Let n be a natural number. Let us define the following relation on \mathbb{Z}:

$$a \equiv b \pmod{n} \text{ if } n \text{ divides } b - a$$

Theorem 1 \equiv is an equivalence relation.

Definition 2 The equivalence classes of integers under this relation are called residue classes modulo n. We denote it by \mathbb{Z}_n.

Theorem 3 There are exactly n residue classes modulo n.

When we want to name one of the classes, we just take an element of it. For convenience, many times we label the classes with the elements $0, 1, \ldots, n - 1$.

Just like with the Cauchy completion, the operators on \mathbb{Z} naturally extend to \mathbb{Z}_n.

Definition 4 For $a, b \in \mathbb{Z}_n$ let $x \in a$, $y \in b$ and let

$$a + b = \overline{x + y}$$
$$a \cdot b = \overline{x \cdot y}$$

where \overline{z} denotes the residue class of $z \in \mathbb{Z}$.

Theorem 5 $+$ and \cdot are well-defined on \mathbb{Z}_n. $(\mathbb{Z}_n, +, \cdot)$ is a ring.

This means that modulo n one can do the same kind of algebraic manipulations as you are used to in \mathbb{Z}.

Exercise 6 Solve the following congruences:

1) $2x + 1 \equiv 3 \pmod{5}$;
2) $x^2 \equiv 1 \pmod{17}$;
3) $2x \equiv 5 \pmod{8}$;
4) $3x \equiv 3 \pmod{6}$;

As you see in 3) and 4), there is something to be careful about. Namely, the simplification rule does not always work. For example, 3 does not have a multiplicative inverse modulo 6 so $3x \equiv 3 \pmod{6}$ does not imply $x \equiv 1 \pmod{6}$. But if you think about it, 3 does not have a multiplicative inverse in \mathbb{Z} as well. Let us put this into a bit more abstract setting.
Definition 7 Let R be a ring. An element $0 \neq a \in R$ is a zero divisor if there exists $0 \neq b \in R$ with $ab = 0$.

You can easily check that \mathbb{Z} does not have nontrivial zero divisors.

Exercise 8 What are the zero divisors modulo 6, 7 and 12?

This is the real notion what we need for simplification.

Lemma 9 Let $0 \neq a \in R$ be a non-zero-divisor. Then $ax = ay$ implies $x = y$.

In fact, for finite rings non-zero-divisors are exactly the invertible elements.

Theorem 10 Let R be a finite ring. Then $0 \neq a \in R$ has a multiplicative inverse if and only if a is not a zero divisor.

This theorem has various consequences.

Definition 11 For a prime p let $\mathbb{F}_p = \mathbb{Z}_p$.

Theorem 12 For a prime p every nonzero element of \mathbb{F}_p is invertible.

In other terms, \mathbb{F}_p is a field. A quick corollary:

Theorem 13 (Wilson’s theorem) Let p be a prime. Then

$$(p - 1)! \equiv -1 \pmod{p}$$

Some basics modulo p.

Theorem 14 For all $a, b \in \mathbb{F}_p$ we have

$$(a + b)^p = a^p + b^p.$$

Theorem 15 (Fermat’s Little theorem) Let p be a prime and let a be an integer. Then

$$a^p \equiv a \pmod{p}.$$

Corollary 16 Let p be a prime and let a be an integer not divisible by p. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Let us understand what this really means.

Theorem 17 Let R be a finite ring and let $a \in R$ be invertible. Then there exists a natural k with $a^k = 1$.

Definition 18 The minimal n with the above property is called the multiplicative order of a. We denote it by $o(a)$.

Theorem 19 Let $0 \neq a \in \mathbb{F}_p$. Then $o(a)$ divides $p - 1$.

2
Let us get back to modulo n.

Theorem 20 Let a be an integer and let n be a natural number. Then the following are equivalent:
1) a is relatively prime to n;
2) a is invertible modulo n;
3) there exist integers x, y with $ax + ny = 1$.

Definition 21 (Euler’s totient function) For a natural number n let $\mathbb{U}(n)$ denote the set of invertible elements in \mathbb{Z}_n. Let $\phi(n)$ be the size of $\mathbb{U}(n)$.

Exercise 22 Find a formula for $\phi(n)$.

Lemma 23 If $a, b \in \mathbb{U}(n)$ then $ab \in \mathbb{U}(n)$.

Theorem 24 Let $0 \neq a \in \mathbb{Z}_n$ be invertible. Then $o(a)$ divides $\phi(n) - 1$.

Hint: look at a certain graph on $\mathbb{U}(n)$.

Theorem 25 (Euler’s theorem) Let n be a natural number and let a be an integer relatively prime to n. Then
\[a^{\phi(n)} \equiv a \pmod{n} \]

Of course, you don’t really need integers to play the modulo game. For example, you can take $\mathbb{R}[x]$ and a nonzero polynomial $p(x) \in \mathbb{R}[x]$ and for $q(x), r(x)$ define
\[q(x) \equiv r(x) \pmod{p(x)} \text{ if } p(x) \text{ divides } r(x) - q(x) \]

The same way you can define the residue classes and $\mathbb{R}[x]$ modulo $p(x)$ becomes a ring. In fact, that is the easiest way to define complex numbers.

Definition 26 Complex numbers are $\mathbb{R}[x]$ modulo $x^2 + 1$.

We will also give a more down to earth definition later and show that it is the same.