Twisted string bordism in 7 dimensions with applications to anomaly cancellation

Natalia María Pacheco-Tallaj nataliap@mit.edu based on joint work with I. Basile, C. Krulewski, G. Leone

Chicago Topology Seminar

Outline

- Anomalies in quantum field theory
 - Quantization, symmetries, and anomalies
 - Local anomalies and twisted tangential structures
 - Anomalies as invertible bulk theories
- Invertible field theories and bordism
 - Functorial field theory
 - IFTs and stable homotopy theory
 - Our mathematical setup
- 3 Twists of BU(1)-string bordism in dimension 7
- 4 An illustrative example: a bordism invariant for n=1
- Manifold generators

Anomalies in quantum field theory

What is a field theory?

A field theory is the data of

- A spacetime manifold X which is d dimensional
- A moduli $\mathcal{F}(X)$ of objects over X, called *fields*, e.g.
 - connections on a principal G-bundle $P \rightarrow X$ (gauge fields)
 - sections of a vector bundle $E \rightarrow X$ (matter fields)
 - maps to a target manifold Maps(X, Y) (sigma models)
 - metrics on X (gravity)
- An action functional $S: \mathcal{F}(X) \to \mathbb{C}$

A field theory is the data of

- A spacetime manifold X which is d dimensional
- A moduli $\mathcal{F}(X)$ of objects over X, called *fields*, e.g.
 - connections on a principal G-bundle $P \rightarrow X$ (gauge fields)
 - sections of a vector bundle $E \rightarrow X$ (matter fields)
 - maps to a target manifold Maps(X, Y) (sigma models)
 - metrics on X (gravity)
- An action functional $S: \mathcal{F}(X) \to \mathbb{C}$

A classical field theory finds physical fields ψ by solving a principle of stationary action $\delta S/\delta \psi=0$.

What is a quantum field theory?

A field theory is the data of

- A spacetime manifold X which is d dimensional
- A moduli $\mathcal{F}(X)$ of objects over X, called *fields*, e.g.
 - connections on a principal G-bundle $P \rightarrow X$ (gauge fields)
 - sections of a vector bundle $E \rightarrow X$ (matter fields)
 - maps to a target manifold Maps(X, Y) (sigma models)
 - metrics on X (gravity)
- An action functional $S: \mathcal{F}(X) \to \mathbb{C}$

A quantum field theory instead defines a probability measure on $\mathcal{F}(X)$ weighted by $\exp(-S)$ (assuming X has Euclidean signature) and computes probability amplitudes and correlation functions of observable physical quantities in this measure.

Partition functions and path integrals

- QFT: probability distribution over space of fields weighted by $\exp(-S)$
- \bullet Path integral/partition function: integrate over dynamical fields ψ and consider result as a function of the background fields A

$$Z_X[A] = \int_{\psi \in \mathcal{F}^{\mathsf{dyn}}(X)} D\psi \ e^{-S[\psi,A]} : \mathcal{F}^{\mathsf{bg}}(X) \to \mathbb{C}$$

Partition functions and path integrals

- QFT: probability distribution over space of fields weighted by exp(-S)
- ullet Path integral/partition function: integrate over dynamical fields ψ and consider result as a function of the background fields A

$$Z_X[A] = \int_{\psi \in \mathcal{F}^{\mathsf{dyn}}(X)} D\psi \ e^{-S[\psi,A]} : \mathcal{F}^{\mathsf{bg}}(X) \to \mathbb{C}$$
 (schematically $\mathcal{F}^{\mathsf{dyn}}(X) \to \mathcal{F}(X) \to \mathcal{F}^{\mathsf{bg}}(X)$)

Partition functions and path integrals

- QFT: probability distribution over space of fields weighted by $\exp(-S)$
- ullet Path integral/partition function: integrate over dynamical fields ψ and consider result as a function of the background fields A

$$Z_X[A] = \int_{\psi \in \mathcal{F}^{\rm dyn}(X)} D\psi \ e^{-S[\psi,A]} : \mathcal{F}^{\rm bg}(X) \to \mathbb{C}$$
 (schematically
$$\underbrace{\mathcal{F}^{\rm dyn}(X)}_{\text{fermions, matter}} \to \mathcal{F}(X) \to \underbrace{\mathcal{F}^{\rm bg}(X)}_{\text{background gauge fields}}$$

"A failure of Z[A] to be defined globally and gauge invariantly."

Example

• X: 4d-dimensional spin manifold with a principal G-bundle $P \to X$ and associated bundle $E_P := P \times_G V$

"A failure of Z[A] to be defined globally and gauge invariantly."

Example

Anomalies in QFT

- X: 4d-dimensional spin manifold with a principal G-bundle $P \to X$ and associated bundle $E_P := P \times_G V$
- $\mathcal{A} := \operatorname{Conn}(P)$ space of connections, $\mathcal{F}_{\mathsf{fer}} := \Gamma(X, S^+ \otimes E_P)$ space of spinors, so $\mathcal{F}(X) = (\mathcal{A} \times \mathcal{F}_{\mathsf{fer}})/\mathcal{G}$

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

Anomalies in QFT 00000000000

- X: 4d-dimensional spin manifold with a principal G-bundle $P \to X$ and associated bundle $E_P := P \times_G V$
- $\mathcal{A} := \operatorname{Conn}(P)$ space of connections, $\mathcal{F}_{\operatorname{fer}} := \Gamma(X, S^+ \otimes E_P)$ space of spinors, so $\mathcal{F}(X) = (\mathcal{A} \times \mathcal{F}_{\text{fer}})/\mathcal{G}$
- Action functional $S[A, \psi] := \int_{Y} \psi^{\dagger} D_A \psi$

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

Example

- X: 4d-dimensional spin manifold with a principal G-bundle $P \to X$ and associated bundle $E_P := P \times_G V$
- $\mathcal{A} := \operatorname{Conn}(P)$ space of connections, $\mathcal{F}_{\mathsf{fer}} := \Gamma(X, S^+ \otimes E_P)$ space of spinors, so $\mathcal{F}(X) = (\mathcal{A} \times \mathcal{F}_{\mathsf{fer}})/\mathcal{G}$
- Action functional $S[A, \psi] := \int_X \psi^{\dagger} D_A \psi$
- Integrate out ψ : $Z[A] := \int_{\psi \in \Gamma(X,S^+ \otimes E_A)} e^{-\langle \psi,D_A\psi \rangle}$ is a section of the determinant line bundle $\mathcal{L}_{\mathsf{anom}}$ over the moduli stack $[\mathcal{A}/\mathcal{G}]$, associated to the family of chiral Dirac operators $\{D_A\}$ on X.

What is a quantum anomaly?

"A failure of Z[A] to be defined globally and gauge invariantly."

Example

Anomalies in QFT

- X: 4d-dimensional spin manifold with a principal G-bundle $P \to X$ and associated bundle $E_P := P \times_G V$
- $\mathcal{A} := \operatorname{Conn}(P)$ space of connections, $\mathcal{F}_{\mathsf{fer}} := \Gamma(X, S^+ \otimes E_P)$ space of spinors, so $\mathcal{F}(X) = (\mathcal{A} \times \mathcal{F}_{\mathsf{fer}})/\mathcal{G}$
- Action functional $S[A, \psi] := \int_X \psi^{\dagger} D_A \psi$
- Integrate out ψ : $Z[A] := \int_{\psi \in \Gamma(X,S^+ \otimes E_A)} e^{-\langle \psi,D_A\psi \rangle}$ is a section of the determinant line bundle $\mathcal{L}_{\mathsf{anom}}$ over the moduli stack $[\mathcal{A}/\mathcal{G}]$, associated to the family of chiral Dirac operators $\{D_A\}$ on X.
- By the family index theorem, we have a class $P_{d+2} := [\hat{A}(X) \operatorname{ch}(F)]_{(d+2)}$ on $X \times [\mathcal{A}/\mathcal{G}]$ such that $\int_X P_{d+2} \in \Omega^2(\mathcal{A}/\mathcal{G})$ is the curvature form of $\mathcal{L}_{\operatorname{anom}}$.

Local anomalies are encoded in anomaly polynomials

$$\mathcal{F}^{\mathsf{dyn}}(X) o \mathcal{F}(X) o \mathcal{F}^{\mathsf{bg}}(X)$$

$$Z_X[A] = \int_{\psi \in \mathcal{F}^{\mathsf{dyn}}(X)} D\psi \ e^{-S[\psi,A]} \in \Gamma(\mathcal{F}^{\mathsf{bg}}(X), \mathcal{L}_{\mathsf{anom}})$$

- Families index theorem \implies curvature of \mathcal{L}_{anom} is encoded by a degree d+2 anomaly polynomial
 - an index quantity on X
 - characteristic forms of the gauge fields

Local anomalies are encoded in anomaly polynomials

$$\mathcal{F}^{\mathsf{dyn}}(X) o \mathcal{F}(X) o \mathcal{F}^{\mathsf{bg}}(X)$$

$$Z_X[A] = \int_{\psi \in \mathcal{F}^{\mathsf{dyn}}(X)} D\psi \ e^{-S[\psi,A]} \in \Gamma(\mathcal{F}^{\mathsf{bg}}(X), \mathcal{L}_{\mathsf{anom}})$$

- Families index theorem \implies curvature of \mathcal{L}_{anom} is encoded by a degree d+2 anomaly polynomial
 - an index quantity on X
 - characteristic forms of the gauge fields
- (Green-Schwarz mechanism) If $P_{d+2} = X_4 \wedge X_{d-2}$, can construct a "counterterm" to cancel the anomaly

Anomaly inflow

• (Green-Schwarz mechanism) If $P_{d+2} = X_4 \wedge X_{d-2}$, can construct a "counterterm" α_{anom} to cancel the anomaly

$$Z_X[A]e^{-2\pi i \alpha_{anom}}$$

• (Anomaly inflow) This phase comes from the partition function of a field theory in dimension d+1: there is some M with $\partial M=X$ and such that

$$Z_X[A]e^{-2\pi i(\operatorname{Idx}(M)+\int_M H\wedge X_{d-2})}$$
 is gauge invariant

only well defined if X_4 is cohomologically trivial on M.

ullet We call this d+1-dimensional theory the anomaly theory of Z

Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

• We consider 6d $\mathcal{N}=(1,0)$ supergravity theories with type A-D-E or abelian gauge groups

Our setup: 6d supergravity theories

• We consider 6d $\mathcal{N}=(1,0)$ supergravity theories with U(1) gauge group, meaning our 6-dimensional manifolds X are equipped with $f:X\to BU(1)$ inducing a complex line bundle $\mathcal{L}:=f^*(\mathcal{O}(1))$.

Our setup: 6d supergravity theories

- We consider 6d $\mathcal{N}=(1,0)$ supergravity theories with U(1) gauge group, meaning our 6-dimensional manifolds X are equipped with $f:X\to BU(1)$ inducing a complex line bundle $\mathcal{L}:=f^*(\mathcal{O}(1))$.
- Anomaly polynomial is

$$(\frac{1}{2}p_1(X)-nc_1(\mathcal{L})^2)c_1(\mathcal{L})^2$$

Our setup: 6d supergravity theories

- We consider 6d $\mathcal{N}=(1,0)$ supergravity theories with U(1) gauge group, meaning our 6-dimensional manifolds X are equipped with $f:X\to BU(1)$ inducing a complex line bundle $\mathcal{L}:=f^*(\mathcal{O}(1))$.
- Anomaly polynomial is

$$(\frac{1}{2}p_1(X)-nc_1(\mathcal{L})^2)c_1(\mathcal{L})^2$$

• Upshot: all the information of the anomalies is encoded in a 7d anomaly theory defined on 7-manifolds with $\frac{1}{2}p_1(TM)=nc_1(\mathcal{L})^2$

Local anomalies and twisted tangential structures

String structures

7-manifolds with
$$\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$$

Definition (String structure)

Let M be a spin manifold, then $p_1(M)$ is even. A string structure on M is a trivialization of $\frac{1}{2}p_1(M)$.

$$BString$$

$$M \xrightarrow{TM} BSpin \xrightarrow{\frac{1}{2}p_1} K(\mathbb{Z}, 4)$$

Anomalies in QFT

Twisted string structures

7-manifolds with $\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$

Definition (String structure)

Let M be a spin manifold, then $p_1(M)$ is even. A *string structure* on M is a trivialization of $\frac{1}{2}p_1(M)$.

Definition $(nc_1^2$ -twisted string structure)

Let M be a spin manifold equipped with a map $f: M \to BU(1)$. An nc_1^2 -twisted string structure is a trivialization of $\frac{1}{2}p_1(M) - nc_1(\mathcal{L})^2$.

$$\begin{array}{ccc} M \stackrel{f}{\longrightarrow} BU(1) \\ TM & & \downarrow_{nc_1(\mathcal{O}(1))^2} \\ B\mathrm{Spin} \stackrel{\frac{1}{2}p_1}{\longrightarrow} K(\mathbb{Z},4) \end{array}$$

Twisted string structures

7-manifolds with $\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$

Definition $(nc_1^2$ -twisted string structure)

Let M be a spin manifold equipped with a map $f: M \to BU(1)$. An nc_1^2 -twisted string structure is a trivialization of $\frac{1}{2}p_1(M) - nc_1(\mathcal{L})^2$.

Twisted string structures

7-manifolds with $\frac{1}{2}p_1(TM) = nc_1(\mathcal{L})^2$

Definition (nc_1^2 -twisted string structure)

Let M be a spin manifold equipped with a map $f: M \to BU(1)$. An nc_1^2 -twisted string structure is a trivialization of $\frac{1}{2}p_1(M) - nc_1(\mathcal{L})^2$.

Anomalies in QFT 0000000000

> Consider the (virtual) bundle $T = \mathcal{O}(1) + \mathcal{O}(-1) - 2_{\mathbb{C}}$ on BU(1). We also call this a (BU(1), -nT)-twisted string structure, because given a manifold M with a map $f: M \to BU(1)$, it is the data of a string structure on $TM + f^*(-nT)$.

$$a^{\frac{1}{2}}p_{1}(TM - f^{*}nT) = \frac{1}{2}p_{1}(TM) - nc_{1}(f^{*}\mathcal{O}(1))^{2} = 0$$

• QFT: Try to integrate $D\psi e^{-S[A,\psi]}$ over dynamical fields, result is section of $\mathcal{L}_{\mathsf{anom}} \to \mathcal{F}^{\mathsf{bg}}(X)$

- QFT: Try to integrate $D\psi e^{-S[A,\psi]}$ over dynamical fields, result is section of $\mathcal{L}_{anom} \to \mathcal{F}^{bg}(X)$
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$

- QFT: Try to integrate $D\psi e^{-S[A,\psi]}$ over dynamical fields, result is section of $\mathcal{L}_{anom} \to \mathcal{F}^{bg}(X)$
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widetilde{A}]}$ is, with $\partial M=X$

- QFT: Try to integrate $D\psi e^{-S[A,\psi]}$ over dynamical fields, result is section of $\mathcal{L}_{anom} \to \mathcal{F}^{bg}(X)$
- Local anomaly (curvature of $\mathcal{L}_{\sf anom}$) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widetilde{A}]}$ is, with $\partial M = X$
- α_M is a well-defined field theory in d+1 dimensions if M has $X_4=0$, which is a twisted tangential structure

- QFT: Try to integrate $D\psi e^{-S[A,\psi]}$ over dynamical fields, result is section of $\mathcal{L}_{anom} \to \mathcal{F}^{bg}(X)$
- Local anomaly (curvature of $\mathcal{L}_{\mathsf{anom}}$) encoded in $P_{d+2} = X_4 \wedge X_{d-4}$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widehat{A}]}$ is, with $\partial M = X$
- α_M is a well-defined field theory in d+1 dimensions if M has $X_4=0$, which is a twisted tangential structure
- We call it the anomaly theory, and it is an invertible topological field theory defined on X₄ manifolds

- QFT: Try to integrate $D\psi e^{-S[A,\psi]}$ over dynamical fields, result is section of $\mathcal{L}_{anom} \to \mathcal{F}^{bg}(X)$
- Local anomaly (curvature of \mathcal{L}_{anom}) encoded in $P_{d+2} = (\frac{1}{2}p_1(X) nc_1(\mathcal{L})^2)c_1(\mathcal{L})^2$
- $Z_X[A]$ not gauge invariant but $Z_X[A]e^{-2\pi i\alpha_M[\widehat{A}]}$ is, with $\partial M = X$
- α_M is a well-defined field theory in d+1 dimensions if M is nc_1^2 -twisted string
- We call it the anomaly theory, and it is an invertible topological field theory defined on nc₁²-twisted string manifolds

Invertible field theories and bordism

The functorial formalism and its interpretation

The data of a field theory in d+1 dimensions can often be organized mathematically as follows:

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc_1^2 -twisted String manifolds) is a symmetric monoidal functor

$$Z: (\mathsf{Bord}^{\mathit{nc}_1^2\operatorname{\mathsf{-String}}}_{\langle d,d+1
angle},\sqcup) o (\mathsf{sVect}_\mathbb{C},\otimes)$$

Anomalies in QFT

The functorial formalism and its interpretation

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc_1^2 -twisted String manifolds) is a symmetric monoidal functor

$$Z: (\mathsf{Bord}^{\mathit{nc}_1^2\operatorname{\mathsf{-String}}}_{\langle d,d+1
angle},\sqcup) o (\mathsf{sVect}_\mathbb{C},\otimes)$$

- $Z(X^d)$ is interpreted as a state space of the theory
- For a closed d+1 manifold M, interpreted as a bordism $\emptyset \leadsto \emptyset$, the morphism $Z(M) : \mathbb{C} \to \mathbb{C}$ in $s\text{Vect}_{\mathbb{C}}$ is determined by a choice of complex number $\eta \in \mathbb{C}$ interpreted as the value of the partition function on M

Invertibility

There is a tensor product structure on the set of all functorial field theories given by point-wise tensor product in $(s\text{Vect}_{\mathbb{C}}, \otimes)$:

$$(Z_1 \otimes Z_2)(X^d) = Z_1(X) \otimes Z_2(X)$$

Invertibility

There is a tensor product structure on the set of all functorial field theories given by point-wise tensor product in ($sVect_{\mathbb{C}}, \otimes$):

$$(Z_1 \otimes Z_2)(X^d) = Z_1(X) \otimes Z_2(X)$$

Definition (Invertible field theory)

A functorial field theory $Z:\mathsf{Bord}_{\langle d,d+1
angle}^{\mathit{nc}_1^2\mathsf{-String}} o s\mathsf{Vect}_\mathbb{C}$ is said to be invertible if it is tensor-invertible under the above tensor product. Anomalies in QFT

Invertible field theories

IFTs and bordism

Invertible field theories (IFTs) factor through the maximal Picard groupoid 1 of the target $s\mathrm{Line}_\mathbb{C} \subset s\mathrm{Vect}_\mathbb{C}$

$$(\operatorname{Bord}_{\langle d,d+1 \rangle}^{nc_1^2\text{-twisted}},\sqcup) \xrightarrow{Z} (\operatorname{sVect}_{\mathbb{C}},\otimes)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad (\operatorname{sLine}_{\mathbb{C}},\otimes)$$

¹A Picard groupoid is a fully invertible symmetric monoidal category

Invertible field theories (IFTs) factor through the groupoid completion of the source.

$$\begin{array}{ccc} (\mathrm{Bord}_{\langle d,d+1\rangle}^{nc_1^2\text{-twisted}},\sqcup) & \xrightarrow{\hspace{1cm} Z \hspace{1cm}} (s\mathrm{Vect}_{\mathbb{C}},\otimes) \\ & \downarrow & & \uparrow \\ (\mathrm{Bord}_{\langle d,d+1\rangle}^{nc_1^2\text{-twisted}},\sqcup)^{\mathsf{gp}} & \xrightarrow{\hspace{1cm}} (s\mathrm{Line}_{\mathbb{C}},\otimes) \end{array}$$

IFTs are classified by maps of spectra.

$$\begin{array}{ccc} \left(\operatorname{Bord}_{\langle d,d+1\rangle}^{nc_1^2\text{-twisted}},\sqcup\right) & \xrightarrow{Z} \left(\operatorname{sVect}_{\mathbb{C}},\otimes\right) \\ \downarrow & & \uparrow & \uparrow \\ \left(\operatorname{Bord}_{\langle d,d+1\rangle}^{nc_1^2\text{-twisted}},\sqcup\right)^{\operatorname{gp}} & \xrightarrow{----} \left(\operatorname{sLine}_{\mathbb{C}},\otimes\right) \\ & & \xrightarrow{\operatorname{bordism}} & \xrightarrow{\operatorname{character}} & \xrightarrow{\operatorname{character}} & \xrightarrow{\operatorname{dual of the}} & \xrightarrow{\operatorname{spectrum}} & \xrightarrow{\operatorname{character}} & \xrightarrow{\operatorname{dual of the}} & \xrightarrow{\operatorname{character}} &$$

sphere

IFTs are classified by maps of spectra.

Anomalies in QFT

Classifying invertible field theories

IFTs are classified by maps of spectra.

$$(\operatorname{Bord}_{\langle d,d+1\rangle}^{nc_1^2\text{-twisted}},\sqcup) \xrightarrow{Z} (\operatorname{sVect}_{\mathbb{C}},\otimes)$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$(\operatorname{Bord}_{\langle d,d+1\rangle}^{nc_1^2\text{-twisted}},\sqcup)^{\operatorname{gp}} \xrightarrow{-----} (\operatorname{sLine}_{\mathbb{C}},\otimes)$$

$$\stackrel{\operatorname{bordism}}{\stackrel{\operatorname{bordism}}{\stackrel{\operatorname{spectrum}}{\longrightarrow}}} \xrightarrow{\operatorname{character}} \stackrel{\operatorname{character}}{\stackrel{\operatorname{sphere}}{\longrightarrow}}$$

$$M\operatorname{String} \wedge BU(1)^{-nT} \xrightarrow{\longrightarrow} I\mathbb{C}^{\times}$$

Classification theorems: Freed-Hopkins, Freed-Hopkins-Teleman, Grady (deformation classes)

Our mathematical setup

Summary of the physics → topology conversion

• When we study anomaly cancellation of a *d*-dimensional theory, we:

- When we study anomaly cancellation of a d-dimensional theory, we:
 - ① Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$

- When we study anomaly cancellation of a *d*-dimensional theory, we:
 - ① Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - 2 Represent the total anomaly by (d+1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X_4

- When we study anomaly cancellation of a d-dimensional theory, we:
 - ① Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{d+2} = X_4 \wedge X_{d-2}$
 - 2 Represent the total anomaly by (d+1)-dimensional IFT in terms of X_{d-2} with the twisted tangential structure determined by X_4
 - IFTs are determined by the map they define out of a bordism group of manifolds with X_4 structure

Anomalies in QFT

- When we study anomaly cancellation of a d-dimensional theory, we:
 - ① Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{6+2} = (\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)) \wedge c_1(\mathcal{L})^2$
 - 2 Represent the total anomaly by (d+1)-dimensional IFT in terms of $c_1(\mathcal{L})^2$ with the twisted tangential structure determined by $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)$
 - IFTs are determined by the map they define out of a bordism group of manifolds with $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2) = 0$ structure

Anomalies in QFT

Goals

- When we study anomaly cancellation of a d-dimensional theory, we:
 - ① Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{6+2} = (\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)) \wedge c_1(\mathcal{L})^2$
 - ② Represent the total anomaly by (d+1)-dimensional IFT in terms of $c_1(\mathcal{L})^2$ with the twisted tangential structure determined by $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)$
 - IFTs are determined by the map they define out of a bordism group of manifolds with $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2) = 0$ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group

Goals

Anomalies in QFT

- When we study anomaly cancellation of a d-dimensional theory, we:
 - **1** Compute the local anomaly: curvature of $\mathcal{L}_{\mathsf{anom}}$, detected by $P_{6+2} = (\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)) \wedge c_1(\mathcal{L})^2$
 - 2 Represent the total anomaly by (d+1)-dimensional IFT in terms of $c_1(\mathcal{L})^2$ with the twisted tangential structure determined by $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)$
 - IFTs are determined by the map they define out of a bordism group of manifolds with $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2) = 0$ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group
 - Compute 7-dimensional twisted string bordism groups.

Anomalies in QFT

Goals

- When we study anomaly cancellation of a d-dimensional theory, we:
 - ① Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{6+2} = (\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)) \wedge c_1(\mathcal{L})^2$
 - ② Represent the total anomaly by (d+1)-dimensional IFT in terms of $c_1(\mathcal{L})^2$ with the twisted tangential structure determined by $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)$
 - IFTs are determined by the map they define out of a bordism group of manifolds with $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2) = 0$ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group
 - Compute 7-dimensional twisted string bordism groups. They are nonzero!

Goals

Anomalies in QFT

- When we study anomaly cancellation of a d-dimensional theory, we:
 - **①** Compute the local anomaly: curvature of \mathcal{L}_{anom} , detected by $P_{6+2} = (\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)) \wedge c_1(\mathcal{L})^2$
 - 2 Represent the total anomaly by (d+1)-dimensional IFT in terms of $c_1(\mathcal{L})^2$ with the twisted tangential structure determined by $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2)$
 - IFTs are determined by the map they define out of a bordism group of manifolds with $\frac{1}{2}p_1(X) - nc_1(\mathcal{L}^2) = 0$ structure
- Goal: prove anomaly cancellation in 6d supergravity with U(1) gauge group
 - Compute 7-dimensional twisted string bordism groups. They are nonzero!
 - Construct 7-dimensional manifold generators to compute α_{anom} on

• Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- ullet Few useful comparison maps, $\Omega_7^{\mathsf{Spin}} \cong \Omega_7^{\mathsf{String}} \cong 0$

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups.

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.
- Generators?
 - $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.
- Generators?
 - $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.
- Generators?
 - $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string structure, but hard to detect if generators.

Solutions

- Adams spectral sequence: trivial at p > 5, extension problems at p = 2, 3.
- \bullet Few useful comparison maps, $\Omega_7^{\mathsf{Spin}} \cong \Omega_7^{\mathsf{String}} \cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.
- Generators?
 - $K3 \times S^3$. $\mathbb{CP}^2 \times S^3$ are not twisted string.
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string strucutre, but hard to detect if generators.

Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString $\wedge BU(1)^{-nT}$ are there?

Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString $\land BU(1)^{-nT}$ are there?

Theorem (Basile-Krulewski-Leone-P.-T.)

The homotopy class of $MString \wedge BU(1)^{-nT}$ only depends on the value of $n \pmod{12}$.

Solutions

Anomalies in QFT

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.
- Generators?
 - $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string strucutre, but hard to detect if generators.

Anomalies in QFT

Theorem (Basile-Krulewski-Leone-P.-T.)

Given a (BU(1), -nT)-twisted string 7-manifold M, there exists a spin 8-manifold N with $\widetilde{f}: N \to BU(1)$ and $\partial N = M$, then the map

MString $\wedge BU(1)^{-nT}$

$$lpha_8^{m{\mathcal{E}}}:\Omega_8^{Spin}(BU(1)) o \mathbb{Z}$$
 $N\mapsto \int_N \hat{A}(TN)ch(E-\operatorname{rk} E)$

descends to an invariant

$$\alpha_7^{\textit{E}}(\textit{M}) := \alpha_8^{\textit{E}}(\textit{N}) : \Omega_7^{\textit{String}}(\textit{BU}(1)^{-\textit{nT}}) \to \mathbb{Q}/\mathbb{Z}$$

precisely when $ch_4(E) = nx^2 ch_2(E)$.

Theorem-in-progress (Basile-Krulewski-Leone-P.-T.)

All bordism invariants $\Omega_7^{String}(BU(1)^{-nT}) \to \mathbb{Q}/\mathbb{Z}$ arise in this way.

Solutions

Anomalies in QFT

- Adams spectral sequence: trivial at $p \ge 5$, extension problems at p = 2, 3.
- Few useful comparison maps, $\Omega_7^{\rm Spin}\cong\Omega_7^{\rm String}\cong 0$ and comparison maps changing the dimension land in high dimensional or 0 groups. Smith homomorphisms provide limited success for some -nT twists but we want something that works for all -nT twists.
- Generators?
 - $K3 \times S^3$, $\mathbb{CP}^2 \times S^3$ are not twisted string,
 - odd dimension means no hope for complex algebraic representatives.
 - Lens spaces? Can determine twisted string strucutre, but hard to detect if generators.

Solutions: manifold generators from sphere bundles

Instead of $\mathbb{CP}^2 \times S^3$, we consider "twisted products" $\mathbb{CP}^2 \times S^3$, namely sphere bundles S(V) of rank 4 real vector bundles $V \to \mathbb{CP}^2$.

Instead of $\mathbb{CP}^2 \times S^3$, we consider "twisted products" $\mathbb{CP}^2 \widetilde{\times} S^3$, namely sphere bundles S(V) of rank 4 real vector bundles $V \to \mathbb{CP}^2$.

• They naturally come equipped with a map to BU(1): $S(V) \to \mathbb{CP}^2 \to BU(1)$.

Instead of $\mathbb{CP}^2 \times S^3$, we consider "twisted products" $\mathbb{CP}^2 \times S^3$, namely sphere bundles S(V) of rank 4 real vector bundles $V \to \mathbb{CP}^2$

- They naturally come equipped with a map to BU(1): $S(V) \to \mathbb{CP}^2 \to BU(1)$.
- They naturally come equipped with a bulk manifold: $S(V) = \partial D(V)$.

Theorem (Basile-Krulewski-Leone-P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1,\chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1,\chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

•
$$[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$$

Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski-Leone-P.-T.)

The map

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1,\chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

- $[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$
- Things in the image of $[\mathbb{CP}^2, BSU(2)] \to [\mathbb{CP}^2, BSO(4)]$ satisfy this property

Theorem (Basile-Krulewski-Leone-P.-T.)

The map

Anomalies in QFT

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1,\chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

- $[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$
- Things in the image of $[\mathbb{CP}^2, BSU(2)] \to [\mathbb{CP}^2, BSO(4)]$ satisfy this property
- $[S^4, BSO(4)]$ acts on $[\mathbb{CP}^2, BSO(4)]$ and acting by TS^4 sends $(p,e) \rightsquigarrow (p,e+2)$

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

Anomalies in QFT

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(p_1,\chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{p_1}{2} \equiv \chi \pmod{2}$.

- $[\mathbb{CP}^2, BU(2)] \xrightarrow{(c_1, c_2)} \mathbb{Z} \times \mathbb{Z}$
- Things in the image of $[\mathbb{CP}^2, BSU(2)] \to [\mathbb{CP}^2, BSO(4)]$ satisfy this property
- $[S^4, BSO(4)]$ acts on $[\mathbb{CP}^2, BSO(4)]$ and acting by TS^4 sends $(p, e) \rightsquigarrow (p, e + 2)$
- Use the fibration $S^4 \to BSO(4) \to BSO(5)$ to show TS^4 acts transitively on the set of bundles with a given p_1

Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

Anomalies in QFT

$$[\mathbb{CP}^2, BSO(4)] \xrightarrow{(\rho_1, \chi)} \mathbb{Z} \times \mathbb{Z}$$

is an isomorphism onto the subset satisfying $\binom{\rho_1}{2} \equiv \chi \pmod{2}$.

Theorem (Basile–Krulewski–Leone–P.-T.)

S(V) equipped with $f: S(V) \xrightarrow{\pi} \mathbb{CP}^2 \subset BU(1)$ is nc_1^2 -twisted string exactly when $p_1(V) + 3 + 2n \equiv 0 \pmod{2\chi(V)}$ in which case

$$\alpha_7^E(S(V)) = \frac{ch_2(E)(p_1(V) + 3 + 2n)}{48e(V)}$$

 $MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString$

 $(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

$$(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$$

• MString $\wedge BU(1)^{-T}$: $(M, f : M \to BU(1), \phi)$, M spin and ϕ a string structure on $TM - f^*T$

$$(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$$

- MString $\wedge BU(1)^{-T}$: $(M, f: M \to BU(1), \phi)$, M spin and ϕ a string structure on $TM f^*T$
- $M\mathrm{Spin} \wedge BU(1)^{-T}$: $(N,g:N\to BU(1),\psi)$, N oriented and ψ a spin structure on $TN-f^*nT$

$$(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$$

- MString $\wedge BU(1)^{-T}$: $(M, f: M \to BU(1), \phi)$, M spin and ϕ a string structure on $TM f^*T$
- $M\mathrm{Spin} \wedge BU(1)^{-T}$: spin manifolds N with a map to $BU(1)^{-1}$

 $¹ M \operatorname{Spin} \wedge BU(1)^{-T} \cong M \operatorname{Spin} \wedge BU(1)_{+}$

 $(MString \rightarrow MSpin \rightarrow MSpin/MString \rightarrow \Sigma MString) \land BU(1)^{-T}$

- $MString \wedge BU(1)^{-T}$: $(M, f: M \rightarrow BU(1), \phi)$, M spin and ϕ a string structure on $TM - f^*T$
- $MSpin \wedge BU(1)^{-T}$: spin manifolds N with a map to $BU(1)^{-1}$
- $MSpin/MString \wedge BU(1)^{-T}$: $(N, M, f : N \rightarrow BU(1), \phi)$, N is spin, $M = \partial N$, and ϕ is a string structure on $TM - f|_{\partial N}^* T$

 $^{^{1}}M\mathrm{Spin} \wedge BU(1)^{-T} \cong M\mathrm{Spin} \wedge BU(1)_{+}$

Overview of the construction

We wish to construct morphisms

$$\alpha_8: \pi_8 M \mathrm{Spin} \wedge BU(1)^{-T} \to \mathbb{Z}$$

that descend along the diagram

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \longrightarrow \pi_8 M \mathrm{Spin}/M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longleftarrow \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

For $(N, f) \in \pi_8 M \mathrm{Spin} \wedge BU(1)_+$, consider the "index of the twisted Dirac operator"

$$lpha_8^{\mathcal{O}(1)}(\mathit{N},f) = \hat{\mathit{A}}(\mathit{TN})\mathsf{ch}(f^*\mathcal{O}(1) - 1_\mathbb{C})[\mathit{N}]$$

For $(N, f) \in \pi_8 M \operatorname{Spin} \wedge BU(1)_+$, consider the "index of the twisted Dirac operator"

$$\alpha_8^{\mathcal{O}(1)}(N, f) = \hat{A}(TN) \underbrace{\operatorname{ch}(f^*\mathcal{O}(1) - 1_{\mathbb{C}})}_{\text{could twist by any } E}[N]$$

For $(N, f) \in \pi_8 M \operatorname{Spin} \wedge BU(1)_+$, consider the "index of the twisted Dirac operator"

$$lpha_8^{\mathcal{O}(1)}(\mathit{N},f) = \hat{A}(\mathit{TN})\mathsf{ch}(f^*\mathcal{O}(1) - 1_\mathbb{C})[\mathit{N}]$$

By APS, this is a K-theory pushforward²

$$egin{aligned} [\mathcal{O}(1)-1_{\mathbb{C}}]\in& KU(BU(1)) & \stackrel{f^*}{\longrightarrow} KU(N) & \stackrel{i_!}{\longrightarrow} KU(\mathsf{pt}) \cong \mathbb{Z} \ & \hat{A}(N)\mathrm{ch}\!\!\downarrow & \downarrow & \downarrow \ & H(N;\mathbb{Q}) & \stackrel{f_N}{\longrightarrow} H(\mathsf{pt};\mathbb{Q}) \cong \mathbb{Q} \end{aligned}$$

²Can also define as a KO pushforward

A bordism invariant

8d integer invariant

For $(N, f) \in \pi_8 M \operatorname{Spin} \wedge BU(1)_+$, consider the "index of the twisted Dirac operator"

$$lpha_8^{\mathcal{O}(1)}(\mathit{N},f) = \hat{A}(\mathit{TN})\mathsf{ch}(f^*\mathcal{O}(1) - 1_\mathbb{C})[\mathit{N}]$$

By APS, this is a K-theory pushforward²

$$egin{aligned} [\mathcal{O}(1)-1_{\mathbb{C}}]\in& KU(BU(1)) & \stackrel{f^*}{\longrightarrow} KU(N) & \stackrel{l_!}{\longrightarrow} KU(\mathsf{pt}) \cong \mathbb{Z} \ & \hat{A}(N)\mathrm{ch}\!\!\downarrow & \downarrow & \downarrow \ & H(N;\mathbb{Q}) & \stackrel{f_N}{\longrightarrow} H(\mathsf{pt};\mathbb{Q}) \cong \mathbb{Q} \end{aligned}$$

So it defines an integer-valued map

$$\alpha_{s}^{\mathcal{O}(1)}: \pi_{8}M\mathrm{Spin} \wedge BU(1)^{-nT} \to \mathbb{Z}$$

²Can also define as a KO pushforward

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Proof. Consider a degree 4 hypersurface $N \subset \mathbb{CP}^5$, it naturally comes equipped with $f: N \subset \mathbb{CP}^5 \to \mathbb{CP}^\infty$.

Claim

 $\alpha_8^{\mathcal{O}(1)}$ can take on any integer value.

Proof. Consider a degree 4 hypersurface $N\subset \mathbb{CP}^5$, it naturally comes equipped with $f:N\subset \mathbb{CP}^5\to \mathbb{CP}^\infty$. We have $TN+\mathcal{O}(1)=6\mathcal{O}(1)-\mathcal{O}(4)$, so

$$p_1(TN) = (6-16)x^2 = -10x^2$$

Claim

Anomalies in QFT

 $\alpha_{\circ}^{\mathcal{O}(1)}$ can take on any integer value.

Proof. Consider a degree 4 hypersurface $N \subset \mathbb{CP}^5$, it naturally comes equipped with $f: N \subset \mathbb{CP}^5 \to \mathbb{CP}^{\infty}$. We have TN + O(1) = 6O(1) - O(4), so

$$p_1(TN) = (6-16)x^2 = -10x^2$$

It follows that

$$\alpha_8^{\mathcal{O}(1)}(N, f) = \int_N 10x^4/48 + x^4/24 = \int_N 12x^4/48$$

$$= \int_{\mathbb{P}^5} 4(12h^4/48) = 1$$

The invariant can be written as

$$lpha_8^{\mathcal{O}(1)}(N, f) = \hat{A}(TN) \operatorname{ch}(f^*\mathcal{O}(1) - 1_{\mathbb{C}})[N]$$

$$= -\int_N (p_1(TN) - 2x^2) x^2 / 48$$

$$= -\int_N p_1(TN - f^*T) x^2 / 48$$

Extending to the relative groups

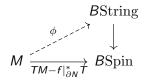
Take $(N, M, f, \phi) \in \pi_8 M \operatorname{Spin}/M \operatorname{String} \wedge BU(1)^{-T}$,

$$M \xrightarrow{\phi} BString$$

$$M \xrightarrow{TM-f|_{\partial N}^* T} BSpin$$

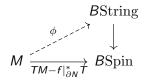
Extending to the relative groups

Take $(N, M, f, \phi) \in \pi_8 M \operatorname{Spin}/M \operatorname{String} \wedge BU(1)^{-T}$,



• BString is 7-connected, so we may choose a trivialization $\widetilde{\phi}$ of $TM - f|_{\partial N}^*T$

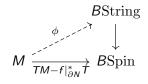
Take $(N, M, f, \phi) \in \pi_8 M \operatorname{Spin}/M \operatorname{String} \wedge BU(1)^{-T}$,



- BString is 7-connected, so we may choose a trivialization ϕ of $TM f|_{\partial N}^*T$
- This defines a relative KO class $[TN f^*T]_{\widetilde{\phi}} \in KO(N, M)$ and a relative class $p_1([TN - f^*T]_{\widetilde{\phi}}) \in H^4(N, M)$

Extending to the relative groups

Take $(N, M, f, \phi) \in \pi_8 M \operatorname{Spin}/M \operatorname{String} \wedge BU(1)^{-T}$,



- BString is 7-connected, so we may choose a trivialization ϕ of $TM f|_{\partial N}^*T$
- This defines a relative KO class $[TN f^*T]_{\widetilde{\phi}} \in KO(N, M)$ and a relative class $p_1([TN f^*T]_{\widetilde{\phi}}) \in H^4(N, M)$
- Define $\alpha_{\text{rel}}^{\mathcal{O}(1)} = -p_1([TN f^*T]_{\widetilde{\phi}})c_1(\mathcal{L})^2[N]$ using Poincare-Lefschetz duality

Extending to the relative groups

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \longrightarrow \pi_8 M \mathrm{Spin} / M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow^{\alpha_8^{\mathcal{O}(1)}} \qquad \downarrow^{\alpha_{\mathrm{rel}}^{\mathcal{O}(1)}}$$

$$\mathbb{Z} \longleftarrow \mathbb{O}$$

$$\pi_8 M \mathrm{Spin} / M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow^{\alpha_{\mathrm{rel}}^{\mathcal{O}(1)}} \qquad \qquad \downarrow^{\alpha_7^{\mathcal{O}(1)}}$$

$$\mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

$$\pi_8 M \mathrm{Spin} / M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow^{\alpha_7^{\mathcal{O}(1)}} \qquad \qquad \downarrow^{\alpha_7^{\mathcal{O}(1)}}$$

$$\mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

• $\phi: M \xrightarrow{TM-f^*T} BString lifts to a framing of <math>TM - f^*T$

$$\pi_8 M \mathrm{Spin} / M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow^{\alpha_{\mathrm{rel}}^{\mathcal{O}(1)}} \qquad \downarrow^{\alpha_7^{\mathcal{O}(1)}}$$

$$\mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

- $\phi: M \xrightarrow{TM-f^*T} BString lifts to a framing of <math>TM f^*T$
- $\pi_7(M{\sf Spin} \wedge BU(1)_+) \simeq 0$ so there exists a pair (N^8, \widetilde{f}) with $(M, f) = \partial(N, \widetilde{f})$

$$\pi_8 M \mathrm{Spin} / M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow^{\alpha_{\mathrm{rel}}^{\mathcal{O}(1)}} \qquad \qquad \downarrow^{\alpha_7^{\mathcal{O}(1)}}$$

$$\mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

- $\phi: M \xrightarrow{TM-f^*T} BString lifts to a framing of <math>TM f^*T$
- $\pi_7(M{\sf Spin} \wedge BU(1)_+) \simeq 0$ so there exists a pair (N^8, \widetilde{f}) with $(M, f) = \partial(N, \widetilde{f})$
- Set $\alpha_7^{\mathcal{O}(1)}(M, f, \phi) := \alpha_{\mathsf{rel}}^{\mathcal{O}(1)}(N, M)$

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \longrightarrow \pi_8 M \mathrm{Spin}/M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longleftarrow \longrightarrow \mathbb{Q}/\mathbb{Z}$$

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \to \pi_8 M \mathrm{Spin}/M \mathrm{String} \wedge BU(1)^{-T} \to \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longleftarrow \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

Index of Dirac operator twisted by $\mathcal{O}(1)-1_{\mathbb{C}}$ is a K-theory pushforward.

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \to \pi_8 M \mathrm{Spin}/M \mathrm{String} \wedge BU(1)^{-T} \to \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longleftarrow \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

It factors a $p_1([TN - f^*T])$ so it extends to a relative invariant.

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \longrightarrow \pi_8 M \mathrm{Spin}/M \mathrm{String} \wedge BU(1)^{-T} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longleftarrow \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

Any twisted string 7-manifold is on the boundary of a spin 8-manifold so this descends to a 7d invariant.

$$\pi_8 M \mathrm{Spin} \wedge BU(1)_+ \longrightarrow \pi_8 M \mathrm{Spin}/M \mathrm{String} \wedge BU(1)^{-nT} \longrightarrow \pi_7 M \mathrm{String} \wedge BU(1)^{-nT}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longleftarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z}$$

General case: need to choose E to twist Dirac operator by that both descends and detects the most torsion.

Manifold generators

Twisted string structures on S(V)

Given a rank 4 bundle
$$V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$$
 with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi})$, $\binom{p}{2} \equiv \chi \pmod{2}$

Twisted string structures on S(V)

Given a rank 4 bundle
$$V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$$
 with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi})$, $\binom{p}{2} \equiv \chi \pmod{2}$
• When is $D(V_{p,\chi})$ spin?

Twisted string structures on S(V)

Given a rank 4 bundle
$$V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$$
 with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi})$, $\binom{p}{2} \equiv \chi \pmod{2}$

• When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi})$, $\binom{p}{2} \equiv \chi \pmod{2}$

- When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.
- When does $S(V_{p,\chi})$ admit a (BU(1), -T)-twisted string structure?

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

- When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.
- When does $S(V_{p,\chi})$ admit a (BU(1), -T)-twisted string structure?

$$KO(D(V), S(V)) \rightarrow \widetilde{KO}(D(V)) \ni [TD(V) - f^*T]$$

Twisted string structures on S(V)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi})$, $\chi = e(V_{p,\chi}), \binom{p}{2} \equiv \chi \pmod{2}$

- When is $D(V_{p,\chi})$ spin? Exactly when p is odd, in which case it has a unique spin structure.
- When does $S(V_{p,\chi})$ admit a (BU(1), -T)-twisted string structure?

$$KO(D(V), S(V)) \rightarrow \widetilde{KO}(D(V)) \ni [TD(V) - f^*T]$$

$$[TD(V) - f^*T] = [V + 3\mathcal{O}(1) - (\mathcal{O}(1) + \mathcal{O}(-1))]$$

Sphere bundle generators

$\alpha_7^{\mathcal{O}(1)}$ on -T-twisted sphere bundles

Theorem (Basile-Krulewski-Leone-P.-T.)

Given a rank 4 bundle $V_{p,\chi} \xrightarrow{p} \mathbb{CP}^2$ with $p = p_1(V_{p,\chi}), \chi = e(V_{p,\chi}), S(V_{p,\chi})$ admits a (BU(1), -T)-twisted string structure exactly when

$$p+1\equiv 0\pmod{2\chi}$$

in which case

$$\alpha_7(S(V_{p,\chi})) = -\frac{p+1}{48\chi}$$

Sphere bundle generators

Anomalies in QFT

α_7^E on -nT-twisted sphere bundles

Theorem (Basile-Krulewski-Leone-P.-T.)

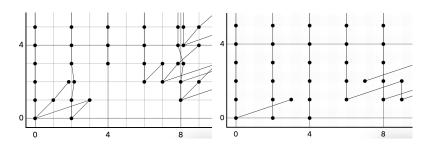
Given a rank 4 bundle $V_{p,\chi} \stackrel{p}{\to} \mathbb{CP}^2$ with $p = p_1(V_{p,\gamma}), \chi = e(V_{p,\gamma}), S(V_{p,\gamma})$ admits a (BU(1), -T)-twisted string structure exactly when

$$p+3-2n\equiv 0\pmod{2\chi}$$

in which case

$$\alpha_7^E = -\frac{ch_2(E)(p+3-2n)}{48\chi}$$

Order of the n = 1 bordism group



• $p=3, \chi=1$ satisfies $\binom{3}{2}\equiv 1 \pmod{2}$, $3+1\equiv 0 \mod 2$ and

$$\alpha_7^{\mathcal{O}(1)}(S(V_{3,1})) = -\frac{1}{12}$$

Thank you!