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Anomalies in quantum field
theory



What is a field theory?

A field theory is the data of

@ A spacetime manifold X which is d dimensional
e A moduli F(X) of objects over X, called fields, e.g.

e connections on a principal G-bundle P — X (gauge fields)
o sections of a vector bundle E — X (matter fields)

e maps to a target manifold Maps(X, Y) (sigma models)

e metrics on X (gravity)

@ An action functional S : F(X) — C
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What is a classical field theory?

A field theory is the data of

@ A spacetime manifold X which is d dimensional
e A moduli F(X) of objects over X, called fields, e.g.

connections on a principal G-bundle P — X (gauge fields)
sections of a vector bundle E — X (matter fields)

maps to a target manifold Maps(X, Y) (sigma models)
metrics on X (gravity)

@ An action functional S : F(X) — C

A classical field theory finds physical fields v by solving a principle
of stationary action §5/dy = 0.
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What is a quantum field theory?

A field theory is the data of

@ A spacetime manifold X which is d dimensional
e A moduli F(X) of objects over X, called fields, e.g.
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]
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connections on a principal G-bundle P — X (gauge fields)
sections of a vector bundle E — X (matter fields)

maps to a target manifold Maps(X, Y) (sigma models)
metrics on X (gravity)

@ An action functional S : F(X) — C

A quantum field theory instead defines a probability measure on
F(X) weighted by exp(—S) (assuming X has Euclidean signature)
and computes probability amplitudes and correlation functions of
observable physical quantities in this measure.
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Quantization, symmetries, and anomalies

Partition functions and path integrals

@ QFT: probability distribution over space of fields weighted by
exp(—5)
e Path integral/partition function: integrate over dynamical

fields 1) and consider result as a function of the background
fields A

Zx[A] = / Dip e=SWAL L Fre(X) — €
,L",Efdyn (X)
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Quantization, symmetries, and anomalies

Partition functions and path integrals

e QFT: probability distribution over space of fields weighted by
exp(—S5)
o Path integral/partition function: integrate over dynamical

fields 1) and consider result as a function of the background
fields A

Zx[A] = / Dip e SWAL L Fre(X) — €
,L",Efdyn (X)

(schematically 79" (X) — F(X) — F5(X))
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Quantization, symmetries, and anomalies

Partition functions and path integrals

o QFT: probability distribution over space of fields weighted by
exp(—S5)
e Path integral /partition function: integrate over dynamical

fields v and consider result as a function of the background
fields A

Zx[A] = / Dy e=SAL: Fhe(x) - ¢
PYeFIN(X)

(schematically  79"(X) — F(X) — FP5(X) )
——

fermions, matter background gauge fields
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What is a quantum anomaly?

“A failure of Z[A] to be defined globally and gauge invariantly.”

@ X: 4d-dimensional spin manifold with a principal G-bundle P — X
and associated bundle Ep := P xg V
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What is a quantum anomaly?

“A failure of Z[A] to be defined globally and gauge invariantly.”

@ X: 4d-dimensional spin manifold with a principal G-bundle P — X
and associated bundle Ep := P xg V

@ A := Conn(P) - space of connections, Fr, := (X, ST ® Ep) -
space of spinors, so F(X) = (A X Frer)/G
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What is a quantum anomaly?

“A failure of Z[A] to be defined globally and gauge invariantly.”

@ X: 4d-dimensional spin manifold with a principal G-bundle P — X
and associated bundle Ep := P xg V

@ A := Conn(P) - space of connections, Fr, := (X, ST ® Ep) -
space of spinors, so F(X) = (A X Frer)/G

@ Action functional S[A,¢] := [, ¥ Dav)
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What is a quantum anomaly?

“A failure of Z[A] to be defined globally and gauge invariantly.”

@ X: 4d-dimensional spin manifold with a principal G-bundle P — X
and associated bundle Ep := P xg V

@ A := Conn(P) - space of connections, Ft, := (X, ST ® Ep) -
space of spinors, so F(X) = (A X Frer)/G

@ Action functional S[A,¢] := [, ¥ Dav)

o Integrate out ¥: Z[A] := [}, 1 x stgen e~ {¥:Da¥) is a section of the

determinant line bundle £,nom over the moduli stack [A/G],
associated to the family of chiral Dirac operators {Da} on X.




What is a quantum anomaly?

“A failure of Z[A] to be defined globally and gauge invariantly.”

X: 4d-dimensional spin manifold with a principal G-bundle P — X
and associated bundle Ep := P xg V

A := Conn(P) - space of connections, Frer := (X, 5" ® Ep) -
space of spinors, so F(X) = (A X Frer)/G

Action functional S[A,¢] := [, ¥ Dav)
Integrate out ¢: Z[A] := [, r(x s+gen e~ {¥:Da¥) is a section of the

determinant line bundle £,nom over the moduli stack [A/G],
associated to the family of chiral Dirac operators {Da} on X.

By the family index theorem, we have a class
Py 12 := [A(X)ch(F)](g+2) on X x [A/G] such that
Jx Pa+2 € Q2(A/G) is the curvature form of Lanom.
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Local anomalies and twisted tangential structures

Local anomalies are encoded in anomaly polynomials

FIUX) = F(X) — FE(X)

Zx[A] = / D e=SAl € T(FP(X), Lanom)
Ue}‘dyn(X)

@ Families index theorem — curvature of L,nom is encoded
by a degree d 4+ 2 anomaly polynomial
e an index quantity on X
o characteristic forms of the gauge fields
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Local anomalies and twisted tangential structures

Local anomalies are encoded in anomaly polynomials

FIUX) = F(X) — FE(X)

ZX[A] = / D2 e_s[“’A] € r(]:bg(X),Eanom)
lﬁéfdy"(x)

@ Families index theorem — curvature of L,nom is encoded
by a degree d 4+ 2 anomaly polynomial

e an index quantity on X
o characteristic forms of the gauge fields
o (Green-Schwarz mechanism) If Py = Xa A X4_2, can
construct a “counterterm” to cancel the anomaly
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Anomaly inflow

o (Green-Schwarz mechanism) If Pyip = X4 A X4_2, can
construct a “counterterm” anom to cancel the anomaly

ZX [A] e_27riaanom

o (Anomaly inflow) This phase comes from the partition
function of a field theory in dimension d + 1: there is some M
with OM = X and such that

Zx[Ale2m 1M+ iy HAX4-2) s gauge invariant

only well defined if Xy is cohomologically trivial on M.
o We call this d + 1-dimensional theory the anomaly theory of Z
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Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

@ We consider 6d N' = (1,0) supergravity theories with type
A-D-E or abelian gauge groups
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Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

o We consider 6d N = (1,0) supergravity theories with U(1)
gauge group, meaning our 6-dimensional manifolds X are

equipped with f : X — BU(1) inducing a complex line bundle
L= *(0(1)).
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Our setup: 6d supergravity theories

o We consider 6d N = (1, 0) supergravity theories with U(1)
gauge group, meaning our 6-dimensional manifolds X are
equipped with f : X — BU(1) inducing a complex line bundle
L:=f*(0(1)).

@ Anomaly polynomial is

GA(X) - (L) (0)?
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Our setup: 6d supergravity theories

@ We consider 6d N = (1, 0) supergravity theories with U(1)
gauge group, meaning our 6-dimensional manifolds X are
equipped with f : X — BU(1) inducing a complex line bundle
L= f*(O(1)).

@ Anomaly polynomial is

1

(5Pu(X) — nci(£)?)er(L)?

@ Upshot: all the information of the anomalies is encoded in a
7d anomaly theory defined on 7-manifolds with
Lpu(TM) = ner(£)?



Anomalies in QFT
[eeJe] le]e]

Local anomalies and twisted tangential structures

String structures

7-manifolds with %pl(TI\/I) = ncy(L)?

Definition (String structure)

Let M be a spin manifold, then p;(M) is even. A string structure
on M is a trivialization of %pl(M).

BString

7

-’
-,
-
s

Pl 1
M ™ BSpin 25 K(z,4)
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Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with %pl(TM) = ncy(L)?

Definition (String structure)

Let M be a spin manifold, then p;(M) is even. A string structure
on M is a trivialization of %pl(M).

Definition (nc?-twisted string structure)

Let M be a spin manifold equipped with a map f: M — BU(1).
An nc2-twisted string structure is a trivialization of
Ip1(M) — nci(L)2.

M — s BU(1)

™ nc 2
l 1 l L(0())

BSpin 25 K(Z,4)
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Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with 1p1(TM) = nci(L)?

Definition (nc?-twisted string structure)

Let M be a spin manifold equipped with a map f : M — BU(1).
An nc2-twisted string structure is a trivialization of
%pl(M) — ncy (L)%
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Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with 1p1(TM) = nci(L)?

Definition (nc?-twisted string structure)

Let M be a spin manifold equipped with a map f : M — BU(1).
An nc2-twisted string structure is a trivialization of
%pl(M) — ncy (L)%

Remark
Consider the (virtual) bundle T = O(1) + O(—1) — 2¢ on BU(1).
We also call this a (BU(1), —nT)-twisted string structure, because

given a manifold M with a map f : M — BU(1), it is the data of a
string structure on TM + f*(—nT).?

| A\

23p(TM — £*nT) = 3p1i(TM) — na(f*O(1))* = 0
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Summary

o QFT: Try to integrate Die™ 31 over dynamical fields,
result is section of Lanom — F&(X)
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Summary

o QFT: Try to integrate Die™SI"1 over dynamical fields,
result is section of Lanom — F&(X)

@ Local anomaly (curvature of Linom) encoded in
Payo = Xqg N Xg—4
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Anomalies as invertible bulk theories

Summary

o QFT: Try to integrate Die™SI"1 over dynamical fields,
result is section of Lanom — F2(X)

@ Local anomaly (curvature of Linom) encoded in
Payo=Xo N Xg—4

o Zx[A] not gauge invariant but Zx[A]e~27emAl s with
oM =X
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°
Anomalies as invertible bulk theories

Summary

o QFT: Try to integrate Dihe=SIAYT over dynamical fields,
result is section of Lanom — 7 2(X)

o Local anomaly (curvature of Linom) encoded in
Paio=Xg AN Xg—a

@ Zx[A] not gauge invariant but ZX[A]e_27”'aM[Z] is, with
oM =X

@ «ayy is a well-defined field theory in d + 1 dimensions if M has
Xs = 0, which is a twisted tangential structure



Anomalies in QFT
°
Anomalies as invertible bulk theories

Summary

o QFT: Try to integrate Die™ 31 over dynamical fields,
result is section of Linom — ]-"bg(X)

@ Local anomaly (curvature of Linom) encoded in
Paio=Xo N Xg_4

o Zx[A] not gauge invariant but ZX[A]e_2”"aM[Z] is, with
oM =X

@ «ayy is a well-defined field theory in d + 1 dimensions if M has
Xa = 0, which is a twisted tangential structure

o We call it the anomaly theory, and it is an invertible
topological field theory defined on X4 manifolds



Summary

o QFT: Try to integrate Die™SI"1 over dynamical fields,
result is section of Lanom — F2(X)

@ Local anomaly (curvature of Linom) encoded in
Pai2 = (3P1(X) = nar(£)?)er(£)?

o Zx[A] not gauge invariant but Zx[A]e~27emAl s with
oM =X

o «ayy is a well-defined field theory in d + 1 dimensions if M is
nc2-twisted string

o We call it the anomaly theory, and it is an invertible
topological field theory defined on nclz—twisted string
manifolds
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Invertible field theories and
bordism
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The functorial formalism and its interpretation

The data of a field theory in d + 1 dimensions can often be
organized mathematically as follows:

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nci-twisted String
manifolds) is a symmetric monoidal functor

2 .
Z : (Bord(gl 1, L) — (sVecte, ®)
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Functorial field theory

The functorial formalism and its interpretation

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc?-twisted String
manifolds) is a symmetric monoidal functor

2_Stri
Z: (Bord?jfdﬂ')ng, L) — (sVectc, ®)

o Z(X9) is interpreted as a state space of the theory

@ For a closed d + 1 manifold M, interpreted as a bordism
() ~» 0, the morphism Z(M) : C — C in sVectc is determined
by a choice of complex number n € C interpreted as the value
of the partition function on M
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Invertibility

There is a tensor product structure on the set of all functorial field
theories given by point-wise tensor product in (sVectc, ®):

(Z1 ® Zo)(X9) = Z1(X) © Za(X)
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Functorial field theory

Invertibility

There is a tensor product structure on the set of all functorial field
theories given by point-wise tensor product in (sVectc, ®):

(21 ® Z)(X9) = Z1(X) @ Zo(X)

Definition (Invertible field theory)

2 o
A functorial field theory Z : Bord?jldif{';g — sVectc is said to be

invertible if it is tensor-invertible under the above tensor product.




IFTs and bordism
°
IFTs and stable homotopy theory

Invertible field theories

Invertible field theories (IFTs) factor through the maximal Picard
groupoid ! of the target sLinec C sVectc

nc1 -twisted

(Bord did+1)

L) —£— (sVectc, ®)

\\\)\ T

(sLinec, ®)

A Picard groupoid is a fully invertible symmetric monoidal category
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IFTs and stable homotopy theory

Invertible field theories

Invertible field theories (IFTs) factor through the groupoid
completion of the source.

nc2-twisted V4
<dfd+1> L) —=— (sVectc, ®)

b e ]

ncf-twisted

(Bord !y /7y 5 L)EP === » (sLinec, ®)

(Bord



IFTs and bordism
°
IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

twisted
(Bordnsldlvlls € |_|) —) (SVeCt(C, ®)
Eoe, ]
nc1 -twisted gp g :
(Bord gy - L)EP - » (sLinec, ®)
. character
sll))(éﬁlrsur?n ——— % dual of the

sphere
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IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

nc2-twisted V4
(did+1) 1) —=— (sVectc, ®)

e, ]

ncf-twisted

(Bord

(Bord<d,d+1> ; |_|)gp ---- 4 (sLine(c, ®)
bordism character
spectrum — 7 duglﬂ:)efrétlhe

MString A BU(1)~"T —— |CX
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Classifying invertible field theories

IFTs are classified by maps of spectra.

nc2-twisted z
(Bord /g qy ) —— (sVectc, ®)
|
nc2-twisted N .
(Bord<dfd+1> N . > (sLinec, ®)
bordism character
spectrum — " dusaglahoefr;he

MString A BU(1)™"T —— |CX

Classification theorems: Freed-Hopkins, Freed-Hopkins-Teleman,
Grady (deformation classes)
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@ When we study anomaly cancellation of a d-dimensional
theory, we:
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Summary of the physics ~~ topology conversion

@ When we study anomaly cancellation of a d-dimensional
theory, we:
@ Compute the local anomaly: curvature of L;nom, detected by
Pai2 = Xa AN Xg-2
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Summary of the physics ~~ topology conversion

@ When we study anomaly cancellation of a d-dimensional
theory, we:
@ Compute the local anomaly: curvature of L;nom, detected by
Paio = X4 N Xg—2
@ Represent the total anomaly by (d + 1)-dimensional IFT in
terms of Xy_o with the twisted tangential structure
determined by X,
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Summary of the physics ~~ topology conversion

@ When we study anomaly cancellation of a d-dimensional
theory, we:

@ Compute the local anomaly: curvature of L;nom, detected by
Pay2 = Xa N Xg-2
@ Represent the total anomaly by (d + 1)-dimensional IFT in

terms of Xy_o with the twisted tangential structure
determined by X,

@ IFTs are determined by the map they define out of a bordism
group of manifolds with Xj structure
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Summary of the physics ~~ topology conversion

@ When we study anomaly cancellation of a d-dimensional
theory, we:

@ Compute the local anomaly: curvature of L;nom, detected by
P2 = (3p1(X) — nai(£2)) A ca(L)?

@ Represent the total anomaly by (d + 1)-dimensional IFT in
terms of ¢;(L£)? with the twisted tangential structure
determined by 2p1(X) — nci(L?)

@ IFTs are determined by the map they define out of a bordism
group of manifolds with 1p;(X) — ncy(£?) = 0 structure
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@ When we study anomaly cancellation of a d-dimensional
theory, we:

@ Compute the local anomaly: curvature of L;n0m, detected by
P12 = (3p1(X) — na(£2)) A ca(L)?

@ Represent the total anomaly by (d + 1)-dimensional IFT in
terms of ¢;(L£)? with the twisted tangential structure
determined by %p1(X) — ncy(L?)

@ IFTs are determined by the map they define out of a bordism
group of manifolds with 1p;(X) — ncy(£?) = 0 structure

@ Goal: prove anomaly cancellation in 6d supergravity with
U(1) gauge group
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@ When we study anomaly cancellation of a d-dimensional
theory, we:

@ Compute the local anomaly: curvature of L;nom, detected by
Ps+2 = (3P1(X) — nci(£2)) A aa(L)?

@ Represent the total anomaly by (d + 1)-dimensional IFT in
terms of ¢;(L£)? with the twisted tangential structure
determined by %p1(X) — ncy(£?)

@ IFTs are determined by the map they define out of a bordism
group of manifolds with %p;(X) — ncy(£?) = 0 structure

@ Goal: prove anomaly cancellation in 6d supergravity with
U(1) gauge group
@ Compute 7-dimensional twisted string bordism groups.
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Goals

@ When we study anomaly cancellation of a d-dimensional
theory, we:

@ Compute the local anomaly: curvature of Lynom, detected by
Psi2 = (3P1(X) — nci(L£2)) A ca(L)?

@ Represent the total anomaly by (d + 1)-dimensional IFT in
terms of ¢;(£)? with the twisted tangential structure
determined by 2p1(X) — nci(£?)

@ IFTs are determined by the map they define out of a bordism
group of manifolds with %p;(X) — ncy(£?) = 0 structure

@ Goal: prove anomaly cancellation in 6d supergravity with
U(1) gauge group

@ Compute 7-dimensional twisted string bordism groups. They

are nonzero!
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Goals

@ When we study anomaly cancellation of a d-dimensional
theory, we:

@ Compute the local anomaly: curvature of L;nom, detected by
Po+2 = (3P1(X) — nci(£2)) A ca(L)?

@ Represent the total anomaly by (d + 1)-dimensional IFT in
terms of c;(L£)? with the twisted tangential structure
determined by %p1(X) — ncy(£?)

@ IFTs are determined by the map they define out of a bordism
group of manifolds with %p;(X) — ncy(£?) = 0 structure

@ Goal: prove anomaly cancellation in 6d supergravity with
U(1) gauge group
@ Compute 7-dimensional twisted string bordism groups. They

are nonzero!
@ Construct 7-dimensional manifold generators to compute

Qlanom ON



Twists of BU(1)-string
bordism in dimension 7
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Challenges computing €27

o Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.
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Challenges computing €27

o Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

. S H .
o Few useful comparison maps, Q77" = Q?t”"g &~
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String—nc?

Challenges computing €27

o Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q5P" 2 Q5""€ =~ 0 and
comparison maps changing the dimension land in high
dimensional or O groups.
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Challenges computing Q?t”"g =

@ Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q?pin = Q?tring =0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.
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String—nc?

Challenges computing €27

@ Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q?pin = Q?tring =0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.

o Generators?

o K3 x S§3, CP? x S3 are not twisted string,
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String—nc?

Challenges computing €27

@ Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q?pin = Q?tring =0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.

o Generators?

o K3 x S§3, CP? x S3 are not twisted string,

e odd dimension means no hope for complex algebraic
representatives.
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String—nc?

Challenges computing €27

@ Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q?pin = Q?tring =0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.

o Generators?

o K3 x S§3, CP? x S3 are not twisted string,
e odd dimension means no hope for complex algebraic
representatives.

o Lens spaces? Can determine twisted string structure, but hard
to detect if generators.
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Solutions

@ Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q?pi" = Q?tring =0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.

@ Generators?

o K3 x S3, CP? x S3 are not twisted string,
o odd dimension means no hope for complex algebraic
representatives.

o Lens spaces? Can determine twisted string strucutre, but hard
to detect if generators.
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Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString A BU(1)~"T are
there?
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Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString A BU(1)~"T are
there?

Theorem (Basile—Krulewski-Leone—P.-T.)

The homotopy class of MString A BU(1)~"T only depends on the
value of n (mod 12).
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Solutions

@ Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, Q?pi" = Q?tring =0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.

@ Generators?

o K3 x S3, CP? x S3 are not twisted string,
o odd dimension means no hope for complex algebraic
representatives.

o Lens spaces? Can determine twisted string strucutre, but hard
to detect if generators.
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Solutions: bordism invariants

Theorem (Basile-Krulewski-Leone—P.-T.)

Given a (BU(1), —nT)-twisted string 7-manifold M, there exists a spin
8-manifold N with f : N — BU(1) and ON = M, then the map

of 1 QP"(BU(1)) = Z
N — / A(TN)ch(E — 1k E)
N
descends to an invariant
af(M) = o (N) : 3""6(BU(1)~"T) - Q/Z

precisely when chs(E) = nx? chy(E).

Theorem-in-progress (Basile-Krulewski—Leone—P.-T.)

All bordism invariants Q3""€(BU(1)~"T) — Q/Z arise in this way.
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Solutions

o Adams spectral sequence: trivial at p > 5, extension problems
at p=2,3.

o Few useful comparison maps, 5P 2 Q5""€ =~ 0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some —nT twists but we want something
that works for all —nT twists.

o Generators?

o K3 x S§3, CP? x S3 are not twisted string,
e odd dimension means no hope for complex algebraic
representatives.

o Lens spaces? Can determine twisted string strucutre, but hard
to detect if generators.
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Solutions: manifold generators from sphere bundles

Instead of CP?> x S3, we consider “twisted products’ CP?% S3,
namely sphere bundles S(V/) of rank 4 real vector bundles
V — CP2.
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Solutions: manifold generators from sphere bundles

Instead of CPP? x S3, we consider “twisted products’ CP?% S3,
namely sphere bundles S(V) of rank 4 real vector bundles
V — CP?.

@ They naturally come equipped with a map to BU(1):
S(V) — CP? — BU(1).
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Solutions: manifold generators from sphere bundles

Instead of CP? x S3, we consider “twisted products” CP?x S3,
namely sphere bundles S(V) of rank 4 real vector bundles
vV — CP2.
@ They naturally come equipped with a map to BU(1):
S(V) — CP? — BU(1).

@ They naturally come equipped with a bulk manifold:
S(V)=0D(V).
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Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski—Leone—P.-T.)

The map
[CP?, BSO(4)] ¥, 7 x 7

is an isomorphism onto the subset satisfying (’;1) = x (mod 2).
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Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski-Leone—P.-T.)

The map
[CP?, BSO(4)] X 7 % 7

is an isomorphism onto the subset satisfying (’;1) = x (mod 2).

Proof sketch.
o [CP2, BU(2)] ‘2% 7. x 7,
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Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski-Leone—P.-T.)

The map
[CP?, Bso(4)] P 7 x 7

is an isomorphism onto the subset satisfying (%) = x (mod 2).

Proof sketch.
o [CP2, BU)] %% 7« Z

o Things in the image of [CP?, BSU(2)] — [CP?, BSO(4)]
satisfy this property
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Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski-Leone—P.-T.)

The map
[CP?, BSO(4)] P 7 x 7

is an isomorphism onto the subset satisfying (%) = x (mod 2).

Proof sketch.
o [CP?, BU(2)] 22 7 x 7
o Things in the image of [CP?, BSU(2)] — [CP?, BSO(4)]
satisfy this property
o [S* BSO(4)] acts on [CPP?, BSO(4)] and acting by TS* sends
(p,e) ~ (p,e+2)
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Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski-Leone—P.-T.)

The map
[CP2, BSO(4)] X 7, % 7

is an isomorphism onto the subset satisfying (’;1) = x (mod 2).

Proof sketch.
o [CP?, BU(2)] 22 7 x 2
o Things in the image of [CP?, BSU(2)] — [CP?, BSO(4)]
satisfy this property
o [S* BSO(4)] acts on [CP?, BSO(4)] and acting by TS* sends
(p,e) ~ (p,e+2)

o Use the fibration S* — BSO(4) — BSO(5) to show TS* acts
transitively on the set of bundles with a given p;
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Solutions: manifold generators from sphere bundles

Theorem (Basile-Krulewski—Leone—P.-T.)

The map
[CP2, Bso(4)] P, 7 x 7

is an isomorphism onto the subset satisfying (%) = x (mod 2).

Theorem (Basile-Krulewski-Leone—P.-T.)

S(V) equipped with f : S(V) = CP? C BU(1) is nc?-twisted
string exactly when pi1(V)+ 3+ 2n =0 (mod 2x(V)) in which

cha(E)(p1(V) + 3+ 2n)

aE(S(V)) = e




An illustrative example: a
bordism invariant for n = 1



A bordism invariant
0@0000000

A useful cofiber sequence

MString — MSpin — MSpin/MString — X MString
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A bordism invariant
0@0000000

A useful cofiber sequence

(MString — MSpin — MSpin/MString — ¥ MString) A BU(1)" "

o MString A BU(1)"T: (M, f : M — BU(1),$), M spin and ¢
a string structure on TM — f*T



A bordism invariant
0@0000000

A useful cofiber sequence

(MString — MSpin — MSpin/MString — ¥ MString) A BU(1)~"

o MString A BU(1)~": (M, f : M — BU(1),$), M spin and ¢
a string structure on TM — f*T

o MSpin A BU(1)~T: (N,g: N — BU(1),%), N oriented and
1 a spin structure on TN — f*nT



A bordism invariant
0@0000000

A useful cofiber sequence

(MString — MSpin — MSpin/MString — ¥ MString) A BU(1)" "

o MString A BU(1)~T: (M, f : M — BU(1),$), M spin and ¢
a string structure on TM — f*T
o MSpin A BU(1)~": spin manifolds N with a map to BU(1) !

! MSpin A BU(1)~7 = MSpin A BU(1)4



A bordism invariant
0@0000000

A useful cofiber sequence

(MString — MSpin — MSpin/MString — ¥ MString) A BU(1) "

o MString A BU(1)~T: (M, f : M — BU(1),$), M spin and ¢
a string structure on TM — f*T

o MSpin A BU(1)~": spin manifolds N with a map to BU(1) *

o MSpin/MString A BU(1)~T: (N, M, f : N — BU(1), ¢), N is
spin, M = 0N, and ¢ is a string structure on TM — f|3, T

! MSpin A BU(1)~7 = MSpin A BU(1)4



A bordism invariant
[e]e] lelele]ele]e)

Overview of the construction

We wish to construct morphisms
: : -T
ag : mgMSpin A BU(1)”' — Z

that descend along the diagram

mgMSpin A BU(1); — mgMSpin/MString A BU(1)™7 — 77 MString A BU(1)™"

| | |

Z Q Q/z




A bordism invariant
[e]e]e] lele]elele)

8d integer invariant

For (N, f) € mgMSpin A BU(1)4, consider the “index of the
twisted Dirac operator”

ad DN, F) = A(TN)ch(F*O(1) — 1¢)[N]



A bordism invariant
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8d integer invariant

For (N, f) € mgMSpin A BU(1)4, consider the “index of the
twisted Dirac operator”

af (N, £) = A(TN) ch(F*O(1) — 1¢)[N]

could twist by any E




A bordism invariant
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8d integer invariant

For (N, f) € mgMSpin A BU(1)4, consider the “index of the
twisted Dirac operator”

aSV(N, F) = A(TN)ch(F*O(1) — 1¢)[N]
By APS, this is a K-theory pushforward?

[O(1) — 1¢] eKU(BU(1)) £ KU(N) —5 KU(pt) = 7

A(N)ch| I {
H(N; Q) =% H(pt; Q) =~ Q

2Can also define as a KO pushforward



BU(1)~" A bordism invariant
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MStrin

8d integer invariant

For (N, f) € mgMSpin A BU(1)4, consider the “index of the
twisted Dirac operator”

aSV(N, F) = A(TN)ch(F*O(1) — 1¢)[N]
By APS, this is a K-theory pushforward?

[O(1) — 1¢] eKU(BU(1)) £ KU(N) — KU(pt) = 7

A(N)chl, I L
H(N; Q) =% H(pt; Q) =~ Q

So it defines an integer-valued map

af W mgMSpin A BU(1)"T — Z

2Can also define as a KO pushforward



A bordism invariant
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8d integer invariant

can take on any integer value.

a?(l)




A bordism invariant
[e]e]e]e] leelele)

8d integer invariant

a?(l)

can take on any integer value.

Proof. Consider a degree 4 hypersurface N C CP?, it naturally
comes equipped with f : N ¢ CP® — CP*.



A bordism invariant
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8d integer invariant

a?(l) can take on any integer value.

Proof. Consider a degree 4 hypersurface N C CP?, it naturally
comes equipped with f : N € CP® — CP>. We have
TN 4+ O(1) = 60(1) — O(4), so

p1(TN) = (6 — 16)x> = —10x°



A bordism invariant
[e]e]e]e] leelele)

8d integer invariant

o(1)

Qg

can take on any integer value.

Proof. Consider a degree 4 hypersurface N C CP?, it naturally
comes equipped with f : N € CP® — CP>. We have
TN 4+ O(1) = 60(1) — O(4), so

p1(TN) = (6 — 16)x> = —10x°
It follows that

aSV(N, ) = / 10x* /48 + x* /24 = / 12x*/48
N N

= / 4(12h*/48) = 1
]P)S



A bordism invariant
[e]e]e]e]e] lelele)

8d integer invariant

The invariant can be written as
o DN, £) = A(TN)ch(F*O(1) — 1¢)[N]
_ —/(pl(TN) _2:2)x2/48

N

= —/ p1(TN — £*T)x?/48
N



A bordism invariant
000000800

Extending to the relative groups
Take (N, M, f,¢) € mgMSpin/MString A BU(1)~ T,

BString

M ——— BSpin
TM—fl5yT



A bordism invariant
000000800

Extending to the relative groups

Take (N, M, f,¢) € mgMSpin/MString A BU(1)~ T,

BString

M~ BSpin
TM—f|§NT p

@ BString is 7-connected, so we may choose a trivialization gAZ; of
™ — fl5u T



IFTs and bordism MString A BU(1) ™" A bordism invariant

000000e00

Extending to the relative groups

Take (N, M, f,¢) € mgMSpin/MString A BU(1)~ T,

BString

M W_—fIBN_I)_ BSpln
@ BString is 7-connected, so we may choose a trivialization gAz; of
™ — fl5u T
@ This defines a relative KO class [TN — f* T]$ € KO(N, M)
and a relative class py([TN — f*T]5) € HY(N, M)



BU(1)~" A bordism invariant

000000e00

Extending to the relative groups

Take (N, M, f,¢) € mgMSpin/MString A BU(1)~ T,

BString

M ——— BSpin
TM—fl3n T

@ BString is 7-connected, so we may choose a trivialization gAz; of
™ — fl5u T

@ This defines a relative KO class [TN — f* T]$ € KO(N, M)
and a relative class py([TN — f*T]5) € HY(N, M)

o Define a!) = —py([TN — F*T]3)c1(L)?[N] using

rel
Poincare-Lefschetz duality



A bordism invariant
000000080

Extending to the relative groups

7wgMSpin A BU(1); — mgMSpin/MString A BU(1)~ T

o o(1
iaa @ J’areg )

7 Q




A bordism invariant
000000080

Descending to a 7d invariant

7gMSpin/MString A BU(1)~T — 77 MString A BU(1)~T

O(1 [e]¢]
lareg ) la7 w

Q Q/Z




A bordism invariant
000000080

Descending to a 7d invariant

7gMSpin/MString A BU(1)~T — m;MString A BU(1)~T

laggl) J’a?(l)

Q Q/Z

™

e ¢p: M IM-T, BString lifts to a framing of TM — f*T



A bordism invariant
000000080

Descending to a 7d invariant

mgMSpin/MString A BU(1)~T —» 77 MString A BU(1)~T

o o
lareg ) la7 ( )

Q Q/Z

e o.M Mo, BString lifts to a framing of TM — f*T

o m7(MSpin A BU(1)1) ~ 0 so there exists a pair (N8, £) with
(M, f)=0(N,f)



A bordism invariant
000000080

Descending to a 7d invariant

mgMSpin/MString A BU(1)~T — 77 MString A BU(1)~T

o(1 o1
larei ) J(a7 w

Q Q/Z

e p: M TM-FT, BString lifts to a framing of TM — f*T

o m7(MSpin A BU(1)1) ~ 0 so there exists a pair (N8, £) with
(M, f)=0(N,f)

o Set oS M(M, £, ¢) := aZM(N, M)

rel



A bordism invariant
00000000e

Summary

mgMSpin A BU(1); — mgMSpin/MString A BU(1)™7 — 77 MString A BU(1)™"

| | |

Z Q Q/Z




A bordism invariant
00000000e

Summary

mgMSpin A BU(1). — mgMSpin/MString A BU(1)™7 — m7MString A BU(1)™"

| | |

7 Q Q/z

Index of Dirac operator twisted by O(1) — 1¢ is a K-theory
pushforward.



A bordism invariant
00000000e

Summary

mgMSpin A BU(1); — msMSpin/MString A BU(1)™" — 77 MString A BU(1)™"

| | |

Z Q Q/Z

It factors a p1([TN — f*T]) so it extends to a relative invariant.



A bordism invariant
00000000e

Summary

mgMSpin A BU(1); — mgMSpin/MString A BU(1)™7 — 77 MString A BU(1)™"

| | |

Z Q Q/Z

Any twisted string 7-manifold is on the boundary of a spin
8-manifold so this descends to a 7d invariant.



A bordism invariant
00000000e

Summary

mgMSpin A BU(1)1 — mgMSpin/MString A BU(1)™"" — m;MString A BU(1)™""

| | |

Z Q Q/z

General case: need to choose E to twist Dirac operator by that
both descends and detects the most torsion.



Manifold generators
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©00

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle V,, & CP? with p = p1(V,.),
x=e(Voy) (5) =x (mod 2)
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Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle V,, & CP? with p = p1(V,.),
x=e(Voy) (5) =x (mod 2)
@ When is D(V, ) spin?



Manifold generators
©00

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle V,, & CP? with p = p1(V,.),
x=e(Voy) (5) =x (mod 2)
@ When is D(V, ) spin? Exactly when p is odd, in which case
it has a unique spin structure.



Manifold generators
©00

Sphere bundle generators

Twisted string structures on S(V)

Given a rank 4 bundle V,, & CP? with p = p1(V,.),
x =e(Voy), (5) =x (mod 2)
@ When is D(V, ) spin? Exactly when p is odd, in which case
it has a unique spin structure.

o When does S(V,) admit a (BU(1), — T)-twisted string
structure?



IFTs and bordism MString o A bordism invariant Manifold generators

0O@000

Twisted string structures on S(V)

Given a rank 4 bundle V, 2, CP? with p = p1(Vpy),
x =e(Voy), (5) =x (mod 2)
@ When is D(V, ) spin? Exactly when p is odd, in which case
it has a unique spin structure.

o When does S(V,) admit a (BU(1), — T)-twisted string
structure?

KO(D(V),S(V)) = KO(D(V)) > [TD(V) — £*T]



MStrin

0O@000

BU(1)~" A bo variant Manifold generators

Twisted string structures on S(V)

Given a rank 4 bundle V, 2, CP? with p = p1(Vpy),
x =e(Voy), (5) =x (mod 2)
@ When is D(V, ) spin? Exactly when p is odd, in which case
it has a unique spin structure.

o When does S(V,) admit a (BU(1), — T)-twisted string
structure?

KO(D(V),S(V)) = KO(D(V)) > [TD(V) — £*T]

[TD(V)—f*T]=[V +30(1) — (O(1) + O(-1))]



Manifold generators
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Sphere bundle generators

a?(l) on — T-twisted sphere bundles

Theorem (Basile-Krulewski—Leone—P.-T.)

Given a rank 4 bundle V,, 2> CP? with
P=pri(Voyx),x =e(Voy) S(Vpy) admits a (BU(1), — T)-twisted
string structure exactly when

p+1=0 (mod 2y)

in which case
p+1

a7(S(Vpx)) = — 48y




Manifold generators
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Sphere bundle generators

af on —nT-twisted sphere bundles

Theorem (Basile-Krulewski—Leone-P.-T.)

Given a rank 4 bundle V), 2, CP? with
p=pri(Voy),x =eVoy) S(Vpy) admits a (BU(1), — T)-twisted
string structure exactly when

p+3—2n=0 (mod 2y)
in which case

of — _ cho(E)(p+3—2n)
7 48y




Manifold generators
ooe

Sphere bundle generators

Order of the n = 1 bordism group

i
eI e

0 4 8 0 4 8

> o

e p =3,y =1 satisfies (g) =1 (mod2),3+1=0 mod 2 and



Manifold generators
[ ]

Thank you!
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