Grothendieck Toposes are often considered as generalized spaces; indeed, every space gives rise to a topos of sheaves, and various invariants and constructions from (algebraic) topology can be generalized to the level of toposes. In this talk, I will introduce a newly discovered invariant called the isotropy group of a topos and illustrate by considering special cases such as continuous group actions and etale groupoids. On the one hand, this group plays a key role in the study of crossed toposes, a direct generalization of crossed modules. On the other hand, the isotropy group has connections to the theory of monoidal categories and certain aspects of low-dimensional topology. Based on joint work with Jonathon Funk.