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Abstract. We give some examples of stably free modules which are not self
dual.

1. Introduction

Let R be a commutative ring. Following Lam [7] we say that a module P is stably
free of rank n and type t if P ⊕ Rt ≈ Rr+t. Lam observes that such a module is
self–dual, i.e. P ≈ P ∗ = Hom(P,R), if r ≤ 2 or if r is odd and t = 1 (or if t = 0
when P is free). This leads to the question of whether there are any other cases. I
will give examples to show that this is not the case.

We will use the ring An = C[x0, . . . , xn, y0, . . . , yn]/(
∑

x2
i +

∑
y2

i − 1) of com-
plex polynomial functions on the 2n + 1–sphere S2n+1 = {(x, y) ∈ R2n|

∑
x2

i +∑
y2

i = 1}. This is a subring of C(S2n+1), the ring of continuous complex func-
tions on S2n+1. As usual we write zν = xν + iyν and z̄ν = xν − iyν so An =
C[z0, . . . , zn, z̄0, . . . , z̄n]/(

∑
zν z̄ν − 1).

If P is stably free of type 1 and rank n then P ⊕ R ≈ Rn+1 and (0, 1) ∈
P ⊕ R corresponds to the unimodular row (a0, . . . , an) in Rn+1. We write P =
P (a0, . . . , an) = Rn+1/R(a0, . . . , an). If necessary we specify R by writing PR(a0, . . . , an).
In [7] the notation P = P (a0, . . . , an) is used for the kernel of Rn+1 a0,...,an−−−−−→ R
which is the dual of the module P (a0, . . . , an) as defined here [7] (or see Proposi-
tion 2.2). For the results considered here I prefer the notation given above since it
makes the statement of Proposition 7.3 more natural. I will also denote the action
of σ ∈ GLn+1(R) on the row a = (a0, . . . , an) by σa = aσT in order to be able
to write this action as left multiplication conforming to topological usage. This is
equivalent to regarding unimodular “rows” as column vectors.

Let eν > 0 for all ν. Suslin [9] has shown that P (aeo
0 , . . . , aen

n ) is free if e0 . . . en ≡
0 mod n!. while in [11] it was shown that P (aeo

0 , . . . , aen
n ) over An is not free if

e0 . . . en 6≡ 0 mod n!. The following is our main result here.

Theorem 1.1. Let R be any subring of C(S2n+1) which contains An. Let n be even
and let eν > 0 for all ν. Let P = PR(zeo

0 , . . . , zen
n ). If P ≈ P ∗ then 2e0 . . . en ≡ 0

mod n!.

It follows that the above cases give the only values of (r, t) for which stably free
modules of rank r and type t are self–dual.

Corollary 1.2. Let R be as in the theorem. Suppose either
(1) r is even, r ≥ 4, and t ≥ 1 or
(2) r is odd, r ≥ 3, and t ≥ 2.

Then there is a stably free R–module of rank r and type t which is not self–dual.
1
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Proof. It is sufficient to consider the cases t = 1 for n even and t = 2 for n odd
since if P is stably free of type t it is also stably free of type s for any s ≥ t.
If n ≥ 4 is even then P (z0, z1, . . . , zn) is not self dual since 2 6≡ 0 mod n!. The
same is true of P = P (z2

0 , z1, . . . , zn) since 4 6≡ 0 mod n!. In [7] it is shown that
P = R ⊕ Q for some Q, using the fact that z2

0 , z1, z2 is completable. This Q has
odd rank r = n− 1 ≥ 3 and type 2 but Q 6≈ Q∗ otherwise P would be isomorphic
to P ∗. �

Remark 1.3. I do not know if 2e0 . . . en ≡ 0 mod n! implies that P (aeo
0 , . . . , aen

n ) is
self dual over any commutative ring.

The proof of the theorem will be topological. I will give two such proofs, one using
fairly elementary homotopy theory (except for Bott’s calculations of the homotopy
groups of some unitary groups), and the other using vector bundles (also using
Bott’s calculations). A similar proof, using the classification of vector bundles on a
sphere by clutching functions, was found independently by Nori. These proofs also
give additional information on the possibility of a symplectic structure on P . This
gives the following additional result.

Theorem 1.4. Let R be any subring of C(S2n+1) which contains An and let eν > 0
for all ν. If n ≡ 0 mod 4 then P = PR(zeo

0 , . . . , zen
n ) does not have a symplectic

structure unless e0 . . . en ≡ 0 mod n! so that P is free.

2. Well–known Facts

I will recall here some well–known facts used in the proofs. We begin by recalling
some standard results on projective modules defined by unimodular rows. For
x ∈ Rn+1 let P (x) = Rn+1/Rx and let Q(x) = {z ∈ Rn+1 | z · x = 0} where
z · x =

∑n
0 zixi. Note that in [7] P (x) is used for what is here written Q(x).

Lemma 2.1. If x · y = 1 then Rn+1 = Rx ⊕ Q(y) = Ry ⊕ Q(x). Therefore
P (x) ≈ Q(y) and P (y) ≈ Q(x).

Proof. If z ∈ Rn+1 write z = rx+z′ where r = z ·y. Then z′ ·y = 0 and, conversely,
z′ · y = 0 implies r = z · y so the decomposition is unique. �

Proposition 2.2. Let R be a commutative ring and let
∑n

0 xiyi = 1 in R. Then
P (x0, . . . , xn)∗ ≈ P (y0, . . . , yn).

Proof. For sequences u0, . . . , un and v0, . . . , vn let u · v denote
∑n

0 uivi as above.
The bilinear form (u, v) = u ·v−(u ·y)(v ·x) on Rn+1×Rn+1 satisfies (x,−) = 0 and
(−, y) = 0 and therefore induces a pairing P (x)× P (y) → R. This gives us a map
P (y) → P (x)∗. It is injective since if (u, v) = 0 for all v then, writing u = rx + u′

with u′ · y = 0 as in Lemma 2.1, we have (u, v) = (u′, v) = u′ · v = 0 for all v and
therefore u′ = 0. To see that the map is onto let f : P (x) → R and regard f as a
map Rn+1 → R with f(x) = 0. Then f(u) = u ·v for some v. Since x ·v = f(x) = 0,
f(u) = (u, v) as required. �

Proposition 2.3. Let R be a commutative ring and let a = (a0, . . . , an) and
b = (b0, . . . , bn) be unimodular rows over R.Then P (a0, . . . , an) is isomorphic to
P (b0, . . . , bn) if and only if there is an element σ in GLn+1(R) such that σa = b.
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Proof. If σ exists it gives an automorphism of Rn+1 taking a to b and therefore
inducing an isomorphism of the quotients P (a) and P (b). Conversely, given such
an isomorphism, we have Q(a) ≈ Q(b) by Lemma 2.1. Write Rn+1 = Q(b)⊕Ra =
Q(a)⊕Rb, let σ map Q(b) isomorphically to Q(a), and send a to b. �

We next recall some facts from topology. As usual Sn denotes the n–sphere
{(x0, . . . , xn) ∈ Rn+1|

∑
x2

i = 1}, and U(n) denotes the unitary group. The no-
tation C(X) will denote the ring of continuous complex functions on a topological
space X. We write [f ] to denote the homotopy class of f .

Lemma 2.4. Let X and Y be topological spaces with base points x0 and y0. Let
i : X → X×Y by i(x) = (x, y0) and let j : Y → X×Y by j(x) = (x0, y). Then, for
n ≥ 2, (i∗, j∗) : πn(X, x0)⊕πn(Y, y0) → πn(X×Y, (x0, y0)) is an isomorphism. If f :
(Sn, s0) → (X, x0) and g : (Sn, s0) → (Y, y0) then ([f ], [g]) in πn(X, x0)⊕πn(Y, y0)
maps to [(f, g)] in πn(X × Y, (x0, y0))

Proof. It is obvious that the projections give an isomorphism πn(X×Y, (x0, y0)) →
πn(X, x0)⊕πn(Y, y0) and the composition of this with (i∗, j∗) : πn(X, x0)⊕πn(Y, y0) →
πn(X × Y, (x0, y0)) is clearly the identity. Under this composition, ([f ], [g]) maps
to ([f ], [g]) in πn(X, x0)× πn(Y, y0) and so does [(f, g)]. �

Recall that U(n) ↪→ GLn(C) is a homotopy equivalence. In fact GLn(C) is
homeomorphic to U(n)×Rn2

[4, Ch. I,§V, Prop. 3]. I will therefore just state the
following results for U(n).

Proposition 2.5 ([8, Th. 25.2]). If i < 2n, πi(U(n)) = πi(U(n + 1)).

This follows immediately from the homotopy sequence of the fibration U(n) →
U(n+1) → S2n+1. It follows that πi(U(n)) is independent of n for i < 2n As usual
I will write πi(U) for any πi(U(n)) with i < 2n.

Theorem 2.6 (Bott [2][3]).
(1) πi(U) is 0 for i ≥ 0 even, and Z for i ≥ 0 odd.
(2) For n ≥ 0, π2n(U(n)) = Z/n! Z.

Note that the homotopy sequence of the bundle U(n) → U(n+1) → S2n+1 gives

Z = π2n+1(S2n+1) ∂−→ π2n(U(n)) → π2n(U(n + 1)) = π2n(U) = 0

showing that π2n+1(S2n+1) = Z ∂−→ π2n(U(n)) is onto. Let ι be the homotopy
class of the identity map of S2n+1. We choose the element ∂ι as the generator of
π2n(U(n)).

To conclude this section I will give some well–known results on the degree of
some mappings of spheres. I will write sgnx = +, 0,− if x > 0, x = 0, x < 0.

Lemma 2.7. Let f, g : Sn → Sn. Write f(x) = (f1(x), . . . , fn(x)) and similarly
for g. Suppose that sgn fi(x) = sgn gi(x) for all x and i. Then deg f = deg g. In
particular, this is true if fi(x) = ri(x)gi(x) with ri(x) > 0 for all x and i.

Proof. Let ht(x) = tf(x) + (1 − t)g(x). This is never 0 for 0 ≤ t ≤ 1 so t 7→
ht(x)/‖ht(x)‖ gives a homotopy between f and g. �

Lemma 2.8. Let f : Sn → Sn send (x0, . . . , xn) to (y0, . . . , yn). Suppose that
sgn yi = sgnxi for i > r and all x ∈ Sn. Then Sr = {x ∈ Sn|xi = 0 for i > r} is
stable under f and deg f = deg(f |Sr)
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Proof. By induction on n − r it will suffice to consider the case where r = n − 1
Let H+ = {x|xn ≥ 0} and H− = {x|xn ≤ 0} be the two hemispheres. Then
Sn = H+ ∪ H− and Sn−1 = H+ ∩ H−. Since H+ and H− are contractible, the
Mayer–Vietoris sequence gives us an isomorphism Hn(Sn) ≈−→ Hn−1(Sn−1). Since
all 4 spaces are stable under f , naturality gives us a commutative diagram

Hn(Sn) ≈−−−−→ Hn−1(Sn−1)

f∗

y f∗

y
Hn(Sn) ≈−−−−→ Hn−1(Sn−1)

and the result follows immediately. �

Corollary 2.9. Let f : Sn → Sn by f(x0, . . . , xn) = (ε0x0, . . . , εnxn) where each
εi is 1 or −1. Then deg f =

∏
εi.

Proof. This follows from the lemma with r = 0 if εi = 1 for i ≥ 1. The given map
is a composition of maps of this form (re–indexed) and the degree of a composition
is the product of the degrees of the factors. �

Corollary 2.10. Let S2n+1 ⊂ Cn+1 be the unit sphere. Let mi > 0 be integers for
i = 0, . . . , n. Let f : S2n+1 → S2n+1 by

f(z0, . . . , zn) =
(zm0

0 , . . . , zmn
n )

‖(zm0
0 , . . . , zmn

n )‖

and let g : S2n+1 → S2n+1 by

g(z0, . . . , zn) =
(z̄m0

0 , . . . , z̄mn
n )

‖(z̄m0
0 , . . . , z̄mn

n )‖

Then deg f =
∏

mi and deg g = (−1)n+1
∏

mi.

Proof. If mi = 1 for i ≥ 1, the formula for deg f follows from the lemma and the
fact that the map z 7→ zm on S1 ⊂ C has degree m. The general case follows since
f is a composition of such maps (after re–indexing them), up to positive factors
ri as in Lemma 2.7. The map g is the composition of f and complex conjugation
c : S2n+1 → S2n+1 by c(z0, . . . , zn) = (z̄0, . . . , z̄n). In terms of real coordinates
zν = xν + iyν , each xν maps to xν while each yν maps to −yν . Therefore c has
degree (−1)n+1 by Corollary 2.9. �

3. Unimodular rows

Let f0, . . . , fn lie in C(S2n+1). These functions define a map f : S2n+1 → Cn+1

and the row f = (f0, . . . , fn) will be unimodular if and only if the image of f does
not contain 0 (so that

∑
fνgν = 1 where gν = f̄ν/‖f‖ with ‖f‖ =

√∑
|fν |2). In

this case I will write P (f) for P (f0, . . . , fn) over the ring C(S2n+1). Since Cn+1−{0}
has the homotopy type of Sn+1, a unimodular row f : S2n+1 → Cn+1 − {0} has a
degree deg f which is the degree of S2n+1 → S2n+1 by x 7→ f(x)/‖f(x)‖.

Lemma 3.1. Choose 1 ∈ GLn+1(C) as base point and choose a base point e ∈
Cn+1−{0}. Define π : GLn+1(C) → Cn+1−{0} by σ 7→ σe Let f : S2n+1 → Cn+1−
{0} and σ : S2n+1 → GLn+1(C) preserve base points. Then [σf ] = [π ◦ σ] + [f ] in
π2n+1(Cn+1 − {0})
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Proof. The composition of (σ, f) with the map

GLn+1(C)× (Cn+1 − {0}) → Cn+1 − {0}

is σf . Passing to homotopy classes and using Lemma 2.4 we see that under the
maps

π2n+1(GLn+1(C), 1)⊕ π2n+1(Cn+1 − {0}, e) → π2n+1(GLn+1(C)× (Cn+1 − {0}), (1, e))

→ π2n+1(Cn+1 − {0}, e),

([σ], [f ]) maps to [(f, σ)] and then to [σf ]. Now ([σ], [f ]) is the sum of ([σ], 0) and
(0, [f ]). These map to [π ◦ σ] and [f ] respectively. �

Proposition 3.2. Let f, g : S2n+1 → Cn+1 − {0}. If P (f) ≈ P (g) then deg f ≡
deg g mod n!.

Proof. By Proposition 2.3 there is an element σ in GLn+1(C(S2n+1)) such that
g = σf . Regard f and g as maps S2n+1 → Cn+1 − {0} and σ as a map S2n+1 →
GLn+1(C). Let s0 be the base point of S2n+1 and let σ0 = σ(s0). Since GLn+1(C)
is connected, σ0f is homotopic to f so we can replace f by σ0f and σ by σσ−1

0 .
With these new values we now have σ(s0) = 1 and therefore f(s0) = g(s0) = e say.
By replacing f and g by λf and λg where λ is a positive constant we can assume
that ‖e‖ = 1. Note that f ' λf and similarly for g. Since g = σf , Lemma 3.1
shows that [g] = [σf ] = [π ◦ σ] + [f ] so it will suffice to show that [π ◦ σ] lies in
n! π2n+1(Cn+1 − {0}) = n! Z. In the diagram

U(n + 1) −−−−→ S2n+1y y
GLn+1(C) −−−−→ Cn+1 − {0}

the vertical arrows are homotopy equivalences and the horizontal arrows send σ to
σe. Therefore the image of π∗ : π2n+1(GLn+1(C)) → π2n+1(Cn+1−{0}) is the same
as that of π∗ : π2n+1U(n + 1) → π2n+1(S2n+1) This map occurs in the homotopy
sequence of the fibration U(n) → U(n + 1) → S2n+1 as

· · · → π2n+1(U(n + 1)) → π2n+1(S2n+1) → π2n(U(n)) → π2n(U(n + 1)) . . .

Since π2n+1(S2n+1) = Z and, by Theorem 2.6, π2n(U(n)) = Z/n! Z and π2n(U(n +
1)) = 0, we see that the image of π∗ : π2n+1U(n + 1) → π2n+1(S2n+1) is n! Z.
Therefore [π ◦ σ] lies in n! Z so [f ] ≡ [g] mod n!. �

Lemma 3.3. Let f0, . . . , fn and g0, . . . , gn in C(S2n+1) satisfy
∑n

0 figi = 1. Let
f, g : S2n+1 → Cn+1 − {0} be the maps defined by these functions. Then deg f =
(−1)n+1 deg g.

Proof. Let r = ‖f‖2 =
∑

fif̄i. Define hi(x, t) = tgi +(1− t)f̄i/r. Then
∑

fihi = 1
so h : X × I → C− {0} defines a homotopy between g and f̄/r. Therefore deg g =
deg f̄/r = deg f̄ . Now f̄ is the composition of f with the map (z0, . . . , zn) 7→
(z̄0, . . . , z̄n) which has degree (−1)n+1 by Corollary 2.10. �

Proposition 3.4. Let f0, . . . , fn and g0, . . . , gn be unimodular rows in C(S2n+1)
and let f, g : S2n+1 → Cn+1 − {0} be the maps defined by these functions. If
P (f)∗ ≈ P (g) then deg f ≡ (−1)n+1 deg g mod n!.
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Proof. Let
∑n

0 fihi = 1. Then P (f)∗ ≈ P (h) by Lemma 2.2. By Proposition 3.2,
deg g ≡ deg h mod n!. But by Lemma 3.3, deg f = (−1)n+1 deg h. �

Corollary 3.5. Let f0, . . . , fn be a unimodular row in C(S2n+1). If n is even and
P (f0, . . . , fn) is self–dual then 2 deg f ≡ 0 mod n!.

Proof of Theorem 1.1. It will suffice to prove the theorem for the ring C(S2n+1).
Since f = (zeo

0 , . . . , zen
n ) has degree

∏
ei by Corollary 2.10, the theorem follows

from the proposition. �

Remark 3.6. Suppose n is even and
∑n

0 figi = 1 over C(S2n+1). If P (f) is self dual
then P (f) ≈ P (g) so that g = σf for some σ in GLn+1(C(S2n+1)). However, it is
not possible to find such a σ in the elementary subgroup En+1(C(S2n+1)) unless
deg f = 0 since if g = σf with σ in En+1(C(S2n+1)) then f is homotopic to g: If
σ = ei1j1(a1) . . . eirjr (ar) let σ(t) = ei1j1(ta1) . . . eirjr (tar). Then t 7→ σ(t)f where
t goes from 1 to 0 gives the required homotopy. It follows that deg f = deg g but
deg f = −deg g for n even by Lemma 3.3

4. More well–known results

The complex symplectic group Sp2n(C) is defined to be the subgroup of GL2n(C)
consisting of all M such that MJMT = J where J =

(
0 In

−In 0

)
. Some authors use

the notation Sp(n, C) for this group. On page 1 of [4], Chevalley points out that
Sp(n) and Sp2n(C) are related in the same way as U(n) and GLn(C) but does not
give the easy direct proof of this which is very similar to his treatment of O(n) and
On(C). For the reader’s convenience I will give the proof here.

Proposition 4.1. The group Sp2n(C) is homeomorphic to Sp(n)× C2n2+n.

Proof. By [4, Ch. I,§V], there is an homeomorphism U(2n)×H → GL2n(C) where
H is the vector space of Hermitian 2n × 2n matrices. There are two possibilities
for the map, (σ, β) 7→ σ exp(β) or (σ, β) 7→ exp(β)σ. Suppose that exp(β)σ lies
in Sp2n(C). Then exp(β)σJσT exp(βT ) = J so exp(β)σJσT = J exp(−βT ) =
exp(−JβT JT )J since JT = J−1 = −J . Since J lies in U(2n), it follows that
σJσT = J and β = −JβT J−1 showing that σ lies in U(2n)∩Sp2n(C) = Sp(n) and
β lies in the set S = {β | βJ +JβT = 0} which is a vector space over C of dimension
2n2 + n [4, Ch. I,§VIII]. Conversely, if σ lies in Sp(n) and βJ + JβT = 0 then σ ∈
Sp2n(C) and exp(β) ∈ Sp2n(C) since exp(β)J exp(βT ) = exp(β) exp(JβT J−1)J =
exp(β) exp(−β)J = J . �

Proposition 4.2. There is a fiber bundle Sp2m(C) → GL2m(C) → W2m where
W2m is the space of invertible alternating 2m× 2m matrices over C.

Proof. GL2m(C) acts on W2m by σ ◦ M = σMσT . This is transitive since any
element M of W2m can be sent to J by a suitable σ. This follows from the fact that
the symplectic space defined by M has a symplectic base [1, Th. 3.7]. The matrix
associated to such a base is J . The isotropy subgroup of J ∈ W2m is Sp2m(C) by
definition. Therefore, all that is required to show that our map is a fiber bundle is
a local section in the neighborhood of J [8, §7.4]. A neighborhood of 1 in GL2m(C)
is given by {1 + X} where X ∈ M2m(C) is small. Our map sends 1 + X to
J + XJ + JXT + XJXT so the map of tangent spaces is X 7→ XJ + JXT . The
kernel of this map is the space S considered in the proof of Proposition 4.1 which
has dimension 2m2 +m over C. Therefore the image has dimension 2m2−m. Since
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this is the dimension of W2m the map of tangent spaces is onto and the implicit
function theorem gives us the required local section. �

Proposition 4.3. If i ≤ 4n + 1, πi(Sp(n)) = πi(Sp(n + 1)).

This follows immediately from the homotopy sequence of the fibration Sp(n) →
Sp(n+1) → S4n+3. It follows that πi(Sp(n)) is independent of n for i ≤ 4n+1 As
usual I will write πi(Sp) for any πi(Sp(n)) with i ≤ 4n + 1.

Theorem 4.4 (Bott [3]). For i ≥ 0 and i ≡ 0, 1, 2, 3, 4, 5, 6, 7 mod 8, we have
πi(Sp) = 0, 0, 0, Z, Z/2Z, Z/2Z, 0, Z.

5. The symplectic case

We now turn to the proof of Theorem 1.4. As in the previous section it is
sufficient to prove the theorem for the ring C(S2n+1). I will prove a somewhat
more general result.

Theorem 5.1. Let f : S2n+1 → Cn+1 − {0}. If n ≡ 0 mod 4 and P (f) has a
symplectic structure then deg f ≡ 0 mod n!.

In [5] Krusemeyer defines a unimodular row a0, . . . , an of odd length to be skewly
completable if there is an invertible alternating matrix with first row 0, a0, . . . , an.
The following lemma gives a criterion for a stably free module of type 1 to have a
symplectic structure.

Lemma 5.2 ([6]). Let a0, . . . , an be a unimodular row with n even. Then P (a0, . . . , an)
has a symplectic structure if and only if the row a0, . . . , an is skewly completable.

Proof. Let a · b =
∑n

0 aibi = 1. If a0, . . . , an is skewly completable then Rn+2 has a
symplectic structure and a base f, e0, . . . , en with < f, ei >= ai. Let e =

∑n
0 biei.

Then < f, e >= 1 so H = Rf ⊕ Re is symplectic. Therefore Rn+1 = H ⊥ Q
where Q is also symplectic. Now Q = Rn+2/H = Rn+1/Re = P (b) so P (b) is
symplectic and therefore so is P (b)∗ ≈ P (a). Conversely, if P (a) is symplectic so is
P (a)∗ ≈ P (b) ≈ Q(a). Now Rn+1 = Rb⊕Q(a) by Lemma 2.1. Let e0, . . . , en be the
base of Rn+1. Then ei − aib lies in Q(a) since a · (ei − aib) = 0. Let H = Rf ⊕Re
be as above with < f, e >= 1. Form the symplectic space H ⊥ Q(a) and identify
it with Rn+2 = Rf ⊕Rn+1 by identifying e with b. Since < f, Q(a) >= 0 we have
< f, ei >=< f, aib >=< f, aie >= ai as required. �

Suppose now that P = P (f0, . . . , fn) over C(S2n+1) has a symplectic structure.
Then, by Lemma 5.2, the map f = (f0, . . . , fn) : S2n+1 → Cn+1 − {0} factors
as f : S2n+1 → Wn+2 → Cn+1 − {0} where the right hand map sends (aij) to
(a01, . . . , a0n+1) omitting the term a00 = 0. By Proposition 4.2 there is an exact
homotopy sequence

· · · → π2n+1(GLn+2(C)) → π2n+1(Wn+2) → π2n(Spn+2(C)) → . . .

By Proposition 4.1, Spn+2(C) has the homotopy type of Sp(n/2 + 1). By Propo-
sition 4.3 and Theorem 4.4, π2n(Sp(n/2 + 1)) = 0 for n ≡ 0 mod 4 so the map
π2n+1(GLn+2(C)) → π2n+1(Wn+2) is onto. We can replace GLn+2(C) by U(n + 2)
which has the same homotopy type. By Proposition 2.5, π2n+1(U(n + 1)) →
π2n+1(U(n + 2)) is an isomorphism so π2n+1(U(n + 1)) maps onto π2n+1(Wn+2).
We identify U(n + 1) with the subgroup

(
1 0
0 U(n+1)

)
of U(n + 2). Write J = ( 0 e

0 ∗ )
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with e = (0, . . . , 0, 1, 0, . . . , 0). The map U(n + 1) → U(n + 2) → Wn+2 then sends
σ to (

1 0
0 σ

) (
0 e
0 ∗

) (
1 0
0 σT

)
=

(
0 eσT

0 ∗

)
which maps to eσT = σe in Cn+1 − {0}. This map U(n + 1) → Cn+1 − {0}
induces the map π∗ : π2n+1U(n + 1) → π2n+1(S2n+1) considered at the end of
the proof of Proposition 3.2 where it was shown that the image of this map is
n! Z ⊂ Z = π2n+1(S2n+1). Since [f ] lies in this image deg f ≡ 0 mod n!.

6. A converse theorem

I do not know if 2e0 . . . en ≡ 0 mod n! implies that P (aeo
0 , . . . , aen

n ) is self dual
over any commutative ring or even over the ring An = C[x0, . . . , xn, y0, . . . , yn]/(

∑
xiyi−

1). I will show here that this is the case over the ring C(S2n+1) and even over the
localized ring An[S−1] where S is the set of elements of An which have no zeros on
S2n+1.

Let X be a compact Hausdorff space and let C(X) be the ring of continuous
complex functions on X. If f = (f0, . . . , fn) and g = (g0, . . . , gn) are rows of
elements of C(X) (or if they are elements of Cn+1), I will write (f, g) =

∑n
0 fν ḡν

and ‖f‖2 = (f, f). Note that this is a function on X and not a global Banach
algebra type norm. If R is a subring of C(X) I will say that f has coordinates in
R if all fi lie in R.

Lemma 6.1. Let X be a compact Hausdorff space. Let R ⊆ C(X) be a C–subalgebra
which is closed under complex conjugation and has the property that if r ∈ R is never
0 on X then r−1 is in R. Let f, g : X → Cn+1 − {0} have coordinates in R. If
‖f − g‖ < ‖f‖ then PR(f) ≈ PR(g).

Proof. For x, y, z in Cn+1 with x 6= 0, define

E(x, y)z = z +
(z, x)
‖x‖2

(y − x)

Then E(x, y)x = y and E(x, y)z = z if (z, x) = 0. Write Cn+1 = Cx⊕ {z | (z, x) =
0}. In this decomposition we have

y =
(y, x)
‖x‖2

x + (y − (y, x)
‖x‖2

x).

It follows that det E(x, y) = (y, x)/‖x‖2. The matrix of E(f, g) has entries

E(f, g)ij = δij + (gi − fi)
f̄j

‖f‖2
.

These lie in the ring R by the hypothesis since ‖f‖ is never zero. Now |(f, g) −
‖f‖2| = |(f, g−f)| ≤ ‖f‖‖g−f‖ so |(f, g)| ≥ ‖f‖2−‖f‖‖g−f‖. If ‖f−g‖ < ‖f‖ this
implies that |(f, g)| ≥ ‖f‖(‖f‖ − ‖f − g‖) > 0 Therefore detE(f, g) = (g, f)/‖f‖2
is never 0 so E(f, g) lies in GLn+1(R). Since E(f, g)f = g, this implies that
P (f) ≈ P (g) by Proposition 2.3. �

.

Proposition 6.2. Let X be a compact Hausdorff space. Let R ⊆ C(X) be a C–
subalgebra which separates the points of X, is closed under complex conjugation,
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and has the property that if r ∈ R is never 0 on X then r−1 is in R. Let f, g : X →
Cn+1 − {0} have coordinates in R. If f ' g then PR(f) ≈ PR(g).

Proof. Let h : X × I → Cn+1 − {0} be a homotopy between f and g. Since X
is compact we can find a constant m such that ‖h(x, t)‖ > m > 0 for all (x, t) in
X × I. By compactness we can find 0 = to < t1 < · · · < tN = 1 in I such that
if hi(x) = h(x, ti) then ‖hi(x) − hi+1(x)‖ < m/4 for all x ∈ X. By the Stone–
Weierstrass theorem we can find maps fi : X → Cn+1 − {0} with coordinates in
R such that ‖hi − fi‖ < m/4. We choose f0 = h0 = f and fN = hN = g. Now
‖fi‖ ≥ ‖hi‖−‖hi−fi‖ > 3m/4 while ‖fi−fi+1‖ < ‖fi−hi‖+‖fi+1−hi+1‖+‖hi−
hi+1‖ < 3m/4. Therefore ‖fi − fi+1‖ < ‖fi‖ so P (fi) ≈ P (fi+1) by Lemma 6.1.
Therefore P (f) = P (f0) ≈ P (fN ) = P (g). �

Theorem 6.3. Let R ⊆ C(S2n+1) be a C–subalgebra which separates the points of
S2n+1, is closed under complex conjugation, and has the property that if r ∈ R is
never 0 on S2n+1 then r−1 is in R. Let f, g : S2n+1 → Cn+1−{0} have coordinates
in R. Then PR(f) ≈ PR(g) if and only if deg f ≡ deg g mod n!.

Proof. The “only if” statement is proved in Proposition 3.2. For the converse
we first replace f by ρf for a fixed ρ in GLn+1(C) to make f preserve base
points: f(s0) = e, and similarly for g. We then use the fact that the image of
π∗ : π2n+1(GLn+1(C)) → π2n+1(Cn+1 − {0}) = Z is n! Z. Therefore we can find
τ : S2n+1 → GLn+1(C) with τ(s0) = 1 and [π ◦ τ ] = [g]− [f ] in π2n+1(Cn+1−{0}).
By the Stone–Weierstrass theorem we can find σ in Mn+1(R) very close to τ . Note
that σ(s0) is very close to τ(s0) = 1 so after replacing σ by σ(s0)−1σ we can assume
that σ also preserves the base point: σ(s0) = 1. Now tσ + (1 − t)τ will also be
very close to τ for 0 ≤ t ≤ 1 and therefore det(tσ + (1 − t)τ) will be very close
to det τ and, in particular, will have no zeros on S2n+1. Therefore σ will lie in
GLn+1(R) by our hypothesis on R and tσ + (1− t)τ will lie in GLn+1(C(S2n+1)).
Now t 7→ tσ + (1− t)τ gives a homotopy of τ with σ so [π ◦ σ] = [π ◦ τ ] = [g]− [f ]
in π2n+1(Cn+1 − {0}). By Lemma 3.1 we have [σf ] = [g] so σf ' g and therefore
P (σf) ≈ P (g) by Proposition 6.2. Since P (σf) ≈ P (f) by Proposition 2.3, it
follows that P (f) ≈ P (g). �

Corollary 6.4. Let n be even and let R be any subring of C(S2n+1) which contains
the localized ring An[S−1] where S is the set of elements of An which have no zeros
on S2n+1. Let e0, . . . , en be positive integers. Then PR(zeo

0 , . . . , zen
n ) is self dual if

and only if 2e0 . . . en ≡ 0 mod n!.

Proof. The “only if” part follows from Theorem 1.1. For the converse it is sufficient
to consider the ring An[S−1] which satisfies the hypotheses of Theorem 6.3. Let
f = (zeo

0 , . . . , zen
n ) and let

∑
figi = 1. By Lemma 2.2 PR(zeo

0 , . . . , zen
n )∗ ≈ P (g)

and by Lemma 3.3, deg f = −deg g since n is even. Since 2 deg f = 2e0 . . . en ≡ 0
mod n!, deg f ≡ deg g mod n! so by Theorem 6.3, P (f) ≈ P (g) ≈ P (f)∗. �

7. Vector Bundles

In this section I will give an alternative proof of the main results using vector
bundles. Let X be a compact Hausdorff space. By [10], isomorphism classes of
finitely generated projective modules over the ring C(X) of continuous complex
functions on X are in 1–1 correspondence with isomorphism classes of complex
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vector bundles on X. This correspondence is obtained by associating to each com-
plex vector bundle E its module of sections Γ(X, E). The most general form of this
correspondence was found by Vaserstein [13]. We will only need the case in which
X is a compact Hausdorff space here. Let OX = O be the trivial bundle X × C.
Note that Γ(X,O) = C(X).

If f0, . . . , fn is a unimodular row in C(X) we can construct the vector bundle
E(f0, . . . , fn) corresponding to the module P (f0, . . . , fn) as follows. Let E(f0, . . . , fn) =
EX(f0, . . . , fn) be the cokernel in

0 → O f0,...,fn−−−−−→ On+1 → E(f0, . . . , fn) → 0.

It is a vector bundle by [10, Prop. 1]. Since the sequence splits [10, Prop. 2] we
can apply Γ getting

0 → Γ(X,O)
f0,...,fn−−−−−→ Γ(X,On+1) → Γ(X, E(f0, . . . , fn)) → 0.

Since Γ(X,O) = C(X), this shows that Γ(X, E(f0, . . . , fn)) = P (f0, . . . , fn) over
C(X).

Lemma 7.1. Let g : X → Y be a map of compact Hausdorff spaces and let
f0, . . . , fn lie in C(Y ). Then g∗EY (f0, . . . , fn) = EX(f0g, . . . , fng)

Proof. Since g∗ is an exact functor we get

0 → g∗OY
g∗(f0),...,g

∗(fn)−−−−−−−−−−→ g∗On+1
Y → g∗EY (f0, . . . , fn) → 0.

Since g∗OY = OX and it is easy to check that f : OY → OY induces g∗(f) = f ◦g :
OX → OX , the result follows. �

By [8, 8.2], two vector bundles are isomorphic if and only if their associated
principal bundles are isomorphic. Principal bundles G → P → X with group G are
classified by [X, BG] the set of homotopy classes of maps of X into the classifying
space BG [8, 19.3]. The bundle E with fiber F is recovered from the principal
bundle by forming E = P ×G F .

For vector bundles over a sphere Sn there is an alternative classification [8, 18.6].
If G is pathwise connected, bundles over Sn with group G are classified by πn−1(G).
The classifying element is ∂ι where ι is the homotopy class of the identity map of
Sn and ∂ is the boundary map in the homotopy sequence

· · · → πn(P ) → πn(Sn) ∂−→ πn−1(G) → πn−1(P )

of the associated principal bundle G → P → Sn. The element ∂ι is the homotopy
class of the characteristic map defined in [8, §18].

For any Lie group G there is a universal bundle G → EG → BG where BG is the
classifying space and EG is contractible. Since πi(EG) = 0, the homotopy sequence
of the universal bundle shows that πn(BG) ∂−→ πn−1(G) is an isomorphism.

Lemma 7.2. This isomorphism sends the classifying element of a bundle with
group G over Sn to the homotopy class of the characteristic map.

Proof. The classifying map f : Sn → BG induces a bundle map
G −−−−→ P −−−−→ Sn∥∥∥ y yf

G −−−−→ EG −−−−→ BG
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and the homotopy sequence gives

πn(Sn) −−−−→ πn−1(G)y ∥∥∥
πn(BG) −−−−→ πn−1(G)

The result follows since ι maps to the class of the characteristic map in πn−1(G)
and to the classifying element in πn(BG) �

Let S2n+1 be the unit sphere in Cn+1 with coordinates z0, . . . , zn. These form a
unimodular row since

∑
zν z̄ν = 1.

Proposition 7.3. The associated principal bundle of E(z0, . . . , zn) is the bundle
U(n) → U(n + 1) → S2n+1 corresponding to the identification S2n+1 = U(n +
1)/U(n).

Proof. We have to show that E(z0, . . . , zn) ∼= U(n + 1) ×U(n) Cn. We identify
U(n) with the subgroup

(
1 0
0 U(n)

)
of U(n + 1). The map U(n + 1) → S2n+1 sends

σ ∈ U(n + 1) to the first column σ̄ = Col1(σ) of σ. Write Cn+1 = C⊕ Cn so that
U(n) acts as the identity on C and as usual on Cn. The exact sequence

0 → C → Cn+1 → Cn → 0

of U(n)–modules induces an exact sequence

(1) 0 → U(n + 1)×U(n) C → U(n + 1)×U(n) Cn+1 → U(n + 1)×U(n) Cn → 0.

Now U(n + 1) ×U(n) C = S2n+1 × C by the map sending (σ,w) to (σ̄, w) and
U(n + 1)×U(n) Cn+1 = S2n+1 × Cn+1 by the map sending (σ,w) to (σ̄, σw) which
has inverse (s, w) 7→ (σ, σ−1w) for any σ such that σ̄ = s. The continuity is easily
checked using the fact that U(n + 1) → S2n+1 has a local cross section. The map
U(n + 1) ×U(n) C → U(n + 1) ×U(n) Cn+1 sends (s, w) to (σ̄, σw) where σ̄ = s.
Now w ∈ C maps to the column vector (w, 0, . . . , 0)T in Cn+1. Also we have
s = σ̄ = Col1(σ) so (s, w) maps to (s, w′) where, if s = (z0, . . . , zn),

w′ =


z0

0
... F

zn




w
0
...
0

 =

z0w
...

znw


Therefore the exact sequence (1) is

0 → S2n+1 × C z0,...,zn−−−−−→ S2n+1 × Cn+1 → U(n + 1)×U(n) Cn → 0.

showing that U(n + 1)×U(n) Cn = E(z0, . . . , zn). �

The complex vector bundles of rank n on S2n+1 are classified by the elements
of π2n+1(BU(n)) = π2n(U(n)) which is Z/n! Z by Theorem 2.6(2). If E is a vector
bundle of rank n on S2n+1 I will write cl(E) for its class in Z/n! Z.

Corollary 7.4. Let E = E(z0, . . . , zn) be the vector bundle corresponding to the
projective module P (z0, . . . , zn) over C(S2n+1). Then cl(E) = 1 mod n!.
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Proof. The characteristic map for the associated principal bundle is ∂ι for the
bundle U(n) → U(n + 1) → S2n+1. This is the element we have chosen as the
generator of π2nU(n) = Z/n! Z �

Theorem 7.5. Let ei > 0 be integers for i = 0, . . . , n. Then
(1) cl(E(zeo

0 , . . . , zen
n )) = e0 · · · en mod n! and

(2) cl(E(z̄eo
0 , . . . , z̄en

n )) = (−1)n+1e0 · · · en mod n!.

Proof. Let f : S2n+1 → S2n+1 by

f(z0, . . . , zn) =
(ze0

0 , . . . , zen
n )

r

where r = ‖(ze0
0 , . . . , zen

n )‖. By Lemma 7.1, f∗E(z0, . . . , zn) = E(zeo
0 /r, . . . , zen

n /r) ≈
E(zeo

0 , . . . , zen
n ). The classifying map for this bundle is S2n+1 f−→ S2n+1 h−→ BU(n)

where h is the classifying map for E(z0, . . . , zn). This sends ι to h∗(f∗(ι)) but
f∗(ι) = e0 · · · enι by Lemma 2.10 and h∗(ι) = 1 mod n! by Corollary 7.4 so the
classifying element for E(zeo

0 , . . . , zen
n ) is e0 · · · en mod n!. For E(z̄eo

0 , . . . , z̄en
n ) the

same argument shows the classifying map is hg where g is as in Lemma 2.10 and
has degree (−1)n+1e0 · · · en and the same argument applies. �

Lemma 7.6. Let f0, . . . , fn be a unimodular row over C(S2n+1). Then P (f0, . . . , fn)∗ ≈
P (f̄0, . . . , f̄n)

Proof. ‖f‖ is never 0 so by Proposition 2.2, P (f0, . . . , fn)∗ ≈ P (f̄0/‖f‖, . . . , f̄n/‖f‖) ≈
P (f̄0, . . . , f̄n). �

Proof of Theorem 1.1. Let n be even and let eν > 0 for all ν. Let P = P (zeo
0 , . . . , zen

n )
over An. If P ≈ P ∗ then the same is true over C(S2n+1) which contains An. By
Lemma 7.6 P (ze0

0 , . . . , zen
n ) ≈ P (z̄e0

0 , . . . , z̄en
n ) so that E(ze0

0 , . . . , zen
n ) ≈ E(z̄e0

0 , . . . , z̄en
n ).

Therefore cl(E(ze0
0 , . . . , zen

n )) = cl(E(z̄e0
0 , . . . , z̄en

n )). By Theorem 7.5, this implies
that e0 . . . en ≡ (−1)n+1e0 . . . en mod n!. Since n is even, this is equivalent to
2e0 . . . en ≡ 0 mod n!. �

Corollary 6.4 can be deduced from the above by applying the results of [12,
Th. 11.1] to prove it over the ring An[S−1]. The general case is an immediate
consequence of this.

Proof of Theorem 1.4. If P (zeo
0 , . . . , zen

n ) has a symplectic structure so does E(zeo
0 , . . . , zen

n )
so the group of the bundle can be reduced to the complex symplectic group Spn(C).
This group has the same homotopy type as Sp(n/2) so cl(E(ze0

0 , . . . , zen
n )) will lie

in the image of π2n(Sp(n/2)) → π2n(U(n)). Since n ≡ 0 mod 4, π2n(Sp(n/2)) = 0
by Theorem 4.4. Therefore the class of our bundle must be 0. �
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