (A2.1), as $\underset{S \subset B}{\otimes} \iota(Q_{S})^{\otimes (-1)^{|S|+1}}$. The comparison picture from Remark in (b) shows that $\iota^{\{Q_{\beta}\}}(Q)$ does not depend

on the choice of particular $\{Q_{\beta}\}$. Set $\iota(Q) = \iota^{\{Q_{\beta}\}}(Q)$; it is immediate that ι is multiplicative, and we are done.

A3. We return to the setting of A1. Below a *curve* is a subset $C \subset X$ whose closure \overline{C} is a semi-analytic curve, $\overline{C} \setminus C$ is finite, and $\overline{C} \cap Y = \emptyset$. A stratification of X is always assumed to be semi-analytic (its 1-strata are curves) and such that no 0 strata lie on Y (i.e., each Y_{α} lies in an open stratum). A constructible set in X is a union of strata of a stratification. Denote by \mathcal{C} the Boolean algebra of constructible sets.

For every locally closed constructible subset $Q \subset X$, we have a perfect complex $R\Gamma_c(Q,F) := R\Gamma_c(Q,i_Q^*F)$, hence a graded super *R*-line det $R\Gamma_c(Q,F)$ of the degree equal to the Euler characteristics $\chi(Q,F)$. If $Q_1 \hookrightarrow Q$ is an open embedding where Q_1 is also constructible, and $Q_2 := Q \setminus Q_1$, then the exact triangle $R\Gamma_c(Q_1,F) \to R\Gamma_c(Q,F) \to R\Gamma_c(Q_2,F)$ yields an isomorphism

(A3.1)
$$\det R\Gamma_c(Q_1, F) \otimes \det R\Gamma_c(Q_2, F) \xrightarrow{\sim} \det R\Gamma_c(Q, F).$$

Proposition. There is an \mathcal{L}_R -measure λ_F on \mathcal{C} together with identifications $\tau = \tau_Q : \lambda_F(Q) \xrightarrow{\sim} \det R\Gamma_c(Q, F)$ for each locally closed constructible $Q \subset X$, such that for every Q, Q_1, Q_2 as above, the τ identify the isomorphism from (A3.1) with the structure isomorphism $m : \lambda_F(Q_1) \otimes \lambda_F(Q_2) \xrightarrow{\sim} \lambda_F(Q)$. The datum (λ_F, τ) is unique up to a unique isomorphism.

Proof. Use Remark in A2(a): Our α 's run the set of all constructible stratifications with its usual ordering, \mathcal{P}_{α} is the set of strata of the stratification. Then τ specifies each line $\lambda_{\alpha}(b), b \in \mathcal{P}_{\alpha}$, and (A3.1) defines the datum of $m_{\alpha\alpha'}$. The details are left to the reader.

Remarks. (i) If Q is a constructible subset which is *not* locally closed, then Q is not locally compact, so $R\Gamma_c(Q, F)$ is not defined.

(ii) λ_F has local origin: For an open $U \subset X$, let $\mathcal{C}(U) \subset \mathcal{C}$ be the Boolean ideal of constructible Q's such that $\overline{Q} \subset U$. Then the restriction of λ_F to $\mathcal{C}(U)$ depends only on $F|_U$.

A4. Now let us switch in ν . We need an auxiliary datum of a ν -cone N, which is a continuous family of non-degenerate closed sectors $N_x \subset T_x X$, $x \in X \setminus Y$, such that $\langle \nu_x, N_x \setminus \{0\} \rangle < 0$.

A curve C is said to be *N*-transversal if for every $x \in \overline{C}$ each tangent line to \overline{C} at x intersects $N_x \cup -N_x$ by $\{0\}$. A stratification is *N*-transversal if such are its 1-strata. A constructible set Q is said to be:

- *N*-transversal, if it is a union of strata in an *N*-constructible stratification;

- *N*-special, if it is *N*-transversal and a point $x \in \partial Q$ lies in Q if and only there are points $y \in \text{Int } (Q)$ close to x and such that $y - x \in N_x$ (in the evident sense);

- *N*-lens, if Q is *N*-special, locally closed, and \overline{Q} is homeomorphic to a disc.

Let $\tilde{\mathcal{C}}^N \supset \mathcal{C}^N \supset \mathcal{C}_0^N$ be the subsets of \mathcal{C} that consist of those Q that are, respectively, N-transversal, N-special, N-special and satisfisfy $\bar{Q} \cap Y = \emptyset$. Let $\mathcal{J}^N \subset \mathcal{C}$ be the subset of N-transversal Q's of dimension ≤ 1 .

Proposition. (i) \tilde{C}^N , C^N are Boolean subalgebras of C, \mathcal{J}^N is a Boolean ideal in C, and \mathcal{C}_0^N is a Boolean ideal in \mathcal{C}^N . Every N-lens lies in \mathcal{C}_0^N .

(ii) If Q is N-special, then Int (Q) equals Int (\overline{Q}) , and it is dense in Q.

(iii) The composition $\mathcal{C}^N \hookrightarrow \tilde{\mathcal{C}}^N \twoheadrightarrow \tilde{\mathcal{C}}^N / \mathcal{J}^N$ is a bijection.

Denote the inverse Boolean algebras isomorphism $\tilde{\mathcal{C}}^N/\mathcal{J}^N \xrightarrow{\sim} \mathcal{C}^N$ by $V \mapsto V^+$.

(iv) Each point in $X \setminus Y$ admits a base of neighborhoods formed by N-lenses.

(v) Any $Q \in \mathcal{C}_0^N$ can be written as a union of finitely many N-lenses.

(vi) If Q is an N-lens, then $\bar{Q} \smallsetminus Q$ is a closed interval in the circle $\partial \bar{Q}$.

(vii) Suppose that $P \in C_0^N$ is locally closed and is contained in an N-lens. Then each connected component of P is an N-lens. In particular, all the connected components of an intersection of finitely many N-lenses are N-lenses.

Proof. (i), (ii), (iii) are straightforward.

(iv) Take any $a \in X \setminus Y$; choose a real analytic local coordinate system (x, y) at a such that a = (0, 0) and $\nu_a = dy$. For $R, \delta > 0$ let $U_{R\delta}$ be the intersection of two open discs of radius R centered at $(0, \pm (R - \delta))$. If R is very big and δ is very small, then $U_{R\delta}^+$ (which is the intersection of the open disc centered at $(0, R - \delta)$ and the closed one centered at $(0, \delta - R)$) is an N-lens in X. These N-lenses form a base of neighborhoods of a.

(v) We need a preliminary. Let a be a point in $X \\ V$ and C be the germ at a of an N-transversal curve. Let (x, y) be coordinates as in (iv). By the implicit function theorem, one has two finite sets of functions: $\{y = g_1(x), \ldots, y = g_k(x)\}$ defined for $\epsilon > x \ge 0$, and $\{y = h_1(x), \ldots, y = h_r(x)\}$ defined for $-\epsilon < x \le 0$, all vanishing at x = 0, such that C is the union of their graphs. Our C is semianalytic, so for small enough ϵ all g_i , h_j are monotone and one can order them so that $g_1(x) < \ldots < g_2(x)$ for $\epsilon > x > 0$, and $h_1(x) < \ldots < h_r(x)$ for $-\epsilon < x < 0$. Choose R, δ as in (iv) such that $U_{R\delta}^+$ is an N-lens that lies in the interval $-\epsilon < x < \epsilon$. Suppose C meets both half-planes x > 0, x < 0, i.e., both sets $\{g_i\}$ and $\{h_j\}$ are non-empty. Then C cuts $U_{R\delta}$ into pieces $\{U_k\}$ such that each U_k^+ is an N-lens, and $\cup U_k^+ = U_{R\delta}^+$.

Let us return to the proof of (v). Our assertion is local: it suffices to find for any

 $a \in \overline{Q}$ its neighborhood whose intersection with Q can be represented as a union of N-lenses. The case $a \in \text{Int}(Q)$ is covered by (iv). For $a \in \partial Q$, choose (x, y)as above; let C be a curve defined as the germ of ∂Q at a if ∂Q intersects both half-planes x > 0, x < 0; if not, C is the union of ∂Q and the line y = 0. Then, by (iii), $Q \cap U_{R\delta}^+$ is the union of those of the above N-lenses U_k^+ that meet Q, q.e.d.

(vi) Set $I := \bar{Q} \setminus Q$. Since Q is locally closed, I is a union of finitely many closed intervals and points in the circle $\partial Q = \partial \bar{Q}$ (see (ii)).

Take any $a \in \partial Q$, and choose local coordinates (x, y) as in (v). The curve ∂Q has one branch at a, so, by (v), it is either the graph of a continuous function y = k(x) defined for $-\epsilon < x < \epsilon$, or it lies in the half-plane $x \ge 0$, where it is the union pieces $y = g_1(x)$, $y = g_2(x)$, or it lies in the half-plane $x \le 0$, where it is is the union of pieces $y = h_1(x)$, $y = h_2(x)$. In the first case Q equals either of the domains $y \le k(x)$, or y > k(x). In the second case, the assumption that Q is locally closed implies that Q equals the domain $g_1(x) < y \le g_2(x)$; similarly, in the third case Q equals the domain $h_1(x) < y \le h_2(x)$.

This shows, in particular, that I does not contain isolated points. In a moment we will define a continuous retraction $\pi : \overline{Q} \to I$. Its existence implies that I is connected and $\neq \partial Q$, hence it is a single interval, and we are done.

Choose a non-vanishing smooth vector field τ on a neighborhood of \overline{Q} which takes values in N. For $x \in \overline{Q}$ follow the integral line x(t), x(0) = x, of τ . Let us show that the trajectory x(t) meets I at certain $t \ge 0$. If not, then $x \notin I$ and the trajectory x(t), t > 0, stays in $\operatorname{Int}(Q)$. Our τ does not vanish, so, by the Poincaré-Bendixon theorem (see e.g. [KH]),⁴ $\operatorname{Int}(Q)$ contains a periodic trajectory T of τ . Then T is the boundary of a disc D in $\operatorname{Int}(Q)$, and $\tau|_D$ is a non-vanishing vector field tangent to T, which does not exist; contradiction.

Take a smallest $t \ge 0$ such that $x(t) \in I$ (then $x((0,1) \subset \text{Int}(Q))$), and set $\pi(x) := x(t)$. The above picture of Q near the boundary shows that π is a continuous retraction onto I.

(vii) Every connected component of P is N-special, so we can assume that P is connected. We need to show that \overline{P} is homeomorphic to a disc.

Let Q be an N-lens that contains P. Consider a retraction $\pi : \overline{Q} \to I$ from (vi). By construction, $\pi(Q)$ is the interior I° of I, and for every $t \in I^{\circ}$ the fiber \overline{Q}_t of π is a closed interval. We orient it so that $\nu|_{\overline{Q}_t}$ is positive.

Set $K := \pi(\bar{P})$; this is a closed interval since \bar{P} is connected and P is N-special. Let t be any interior point of K, so $\bar{P}_t := \bar{P} \cap \bar{Q}_t$ is a union of finitely many intervals and points in \bar{Q}_t . Let us show that

(*) The interior of \overline{P}_t (in \overline{Q}_t) lies in the interior of P.

If not, take any $y \in \operatorname{Int}(\bar{P}_t) \cap \partial P$. Since P is N-special, $\partial P = \partial \bar{P}$ does not contain isolated points and $\bar{P}_t \cap \partial P$ is finite. Thus a punctured neighborhood of yin \bar{P}_t lies in $\operatorname{Int}(P)$, so $y \in P$ since P is N-special. Let $U \subset \operatorname{Int}(P)$ be any open subset with connected fibers such that y is the bottom point of the fiber U_t . For $t' \in I, t' \neq t$, let s(t') be the bottom point of the connected component of $\bar{P}_{t'}$ that

⁴I am grateful to Benson Farb for comments and the reference.

contains $U_{t'}$. These points form a subset $S \subset \partial P$. Since P is N-special, one has $S \subset \partial P \setminus P$. From $y \in \partial P$ it follows easily that $y \in \overline{S}$. Since P is locally closed, this contradicts the fact that $y \in P$, and we are done.

Now let C_t be any connected component of \bar{P}_t for a generic $t \in K$. This is an interval (since P is N-invariant). Let us move t, say, to the left. By (*), our component changes continuously until it degenerates into a point. Same happens when we move t to the right. Notice that $C_t \setminus P$ is the bottom point of C_t , so the two points, in which C_t degenerate, do not lie in P as well, since P is locally closed. Thus $C_t \cap P$ sweep a connected component of P, so the whole P, and \bar{P} is homeomorphic to a disc as stated.

A5. If Q is an N-lens, then, by A4(vi), one has $R\Gamma_c(Q, F) = 0$. Denote by $\iota(Q)$ the corresponding trivialization of $\lambda_F(Q) = \det R\Gamma_c(Q, F)$.

Theorem. The restriction of λ_F to \mathcal{C}_0^N admits a unique trivialization ι^N such that for any N-lens Q one has $\iota^N(Q) = \iota(1_Q)$.

Proof. The uniqueness of ι follows from A4(v)(vii). Let \mathcal{D} be the subset of \mathcal{C}_0^N whose elements are those Q that are locally closed and whose connected components are N-lenses. As above, for such a Q one has $R\Gamma_c(Q, F) = 0$, hence $\lambda_F(Q) =$ det $R\Gamma_c(Q, F)$ has a natural trivialization $\iota(Q)$. By A4(v)(vii), \mathcal{D} satisfies the assumptions of A2(d) with $\mathcal{I} = \mathcal{C}_0^N$. Therefore the theorem follows from the lemma in A2(d) and the next statement:

Lemma. Let Q be an N-lens and $\{Q_{\beta}\}, \beta \in B$, be a finite set of N-lenses such that $\cup Q_{\beta} = Q$. Then the trivializations $\iota(Q)$ and $\iota(Q_S), \emptyset \neq S \subset B$, satisfy (A2.2).

Proof. (a) To write (A2.1) explicitly, we choose an N-transversal stratification $\{K_r\}$ such that if $K_r \cap Q_\beta \neq \emptyset$ for some r, β , then $K_r \subset Q_\beta$. For each nonempty $S \subset B$ denote by $\lambda_F^{(S)}$ the tensor product $\otimes \det R\Gamma_c(K_r, F)$ with respect to all r such that $K_r \subset Q_\beta$ if and only if $\beta \in S$. Then $\det R\Gamma_c(Q, F) = \bigotimes_S \lambda_F^{(S)}$ and $\det R\Gamma_c(Q_S, F) = \bigotimes_{S' \supset S} \lambda_F^{(S')}$. Excluding $\lambda_F^{(S)}$'s from the equations, we get the isomorphism $\mu_Q^{\{Q_\beta\}} : \bigotimes_S \det R\Gamma_c(Q_S, F)^{\otimes (-1)^{|S|}} \xrightarrow{\sim} \det R\Gamma_c(Q, F)$.

(b) We want to check that $\mu_Q^{\{Q_\beta\}}$ is compatible with the trivializations $\iota(Q)$ and $\iota(Q_S)$. To do this, we will find a finite filtration $\emptyset = E_{-1} \subset E_0 \subset \ldots \subset E_n = Q$, where E_i are closed subsets of Q, such that for every i one has (here $P_i := E_i \setminus E_{i-1}$):

(i) For any N-transversal locally closed K the complex $R\Gamma_c(K \cap P_i, F)$ is perfect;

- (ii) If $P_i \cap Q_\beta \neq \emptyset$, then $P_i \subset Q_\beta$;
- (iii) One has $R\Gamma_c(P_i, F) = 0$.

Such a filtration yields usual factorizations det $R\Gamma_c(Q, F) = \otimes \det R\Gamma_c(P_i, F)$, det $R\Gamma_c(Q_S, F) = \otimes \det R\Gamma_c(Q_S \cap P_i, F)$. Now $R\Gamma_c(P_i, F)$, $R\Gamma_c(Q_S \cap P_i, F)$ are acyclic complexes by (iii) and (ii), so we have the corresponding trivializations $\iota(P_i)$, $\iota(Q_S \cap P_i)$ of their determinant lines; it is clear that $\iota(Q) = \otimes \iota(P_i)$ and $\iota(Q_S) = \otimes \iota(Q_S \cap P_i)$. Our $\mu_Q^{\{Q_\beta\}}$ equals the tensor product of the similarly defined isomorphisms $\mu_{P_i}^{\{Q_{\beta}\cap P_i\}}$: $\bigotimes_{S} \det R\Gamma_c(Q_S \cap P_i, F)^{\otimes (-1)^{|S|}} \xrightarrow{\sim} \det R\Gamma_c(P_i, F)$. Thus the compatibility of $\mu_Q^{\{Q_{\beta}\}}$ with the trivializations $\iota(Q)$ and $\iota(Q_S)$ follows from the compatibility of $\mu_{P_i}^{\{Q_{\beta}\cap P_i\}}$ with $\iota(P_i)$ and $\iota(Q_S \cap P_i)$. The latter is evident due to (ii), and we are done.

(c) It remains to construct E_i 's. Consider the projection $\pi : Q \to I^\circ$ from the proof of A4(vi)(vii). The fibers $Q_t, t \in I^\circ$, are semi-open intervals, hence $R\pi_! i_Q^*(F) = 0$. By A4(vii), for any non-empty $S \subset B$ one has $R(\pi|_{Q_S})_! i_{Q_S}^* F = 0$.

Let $B \subset I^{\circ}$ be a finite subset such that over $I^{\circ} \smallsetminus B$ all the projections $Q_S \to I^{\circ}$ are locally trivial. Let I^{γ} be the partition of I° by the points in B and the open intervals between successive points in B; set $Q^{\gamma} := \pi^{-1}(I^{\gamma})$. For any Q^{γ} every Q_{β} such that $Q_{\beta} \cap Q_{\gamma} \neq \emptyset$ yields two closed subspaces of Q_{γ} that consist of points lying below one or the other boundary components of $Q_{\beta} \cap Q_{\gamma}$. Let $\{E_j^{\gamma}\}$ be the set of all subspaces of Q^{γ} obtained in this manner, with Q^{γ} itself added; we order them by inclusion. This is a finite filtration of Q^{γ} by closed subspaces. Notice that each E_j^{γ} is a fibration over I^{γ} whose fibers are semi-open intervals, and $P_j^{\gamma} \cap Q_{\beta} \neq \emptyset$ implies $P_j^{\gamma} \subset Q_{\beta}$; here $P_j^{\gamma} := E_j^{\gamma} \smallsetminus E_{j-1}^{\gamma}$. Combining E_j^{γ} 's for all γ 's, we get the promised E_i 's (with $\{P_i\} = \{P_j^{\gamma}\}$).

Remarks. (i) By A4(v), ι^N has local origin: for an open $U \subset X$ the restriction of ι^N to $\mathcal{C}_0^N(U)$ depends only on $F|_U$ and $N|_U$.

(ii) If $N' \subset TX$ is another ν -cone, then N + N' is also a ν -cone, $\mathcal{C}^{N+N'} \subset \mathcal{C}^N \cap \mathcal{C}^{N'}$, same for $\tilde{\mathcal{C}}^N$, \mathcal{C}^N_0 , and $\iota^{N+N'} = \iota^N|_{\mathcal{C}^{N+N'}_0} = \iota^{N'}|_{\mathcal{C}^{N+N'}_0}$.

A6. Now we can make good the promise of A1.

Lemma. For any component Y_{α} and an open U_{α} such that $U \cap Y = Y_{\alpha}$ there exists $Q_{\alpha} \in \mathcal{C}^{N}(U_{\alpha}) := \mathcal{C}^{N} \cap \mathcal{C}(U_{\alpha})$ such that $Q_{\alpha} \supset Y_{\alpha}$.

Proof. We can assume that $\partial U_{\alpha} \cap Y = \emptyset$. Using A4(iv), cover ∂U_{α} by a finite set of N-lenses $\{Q_i\}$. Then $V_{\alpha} := U_{\alpha} \setminus \cup Q_i$ is N-transversal; set $Q_{\alpha} = V_{\alpha}^+$. \Box

Consider the quotient Boolean algebra $\mathcal{C}^N/\mathcal{C}_0^N$. We have a morphism of Boolean algebras $\mathcal{C}^N/\mathcal{C}_0^N \to 2^A$, $Q \mapsto Q \cap Y$; here 2^A is the Boolean algebra of all subsets of the set A of connected components of Y. By the lemma, this is an isomorphism of Boolean algebras; let $\kappa : 2^A \xrightarrow{\sim} \mathcal{C}^N/\mathcal{C}_0^N$ be the inverse isomorphism. The lemma also shows that for U_α from loc. cit. the map $\mathcal{C}^N(U_\alpha)/\mathcal{C}_0^N(U_\alpha) \to 2^{\{\alpha\}}$, $Q \mapsto Q \cap Y = Q \cap Y_\alpha$, is an isomorphism as well, so we have its inverse $\kappa_\alpha : 2^{\{\alpha\}} \xrightarrow{\sim} \mathcal{C}^N(U_\alpha)/\mathcal{C}_0^N(U_\alpha)$.

By A2(c), (λ_F, ι^N) can be considered as an \mathcal{L}_R -measure λ_F^N on $\mathcal{C}^N/\mathcal{C}_0^N$. Set $\mathcal{E}(F)_{\nu Y_\alpha} := \lambda_F^N \kappa_\alpha(\{\alpha\})$; this is our ε -factor. The image of X in $\mathcal{C}^N/\mathcal{C}_0^N$ equals $\kappa(A) = \sqcup \kappa_\alpha(\{\alpha\})$, so one has the canonical identifications $\otimes \mathcal{E}(F)_{\nu Y_\alpha} = \otimes \lambda_F^N \kappa_\alpha(\{\alpha\})$ $\xrightarrow{m} \lambda_F^N(\sqcup \kappa_\alpha(\{\alpha\})) = \lambda_F^N(\kappa(A)) = \lambda_F(X) \xrightarrow{a} \det R\Gamma(X, F)$. One defines (A1.1) as their composition.

Explicitly, $\mathcal{E}(F)_{\nu Y_{\alpha}} = \lambda_F(Q_{\alpha})$, where Q_{α} is any constructible set as in the lemma. To define (A1.1), we choose neighborhoods U_{α} of Y_{α} such that different \bar{U}_{α} do not intersect, a ν -cone N, and a set of N-lenses Q_{β} such that $\cup Q_{\beta} \supset X \smallsetminus \cup U_{\alpha}$. Set $Q_{\alpha} := U_{\alpha} \smallsetminus \cup Q_{\beta}$. Then $\mathcal{E}(F)_{\nu Y_{\alpha}} = \lambda_F(Q_{\alpha})$, and (A1.1) comes from the isomorphism $m : (\otimes \lambda_F(Q_\alpha)) \otimes \lambda_F(\cup Q_\beta) \xrightarrow{\sim} \lambda_F(X)$ and a trivialization of $\lambda_F(\cup Q_\beta)$ defined by the trivializations $\iota(Q_S)$ via identification (A2.1) (the latter described explicitly in part (a) of the proof of the lemma in A5).

The construction of $\mathcal{E}(F)_{\nu\alpha}$ and the ε -factorization does not depend on the auxiliary datum of U_{α} 's and the ν -cone N: for U_{α} this is evident, for N use Remark (ii) in A5. Finally, the local origin of $\mathcal{E}(F)_{\nu\alpha}$ follows from Remark (i) in A5.

Exercise. The degree of the graded super R-line $\mathcal{E}(F)_{\nu Y_{\alpha}}$ equals $\chi(Y_{\alpha}, F) + rk(F)w_{\alpha}(\nu)$, where $w_{\alpha}(\nu) \in \mathbb{Z}$ is the winding number of ν around Y_{α} .

Examples. Suppose Y_{α} is a circle of radius r around $0 \in \mathbb{C}$ and U_{α} equals $\{z : r \leq |z| < R\}$. Let us write Q_{α} from the corollary for some forms ν explicitly:

(a) For $\nu = \operatorname{Re} dz/z$ one can take $Q_{\alpha} = \overline{U}_{\alpha}$; for $\nu = -\operatorname{Re} dz/z$ take $Q_{\alpha} = U_{\alpha}$.

(b) $\nu = \operatorname{Re} z^{n-1} dz$, n > 0: Draw a cogwheel of a radius > r centered at 0 with cogs at the arguments $\frac{\pi}{2n} + \frac{k\pi}{n}$, $k = 1, \ldots, 2n$, pointing outside the circle. Our Q_{α} is the union of the interior of the cogwheel and the points with arguments $\frac{-\pi}{2n} + \frac{2j\pi}{n} < \theta < \frac{\pi}{2n} + \frac{2j\pi}{n}$, $j = 1, \ldots n$, on its boundary.

(c) $\nu = \operatorname{Re} z^{n-1} dz, n < 0$: Draw a cogwheel with cogs in the same position as for -n, but pointing *inside* the circle. Our Q_{α} is the union of the interior of the cogwheel and the points with arguments on the boundary it is 0 for arguments $\frac{-\pi}{2n} + \frac{2j\pi}{n} \leq \theta \leq \frac{\pi}{2n} + \frac{2j\pi}{n}$ on its boundary.

6. The determinant of the cohomology

References

- [AS] A. Abbes, T. Saito, Analyse micro-locale ℓ -adique en caracteristique p > 0: Le cas d'un trait, math. AG/0602285 (2006).
- [BBE] A. Beilinson, S. Bloch, H. Esnault, *ε*-factors for Gauβ-Manin determinants, Moscow Mathematical Journal 2 (2002), no. 3, 477–532.
- [BDE] S. Bloch, P. Deligne, H. Esnault, *Periods for irregular connections on curves* (2005).
- [BF] A. Bousfield, E. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, Lect. Notes in Math. 658 (1978), Springer, Berlin, 80–130.
- [C] D.-C. Cisinski, Invariance de la K-théorie par équivalences dérivées, http://wwwmath.univ-paris13.fr/ cisinski/ (2004).
- [Del1] P. Deligne, Les constantes des equations fonctionelles des fonctions L, Lect. Notes in Math. 349 (1973), Springer-Verlag, Berlin.
- [Del2] P. Deligne, Seminar on periods at IHES, notes by G. Laumon, manuscript (1984).
- [Del3] P. Deligne, Le déterminant de la cohomologie, Contemp. Math. 67 (1987), AMS, Providence, RI, 93–177.
- [D] A. Dubson, Formule pour l'indice des complexes constructibles et D-modules holonomes,
 C. R. Acad. Sci., Série A 298 (1984), no. 6, 113–114.
- [DHI] D. Dugger, S. Hollander, D. Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 9–51.
- [DS] D. Dugger, B. Shipley, K-theory and derived equivalences, Duke Math. J. 124 (2004), no. 3, 587–617.

- [DT] A. Dold, R. Thom, Quasifaserungen und unendliche symmetrische producte, Annals of Math. 68 (1958), 239–281.
- [GM] M. Goresky, R. MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 14, Springer-Verlag, Berlin, 1987.
- [Gr] A. Grothendieck, *Pursuing stacks*, http://www.grothendieck-circle.org/ (1983).
- [Hi] P. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, AMS, Providence, RI, 2003.
- [HSS] M. Hovey, B. Shipley, J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208.
- [J1] J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35–87.
- [J2] J. F. Jardine, Stable homotopy theory of simplicial presheaves, Canad. J. Math. 39 (1987), no. 3, 733–747.
- [K] M. Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985), no. 6, 193–209.
- [KS] M. Kashiwara, P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1990.
- [KH] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press,, Cambridge, 1995.
- [L] G. Laumon, Transformation de Fourier, constantes d'equations fonctionelles et conjecture de Weil, Publ. Math. IHES 65 (1987), 131–210.
- [M] B. Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Mathematics, vol. 96, Birkhäuser, Boston, MA, 1991.
- [Q] D. Quillen, Higher algebraic K-theory I, Lecture Notes in Math. 341 (1973), Springer, Berlin, 85–147.