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A REGENERATIVE PROPERTY OF A FIBRE OF

INVERTIBLE ALTERNATING MATRICES

RAVI A.RAO AND RICHARD G. SWAN

Abstract. This is an excerpt from a paper still in preparation. It gives an
example of a polynomial unimodular row of length 3 which is not elementarily
completable.

1. Introduction

Let R be a noetherian local ring of dimension 3 with 1
2 ∈ R and let v(X) =

(v1(X), v2(X), v3(X)) be a unimodular row over R[X]. According to [6] v(X)α =
v(0) for some α in GL3(R[X]). We will give an example to show that it is not
always possible to choose such an α in E3(R[X]).

2. Non–triviality of WE(R[x])

Following H. Bass in [1], NF (A) means ker(F (A[X]) → F (A)) for any functor
F .

Defiine an involution on K0(A) and K1(A) by α = [P ] 7→ α∗ = [P ∗], where
P ∗ = HomA(P,A) and α = [P, f ] 7→ α∗ = [P ∗, f∗] on K1 using Bass’ categorical
definition of K1. On K1 this is just the involution induced by transposition since
K1 is generated by [An, f ] and f∗ = f> if (An)∗ is identified with An.

Lemma 2.1. Let A be a commutative ring with identity. Suppose that NWE(A) =
0. Then α∗ + α = 0 for α ∈ NSK1(A).

Proof. Let α = [M ], M ∈ SL(A[X]). Using M(0)−1M for M , we can assume that
M(0) = I. Let ψ be the standard hyperbolic matrix of Pfaffian 1 obtained by
taking a direct sum of copies of

(
0 1
−1 0

)
. Then MψM> has Pfaffian 1 so [MψM>] ∈

NWE(A) = 0 and it maps to α∗ + α = 0 under the canonical map NWE(A) →
NSK1(A) sending [N ]→ [N ]. �

If A → B then K0(A) → K0(B) and K1(A) → K1(B) preserve α → α∗ since
B ⊗A P ∗ = B ⊗A Hom(P,A) ≈−→ HomB(B ⊗A P,B) = (B ⊗A P )∗.

Lemma 2.2. Let A be a commutative ring with identity. Suppose that NSK1(A[t, t−1])
satisfies α∗ + α = 0. Then so does NK0(A).
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Proof. The Fundamental Theorem [1, Ch. XII,7.4] gives an injection h : K0(A)→
K1(A[t, t−1]) by [P ] 7→ [P [t, t−1], t]. Clearly h(α∗) = h(α)∗. By [1, Ch. XII,7.8]

K0(A) h //

��

K1(A[t, t−1])

��
H0(A) // U(A[t, t−1])

commutes. Taking kernels we get an injection K̃0(A) → SK1(A[t, t−1]). Applying
N gives NK0(A)→ NSK1(A[t, t−1]) since NH0 = 0 so NK̃0

≈−→ NK0. �

Corollary 2.3. Let A be a commutative ring with identity. Suppose that NWE(A[t, t−1]) =
0. Then α∗ + α = 0 for α ∈ NK0(A).

Lemma 2.4. Let A = A0 ⊕ A1 ⊕ . . . be a positively graded ring with A0 = k, a
field. If NK0(A) satisfies α∗ + α = 0, so does K̃0(A).

Proof. We use the Weibel homotopy trick in a minor variation of the argument that
NK0(A) = 0 =⇒ K̃0(A) = 0 for such A. Let i be the inclusion map A ↪→ A[Z],
and let e0, e1 : A[Z] → A by Z 7→ 0, 1. Then e0 ◦ i = e0 ◦ i, NK0(A) = ker(e0∗ =
K0(e0) : K0(A[Z]) → K0(A)), and K0(A[Z]) = K0(A) ⊕ NK0(A). Now e1∗ − e0∗
is 0 on K0(A) so im(e1∗ − e0∗) = (e1∗ − e0∗)NK0(A) = e1∗NK0(A) and therefore
α ∈ im(e1∗ − e0∗) satisfies α∗ + α = 0. Let w : A → A[Z] by w(a) = aZn for
a ∈ An. Then e1w = 1 while e0w is A → k → A. If α ∈ K̃0(A) then e0∗(α) = 0
while e1∗(α) = α so α = (e1∗ − e0∗)w(α) satisfies α∗ + α = 0. �

Corollary 2.5. Let A be a commutative ring with identity and let B = A[t, t−1].
Suppose that NWE(B) = 0. If A is as in Lemma 2.4 then α∗+α = 0 for α ∈ K̃0(A).
The same conclusion holds if A is reduced and NWE(Bm) = 0 for all maximal ideals
m of B.

The first part follows immediately from the above results. For the last statement
Lemma 2.1 shows that α∗ + α = 0 for all α ∈ NSK1(Bm) and all maximal ideals
m of B. By Vorst’s localization theorem [9, Cor. 1.9(iii)] NSK1(B) embeds in∏

mNSK1(Bm) so NSK1(B) also satisfies α∗ + α = 0.

Lemma 2.6. Let R be a 1–dimensional domain. Then SK1(R) satisfies α∗+α = 0.

Proof. By [1, Ch. VI 2.3] SL2(R) → SK1(R) is onto and factors through a Men-
nicke symbol. (We only need the easy part of [1, Ch. VII 12.3]. The hard part
is that the Mennicke relations [1, Ch. VII 1] give a presentation of SK1(R).) Let
M =

(
a b
c d

)
∈ SL2(R) map to α ∈ SK1(R). Then α = ( b

a ) Since M> = ( a c
b d ) maps

to α∗, we have α∗ = ( c
a ) so α∗ + α corresponds to ( b

a ) ( c
a ) (writing the operation

in SK1(R) as multiplication as in [1]). By the Mennicke relations(
b
a

) (
c
a

)
=

(
ad− 1
a

)
=

(
−1
a

)
=

(
−1
0

)
= 1,

so α∗ + α = 0. �
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Lemma 2.7. Let

A //

��

A1

����
A2

// A

be a Milnor patching diagram giving a Mayer–Vietoris sequence

· · · → K1(A) ∂−→ K0(A)→ . . . .

Then ∂(α∗) = −∂(α)∗.

Proof. If α ∈ GLn(A) then ∂(α) = [P (α)]− [An] where

P (α) //

��

An
1

��
An

2
// A

n α

≈
// A

n
.

is a pullback diagram. We claim that P (α)∗ = P (α∗−1). Then ∂(α∗−1) = [P (α)∗]−
[An] so −∂(α∗) = ∂(α∗−1) = ∂(α)∗.

Now P ≈ P (α) if and only if there are isomorphisms θ1, θ2 so that α = θ1θ2
−1

in the diagram

P //

��

A1 ⊗A P

��

≈
θ1 // An

1

��
A2 ⊗A P //

≈θ2

��

A⊗A P ≈
θ1 //

≈θ2

��

A
n

An
2

// A
n

α

::v
v

v
v

v

Since P is projective,

Ai ⊗A P ∗ = Ai ⊗A HomA(P,A) = HomAi(Ai ⊗A P,Ai)
≈←−
θ∗i

HomAi(A
n
i , Ai) = An

i .

Using this we get the diagram

P ∗ //

��

A1 ⊗A P ∗

��

≈
θ∗−1
1 // An

1

��
A2 ⊗A P ∗ //

≈θ∗−1
2

��

A⊗A P ∗ ≈
θ∗−1
1 //

≈θ2
∗−1

��

A
n

An
2

// A
n

β

::u
u

u
u

u

So P ∗ = P (β) where β = θ1
∗−1

θ2
∗

= Hom(θ1
−1
, 1) Hom(θ2, 1) = Hom(θ2θ1

−1
, 1) =

Hom(α−1, 1) = α∗−1. �
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The example is derived from an example of Bloch and Murthy of a UFD with
NK0(R) 6= 0 (see [2]), following an exposition by Murthy’s student Hongnian Li.
The example is the ring

R = k[X,Y, Z]/(Z7 −X2 − Y 3)

where k is C or any sufficently large field of characteristic not 2.
The first step is to blow up R by letting W = X/Z2 and T = Y/Z2 giving

a ring A = k[W,Z, T ]/(W 2 − Z2(W − T 3)). This ring is no longer normal. Its
normalization is B = k[S, T ] where W = S(S2 + T 3), T = T , and Z = S2 + T 3.
The conductor is C = B(S2 + T 3) so we get a Milnor square

A
� � //

��

B

��
A/C // B/C

with A/C = k[t] and B/C = k[u2, u3] where S 7→ u3 and T 7→ u2. The Mayer–
Vietoris sequence gives ∂ : SK1(k[u2, u3]) ≈−→ SK0(A). In [4], M. Krusemeyer has
shown that SK1(k[u2, u3]) → Ωk/Z is onto so, for k = C, SK0(A) is huge and not
of exponent 2. The same result holds for R by the following lemma.

Lemma 2.8. SK0(R)→ SK0(A) is onto.

By lemma 2.6, SK1(A/C) satisfies α∗+α = 0. By Lemma 2.7, SK0(A) satisfies
α∗ = α. Since it is not of exponent 2, it cannot satisfy α∗ + α = 0. The same is
then true of SK0(R) which maps onto SK0(A).

Now A can be graded by deg T = 2, degZ = 6, and degW = 9 and R can be
graded by degX = 21, deg Y = 14, and degZ = 6. Therefore, by Corollary 2.5 we
see that if B = A[t, t−1] or B = R[t, t−1] then for some maximal ideal m we have
NWE(Bm) 6= 0. Let D = Bm, a local ring of dimension 3. We will construct the
required unimodular row over D.

Since NWE(D) 6= 0 we have WE(D[X]) 6= 0. By [7, Theorem 2.6], Er(D[X]) is
transitive on Umr(D[X]) for r ≥ 5 so by [8, Th. 5.2(b)], Um3(D[X])/E3(D[X])→
WE(D[X]) is onto. Therefore there is some v = (v1, v2, v3) ∈ Um3(D[X]) which
cannot be transformed into e1 by an elementary transformation. Since D is local,
v(0) ∼E e1 so v cannot be transformed into v(0) by an elementary transformation.

Finally we sketch a proof of Lemma 2.8 for completeness following Li’s exposition.
It is easy to see that R is a UFD using [5], since Z is a prime element and RZ =
k[U, T ]U2+T 3 (with U = W/Z) is a UFD. It is also clear that RZ = AZ and this is
regular. Suppose that ξ is an element of SK0(A) and write ξ = [P ]−[A2] where P is
projective of rank 2 and Λ2P = A. Since A/(Z) is 1–dimensional, P/ZP will have

a unimodular element and therefore there is an epimorphism P/ZP
f−→ A/(Z).

The element (f, Z) ∈ P ∗ ⊕ A is unimodular so by [3] we can find an element g
in P ∗ such that OP∗(f + Zg) has height ≥ 2. Replace f by f + Zg and write
I = OP∗(f) = f(P ) If I = A then P is free and we are done. Suppose ht(I) = 2.
If m is a maximal ideal containing I then Im has height 2 and is generated by two
elements Im = (a, b) since Pm = A2

m maps onto it. Since AZ = RZ , Am is a UFD,
this implies that a, b is a regular sequence. Using this and localizing we see that
the Koszul resolution

0→ Λ2P
ϕ−→ P

f−→ I → 0
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(where ϕ(p ∧ q) = f(p)q − f(q)p) is exact. Since Λ2P = A, this shows that
ξ = −[A/I] in K0(A). Let J = R ∩ I. Since I has height 2, A/I is finite over
k and therefore over R/J . Since Z is a unit in A/I it will also be a unit in R/J
so J + RZ = R. This implies that if n is a maximal ideal of R containing Z then
Jn = Rn while if Z /∈ n then Rn is regular. Therefore R/J has finite projective
dimension and defines an element η ∈ K̃0(R). Since R is a UFD, PicR = 0 so η
lies in SK0(R). The image of η in SK0(A) is given by

∑
(−1)i[TorR

i (A,R/J)]. If
Z /∈ n then Rn = An while if Z ∈ n then Jn = Rn. Therefore TorR

i (A,R/J) = 0
for i > 0 and the image of η is [TorR

0 (A,R/J)] = [A/JA]. Now JA = I since this
holds when Z is inverted and if n contains Z then Jn = Rn. Therefore −η maps to
ξ proving the lemma.
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