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Anomalies in quantum field
theory
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Quantization, symmetries, and anomalies

What is a field theory?

A field theory is the data of

A spacetime manifold X which is d dimensional

A moduli F(X ) of objects over X , called fields, e.g.

connections on a principal G -bundle P → X (gauge fields)
sections of a vector bundle E → X (matter fields)
maps to a target manifold Maps(X ,Y ) (sigma models)
metrics on X (gravity)

An action functional S : F(X ) → C
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Quantization, symmetries, and anomalies

What is a classical field theory?

A field theory is the data of

A spacetime manifold X which is d dimensional

A moduli F(X ) of objects over X , called fields, e.g.

connections on a principal G -bundle P → X (gauge fields)
sections of a vector bundle E → X (matter fields)
maps to a target manifold Maps(X ,Y ) (sigma models)
metrics on X (gravity)

An action functional S : F(X ) → C
A classical field theory finds physical fields ψ by solving a principle
of stationary action δS/δψ = 0.
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Quantization, symmetries, and anomalies

What is a quantum field theory?

A field theory is the data of

A spacetime manifold X which is d dimensional

A moduli F(X ) of objects over X , called fields, e.g.

connections on a principal G -bundle P → X (gauge fields)
sections of a vector bundle E → X (matter fields)
maps to a target manifold Maps(X ,Y ) (sigma models)
metrics on X (gravity)

An action functional S : F(X ) → C
A quantum field theory instead defines a probability measure on
F(X ) weighted by exp(−S) (assuming X has Euclidean signature)
and computes probability amplitudes and correlation functions of
observable physical quantities in this measure.
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Quantization, symmetries, and anomalies

Partition functions and path integrals

QFT: probability distribution over space of fields weighted by
exp(−S)

Path integral/partition function: integrate over dynamical
fields ψ and consider result as a function of the background
fields A

ZX [A] =

∫
ψ∈Fdyn(X )

Dψ e−S[ψ,A] : Fbg(X ) → C
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Quantization, symmetries, and anomalies

Partition functions and path integrals

QFT: probability distribution over space of fields weighted by
exp(−S)

Path integral/partition function: integrate over dynamical
fields ψ and consider result as a function of the background
fields A

ZX [A] =

∫
ψ∈Fdyn(X )

Dψ e−S[ψ,A] : Fbg(X ) → C

(schematically Fdyn(X ) → F(X ) → Fbg(X ))
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Quantization, symmetries, and anomalies

Partition functions and path integrals

QFT: probability distribution over space of fields weighted by
exp(−S)

Path integral/partition function: integrate over dynamical
fields ψ and consider result as a function of the background
fields A

ZX [A] =

∫
ψ∈Fdyn(X )

Dψ e−S[ψ,A] : Fbg(X ) → C

(schematically Fdyn(X )︸ ︷︷ ︸
fermions, matter

→ F(X ) → Fbg(X )︸ ︷︷ ︸
background gauge fields

)
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Quantization, symmetries, and anomalies

What is a quantum anomaly?

“A failure of Z [A] to be defined globally and gauge invariantly.”

Example

X : 4d-dimensional spin manifold with a principal G -bundle P → X
and associated bundle EP := P ×G V

A := Conn(P) - space of connections, Ffer := Γ(X , S+ ⊗ EP) -
space of spinors, so F(X ) = (A×Ffer)/G

Action functional S [A, ψ] :=
∫
X
ψ†DAψ

Integrate out ψ: Z [A] :=
∫
ψ∈Γ(X ,S+⊗EA)

e−⟨ψ,DAψ⟩ is a section of the

determinant line bundle Lanom over the moduli stack [A/G],
associated to the family of chiral Dirac operators {DA} on X .

By the family index theorem, we have a class
Pd+2 := [Â(X )ch(F )](d+2) on X × [A/G] such that∫
X
Pd+2 ∈ Ω2(A/G) is the curvature form of Lanom.



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Quantization, symmetries, and anomalies

What is a quantum anomaly?

“A failure of Z [A] to be defined globally and gauge invariantly.”

Example

X : 4d-dimensional spin manifold with a principal G -bundle P → X
and associated bundle EP := P ×G V

A := Conn(P) - space of connections, Ffer := Γ(X , S+ ⊗ EP) -
space of spinors, so F(X ) = (A×Ffer)/G

Action functional S [A, ψ] :=
∫
X
ψ†DAψ

Integrate out ψ: Z [A] :=
∫
ψ∈Γ(X ,S+⊗EA)

e−⟨ψ,DAψ⟩ is a section of the

determinant line bundle Lanom over the moduli stack [A/G],
associated to the family of chiral Dirac operators {DA} on X .

By the family index theorem, we have a class
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Local anomalies and twisted tangential structures

Local anomalies are encoded in anomaly polynomials

Fdyn(X ) → F(X ) → Fbg(X )

ZX [A] =

∫
ψ∈Fdyn(X )

Dψ e−S[ψ,A] ∈ Γ(Fbg(X ),Lanom)

Families index theorem =⇒ curvature of Lanom is encoded
by a degree d + 2 anomaly polynomial

an index quantity on X
characteristic forms of the gauge fields

(Green-Schwarz mechanism) If Pd+2 = X4 ∧ Xd−2, can
construct a “counterterm” to cancel the anomaly
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Local anomalies and twisted tangential structures

Anomaly inflow

(Green-Schwarz mechanism) If Pd+2 = X4 ∧ Xd−2, can
construct a “counterterm” αanom to cancel the anomaly

ZX [A]e
−2πiαanom

(Anomaly inflow) This phase comes from the partition
function of a field theory in dimension d + 1: there is some M
with ∂M = X and such that

ZX [A]e
−2πi(Idx(M)+

∫
M H∧Xd−2) is gauge invariant

only well defined if X4 is cohomologically trivial on M.

We call this d +1-dimensional theory the anomaly theory of Z
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Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

We consider 6d N = (1, 0) supergravity theories with type
A-D-E or abelian gauge groups
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Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

We consider 6d N = (1, 0) supergravity theories with U(1)
gauge group, meaning our 6-dimensional manifolds X are
equipped with f : X → BU(1) inducing a complex line bundle
L := f ∗(O(1)).
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Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

We consider 6d N = (1, 0) supergravity theories with U(1)
gauge group, meaning our 6-dimensional manifolds X are
equipped with f : X → BU(1) inducing a complex line bundle
L := f ∗(O(1)).

Anomaly polynomial is

(
1

2
p1(X )− nc1(L)2)c1(L)2
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Local anomalies and twisted tangential structures

Our setup: 6d supergravity theories

We consider 6d N = (1, 0) supergravity theories with U(1)
gauge group, meaning our 6-dimensional manifolds X are
equipped with f : X → BU(1) inducing a complex line bundle
L := f ∗(O(1)).

Anomaly polynomial is

(
1

2
p1(X )− nc1(L)2)c1(L)2

Upshot: all the information of the anomalies is encoded in a
7d anomaly theory defined on 7-manifolds with
1
2p1(TM) = nc1(L)2
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Local anomalies and twisted tangential structures

String structures

7-manifolds with 1
2p1(TM) = nc1(L)2

Definition (String structure)

Let M be a spin manifold, then p1(M) is even. A string structure
on M is a trivialization of 1

2p1(M).

BString

M BSpin K (Z, 4)TM
1
2
p1
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Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with 1
2p1(TM) = nc1(L)2

Definition (String structure)

Let M be a spin manifold, then p1(M) is even. A string structure
on M is a trivialization of 1

2p1(M).

Definition (nc21 -twisted string structure)

Let M be a spin manifold equipped with a map f : M → BU(1).
An nc21 -twisted string structure is a trivialization of
1
2p1(M)− nc1(L)2.

M BU(1)

BSpin K (Z, 4)

f

TM nc1(O(1))2

1
2
p1
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Local anomalies and twisted tangential structures

Twisted string structures

7-manifolds with 1
2p1(TM) = nc1(L)2

Definition (nc21 -twisted string structure)

Let M be a spin manifold equipped with a map f : M → BU(1).
An nc21 -twisted string structure is a trivialization of
1
2p1(M)− nc1(L)2.

Remark

Consider the (virtual) bundle T = O(1) +O(−1)− 2C on BU(1).
We also call this a (BU(1),−nT )-twisted string structure, because
given a manifold M with a map f : M → BU(1), it is the data of a
string structure on TM + f ∗(−nT ).a

a 1
2
p1(TM − f ∗nT ) = 1

2
p1(TM)− nc1(f

∗O(1))2 = 0
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Anomalies as invertible bulk theories

Summary

QFT: Try to integrate Dψe−S[A,ψ] over dynamical fields,
result is section of Lanom → Fbg(X )
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Anomalies as invertible bulk theories

Summary

QFT: Try to integrate Dψe−S[A,ψ] over dynamical fields,
result is section of Lanom → Fbg(X )

Local anomaly (curvature of Lanom) encoded in
Pd+2 = X4 ∧ Xd−4
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QFT: Try to integrate Dψe−S[A,ψ] over dynamical fields,
result is section of Lanom → Fbg(X )
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Pd+2 = X4 ∧ Xd−4

ZX [A] not gauge invariant but ZX [A]e
−2πiαM [Ã] is, with

∂M = X
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Anomalies as invertible bulk theories

Summary

QFT: Try to integrate Dψe−S[A,ψ] over dynamical fields,
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Local anomaly (curvature of Lanom) encoded in
Pd+2 = X4 ∧ Xd−4

ZX [A] not gauge invariant but ZX [A]e
−2πiαM [Ã] is, with

∂M = X

αM is a well-defined field theory in d + 1 dimensions if M has
X4 = 0, which is a twisted tangential structure
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Anomalies as invertible bulk theories

Summary

QFT: Try to integrate Dψe−S[A,ψ] over dynamical fields,
result is section of Lanom → Fbg(X )

Local anomaly (curvature of Lanom) encoded in
Pd+2 = X4 ∧ Xd−4

ZX [A] not gauge invariant but ZX [A]e
−2πiαM [Ã] is, with

∂M = X

αM is a well-defined field theory in d + 1 dimensions if M has
X4 = 0, which is a twisted tangential structure

We call it the anomaly theory, and it is an invertible
topological field theory defined on X4 manifolds
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Anomalies as invertible bulk theories

Summary

QFT: Try to integrate Dψe−S[A,ψ] over dynamical fields,
result is section of Lanom → Fbg(X )

Local anomaly (curvature of Lanom) encoded in
Pd+2 = (12p1(X )− nc1(L)2)c1(L)2

ZX [A] not gauge invariant but ZX [A]e
−2πiαM [Ã] is, with

∂M = X

αM is a well-defined field theory in d + 1 dimensions if M is
nc21 -twisted string

We call it the anomaly theory, and it is an invertible
topological field theory defined on nc21 -twisted string
manifolds
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Invertible field theories and
bordism
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Functorial field theory

The functorial formalism and its interpretation

The data of a field theory in d + 1 dimensions can often be
organized mathematically as follows:

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc21 -twisted String
manifolds) is a symmetric monoidal functor

Z : (Bord
nc21 -String

⟨d ,d+1⟩ ,⊔) → (sVectC,⊗)



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Functorial field theory

The functorial formalism and its interpretation

Definition (Functorial field theory)

A d + 1-dimensional functorial field theory (on nc21 -twisted String
manifolds) is a symmetric monoidal functor

Z : (Bord
nc21 -String

⟨d ,d+1⟩ ,⊔) → (sVectC,⊗)

Z (X d) is interpreted as a state space of the theory

For a closed d + 1 manifold M, interpreted as a bordism
∅⇝ ∅, the morphism Z (M) : C → C in sVectC is determined
by a choice of complex number η ∈ C interpreted as the value
of the partition function on M
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Functorial field theory

Invertibility

There is a tensor product structure on the set of all functorial field
theories given by point-wise tensor product in (sVectC,⊗):

(Z1 ⊗ Z2)(X
d) = Z1(X )⊗ Z2(X )

Definition (Invertible field theory)

A functorial field theory Z : Bord
nc21 -String

⟨d ,d+1⟩ → sVectC is said to be
invertible if it is tensor-invertible under the above tensor product.
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IFTs and stable homotopy theory

Invertible field theories

Invertible field theories (IFTs) factor through the maximal Picard
groupoid 1 of the target sLineC ⊂ sVectC

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔) (sVectC,⊗)

(sLineC,⊗)

Z

1A Picard groupoid is a fully invertible symmetric monoidal category
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IFTs and stable homotopy theory

Invertible field theories

Invertible field theories (IFTs) factor through the groupoid
completion of the source.

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔) (sVectC,⊗)

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔)gp (sLineC,⊗)

Z
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IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔) (sVectC,⊗)

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔)gp (sLineC,⊗)

bordism
spectrum

character
dual of the

sphere

Z
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IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔) (sVectC,⊗)

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔)gp (sLineC,⊗)

bordism
spectrum

character
dual of the

sphere

MString ∧ BU(1)−nT IC×

Z
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IFTs and stable homotopy theory

Classifying invertible field theories

IFTs are classified by maps of spectra.

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔) (sVectC,⊗)

(Bord
nc21 -twisted

⟨d ,d+1⟩ ,⊔)gp (sLineC,⊗)

bordism
spectrum

character
dual of the

sphere

MString ∧ BU(1)−nT IC×

Z

Classification theorems: Freed-Hopkins, Freed-Hopkins-Teleman,
Grady (deformation classes)
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Our mathematical setup

Summary of the physics ⇝ topology conversion

When we study anomaly cancellation of a d-dimensional
theory, we:
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theory, we:

1 Compute the local anomaly: curvature of Lanom, detected by
Pd+2 = X4 ∧ Xd−2
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Our mathematical setup

Summary of the physics ⇝ topology conversion

When we study anomaly cancellation of a d-dimensional
theory, we:

1 Compute the local anomaly: curvature of Lanom, detected by
Pd+2 = X4 ∧ Xd−2

2 Represent the total anomaly by (d + 1)-dimensional IFT in
terms of Xd−2 with the twisted tangential structure
determined by X4
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Our mathematical setup

Summary of the physics ⇝ topology conversion

When we study anomaly cancellation of a d-dimensional
theory, we:

1 Compute the local anomaly: curvature of Lanom, detected by
Pd+2 = X4 ∧ Xd−2

2 Represent the total anomaly by (d + 1)-dimensional IFT in
terms of Xd−2 with the twisted tangential structure
determined by X4

3 IFTs are determined by the map they define out of a bordism
group of manifolds with X4 structure
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Our mathematical setup

Summary of the physics ⇝ topology conversion

When we study anomaly cancellation of a d-dimensional
theory, we:

1 Compute the local anomaly: curvature of Lanom, detected by
P6+2 = ( 12p1(X )− nc1(L2)) ∧ c1(L)2

2 Represent the total anomaly by (d + 1)-dimensional IFT in
terms of c1(L)2 with the twisted tangential structure
determined by 1

2p1(X )− nc1(L2)
3 IFTs are determined by the map they define out of a bordism

group of manifolds with 1
2p1(X )− nc1(L2) = 0 structure
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Our mathematical setup

Goals

When we study anomaly cancellation of a d-dimensional
theory, we:

1 Compute the local anomaly: curvature of Lanom, detected by
P6+2 = ( 12p1(X )− nc1(L2)) ∧ c1(L)2

2 Represent the total anomaly by (d + 1)-dimensional IFT in
terms of c1(L)2 with the twisted tangential structure
determined by 1

2p1(X )− nc1(L2)
3 IFTs are determined by the map they define out of a bordism

group of manifolds with 1
2p1(X )− nc1(L2) = 0 structure

Goal: prove anomaly cancellation in 6d supergravity with
U(1) gauge group

1 Compute 7-dimensional twisted string bordism groups. They
are nonzero!

2 Construct 7-dimensional manifold generators to compute
αanom on
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Twists of BU(1)-string
bordism in dimension 7
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Challenges computing Ω
String−nc21
7

Adams spectral sequence: trivial at p ≥ 5, extension problems
at p = 2, 3.

Few useful comparison maps, ΩSpin
7

∼= ΩString
7

∼= 0 and
comparison maps changing the dimension land in high
dimensional or 0 groups. Smith homomorphisms provide
limited success for some −nT twists but we want something
that works for all −nT twists.

Generators?

K3× S3, CP2 × S3 are not twisted string,
odd dimension means no hope for complex algebraic
representatives.
Lens spaces? Can determine twisted string structure, but hard
to detect if generators.
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Solutions: characterize homotopically inequivalent twists

How many homotopically inequivalent MString ∧ BU(1)−nT are
there?

Theorem (Basile–Krulewski–Leone–P.-T.)

The homotopy class of MString ∧ BU(1)−nT only depends on the
value of n (mod 12).
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Solutions: bordism invariants

Theorem (Basile–Krulewski–Leone–P.-T.)

Given a (BU(1),−nT )-twisted string 7-manifold M, there exists a spin

8-manifold N with f̃ : N → BU(1) and ∂N = M, then the map

αE
8 : ΩSpin

8 (BU(1)) → Z

N 7→
∫
N

Â(TN)ch(E − rkE )

descends to an invariant

αE
7 (M) := αE

8 (N) : ΩString
7 (BU(1)−nT ) → Q/Z

precisely when ch4(E ) = nx2 ch2(E ).

Theorem-in-progress (Basile–Krulewski–Leone–P.-T.)

All bordism invariants ΩString
7 (BU(1)−nT ) → Q/Z arise in this way.
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namely sphere bundles S(V ) of rank 4 real vector bundles
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Solutions: manifold generators from sphere bundles

Instead of CP2 × S3, we consider “twisted products” CP2×̃S3,
namely sphere bundles S(V ) of rank 4 real vector bundles
V → CP2.

They naturally come equipped with a map to BU(1):
S(V ) → CP2 → BU(1).

They naturally come equipped with a bulk manifold:
S(V ) = ∂D(V ).
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Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

[CP2,BSO(4)]
(p1,χ)−−−→ Z× Z

is an isomorphism onto the subset satisfying
(p1
2

)
≡ χ (mod 2).
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Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

[CP2,BSO(4)]
(p1,χ)−−−→ Z× Z

is an isomorphism onto the subset satisfying
(p1
2

)
≡ χ (mod 2).

Proof sketch.

[CP2,BU(2)]
(c1,c2)−−−−→

∼
Z× Z

Things in the image of [CP2,BSU(2)] → [CP2,BSO(4)]
satisfy this property

[S4,BSO(4)] acts on [CP2,BSO(4)] and acting by TS4 sends
(p, e)⇝ (p, e + 2)

Use the fibration S4 → BSO(4) → BSO(5) to show TS4 acts
transitively on the set of bundles with a given p1
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Solutions: manifold generators from sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

The map

[CP2,BSO(4)]
(p1,χ)−−−→ Z× Z

is an isomorphism onto the subset satisfying
(p1
2

)
≡ χ (mod 2).

Theorem (Basile–Krulewski–Leone–P.-T.)

S(V ) equipped with f : S(V )
π−→ CP2 ⊂ BU(1) is nc21 -twisted

string exactly when p1(V ) + 3 + 2n ≡ 0 (mod 2χ(V )) in which
case

αE
7 (S(V )) =

ch2(E )(p1(V ) + 3 + 2n)

48e(V )
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An illustrative example: a
bordism invariant for n = 1
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MSpin ∧ BU(1)−T : (N, g : N → BU(1), ψ), N oriented and
ψ a spin structure on TN − f ∗nT
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A useful cofiber sequence

(MString → MSpin → MSpin/MString → ΣMString) ∧ BU(1)−T

MString ∧ BU(1)−T : (M, f : M → BU(1), ϕ), M spin and ϕ
a string structure on TM − f ∗T

MSpin ∧ BU(1)−T : spin manifolds N with a map to BU(1) 1

MSpin/MString ∧ BU(1)−T : (N,M, f : N → BU(1), ϕ), N is
spin, M = ∂N, and ϕ is a string structure on TM − f |∗∂NT

1MSpin ∧ BU(1)−T ∼= MSpin ∧ BU(1)+
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Overview of the construction

We wish to construct morphisms

α8 : π8MSpin ∧ BU(1)−T → Z

that descend along the diagram

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Z Q Q/Z
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8d integer invariant

For (N, f ) ∈ π8MSpin ∧ BU(1)+, consider the “index of the
twisted Dirac operator”

α
O(1)
8 (N, f ) = Â(TN)ch(f ∗O(1)− 1C)[N]
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8d integer invariant

For (N, f ) ∈ π8MSpin ∧ BU(1)+, consider the “index of the
twisted Dirac operator”

α
O(1)
8 (N, f ) = Â(TN) ch(f ∗O(1)− 1C)︸ ︷︷ ︸

could twist by any E

[N]
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8d integer invariant

For (N, f ) ∈ π8MSpin ∧ BU(1)+, consider the “index of the
twisted Dirac operator”

α
O(1)
8 (N, f ) = Â(TN)ch(f ∗O(1)− 1C)[N]

By APS, this is a K -theory pushforward2

[O(1)− 1C] ∈KU(BU(1)) KU(N) KU(pt) ∼= Z

H(N;Q) H(pt;Q) ∼= Q

f ∗ i!

Â(N)ch ∫
N

2Can also define as a KO pushforward
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8d integer invariant

For (N, f ) ∈ π8MSpin ∧ BU(1)+, consider the “index of the
twisted Dirac operator”

α
O(1)
8 (N, f ) = Â(TN)ch(f ∗O(1)− 1C)[N]

By APS, this is a K -theory pushforward2

[O(1)− 1C] ∈KU(BU(1)) KU(N) KU(pt) ∼= Z

H(N;Q) H(pt;Q) ∼= Q

f ∗ i!

Â(N)ch ∫
N

So it defines an integer-valued map

α
O(1)
8 : π8MSpin ∧ BU(1)−nT → Z

2Can also define as a KO pushforward
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8d integer invariant

Claim

α
O(1)
8 can take on any integer value.

Proof. Consider a degree 4 hypersurface N ⊂ CP5, it naturally
comes equipped with f : N ⊂ CP5 → CP∞. We have
TN +O(1) = 6O(1)−O(4), so

p1(TN) = (6− 16)x2 = −10x2

It follows that

α
O(1)
8 (N, f ) =

∫
N
10x4/48 + x4/24 =

∫
N
12x4/48

=

∫
P5

4(12h4/48) = 1
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8d integer invariant

The invariant can be written as

α
O(1)
8 (N, f ) = Â(TN)ch(f ∗O(1)− 1C)[N]

= −
∫
N
(p1(TN)− 2x2)x2/48

= −
∫
N
p1(TN − f ∗T )x2/48
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Extending to the relative groups

Take (N,M, f , ϕ) ∈ π8MSpin/MString ∧ BU(1)−T ,

BString

M BSpin
TM−f |∗∂NT

ϕ

BString is 7-connected, so we may choose a trivialization ϕ̃ of
TM − f |∗∂NT
This defines a relative KO class [TN − f ∗T ]

ϕ̃
∈ KO(N,M)

and a relative class p1([TN − f ∗T ]
ϕ̃
) ∈ H4(N,M)

Define α
O(1)
rel = −p1([TN − f ∗T ]

ϕ̃
)c1(L)2[N] using

Poincare-Lefschetz duality



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Extending to the relative groups

Take (N,M, f , ϕ) ∈ π8MSpin/MString ∧ BU(1)−T ,

BString

M BSpin
TM−f |∗∂NT

ϕ

BString is 7-connected, so we may choose a trivialization ϕ̃ of
TM − f |∗∂NT

This defines a relative KO class [TN − f ∗T ]
ϕ̃
∈ KO(N,M)

and a relative class p1([TN − f ∗T ]
ϕ̃
) ∈ H4(N,M)

Define α
O(1)
rel = −p1([TN − f ∗T ]

ϕ̃
)c1(L)2[N] using

Poincare-Lefschetz duality



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Extending to the relative groups

Take (N,M, f , ϕ) ∈ π8MSpin/MString ∧ BU(1)−T ,

BString

M BSpin
TM−f |∗∂NT

ϕ

BString is 7-connected, so we may choose a trivialization ϕ̃ of
TM − f |∗∂NT
This defines a relative KO class [TN − f ∗T ]

ϕ̃
∈ KO(N,M)

and a relative class p1([TN − f ∗T ]
ϕ̃
) ∈ H4(N,M)

Define α
O(1)
rel = −p1([TN − f ∗T ]

ϕ̃
)c1(L)2[N] using

Poincare-Lefschetz duality



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Extending to the relative groups

Take (N,M, f , ϕ) ∈ π8MSpin/MString ∧ BU(1)−T ,

BString

M BSpin
TM−f |∗∂NT

ϕ

BString is 7-connected, so we may choose a trivialization ϕ̃ of
TM − f |∗∂NT
This defines a relative KO class [TN − f ∗T ]

ϕ̃
∈ KO(N,M)

and a relative class p1([TN − f ∗T ]
ϕ̃
) ∈ H4(N,M)

Define α
O(1)
rel = −p1([TN − f ∗T ]

ϕ̃
)c1(L)2[N] using

Poincare-Lefschetz duality



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Extending to the relative groups

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−T

Z Q

α
O(1)
8 α

O(1)
rel
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Descending to a 7d invariant

π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Q Q/Z

α
O(1)
rel

α
O(1)
7
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Descending to a 7d invariant

π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Q Q/Z

α
O(1)
rel

α
O(1)
7

ϕ : M
TM−f ∗T−−−−−−→ BString lifts to a framing of TM − f ∗T
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Descending to a 7d invariant

π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Q Q/Z

α
O(1)
rel

α
O(1)
7

ϕ : M
TM−f ∗T−−−−−−→ BString lifts to a framing of TM − f ∗T

π7(MSpin ∧ BU(1)+) ≃ 0 so there exists a pair (N8, f̃ ) with
(M, f ) = ∂(N, f̃ )
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Descending to a 7d invariant

π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Q Q/Z

α
O(1)
rel

α
O(1)
7

ϕ : M
TM−f ∗T−−−−−−→ BString lifts to a framing of TM − f ∗T

π7(MSpin ∧ BU(1)+) ≃ 0 so there exists a pair (N8, f̃ ) with
(M, f ) = ∂(N, f̃ )

Set α
O(1)
7 (M, f , ϕ) := α

O(1)
rel (N,M)
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Summary

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Z Q Q/Z
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Summary

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Z Q Q/Z

Index of Dirac operator twisted by O(1)− 1C is a K -theory
pushforward.
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Summary

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Z Q Q/Z

It factors a p1([TN − f ∗T ]) so it extends to a relative invariant.



Anomalies in QFT IFTs and bordism MString ∧ BU(1)−nT A bordism invariant Manifold generators

Summary

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−T π7MString ∧ BU(1)−T

Z Q Q/Z

Any twisted string 7-manifold is on the boundary of a spin
8-manifold so this descends to a 7d invariant.
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Summary

π8MSpin ∧ BU(1)+ π8MSpin/MString ∧ BU(1)−nT π7MString ∧ BU(1)−nT

Z Q Q/Z

General case: need to choose E to twist Dirac operator by that
both descends and detects the most torsion.
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Manifold generators
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Sphere bundle generators

Twisted string structures on S(V )

Given a rank 4 bundle Vp,χ
p−→ CP2 with p = p1(Vp,χ),

χ = e(Vp,χ),
(p
2

)
≡ χ (mod 2)

When is D(Vp,χ) spin?

Exactly when p is odd, in which case
it has a unique spin structure.

When does S(Vp,χ) admit a (BU(1),−T )-twisted string
structure?

KO(D(V ),S(V )) → K̃O(D(V )) ∋ [TD(V )− f ∗T ]

[TD(V )− f ∗T ] = [V + 3O(1)− (O(1) +O(−1))]
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Sphere bundle generators

α
O(1)
7 on −T -twisted sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

Given a rank 4 bundle Vp,χ
p−→ CP2 with

p = p1(Vp,χ), χ = e(Vp,χ), S(Vp,χ) admits a (BU(1),−T )-twisted
string structure exactly when

p + 1 ≡ 0 (mod 2χ)

in which case

α7(S(Vp,χ)) = −p + 1

48χ
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Sphere bundle generators

αE
7 on −nT -twisted sphere bundles

Theorem (Basile–Krulewski–Leone–P.-T.)

Given a rank 4 bundle Vp,χ
p−→ CP2 with

p = p1(Vp,χ), χ = e(Vp,χ), S(Vp,χ) admits a (BU(1),−T )-twisted
string structure exactly when

p + 3− 2n ≡ 0 (mod 2χ)

in which case

αE
7 = −ch2(E )(p + 3− 2n)

48χ
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Sphere bundle generators

Order of the n = 1 bordism group

p = 3, χ = 1 satisfies
(3
2

)
≡ 1 (mod 2), 3 + 1 ≡ 0 mod 2 and

α
O(1)
7 (S(V3,1)) = − 1

12
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Thank you!
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