
ON A THEOREM OF MOHAN KUMAR AND NORI

RICHARD G. SWAN

Abstract. A celebrated theorem of Suslin asserts that a unimodular row
xm1
1 , . . . , xmn

n is completable if m1 · · ·mn is divisible by (n − 1)!. Examples
due to Suslin and to Mohan Kumar and Nori show that this result is the
best possible in all characteristics. We give a new version of the proof of
Mohan Kumar and Nori which avoids the need to use Grothendieck’s Riemann–
Roch theorem or other deep results of algebraic geometry. We also adapt the
proof to give examples of stably free modules which are not self dual in all
characteristics.

1. Introduction

Let R be a commutative ring and let (a1, . . . , an) be a unimodular row over R.
We write P (a1, . . . , an) for the kernel of Rn a1,...,an−−−−−→ R. This is dual to the definition
used in [18] and the early sections of [16] but the present usage agrees with that of
[8] and of [16, §17]. If necessary we specify R by writing PR(a1, . . . , an). Suslin [12]
has shown that if mν > 0 for all ν then P (am1

1 , . . . , amn
n ) is free if m1 . . .mn ≡ 0

mod (n− 1)!. while in [15] it was shown that P (xm1
1 , . . . , xmn

n ) over

An = C[x1, . . . , xn, y1, . . . , yn]/(
∑

xiyi − 1)

is not free if m1 . . .mn 6≡ 0 mod (n− 1)!. Examples due to Suslin himself [13] [14]
and, independently, to Mohan Kumar and Nori [16, §17], have extended this result
to all characteristics as follows.

Theorem 1.1. Let R be any non–zero commutative ring and let

A = R[x1, . . . , xn, y1, . . . , yn]/(
∑

xiyi − 1).

Let mν > 0 for all ν = 1, . . . , n. If PA(xm1
1 , . . . , xmn

n ) is free over A then m1 . . .mn ≡
0 mod (n− 1)!.

If P is free over A then P ⊗R k will be free over

k[x1, . . . , xn, y1, . . . , yn]/(
∑

xiyi − 1)

where k = R/m is a field. Therefore it is sufficient to consider the case where R is
a field.

The proofs given by Suslin and by Mohan Kumar and Nori are quite differ-
ent. Suslin’s proof makes use of his theorem that SK1(A) = Z is generated by a
matrix with first row x1, x2, x

2
3, . . . , x

n−1
n while the proof given by Mohan Kumar

and Nori makes use of Chern classes and uses a consequence of Grothendieck’s
Riemann–Roch theorem. 1 The main purpose of the present paper is to give a
more elementary proof avoiding the use of this difficult result. Hopefully this will

1Unfortunately a sign (−1)i−1 was omitted in both equations in the statement of this result
in [16, Theorem 13.2].
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make this proof accessible to a wider audience. We will, however, use the relations
satisfied by the Adams operations. This requires the splitting principle so some
basic results on schemes are still needed. I will also show how to adapt the proof of
the theorem to extend the main result of [18] to all characteristics. This can also
be proved using Suslin’s methods as Ravi Rao has shown in [11].

Theorem 1.2. Let R and A be as in the previous theorem Let n be odd and let
mν > 0 for all ν. Let P = PA(xm1

1 , . . . , xmn
n ). If P ≈ P ∗ = Hom(P,A) then

2m1 . . .mn ≡ 0 mod (n− 1)!.

In [18] this was proved for R = C. We refer to [18] for further discussion of this
result. As above it will suffice to prove the theorem for the case where R is a field.

2. λ, γ, and ψ Operations

I will assume familiarity with classical algebraic K–theory but will begin by
recalling some standard results on Grothendieck’s λ and γ operations and Adams’
ψ operations. Standard references for this material are [4], [6], and [10] as well as
[1] which considers the topological case.

Let R be a commutative ring and let P be a finitely generated projective R–
module. Let Λn(P ) be its n–th exterior power and let λn(P ) = [Λn(P )] in K0(R).
We set Λ0(P ) = R as usual. Since Λ(P ⊕ Q) = Λ(P ) ⊗ Λ(Q) as graded rings we
have

Λn(P ⊕Q) =
⊕

p+q=n

Λp(P )⊗ Λq(Q).

and therefore λn(P ⊕ Q) =
∑

p+q=n λ
p(P )λq(Q) Let λt(P ) be the formal power

series
∑∞

n=0 λ
n(P )tn in K0(R)[[t]]. Then λt(P ⊕ Q) = λt(P )λt(Q) so λt is an

additive function with values in the abelian group 1 + tK0(R)[[t]] and hence factors
through K0(R) giving a homomorphism λt : K0(R) → 1 + tK0(R)[[t]]. We write
λt(x) =

∑∞
n=0 λ

n(x)tn. It follows that λn(x + y) =
∑

p+q=n λ
p(x)λq(y) for all x

and y in K0(R).
In addition to the λn, Grothendieck also defines new operations on K0 by letting

γt(x) = λ t
1−t

(x) and writing γt(x) =
∑∞

n=0 γ
n(x)tn. In particular, γ0(x) = 1,

γ1(x) = λ1(x) = x, and γn(x+ y) =
∑

p+q=n γ
p(x)γq(y) for all x and y in K0(R).

It is not hard to express the relation between the λn and the γn in the form of
finite sums.

Lemma 2.1. For n ≥ 1,

(1) γn(x) =
∑n−1

p=0

(
n−1

p

)
λp+1(x)

(2) λn(x) =
∑n−1

q=0

(
n−1

q

)
(−1)n−1−qγq+1(x).

Proof. We have

γt(x) = λ t
1−t

(x) = 1 +
∞∑

m=1

λm(x)
tm

(1− t)m
= 1 +

∞∑
m=1

∞∑
k=0

λm(x)tm
(
−m
k

)
(−1)ktk.

Now, for m ≥ 1,(
−m
k

)
= (−1)k

(
m+ k − 1

k

)
= (−1)k

(
m+ k − 1
m− 1

)
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so

γt(x) = 1 +
∞∑

m=1

∞∑
k=0

(
m+ k − 1
m− 1

)
λm(x)tm+k

and therefore, for n ≥ 1,

γn(x) =
n∑

m=1

(
n− 1
m− 1

)
λm(x) =

n−1∑
p=0

(
n− 1
p

)
λp+1(x).

A similar argument applies to λt(x) = γ t
1+t

(x) �

Corollary 2.2. Let a1, . . . , aN and b1, . . . , bN be finite sequences of integers. Either
of the equivalent conditions

(1)
∑N

1 akt(1 + t)k−1 =
∑N

1 bkt
k

(2)
∑N

1 akt
k =

∑N
1 bkt(t− 1)k−1

implies
∑N

1 akγ
k =

∑N
1 bkλ

k.

Proof. The first condition implies the second by substituting t − 1 for t while the
second implies the first by substituting t+ 1 for t. If the first condition holds then

N∑
1

akt(1 + t)k−1 =
N∑

k=1

k−1∑
p=0

ak

(
k − 1
p

)
tp+1

so bm =
∑N

k=m ak

(
k−1
m−1

)
and therefore

N∑
1

akγ
k =

N∑
1

ak

k∑
m=1

(
k − 1
m− 1

)
λm =

N∑
m=1

bmλ
m.

�

Remark 2.3. This result can be reinterpreted as follows: The coefficient of λk in
Lemma 2.1(1) is the coefficient of tk in t(1+ t)n−1 and the coefficient of γk in (2) is
the coefficient of tk in t(t−1)n−1. We can write this symbolically as γn = λ(1+λ)n−1

and λn = γ(γ−1)n−1 for n ≥ 1 with the convention that a k–th power of the symbol
λ on the right hand side should be replaced by the operator λk and similarly for γ.
Therefore a linear combination of the λk can be converted to a linear combination
of the γk by replacing each λn by t(1 + t)n−1, collecting powers of t, and replacing
each tn by γn.

For simplicity, I will assume in the remainder of this section that the ring R is
connected so that each finitely generated projective module P has a well–defined
rank rkP . This induces a map ε : K0(R)→ Z with kernel K̃0(R). If rkP = n then
rkΛk(P ) =

(
n
k

)
. In particular Λk(P ) = 0 for k > n and Λn(P ) is invertible, i.e. a

rank 1 projective, so λn(P ) is a unit in K0(R). We define ελt(x) =
∑∞

n=0 ελ
n(x)tn.

Lemma 2.4. ελt(x) = (1 + t)ε(x).

Proof. This is clear if x = [P ]. The general case follows since both sides are
homomorphisms from K0(R) to 1 + tZ[[t]] �

Corollary 2.5. εγt(x) = (1− t)−ε(x).

This follows by substituting t/(1− t) for t in Lemma 2.4.
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Corollary 2.6. If x lies in K̃0(R) then λn(x) and γn(x) also lie in K̃0(R) for
n > 0.

Lemma 2.7. If x = [P ] where rkP = 1, then λt(x) = 1 + tx, and γt(x) =
(1 + t(x− 1))/(1− t).

This is clear from the definitions.

Corollary 2.8. If x = [P ] where rkP = 1, then
(1) λ0(x) = 1, λ1(x) = x, and λn(x) = 0 if n > 1
(2) γ0(x) = 1, and γn(x) = x if n ≥ 1.

Lemma 2.9. Let x = [P ] − [Rn] ∈ K̃0(R). Then γi(x) = 0 for i > n and
γn(x) = (−1)nλ−1(P ) =

∑n
i=0(−1)n−iλi(P ).

Proof.

γt(x) = λ t
1−t

(P )/λ t
1−t

(R)n =
n∑
0

λi(P )
ti

(1− t)i
/

1
(1− t)n

=
n∑
0

λi(P )ti(1− t)n−i

�

Corollary 2.10. K̃0(R) is a nil ideal of K0(R).

Proof. If x ∈ K̃0(R) then γt(x) and γt(−x) are polynomials in t whose product is
γt(0) = 1 but in a reduced ring a polynomial which divides 1 must be a constant.
Since γ1(x) = λ1(x) = x, x must be nilpotent. More details may be found in [1,
Cor. 3.1.6]. �

The Adams operations are defined by ψ0(x) = ε(x) and

ψt(x) =
∞∑

n=0

ψn(x)tn = ψ0(x)− tλ−t(x)−1 d

dt
λ−t(x).

The right hand side is usually written as ψ0(x)−t d
dt log λ−t(x) with the observation

that although log introduces denominators, the operation d
dt log does not.

These operations are additive since λt(x+ y) = λt(x)λt(y) and therefore differ-
entiating and dividing by λt(x+ y) gives ψt(x+ y) = ψt(x) + ψt(y).

Lemma 2.11. εψt(x) = ε(x)(1− t)−1 and therefore εψn(x) = ε(x) for all n.

Proof.

εψt(x) =
∞∑
0

ε(ψn(x))tn = ψ0(x)− tε(λ−t(x))−1 d

dt
ε(λ−t(x)).

The result now follows immediately from Lemma 2.4 and the fact that ψ0 = ε. �

Applying the definition to the rank one case gives us the following result.

Lemma 2.12. If x = [P ] where rkP = 1, then ψt(x) = (1 − tx)−1 so ψ0(x) = 1,
and ψn(x) = xn if n ≥ 1.

The Adams operations behave particularly well with respect to products and
composition. The analogous formulas for the λ and γ operations are given by
universal polynomials with coefficients in Z but these seem to be very complicated
and apparently have never been written down explicitly. The following theorem of
Adams is the only deep result which we will need. In fact, only (2) is required.
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Theorem 2.13 (Adams).

(1) ψn(xy) = ψn(x)ψn(y).
(2) ψp(ψq(x)) = ψpq(x).

Proof. According to the splitting principle [4], [5], [6] [10] we can embed K0(R) in
K0(X) for a scheme X preserving all operations and such that any finite number
of specified elements become sums of rank one elements and negatives of such
elements. Therefore it is enough to check the relations for elements x and y of this
form. This is immediate by Lemma 2.12. �

3. A very special case

In this section we prove some facts applying to the rather special case where
K̃0(R)2 = 0 and where K0(R) is torsion free. As above we assume R is connected
so ε : K0(R)→ Z is defined.

Lemma 3.1. If K̃0(R)2 = 0 then λn(x + y) = λn(x) + λn(y) and γn(x + y) =
γn(x) + γn(y) for x, y ∈ K̃0(R) and n > 0.

Proof. Write λt(x) = 1 + ft(x) and similarly for y. By Lemma 2.6, ft(x) and
ft(y) have all coefficients in K̃0(R) so ft(x)ft(y) = 0. Therefore 1 + ft(x + y) =
(1 + ft(x))(1 + ft(y)) = 1 + ft(x) + ft(y). A similar argument applies to γ. �

Lemma 3.2. If K̃0(R)2 = 0 then ψn(x) = (−1)n+1nλn(x) for x ∈ K̃0(R).

Proof. Let ft(x) = λt(x) − 1 =
∑∞

1 λn(x)tn as above. Since ft(x) has coefficients
in K̃0(R) we have λ−t(x)−1 = (1 + f−t(x))−1 = 1− f−t(x). Therefore

ψt(x) = 0− t(1− f−t(x))
d

dt
(1 + f−t(x)) = −t d

dt
f−t(x) = −t d

dt

∞∑
1

(−1)nλn(x)tn

= −
∞∑
1

(−1)nλn(x)ntn

�

Corollary 3.3. Suppose K̃0(R)2 = 0 and K0(R) is torsion free. If x ∈ K̃0(R) then
λp(λq(x)) = (−1)(p+1)(q+1)λpq(x) for p, q > 0.

Proof. Since ψp(ψq(x)) = ψpq(x) by Theorem 2.13 we have

(−1)p+1pλp((−1)q+1qλq(x)) = (−1)pq+1pqλpq(x).

Since p, q > 0 and K0(R) is torsion free we can divide this by pq. �

Proposition 3.4. Suppose K̃0(R)2 = 0 and K0(R) is torsion free. If x ∈ K̃0(R)
then

γn(γn(x)) = (−1)n−1(n− 1)!γn(x) +
∞∑

k=n+1

akγ
k(x)

for some integers ak.
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Proof. By Lemma 2.1, Corollary 2.6, Lemma 3.1, and Corollary 3.3 we have

γn(γn(x)) =
n−1∑
p=0

(
n−1

p

)
λp+1(γn(x)) =

n−1∑
p=0

(
n−1

p

) n−1∑
q=0

(
n−1

q

)
λp+1(λq+1(x))

=
n−1∑
p=0

(
n−1

p

) n−1∑
q=0

(
n−1

q

)
(−1)pqλ(p+1)(q+1)

To express this in terms of the γk we use Corollary 2.2. Let

S =
n−1∑
p=0

(
n−1

p

) n−1∑
q=0

(
n−1

q

)
(−1)pqt(t− 1)(p+1)(q+1)−1

=
n−1∑
p=0

(
n−1

p

) n−1∑
q=0

(
n−1

q

)
(−1)p+qt(1− t)pq+p+q

=
n−1∑
p=0

(
n−1

p

) n−1∑
q=0

(
n−1

q

)
(−1)p+qt(1− t)(p+1)q(1− t)p

=
n−1∑
p=0

(
n−1

p

)
(−1)pt(1− t)p{1− (1− t)p+1}n−1

Now 1− (1− t)p+1 = (p+ 1)t+O(t2) so

S =
n−1∑
p=0

(
n−1

p

)
(−1)p(p+ 1)n−1tn +O(tn+1).

The required result now follows from Corollary 2.2 and the following lemma. �

Lemma 3.5.
∑n−1

p=0

(
n−1

p

)
(−1)p(p+ 1)n−1 = (−1)n−1(n− 1)!.

Proof. Let

f(t) =
n−1∑
p=0

(
n−1

p

)
(−1)pe(p+1)t = et(1− et)n−1 = (−1)n−1tn−1 +O(tn).

The lemma follows by differentiating n− 1 times and setting t = 0. �

Theorem 3.6. Let R be a connected commutative ring with K0(R) = Z ⊕ Z. Let
P be a finitely generated projective R–module with rkP = n. Then λ−1(P ) ≡ 0
mod (n− 1)!.

Proof. Let K̃0(R) = Zξ. Then ξ2 = rξ for some r ∈ Z and therefore ξm = rm−1ξ
for m > 0. By Corollary 2.10, ξ is nilpotent so r = 0 and ξ2 = 0. Therefore
K̃0(R)2 = 0 and K0(R) is clearly torsion free. Let x = [P ]− [Rn]. By Lemma 2.9,
γn(x) = (−1)nλ−1(P ) so we have to show that γn(x) ≡ 0 mod (n − 1)!. By
Corollary 2.6, γn(x) lies in K̃0(R) and therefore γn(x) = kξ for some k ∈ Z. If
k = 0 we are done. Assume k 6= 0. By Lemma 2.9, γi(x) = 0 for i > n so by
Proposition 3.4, γn(γn(x)) = (−1)n−1(n − 1)!γn(x). By Lemma 3.1, γn(γn(x)) =
γn(kξ) = kγn(ξ). Therefore kγn(ξ) = (−1)n−1(n− 1)!γn(x) = (−1)n−1(n− 1)!kξ.
Since we are assuming k 6= 0 it follows that γn(ξ) = (−1)n−1(n− 1)!ξ. If x = mξ,
then γn(x) = mγn(ξ) = (−1)n−1(n− 1)!mξ ≡ 0 mod (n− 1)! �
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Next we recall some standard facts about Cohen–Macaulay rings. If R is a
noetherian local ring and x ∈ mR then dimR − 1 ≤ dimR/(x) ≤ dimR and
dimR/(x) = dimR − 1 if x is regular. It follows by induction on n that if
x1, . . . , xn ∈ mR then dimR − n ≤ dimR/(x1, . . . , xn) ≤ dimR and also that
dimR/(x1, . . . , xn) = dimR− n if x1, . . . , xn is a regular sequence.

Lemma 3.7. If R is a Cohen–Macaulay local ring and x1, . . . , xn ∈ mR then
dimR/(x1, . . . , xn) = dimR − n if and only if x1, . . . , xn is a regular sequence.
If so, R/(x1, . . . , xn) is again Cohen–Macaulay.

This is proved for n = 1 in [17, Lemma 8.6] and the general case follows by
induction. A more general version is given in [3, Th. 2.1.2(c)].

Corollary 3.8. Let R be a Cohen–Macaulay local ring and let I = (x1, . . . , xn) be
an ideal with ht I ≥ n. Then x1, . . . , xn is a regular sequence.

Proof.

dimR/(x1, . . . , xn) = dimR/I ≤ dimR− ht I ≤ dimR− n.
Since dimR/(x1, . . . , xn) ≥ dimR − n, we have dimR/(x1, . . . , xn) = dimR − n
and the lemma shows that x1, . . . , xn is a regular sequence. �

Let R be a commutative ring, let P be an R–module and let f : P → R. The
Koszul complex Kosz(f) of f is defined to be the exterior algebra Λ(P ) with its usual
grading and with d : Λk+1(P )→ Λk(P ) by d(p0∧· · ·∧pk) =

∑k
m=0(−1)mf(pm)p0∧

· · · ∧ p̂m ∧ · · · ∧ pk. This has the augmentation ε : Λ0(P ) = R→ R/ im f .

Lemma 3.9. Let R be a Cohen–Macaulay ring. Let I be an ideal of R with ht I ≥ n
and let P be a finitely generated projective R–module of rank ≤ n. If there is an
epimorphism f : P � I then Kosz(f) is a projective resolution of R/I.

Proof. It is sufficient to check this locally. After locallizing at a prime ideal, P
will become free with base e1, . . . , er mapping to a set of generators a1, . . . , ar of I
and the Koszul complex localizes to the usual Koszul complex K(a1, . . . , ar). If I
localizes to R, a1, . . . , ar will be a unimodular row so K(a1, . . . , ar) will be exact
and therefore a resolution of R/I = 0 (locally). Otherwise the localization of I
will be a proper ideal of height at least n so r ≥ n but since rkP ≤ n, r ≤ n
and therefore r = n. By Corollary 3.8, a1, . . . , an will be a regular sequence and
therefore the Koszul complex will be a resolution of R/I. �

The following is the main result of this section.

Corollary 3.10. Let R be a Cohen–Macaulay ring with K0(R) = Z⊕ Z. Let I be
an ideal of R with ht I ≥ n and let P be a finitely generated projective R–module
of rank n. If there is an epimorphism f : P � I then R/I has finite projective
dimension so [R/I] is defined in K0(R) and [R/I] ≡ 0 mod (n− 1)! in K0(R).

Proof. The previous lemma shows that R/I has finite projective dimension and
that λ−1(P ) = [R/I] in K0(R). The final statement follows from Theorem 3.6. �

4. A Patching Lemma

The remainder of the proof is essentially the same as the original proof of Mohan
Kumar and Nori. I will give here a slightly more general version of one of their
lemmas which will also be useful in proving Theorem 1.2. We use the notation Rs

for the localization R[s−1].
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Lemma 4.1. Let R be a commutative ring and let M be a finitely generated R–
module. Let R = Ra+ Rb and let P and Q be finitely generated projective of rank
n over Ra and Rb respectively. Suppose we have resolutions

0→ L→ P →Ma → 0

and
0→ N → Q→Mb → 0

over Ra and Rb. If
0→ Lb → Pb →Mab → 0

and
0→ Na → Qa →Mab → 0

split (e.g. if Mab is projective over Rab) and if Lb ≈ Na over Rab, then there is a
finitely generated projective R–module S of rank n with an epimorphism S � M .

Proof. Since Pb ≈ Lb ⊕ Mab and Qa ≈ Na ⊕ Mab we can use the isomorphism
Lb ≈ Na to get Pb ≈ Qa and a commutative diagram

0 −−−−→ Lb −−−−→ Pb −−−−→ Mab −−−−→ 0y≈ y≈ ∥∥∥
0 −−−−→ Na −−−−→ Qa −−−−→ Mab −−−−→ 0

From this we get

Q −−−−→ Qa
≈−−−−→ Pb ←−−−− Py y y y

Mb −−−−→ Mab Mab ←−−−− Ma

The pullback S of the upper line maps to the pullback M of the bottom line. By
localizing we see that Sa ≈ P and Sb ≈ Q showing that S is projective of rank n.
The map S →M is onto since it localizes to Sa = P →Ma and Sb = Q→Mb. �

5. A Useful Ring

The proof of Mohan Kumar and Nori makes use of the following auxiliary ring.
Let B = Bn = k[x1, . . . , xn, y1, . . . , yn, z]/(

∑
xiyi − z(1 − z)) where k is a field.

We have B0 = k × k and Bn is a domain for n > 0 since the polynomial f =∑
xiyi− z(1− z) is irreducible. Also xi and yi are non–zero in Bn since f does not

divide xi or yi. As above, we use the notation Rs for the localization R[s−1].

Lemma 5.1. Let B = Bn.
(1) Bz = k[x1, . . . , xn, u1, . . . , un]1−P

xiui
where ui = yi/z.

(2) B1−z = k[x1, . . . , xn, v1, . . . , vn]1−P
xivi

where vi = yi/(1− z).

Proof. Letting ui = yi/z we can write

Bz = k[x1, . . . , xn, u1, . . . , un, z, z
−1]/(

∑
xiui − (1− z)).

Therefore z = 1−
∑
xiui can be eliminated provided we ensure its invertibility. A

similar argument applies to (2) where z =
∑
xivi. �

Corollary 5.2. Bn is a regular domain for n ≥ 1.
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Proof. It is sufficient to prove the regularity locally so it is enough to show that Bz

and B1−z are regular. This is clear from the lemma. �

Remark 5.3. The fact that Bn is a domain for n ≥ 1 can also be deduced from the
lemma using the following elementary result.

Lemma 5.4. Let R be a commutative ring and let R =
∑
Rsi. If all Rsi are

domains and if s1 maps to a non–zero element of Rsi for all i, then R is a domain.

Proof. We claim that R → Rs1 is injective. It is enough to prove this locally by
considering the maps Rsi → Rs1si . These are injective since we are localizing a
domain Rsi at a non–zero element s1. �

The following calculation is due to J. P. Jouanolou [7] who also considered the
case of higher K–theory. The proof here uses only classical K–theory.

Proposition 5.5. K̃0(Bn) = Z generated by Bn/In where In = (x1, . . . , xn, z).

For the proof we will use the following localization sequence, a special case of [2,
Ch. IX, Th. 6.5].

Lemma 5.6. Let R be a commutative regular ring and let s be a non–zero divisor
in R. Then the sequence

K1(R)→ K1(Rs)
∂−→ G0(R/(s))→ K0(R)→ K0(Rs)→ 0

is exact and the map ∂ is given by sending α ∈Mn(Rs) to [ckr(smα)]− [Rn/smRn]
for any m such that smα lies in Mn(R).

Proof. The standard localization sequence [2, Ch. IX, Th. 6.3] has the form

K1(R)→ K1(Rs)
∂−→ K0(H)→ K0(R)→ K0(Rs)

where the map ∂ is as in the lemma and whereH is the category of finitely generated
R–modules M such that Ms = 0 and pdR(M) <∞. Since R is regular the second
condition is always satisfied so K0(H) is K0 of the category of finitely generated
R–modules M with Ms = 0. By devissage [2, Ch. VIII, Th. 3.3] this is equal to
G0(R/(s)). We can add a zero on the right since K0(R) = G0(R) and similarly for
Rs. �

If R/(s) is also regular we can replace G0(R/(s)) by K0(R/(s)).

Proof of Proposition 5.5. The result clearly holds for B0 = k×k. We use induction
on n. We apply Lemma 5.6 with R = Bn and s = xn getting

K1(Bn)→ K1((Bn)xn)→ K0(Bn/(xn))→ K0(Bn)→ K0((Bn)xn)→ 0

Note that Bn/(xn) = Bn−1[yn] which is also regular. Now

(Bn)xn = k[x1, . . . , xn, x
−1
n , y1, . . . , yn−1, z]

so by standard K-theoretic calculations [2, Ch. XII] we have K0((Bn)xn) = Z and
K1((Bn)xn) = k∗ × Z where the Z is generated by xn ∈ U((Bn)xn). It follows
that ker[K0(Bn) → K0((Bn)xn)] is just K̃0(Bn) and, since k∗ is in the image of
K1(Bn), the image of K1((Bn)xn) → K0(Bn/(xn)) is generated by the image of
xn which is [Bn/(xn)] and therefore the cokernel of K1((Bn)xn) → K0(Bn/(xn))
is K̃0(Bn/(xn)). It follows that K̃0(Bn/(xn)) ≈−→ K̃0(Bn). Now since Bn/(xn) =
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Bn−1[yn] and Bn−1 is regular, we have K0(Bn−1)
≈−→ K0(Bn/(xn)). This takes the

generator [Bn−1/In−1] of K̃0(Bn−1) to

[Bn−1/In−1 ⊗Bn−1 Bn/(xn)] = [Bn/(xn, In−1)] = [Bn/(x1, . . . , xn−1, z, xn)]

This is just [Bn/In] so this element generates K̃0(Bn). �

Next we investigate some useful ideals of Bn. The following simple observation
will be useful.

Lemma 5.7. If I is an ideal of a commutative ring R and if b ∈ R is a unit modulo
I then ab ∈ I implies a ∈ I.

The proof is immediate: If bc ≡ 1 mod I then a ≡ abc ≡ 0 mod I.

Lemma 5.8. If N ≥
∑
mi then zN (1− z)N lies in the ideals (xm1

1 , . . . , xmn
n ) and

(ym1
1 , . . . , ymn

n ).

Proof. If N ≥
∑
mi, then in zN (1− z)N = (

∑
xiyi)N each term in the expansion

of (
∑
xiyi)N will contain a power at least mi of xi for some i. Therefore zN (1−z)N

lies in (xm1
1 , xm2

2 , . . . , xmn
n ) and similarly it lies in (ym1

1 , . . . , ymn
n ) �

Lemma 5.9. The ideal (xm1
1 , xm2

2 , . . . , xmn
n , zN ) of Bn is independent of N for

N ≥
∑
mi. Also (x1, x2, . . . , xn, z

N ) = (x1, x2, . . . , xn, z) for all N ≥ 1.

Proof. Suppose M ≥
∑
mi. Then, by Lemma 5.8, zM (1 − z)M lies in the ideal

(xm1
1 , xm2

2 , . . . , xmn
n , zN ) and therefore, by Lemma 5.7 zM lies in this ideal. The

same applies with M and N interchanged. For the last statement, the same
argument applies with M,N ≥ 1 since z(1 − z) =

∑
xiyi so z(1 − z) lies in

(x1, x2, . . . , xn, z
N ). �

Define Jm1,m2,...,mn to be the ideal considered in Lemma 5.9. In particular,
J1,1,...,1 = I, the ideal considered in Proposition 5.5.

Lemma 5.10. Jm1,m2,...,mn
/Jm1+1,m2,...,mn

≈ Bn/J1,m2,...,mn
and similarly for

each mi.

Corollary 5.11. [Bn/Jm1,m2,...,mn ] = m1 · · ·mn[Bn/I] in K0(Bn).

This follows by induction on the mi since J1,...,1 = I.
For the proof of the lemma we use the following.

Lemma 5.12. Let I be an ideal of a commutative ring R such that

R/I ≈ A[X]/(Xm+1f)

where A[X] is a polynomial ring in one variable and f = f(X) ∈ A[X]. Let x ∈ R
map to X modulo I. Then

(xm, I)/(xm+1, I) ≈ R/(x, I).

Proof. (xm, I)/(xm+1, I) is generated by xm and (x, I)xm ⊆ (xm+1, I). We must
show that rxm ∈ (xm+1, I) implies r ∈ (x, I). Now rxm = axm+1 + i implies
txm ∈ I where t = r − ax and we need to show that t lies in (x, I). Let t̄ = t
mod I. Then t̄Xm = 0 in A[X]/(Xm+1f) but in A[X]/(Xm+1f) the annihilator of
Xm lies in (X) since hXm ∈ (Xm+1f) implies h ∈ (Xf). Therefore t̄ lies in (X)
in R/I and hence t lies in (x, I) as required. �
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Proof of Lemma 5.10. Since Jm1,m2,...,mn = (xm1
1 , xm2

2 , . . . , xmn
n , zN ) is indepen-

dent of N for large N we can choose N >
∑
mi. We apply the lemma with

R = Bn, x = x1, m = m1, and I = (xm2
2 , . . . , xmn

n , zN ). In Bn/(zN ), 1− z is a unit
so by Lemma 5.1

R/I = R1−z/I1−z = k[x1, . . . , xn, v1, . . . , vn]/(xm2
2 , . . . , xmn

n , (
∑

xivi)N )

where we have substituted
∑
xivi for z. Let

A = k[x2, . . . , xn, v1, . . . , vn]/(xm2
2 , . . . , xmn

n ).

Then R/I = A[x1]/((
∑
xivi)N ). Since N >

∑
mi, if we multiply out (

∑
xivi)N ,

each term will be divisible by some xmi+1
i . Except for i = 1 all such terms will be 0

in A[x1]. Therefore, in A[x1], (
∑
xivi)N will have the form xm1+1

1 f(x1). Therefore
Lemma 5.12 applies and finishes the proof. �

6. Proof of Theorem 1.1

Let B = Bn and let J = Jm1,m2,...,mn . Since J = (xm1
1 , xm2

2 , . . . , xmn
n , zN )

we have Jz = Bz. Since zN (1 − z)N lies in (xm1
1 , xm2

2 , . . . , xmn
n ) by Lemma 5.8,

Lemma 5.7 shows that J1−z = (xm1
1 , xm2

2 , . . . , xmn
n )B1−z. Map Bn

1−z with base ei

to J1−z by sending ei to xmi
i and map Bz to Jz = Bz by sending e1 to 1 and ei to

0 for i > 1. We get short exact sequences

0→ L→ Bn
1−z → J1−z → 0

and
0→ N → Bn

z → Jz → 0.
These split when localized to Bz(1−z) since Jz(1−z) = Bz(1−z). Since

Jz(1−z) = (xm1
1 , xm2

2 , . . . , xmn
n )Bz(1−z) = Bz(1−z)

we see that Lz = P (xm1
1 , xm2

2 , . . . , xmn
n ) over Bz(1−z). This is induced from the

module P = P (xm1
1 , xm2

2 , . . . , xmn
n ) over the ring

A = R[x0, . . . , xn, y0, . . . , yn]/(
∑

xiyi − 1)

via the map A → Bz(1−z) sending xi to xi and yi to yi/z(1 − z). Since N1−z is
free it follows that if P is free then Lz ≈ N1−z. Therefore Lemma 4.1 applies and
shows that there is an epimorphism Q � J where Q is finitely generated projective
of rank n. By Corollary 3.10 we see that [B/J ] ≡ 0 mod (n− 1)! in K̃0(B). Since
[B/J ] = m1 · · ·mn[Bn/I] by Corollary 5.11 and K̃0(B) = Z generated by [B/I], it
follows that m1 · · ·mn ≡ 0 mod (n− 1)! if P is free.

7. A Duality Theorem

The next two sections contain preliminary results needed in the proof of Theo-
rem 1.2. We first recall a standard result.

Lemma 7.1. Let R be a commutative ring and let
∑n

1 aibi = 1 in R. Then
P (a1, . . . , an)∗ ≈ P (b1, . . . , bn).

Proof. We abbreviate a1, . . . , an to a and let a · b =
∑
aibi. We have Rn = P (a)⊕

Rb = P (b)⊕Ra because z ∈ Rn has the form z = w+ rb with a ·w = 0 if and only
if r = z · a. The bilinear form (x, y) 7→ x · y induces a pairing P (a) × P (b) → R
and therefore gives a map P (b) → P (a)∗. This is injective since if y maps to 0
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then y · z = 0 for all z in P (a). Since y · b = 0 it follows that y · Rn = 0 so y = 0.
If f : P (a) → R, extend f to Rn by f(b) = 0. Then f(z) = c · z for some c in
Rn. Since f(b) = c · b = 0, c lies in P (b) and maps to f showing that our map is
onto. �

Proposition 7.2. Let R be a commutative ring and let
∑n

1 xiyi = 1 in R. Let
m1, . . . ,mn be positive integers. Then P (xm1

1 , . . . , xmn
n )∗ ≈ P (ym1

1 , . . . , ymn
n ).

Proof. By a theorem of Suslin [12], if m = m1 . . .mn then P (xm1
1 , . . . , xmn

n ) ≈
P (xm

1 , x2, . . . , xn) so it will suffice to treat the case where m1 = m and mi = 1 for
i > 1. A new proof of this result of Suslin was given by Mohan Kumar. An account
of this proof is given by Mandal in [9, Lemma 5.3.1]. The following proof is based
on this idea. We can assume that n > 2 since otherwise P (xm

1 , x2) is free, being
stably free of rank 1. Let

z = 1 + x1y1 + · · ·+ (x1y1)m−1.

Then

xm
1 y

m
1 + z

n∑
2

xiyi = xm
1 y

m
1 + z(1− x1y1) = 1

so
P (xm

1 , x2, . . . , xn)∗ ≈ P (ym
1 , zy2, . . . , zyn)

by Lemma 7.1. Let

zt = 1 + tx1y1 + · · ·+ tm−1(x1y1)m−1.

Then Pt = P (ym
1 , zty2, . . . , ztyn) over R[t] is extended. To see this we can assume

that R is local by Quillen’s patching theorem. Therefore one of the yi is a unit.
If y1 is a unit then Pt is free. Suppose y2 is a unit. Then by an elementary
transformation we can replace zty3 by zty3 − y−1

2 y3(zty2) = 0 and therefore Pt is
free. It follows that P1 = P (ym

1 , zy2, . . . , zyn) ≈ P (xm
1 , x2, . . . , xn)∗ is isomorphic

to P0 = P (ym
1 , y2, . . . , yn) as required. �

8. Automorphisms

We determine some automorphisms of K̃0(Bn) using the following simple fact.

Lemma 8.1. Let f be an automorphism of a commutative noetherian ring R. Then
f∗ : G0(R)→ G0(R) sends [R/I] to [R/f(I)].

Proof. More generally let f : R→ R′ where R′ is finitely generated and flat as an R–
module. Then f∗ : G0(R)→ G0(R) sends [R/I] to [R′ ⊗R R/I] = [R′/R′f(I)]. �

Let n ≥ 1 and let

B = Bn = k[x1, . . . , xn, y1, . . . , yn, z]/(
∑

xiyi − z(1− z))

as above. Let αi be the automorphism of B which interchanges xi and yi and fixes
the remaining xj and yj as well as z. Let β be the automorphism of B which sends
z to 1− z and fixes the xi and yi.

Lemma 8.2. The αi and β induce the automorphism x 7→ −x on K̃0(Bn).
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Proof. Let

C = B/(x2, . . . , xn) = (k[x1, y1, z]/(x1y1 − z(1− z)))[y2, . . . , yn].

Then C = B1[y2, . . . , yn] so C is a domain. Now C/(x1) = k[z]/(z(1−z))[y1, . . . , yn].
Since k[z]/(z(1− z)) = k × k we have

C/(x1) = B/(x1, . . . , xn, z)×B/(x1, . . . , xn, 1− z).

The exact sequence 0 → C
x1−→ C → C/(x1) → 0 shows that [C/(x1)] = 0 in

K0(B) and therefore [B/(x1, . . . , xn, z)]+[B/(x1, . . . , xn, 1−z)] = 0. Since [B/I] =
[B/(x1, . . . , xn, z)] generates K̃0(B), this shows that β acts as −1. It will suffice
to treat the case of α1. I will write x for x1 and y for y1 here. Let a = (x, z)
and b = (y, z) in C. Then a ∩ b = (z). It is sufficient to check this in C/(z) =
(k[x, y]/(xy))[y2, . . . , yn] where it is clear that (x) ∩ (y) = (xy) = 0. We have a
cartesian diagram

C/(z) −−−−→ C/ay y
C/b −−−−→ C/(a + b)

which leads to an exact sequence

0→ C/(z)→ C/a⊕ C/b→ C/(a + b)→ 0.

Now [C/(z)] = 0 and C/(a + b) = B/(I, y) also has [B/(I, y)] = 0 since B/I =
k[y1, . . . , yn] and y = y1 is regular on it so

0→ B/I → B/I → B/(I, y)→ 0

is exact. It follows that [C/a]+[C/b] = 0 and C/a = B/I while C/b = B/α1(I). �

Corollary 8.3. Let θ = α1 . . . αnβ. Then θ induces (−1)n−1 on K̃0(Bn).

9. Proof of Theorem 1.2

In this proof we use the ideal

J = ((1− z)Nxm1
1 , . . . , (1− z)Nxmn

n , zNym1
1 , . . . , zNymn

n )

of Bn where N is some integer such that N ≥
∑
mi.

Lemma 9.1. If M ≥
∑
mi, then zM (1− z)M ∈ J .

Proof. By Lemma 5.8, zM (1−z)M lies in (xm1
1 , . . . , xmn

n ) and also in (ym1
1 , . . . , ymn

n ).
Therefore zM+N (1− z)M and zM (1− z)M+N lie in J. Since

(zM+N (1− z)M , zM (1− z)M+N ) = zM (1− z)M (zN , (1− z)N ) = (zM (1− z)M ),

the result follows. �

Lemma 9.2. Jz = (ym1
1 , . . . , ymn

n )Bz and J1−z = (xm1
1 , . . . , xmn

n )B1−z.

Proof. Since zN (1−z)N lies in J , (1−z)N lies in Jz and the first statement follows
immediately. The second statement is proved similarly. �
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We therefore get short exact sequences

0→ L→ Bn
1−z → J1−z → 0

and
0→ N → Bn

z → Jz → 0.
Since Jz(1−z) = Bz(1−z) the sequences split after localizing to Bz(1−z) and we
see that Lz = P (xm1

1 , . . . , xmn
n ) over Bz(1−z) and N1−z = P (ym1

1 , . . . , ymn
n ) over

Bz(1−z). So Lz and N1−z are induced from P (xm1
1 , . . . , xmn

n ) and P (ym1
1 , . . . , ymn

n )
over

A = k[x1, . . . , xn, y1, . . . , yn]/(
∑

xiyi − 1)

using the map A→ Bz(1−z) sending xi, yi to xi/z, yi/(1−z). If P (xm1
1 , . . . , xmn

n ) is
self dual then P (xm1

1 , . . . , xmn
n ) ≈ P (ym1

1 , . . . , ymn
n ) by Proposition 7.2 and therefore

Lz ≈ N1−z. Therefore Lemma 4.1 gives us an epimorphism Q � J where Q is
finitely generated projective of rank n. By Corollary 3.10 we see that [B/J ] ≡ 0
mod (n− 1)! in K̃0(B). By Lemma 9.1,

B/J = B/(J, zN )×B/(J, (1− z)N )

Now (J, zN ) = ((1 − z)Nxm1
1 , . . . , (1 − z)Nxmn

n , zN ). Since (zN , (1 − z)N ) = B, it
follows that

(J, zN ) = (xm1
1 , . . . , xmn

n , zN ) = Jm1,...,mn
.

Similarly
(J, (1− z)N ) = (ym1

1 , . . . , ymn
n , (1− z)N ) = θJm1,...,mn

where θ is as in Corollary 8.3. By Corollary 5.11 [B/Jm1,...,mn ] = m1 · · ·mn[B/I]
in K̃0(B). By Corollary 8.3, [B/θJm1,...,mn ] is (−1)n−1 times this so

[B/J ] = m1 · · ·mn(1 + (−1)n−1)[B/I]

and therefore

m1 · · ·mn(1 + (−1)n−1)[B/I] ≡ 0 mod (n− 1)!.

This is vacuous for n even while for n odd it is equivalent to 2m1 · · ·mn ≡ 0
mod (n− 1)!.
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