Warmup: Vertex transitive graphs

We do not allow multiple edges for graphs. Let G be a connected graph. Then G can be turned into a metric space by setting the distance of two vertices to be the length of the shortest path between them.

A graph is called locally finite, if every vertex in it has finitely many neighbors.

Theorem 1 Let $G = (V, E)$ be an infinite, locally finite connected graph. Then there exists a half-infinite geodesic in G, that is, a function $f : \mathbb{N} \to V$ such that for all $i < j$, we have
\[
d(f(i), f(j)) = j - i
\]
where d is the path metric.

Now we define various morphisms.

Definition 2 Let (V_1, E_1) and (V_2, E_2) be graphs. A map $f : V_1 \to V_2$ is a homomorphism if for all $(x, y) \in E_1$ we have $(f(x), f(y)) \in E_2$. A bijective homomorphism such that f^{-1} is also a homomorphism is called an isomorphism. An isomorphism of (V, E) with itself is an automorphism.

The set of automorphisms of a graph G forms a group, denoted by $\text{Aut}(G)$.

Definition 3 A graph G is vertex transitive, if $\text{Aut}(G)$ acts transitively on the vertex set of G. It is called edge transitive, if $\text{Aut}(G)$ acts transitively on the edge set of G.

Vertex transitive graphs ‘look the same’ from every vertex.

Exercise 4 Is there a 3-regular graph with no nontrivial automorphisms?

Exercise 5 Show that in Theorem 1, if G is also vertex transitive, then there exists a bi-infinite geodesic, that is, a function $f : \mathbb{Z} \to V$ that satisfies the same condition.

Exercise 6 Find an infinite 3-regular edge transitive graph.

A nice way to generate vertex transitive graphs is as follows. Let Γ be a group and let S be a subset of Γ such that $S^{-1} = S$. Let $\text{Cay}(\Gamma, S)$, the Cayley graph of Γ with respect to S be defined as follows. Let the vertex set of $\text{Cay}(\Gamma, S)$ be Γ and for all $x \in \Gamma$ and $s \in S$, let (x, xs) be an edge in $\text{Cay}(\Gamma, S)$. Sometimes we label this edge with the symbol s – then we talk about a labeled Cayley graph.
Theorem 7 Let $G = \text{Cay}(\Gamma, S)$. Then G is vertex transitive and it is connected if and only if S generates Γ.

Moreover, Γ embeds in $\text{Aut}(G)$ as a transitive subgroup that acts freely on the vertex set of G.

For a graph $G = (V, E)$ let $B(x, n)$ denote the ball of radius n around x, that is,

$$B(x, n) = \{ y \in V \mid d(x, y) \leq n \}.$$

When G is vertex transitive, the size $f(n)$ of $B(x, n)$ does not depend on x.

Theorem 8 If G is locally finite and vertex transitive, then

$$f(n)f(5n) \leq f^2(4n).$$

Here is another curious example for a vertex transitive graph. Let the countable random graph be defined as follows. Take a countable set and the complete graph on it. For each edge, toss a coin independently; if its heads, keep it, otherwise, erase it.

Theorem 9 Let G and G' be two independent countable random graphs. Show that with probability 1, G and G' are isomorphic. Also show that with probability 1, G is vertex transitive.

That is, a countable random graph is not random at all, it is one well-defined object! (Well, almost surely).