7. Lecture 7

7.1. An interesting finite group. Let p be a prime number, and consider a height two tree such that all non-leaf nodes of the tree have p children. Fixing a cyclic permutation σ of p elements, we can consider G, the subgroup of the automorphism group of the tree where the children of each node are permuted by some power of σ. Since there are $p + 1$ parent nodes, and since each node can be independently permuted p ways, $|G| = p^{p+1}$.

What is $Z(G)$ the center of G? If $g \in G$, then the only way $gh = hg \forall h \in G$ is for g to fix the height 1 nodes and to act identically on each of their children. Thus $|Z(G)| = p$.

Let $x \in G$. If x leaves the height 1 nodes fixed, then $x^p = 1$. If x does not leave the height 1 nodes fixed, and acts as σ^c_i on the children of the ith height 1 node, then x^p leaves the height 1 nodes fixed and acts as $\sigma^{\sum c_i}$ on each of their children. Therefore, $x^p \in Z(G)$.

Putting this information together, we see that $|G/Z(G)| = p^p$ and if $x \in G/Z(G)$, then $x^p = 1$. Thus, there are large p-groups with every element of order p.

7.2. Some group theory. Recall that a group G is residually finite if for every $x \in G \setminus \{1\}$, there is some normal subgroup N_x, such that $x \notin N_x$ and G/N_x is a finite group. Moreover, if N_x can always be chosen such that G/N_x is a p-group, then G is a residual p-group.

Theorem 7.1. Every finitely generated linear group is residually finite.

Theorem 7.2. Every finitely generated linear group in characteristic 0 (e.g. over a base field R or C) has a finite index subgroup with no elements of finite order.

Corollary 7.3. A finitely generated periodic linear group in characteristic 0 is finite.

Proof. The only subgroup of a periodic group with no elements of positive finite order is 1, and since there must be such a subgroup with finite index, the group must be finite. □

To prove these theorems, we need some results from commutative algebra.

7.3. Some commutative algebra. In this section, F will be some fixed field, and R is a finitely generated subring of F. That is to say that every element of R can be written as a polynomial of some set of generators $\{k_1, \ldots, k_n\}$. Equivalently, R is the image of the substitution map $\mathbb{Z}[x_1, \ldots, x_n] \rightarrow F$.

Definition 7.4. The index of an ideal $I \subset R$ is the number of elements in R/I. Alternately, it is the index of I in R viewed as a subgroup of R under addition.

Theorem 7.5. Every maximal ideal $m \subset R$ has finite index.

Definition 7.6. Given a ring, S, the Jacobson radical $J(S)$ is the intersection of all maximal ideals of S.

Theorem 7.7. With R as above, $J(R) = 0$.

Given two ideals, $I, J \subset R$, we define their product $IJ = \langle ab | a \in I, b \in J \rangle$, the ideal containing all finite linear combinations of products from I and J. Note that $IJ \subset I \cap J$. In general, equality does not hold.

Theorem 7.8. With R as above, if $I \subset R$ is a proper ideal, then $\cap_n I^n = 0$.

1
Theorem 7.9. If \(\text{char}(F) = 0 \), then \(pR = R \) for only finitely many primes \(p \in \mathbb{Z} \).

Let \(GL_n(R) \) be the group of all invertible \(n \times n \) matrices with entries in \(R \). If \(\Gamma \subset GL_n(F) \) is finitely generated, say \(\Gamma = \langle g_1, \ldots, g_k \rangle \), then let \(R \) be the subring of \(F \) generated by the \(2kn^2 \) entries of \(g_i, g_i^{-1} \). Then \(R \) is a finitely generated subring of \(F \) and \(\Gamma \subset GL_n(R) \).

Let \(I \subset R \) be an ideal, and let \(\Gamma(\mathfrak{I}) = \Gamma \cap (1 + M_n(I)) \). Then \(\Gamma(\mathfrak{I}) \triangleleft \Gamma \) and if \(I \) has finite index in \(R \), then \(\Gamma(\mathfrak{I}) \) has finite index in \(\Gamma \).

Let \(m \subset R \) be a maximal ideal. By theorem 7.5, \(R/m \) is a finite field, \(F_q \), where \(q = p^\alpha \), \(p \) prime, \(\alpha \in \mathbb{N} \). Since \(R/m \) is a field of characteristic \(p \), we must have that \(p \in m \). Therefore, for all \(n \in \mathbb{N} \), \(pm^n \subset m^{n+1} \) and so \(m^n/m^{n+1} \) is an additive group of exponent \(p \).

Let \(x \in \Gamma(m^n) \). Then \(x \equiv 1 \pmod{m^n} \), so \(p(x - 1) \equiv 0 \pmod{m^{n+1}} \) and \((x - 1)^p \equiv 0 \pmod{m^{n+1}} \). Therefore, if \(x \equiv 1 \pmod{m^n} \), then \(x^p \equiv ((x - 1) + 1)^p \equiv 1 \pmod{m^{n+1}} \), so \(\Gamma(m^n)/\Gamma(m^{n+1}) \) is a \(p \)-group. Inductively, \(\Gamma/\Gamma(m^n) \) is a \(p \)-group.

If \(\Gamma \subset GL_n(C) \) is finitely generated, then \(\Gamma \subset GL_n(R) \) for some finitely generated subring \(R \). For all but finitely many primes \(p \in \mathbb{Z} \), \(pR \neq R \), and so \(pR \subset m \) for some maximal ideal \(m \). \(R/m \) is a finite field with \(p \equiv 0 \), and so must be of characteristic \(p \). Let \(x \in \Gamma \). Then since \(\cap m^n = 0 \), if \(x \in \Gamma \), \(x \neq 1 \), there is some \(n \) such that \(x \not\in \Gamma(m^n) \). Therefore, we have the following theorem.

Theorem 7.10. If \(\Gamma \subset GL_n(C) \) is a finitely generated subgroup, then for all but finitely many primes \(p \), there exists a finite index subgroup \(H \subset \Gamma \) such that \(H \) is a residual \(p \)-group.

Let \(p_1, p_2 \) be two such primes, and let \(H_1, H_2 \) be corresponding subgroups. Let \(H = H_1 \cap H_2 \). \(H \) is of finite index, and every finite cyclic subgroup of \(H \) is of exponent \(p_1 \) and \(p_2 \), and thus \(H \) is trivial. Therefore, \(\Gamma \) is finite.