
1. Lecture: Gauß-Manin Connections

1.1. Introduction. This first lecture will review various facts about
connections. An excellent reference is [?].

Let S be a smooth algebraic variety over C, and let E be a vector
bundle on S. We write OS for the (Zariski)-sheaf of functions (in the
sense of algebraic geometry) on S. (Note, however, it will sometimes be
convenient to shift and work with holomorphic functions and analytic
manifolds. To be precise, we should write OXan in this case, but pre-
cision is an ideal not always achieved. In the same spirit we write Ω1

S

for the sheaf of algebraic (or sometimes analytic) differential 1-forms
on S.

Facts 1.1.1. (i) Ω1
S is the coherent sheaf generated by symbols df for

f a section of OS, subject to the relations df + dg = d(f + g) and
d(fg) = fdg + gdf .
(ii) Ω1

S = T∨S , the dual of the tangent bundle.
(iii) analytically locally, if s1, . . . , sn are local coordinates, Ω1

S is free on
generators ds1, . . . , dsn.

A connection ∇ on E, is a C-linear map

(1.1.1) ∇ : E → E ⊗OS
Ω1
S,

satisfying the following condition

(1.1.2) ∇(fe) = f∇(e) + e⊗ df.

If D is a derivation (i.e. D is a section of the tangent bundle TS) then
by (ii), we may define

∇D := (D ⊗ idE) ◦ ∇ : E → E.(1.1.3)

ρ∇ : TS → EndC(E).(1.1.4)

Curvature(∇) := ∇2 = (∇⊗ idE) ◦ ∇ : E → E ⊗ Ω2
S.(1.1.5)

Here Ω2 :=
∧2 Ω1 is the sheaf of 2-forms. The connection is said to be

flat or integrable if it has curvature 0.

Remark 1.1.2. In the analytic category there is a one to one corre-
spondence between integrable connections and local systems of C-vector
spaces. Indeed, given a local system E of C-vector spaces, the bundle
E := E ⊗C OSan is coherent and admits a natural integrable connec-
tion given by exterior derivation on OSan. For the converse, one has
to show that an integrable connection on E has locally a basis of hori-
zontal sections, viz. Ean = Ean,∇=0 ⊗ OanS . This is a standard Taylor
series type result. We omit the proof.
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We will see that even in the very basic case of an affine curve, the
interplay between representations of the fundamental group and con-
nections can be quite subtle.

An integrable connection (E,∇) can be coupled to the de Rham
complex Ω∗S (for more on the de Rham complex, see below) to yield a
complex of sheaves

(1.1.6) E
∇−→ E ⊗OS

Ω1
S
∇−→ E ⊗ Ω2

S
∇−→ · · ·

The de Rham cohomology H∗dR(S,E) of E is the hypercohomology of
this complex.

Exercise 1.1.3. (i) The curvature is an OS-linear map E → E ⊗Ω2
S.

(ii) ∇ is flat ⇔ ρ∇ : TS → EndC(E) is a map of Lie algebras, i.e.

∇[D1,D2] = ∇D1 ◦ ∇D2 −∇D2 ◦ ∇D1 .

Example 1.1.4. (i) E = OS with ∇ := d : OS → Ω1
S the exterior

derivative. Flatness amounts to the fact that d2 = 0.

(ii) Take S to be an abelian variety of dimension n. Then Ω1
S
∼= OnS is

free of rank n with generators µ1, . . . , µn ∈ Γ(S,Ω1) which are closed,
i.e. dµi = 0 ∈ Ω2

S. Let M ∈ Mn,C, be an n × n matrix with entries in
Γ(S,Ω1

S) =
⊕

Cµi, and define a connection on
⊕

nOS by

(1.1.7) ∇(f1, . . . , fn) = (df1, . . . , dfn) + ~fM

The curvature is the matrix of 2-forms
∧2M = (

∑
kmik ∧ mkj). It

is not in general zero if n ≥ 2, so projective varieties can carry non-
integrable connections.

(iii) Let Ei,∇i be connections, i = 1, 2. Then E1 ⊗OS
E2 admits a

connection ∇(e1 ⊗ e2) = ∇1(e1)⊗ e2 + e1 ⊗∇2(e2). Similarly, the in-
ternal Hom sheaf Hom(E1, E2) has a connection given by ∇(φ)(e1) =
−φ(∇1(e1)) +∇2(φ(e1)).

1.2. Connections and linear differential equations. Any two con-
nections ∇1,∇2 : E → E ⊗ Ω1

S differ by a function-linear map,

(∇1 −∇2)(f · e) = f · (∇1 −∇2)(e).

Suppose, for example, that E = OnS. In this case exterior differentiation
d(f1, . . . , fn) = (df1, . . . , dfn) is a connection, so any other connection
can be written

(1.2.1) ∇ = d+ Γ; Γ ∈Mn(Ω1
S)
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Suppose S = Spec (K) where K = C(x) is a function field in one
variable (or one can take also K = C((x)), the field of laurent series in
one variable). Let ∇ : Kn → Kn ⊗ Ω1

K = Kndx be a connection. We
have from (1.2.1)

(1.2.2) ∇ d
dx

=
d

dx
+N ; N ∈Mn(K).

The matrix N depends, of course, on the choice of basis for E = Kn.
Suppose we have e ∈ E such that e,∇ d

dx
(e), . . . ,∇n−1

d
dx

(e) form a K-basis

for E. With this basis, we get

(1.2.3) N =


0 1 0 . . . . . . 0
0 0 1 . . . . . . 0
...

...
...

...
...

...
−b0 −b1 −b2 −b3 . . . −bn−1


In terms of vectors (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) we have

∇ d
dx

(0, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0) = (0, . . . , 1︸ ︷︷ ︸
p+1

, 0, . . . , 0)(1.2.4)

∇ d
dx

(0, . . . , 0, 1) = (−b0, . . . ,−bn−1)(1.2.5)

To relate this to classical differential equations, Let A be some “large”
K-algebra, and suppose the derivation d

dx
is extended as a derivation

to A. We may ask for a K-linear map φ : E → A which is compatible
with the connection in the sense that d

dx
◦ φ = φ ◦ ∇ d

dx
.

Proposition 1.2.1. The assignment φ 7→ f := φ(1, 0, . . . , 0) is a bijec-
tive correspondence between K-linear maps φ : E → A compatible with
the connection, and elements f ∈ A satisfying the linear differential
equation

(1.2.6)
dnf

dxn
+ bn−1

dnf

dxn−1
+ · · ·+ b1

df

dx
+ b0f = 0.

Proof. Straightforward. �

1.3. Gauß-Manin connections. The most important examples of
connections for us are Gauß −Manin connections. Let f : X → S
be a smooth, proper map of varieties with S assumed smooth over C.
Let Ω1

X/S be the sheaf of relative 1-forms,

(1.3.1) Ω1
X/S = Ω1

X/f
∗Ω1

S.

It is a locally free sheaf on X with local bases dx1, . . . , dxn where fibres
of X/S have dimension n and x1, . . . , xn are local coordinates along the
fibre. Exterior differentiation defines a structure of differential graded
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algebra on the exterior algebra
∧∗Ω1

X/S. By definition, the de Rham
complex of X over S is the complex Ω∗X/S:

(1.3.2) 0→ OX
d−→ Ω1

X/S
d−→ Ω2

X/S · · ·
d−→ Ωn

X/S.

When S = Spec (C), the Poincaré lemma says that in the analytic
topology, Ω∗Xan := Ω∗Xan/C is a resolution of the constant sheaf CX .

In particular, the Betti cohomology H∗(X,C) is identified with the
hypercohomology of the complex Ω∗Xan . When X admits a projective
embedding, this coincides with the algebraic hypercohomology of the
corresponding complex of Zariski sheaves of algebraic differential forms.

More generally, when S is not a point, Ω∗Xan/San is a resolution of the

inverse image f−1OS. (Nb. the sheaf-theoretic inverse image f−1OS
is not the same as OX = f ∗OS.) It follows that the hypercohomology
along the fibres is

(1.3.3) R∗f∗(Ω
∗
Xan/San) = R∗f∗(CX)⊗CS

OSan .

The expression on the right exhibits an integrable OS-connection on
relative de Rham cohomology, namely

(1.3.4) ∇(α⊗ f) :=

α⊗ df ∈ R∗f∗(CX)⊗CS
Ω1
S = R∗f∗(Ω

∗
Xan/San)⊗Oan

S
Ω1
San .

Definition 1.3.1. The above integrable connection is called the Gauß-
Manin connection on X/S.

In the projective case, known theorems relating algebraic and ana-
lytic cohomology enable one to construct the Gauß-Manin connection
on the relative algebraic de Rham cohomology, but this approach is
unsatisfactory for several reasons. Firstly it is difficult in practice to
make concrete the locally constant section decomposition as in (1.3.3).
And secondly, there is no real reason to assume f has compact fibres.
The Gauß-Manin connection is defined for any smooth f : X → S.

Construction 1.3.2. Assume simply that S is smooth and f : X → S
is smooth as well. Define a decreasing filtration on Ω∗X by defining

(1.3.5) filpΩq
X := Image(f ∗Ωp

S ⊗OX
Ωq−p
X → Ωq

X).

Thus, sections of filp have at least p ds’s coming from S. We have an
exact sequence of complexes

(1.3.6) 0→ (Ω∗−1X/S)⊗ Ω1
S → Ω∗X/fil

2 → Ω∗X/S → 0

obtained from the exact sequence

0→ fil1/fil2 → fil0/fil2 → fil0/fil1 → 0.
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The boundary map on higher derived images from (1.3.6) yields

(1.3.7) ∇ : Rpf∗Ω
∗
X/S → Rpf∗Ω

∗
X/S ⊗OS

Ω1
S.

This is the algebraic construction [].

Example 1.3.3. Suppose f : X → S is étale. Then Ω∗X/S = OX and
the connection ∇ coincides with the exterior derivative on X

(1.3.8) ∇ : OX
d−→ Ω1

X
∼= OX ⊗OS

Ω1
S.

1.4. Regular singular points. Typically, a proper map f : X → S of
smooth varieties is itself smooth only over some open S0 ⊂ S. Writing
X0 = f−1(S0), the Gauß-Manin connection yields an integrable con-
nection on R∗f∗(Ω

∗
X0/S0). An important theorem of Griffiths, [], [], says

that these Gauß-Manin connections extend across infinity with regular
singular points.

Classically, a linear differential equation

(1.4.1)
dnf

dxn
+ bn−1(x)

dn−1f

dxn−1
+ · · ·+ b1(x)

df

dx
+ b0(x)f = 0

is said to have a regular singular point at x = 0 if xn−ibi(x) is regu-
lar at x. Equivalently, the equation can be rewritten in terms of the
derivation x d

dx
:

(1.4.2) (x
d

dx
)n(f) + cn−1(x)(x

d

dx
)n−1(f) . . .

+ c1(x)(x
d

dx
)(f) + c0(x)f = 0.

where the ci(x) are regular at x = 0.

Example 1.4.1. (i) A connection on the trivial bundle OS is written
in the form ∇ = d+γ where γ = ∇(1) ∈ Γ(S,Ω1

S). When S = SpecK,
K = C(x) as above, the associated differential equation is df

dx
− γx = 0,

where γ = γxdx. There are three cases. If γx has no pole at x = 0,
the equation and the connection extend across x = 0. If γx has a pole
of order 1, the equation and the connection are said to have a regular
singular point. If γx has a pole of order ≥ 2 at x = 0 the equation and
the connection have an irregular singularity. Looking at solutions, the
calculation becomes
(1.4.3)

∇(1) = g(x)dx, ∇(f(x)) = df + f · g(x)dx, f = exp(−
∫
g(x)dx).

The solution f has an exponential singularity at x = 0 if g has a pole
of order ≥ 2. If g(x) = c/x + h(x) where h(x) has no pole at x = 0,
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the solution looks like x−cF (x) with F (x) smooth at x = 0. More con-
cretely, for S = Gm = P1 − {0,∞} one has the regular singular point
connection on OS given by ∇(1) = cdt/t with c constant. It has solu-
tion tc. For S = A1 and P (t) ∈ C[t] a non-constant polynomial, the
connection ∇(1) = dP has an irregular singular point at infinity with
solution eP (x).

(ii)(Bessel equation) For any integer n, the Bessel equation of order
n ([], §17.11), is given by

(1.4.4)
d2f

dx2
+

1

x

df

dx
+ (1− n2

x2
)f = 0

This equation has a regular singular point at x = 0. At ∞, writing
y = 1/x, we find d2

dx2
= 2y3 d

dy
+ y4 d2

dy2
and the equation becomes

(1.4.5) y4
d2f

dy2
+ y3

df

dy
+ (1− n2y2)f = 0

which has an irregular singular point at y = 0.

Let D =
⋃
Di ⊂ S be a normal crossings divisor, which means that

for any point s ∈ S there will be local coordinates {xj}j∈J such that in
some neighborhood of s, the divisor D will be defined by

∏
j∈JD xj = 0,

the product taken over some subset JD ⊂ J . The sheaf of 1-forms with
log poles on D, Ω1

X(logD) ⊃ Ω1
X is generated locally by dxj, j 6∈ JD

and dxj/xj, j ∈ JD. The sheaf of logarithmic 1-forms is locally free of
rank m = dimS, and one defines log forms of degree p, Ωp

S(logD) :=∧p Ω1
S(logD). The exterior derivative extends to log forms, so one gets

a log de Rham complex

(1.4.6) OS
d−→ Ω1

S(logD)
d−→ · · · d−→ Ωm

S (logD)

A connection with log poles along D for a coherent sheaf E on S is
a map ∇ : E → E ⊗OS

Ω1
S(logD) satisfying the derivation property

(1.1.2).
Let K = C(x) (or C((x))) as above, and let Λ ⊂ K be the local ring

of elements with no pole at x = 0. Let ∇ : E → E ⊗ Ω1
S(log 0) be a

connection on S = Spec (Λ) with a log pole at 0. We assume E ∼= Λn

is a free module.

Exercise 1.4.2. (i) Assume E has a “cyclic vector”, i.e. ∃e ∈ E such
that e, x∇x(e), . . . , (x∇x)

n−1(e) span E as a Λ-module. Associate to
(E,∇, e) a linear differential equation with regular singular points.
(ii) Conversely, given a differential equation with regular singular point
at x = 0, construct a connection on Spec Λ with a log pole at the origin.
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Consider now f : X → S with X,S smooth and f proper. Let
S0 ⊂ S be open, dense such that f 0 : X0 = f−1(S0) → S0 is smooth.
Griffiths regularity theorem says that R∗f 0

∗ (Ω
∗
X0/S0), which is a locally

free sheaf with integrable connection on S0 has regular singular points
on S−S0. One has to be a bit careful about what that means, however.
For a precise discussion in the general case, see []. When dimS = 1,
the situation is easier

Theorem 1.4.3. In the above situation, assume dimS = 1. Then
R∗f 0

∗ (Ω
∗
X0/S0) extends to a connection over S with log poles on S−S0.

(The extension is not unique, however.)

2. Lecture: Periods

2.1. Introduction. Let X be a smooth variety. There are a number
of ways one can extract information from the basic topological duality

(2.1.1) Hp(X,C)×Hp(X,Ω∗X)→ C.
(i) As a consequence of the duality, de Rham cohomology is identified
with C-Betti cohomology, and hence it carries a Q-structure given by
Q-Betti cohomology. It also carries a Hodge filtration and a (rationally
defined) weight filtration. These data constitute a Hodge structure.
(ii) When X is defined as an algebraic variety over a subfield k ⊂ C,
the periods

∫
σ
ω can be thought of as entries in a double coset in

GLn(Q)\GLn(C)/GLn(k).

These periods are of fundamental importance in diophantine geometry
and number theory.
(iii) Of greater interest to us will be the variational structure. Given
f : X → S smooth, a locally constant Betti homology class {σs}s∈S
defines a map of sheaves (p = dimR σs)

(2.1.2)

∫
σs

: Rpf∗(Ω
∗
X/S)→ ÕSan .

Here Õ is the sheaf of multivalued analytic functions (i.e. the push-
forward of the sheaf of analytic functions on the universal cover of S.

When S is contractible, Õ = O.) The rule in calculus for differentiating
under the integral sign translates in this context as

(2.1.3) dS̃ ◦
∫
σs

=

∫
σs

◦∇GM

(where ∇GM is the Gauß-Manin connection for X/S.) This means that∫
σs

is a solution for the Gauß-Manin connection.
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Example 2.1.1. (i) Let f : T → S be a finite, étale cover, and take
E := f∗OT . Endow E with the structure of connection as in example

1.3.3. Writing S̃ for the universal cover and fixing basepoints, one has

S̃ → T → S and hence a map E → ÕS which can be interpreted locally
on S as zero dimensional integration over the family of points on T
given by a local analytic section σ : S → T through the basepoint on T .

(ii) (Picard-Fuchs equations). Let f : X → S be smooth and proper and
assume dimS = 1 with local coordinate z. The OS-module Rpf∗(Ω

∗
X/S)

is locally free of finite rank r. Let ω be a section. Then there will
be a relation with coefficients in OS between ω,∇ d

dz
(ω), . . . , (∇ d

dz
)r(ω).

Localizing on S one can arrange that the relation take the form

P0ω + P1∇ d
dz

(ω) + · · ·+ Pr−1(∇ d
dz

)r−1(ω) + (∇ d
dz

)r(ω) = 0.

Given a family of p-cycles σs as above, one deduces that the function
F (s) =

∫
σs
ω satisfies the differential equation (Picard-Fuchs equation)

(2.1.4) (
d

dz
)rF (z) + Pr−1(z)(

d

dz
)r−1F (z) · · ·+ P0(z)F (z) = 0.

2.2. Periods for connections on curves. Let S be an open smooth
curve, and write S ⊂ S for the completion. To simplify the exposition,
I assume S = Spec (A) is affine, so S − S 6= ∅.

Let (E,∇) be a algebraic connection on S. Write E = Γ(S,E), so
H∗dR(E) is calculated from the two-term complex

(2.2.1) E ∇−→ E⊗ Ω1
A.

In [], a dual homology theory is introduced, H∗(S,E
∨,∇E∨) (written

as H∗(S, S−S,E∨,∇∨) in that reference. The notation used here is to
be preferred). The main point is a perfect pairing

(2.2.2) Hi(S,E
∨,∇E∨)×H i

dR(S,E)→ C

Let E = (Ean)∇=0 (resp. E∨) be the sheaf for the analytic topology
of horizontal sections of E (resp. E∨). One defines a chain complex
by coupling sections of E∨ to topological chains. (Notice that local
sections of E∨ are solutions of the connection.)

For example, to define 1-chains one takes topological 1-chains σ on S
and sections of E∨|σ which have rapid decay approaching S − S. (The
result from op. cit. is limited to dimension 1 and is fairly elementary.
Analogous results in higher dimension are much deeper.)

Example 2.2.1. If E has at worst regular singular points on S − S,
then horizontal sections never have rapid decay so chains are compact
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chains supported on S coupled to horizontal sections of E, and we have
the familiar homology associated to the local system E∨.

Suppose that S = Gm with coordinate x and ∇ : OS → Ω1
S is defined

by ∇(1) = cdx/x for c ∈ C. A solution is given by x−c. Let σ ⊂ Gm be
a circle around x = 0, and consider the solution x−c|σ. If c ∈ Z ⊂ C
then x−c is single-valued. The solution closes up and x−c|σ represents
a class in H1. In this case, the local system in trivial and we have just
constructed the non-trivial class in H1(Gm,C).

If c 6∈ Z then xc|σ is not single-valued, we do not get a co-cycle, and
indeed H1(Gm, E∨) = (0).

(ii) Take S = A1 = P1 − {∞} and E = OS. Let f ∈ C[x] be a
non-constant polynomial, and define ∇(1) = df . We have

(2.2.3) H1
dR(E) ∼= coker(C[x]→ C[x]dx); P (x) 7→ (

dP

dx
+ P

df

dx
)dx.

One checks that dimH1
dR = deg f − 1. Suppose for example f(x) = x2.

The connection is then P 7→ (dP
dx

+ 2xP )dx. The solution is exp(−x2).
To define a class in H1(E∨), we take a circle σ through x = ∞ in
such a way that the solution has rapid decay at infinity. Rapid de-
cay occurs in the two sectors −π

4
< arg x < π

4
and 3π

4
< arg x < 5π

4
.

Take σ = [−∞,∞], the real axis. the chain becomes exp(−x2)|[−∞,∞].
The Poincaré pairing H1

dR(E)×H1(E∨)→ C is associates to a 1-form
g(x)dx representing a class in H1

dR(E) the integral∫ ∞
−∞

exp(−x2)g(x)dx.

In fact, we can in this case take g(x) = 1 so the integral becomes simply∫∞
−∞ exp(−x2)dx =

√
π.

(iii) One can couple (tensor) connections. for example, on Gm define

(2.2.4) ∇(1) = dx+ cdx/x; c 6∈ Z.
One checks that H1

dR
∼= C. The solution is x−c exp(−x). Take the

path σ to run from ε > 0 to 1/ε along the real axis, then to circle
counterclockwise around ∞ and return to ε and circle counterclockwise
around 0. Then x−c exp(−x)|σ represents a class in H1(E∨). If we take
dx/x as generator of H1

dR(E) we get as period

(2.2.5)

∫
σ

exp(−x)x−cdx/x = Γ(c)(exp(−2πic)− 1).

Our path is not allwed to pass through the origin because the connection
has a regular singular point there. Note also that the period does not
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have a pole for c a negative integer.

(iv) (Bessel function again) The connection ∇(1) = ndx
x

+ z
2
d(x− 1

x
) on

OS for S = Gm has H1
dR of dimension 2. (Here, for the moment, we

take n ∈ Z, and z is a parameter. the factor of 1/2 is traditional.) We
can view this as a family parametrized by z of connections on Gm,x,
but we can also lift this relative connection for Gm,x×Gm,z/Gm,z to an
absolute integrable connection on Gm,x ×Gm,z given by

(2.2.6) ∇(1) =
ndx

x
+ d(

z

2
(x− 1

x
)).

We then can couple this absolute connection to the de Rham complex
for Gm × Gm and argue as in equation (1.3.6) to construct a twisted
Gauß-Manin connection

(2.2.7) H1
dR(Bessel(n, z))

∇GM−−−→ H1
dR(Bessel(n, z))⊗ Ω1

Gm,z
.

Our periods now become functions of z. To define the class in H1 we
couple the solution x−c exp(−z

2
(x − 1

x
)) to the path σ which we take to

be a circle around 0 on Gm,x. The Poincaré pairing then associates to
an element ω ∈ H1

dR(Bessel(n, z)) the integral
∫
σ
x−c exp(−z

2
(x− 1

x
))ω.

Classically, the Bessel function Jc(z) is defined by (note the sign change
for z)

(2.2.8) Jc(z) :=

∫
σ

x−c exp(
z

2
(x− 1

x
))
dx

x
.

When Re z > 0 one can extend this definition to c ∈ C by cutting σ
where it meets [−∞, 0] (say at x = −ε) and adding to σ the segments
[−∞,−ε] and [−ε,−∞]. Since our solution has rapid decay at −∞
along this path, the resulting “keyhole” path is legitimate. (Note when
c 6∈ Z, our solution is not single-valued on σ.) Finally, differentiating
(2.2.8) with respect to z one verifies that the Bessel differential equa-
tion (1.4.4) coincides with the equation obtained by applying the twisted
Gauß-Manin connection (2.2.7) to the solution integral (2.2.8).

3. D-modules

Lex S be a smooth algebraic variety over C. We write D for the
Zariski sheaf of differential operators on S. It is a sheaf of non-
commutative rings contained in EndC(OS) generated by multiplica-
tion by functions and by derivations of OS. Integrable connections
on S yield D-modules, but the notion of D-module is more general
and more flexible. In particular, the derived category of D-modules
carries Grothendieck’s six functorialities. Building up the full theory
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would require more time than we have, so I will frequently short-circuit
things by restricting to the case of D-modules on curves. The sheaf D
is noetherian, and all our D-modules will coherent as D-modules (and
hence quasi-coherent as OS-modules). The basic notion of holonomic
D-module is a bit technical to explain in general, but for S a curve, a D-
coherent D-module M is holonomic iff for any (local) section m ∈ M ,
the annihilator Ann(m) ⊂ D is non-trivial. For the most part, our
modules will be holonomic. (Notice, however, that D itself is not holo-
nomic.)

3.1. Functoriality. Following [], I list some of the more elementary
and useful functoriality properties for D-modules. These are defined
on the level of the derived category, so one is dealing with complexes
of D-modules.

For f : X → Y smooth of relative dimension d, one defines

(3.1.1) f∗M := Rf∗(M ⊗OX
Ω∗X/Y )[d]

Here a D-module is coupled to the de Rham complex in much the
same way as an integrable connection. The D-module structure on
f∗M comes from a Gauß-Manin connection.

For f : X → Y arbitrary and M a D-module on Y , one defines f !M
a D-module on X as f !M = DX→Y ⊗f−1DY

f−1M [dimX − dimY ],
where DX→Y is the sheaf of differential operators f−1OY → OX . More
concretely, locally on Y if yi are a system of coordinates, and ∂

∂yi
are

the corresponding vector fields, we can identify

(3.1.2) f !M = OX ⊗f−1OY
f−1M [dimX − dimY ].

The action of DX is given by

ρ(g ⊗m) = ρg ⊗m; ρ ∈ OX(3.1.3)

ξ(g ⊗m) = ξ(g)⊗m+
∑
i

gξ(yi)⊗
∂

∂yi
m; ξ ∈ TX a derivation.

(3.1.4)

One checks that this is independent of the choice of the yi, and that
sections of f−1OY pass through the tensor product as necessary.

In the basic case M a connection, f !M coincides with the O-module
pullback f ∗M endowed with the pullback connection.

Definition of pushforward f∗ for a closed immersion f : X ↪→ Y is
slightly delicate because one has to worry about left versus right D-
modules. Let I ⊂ OY be the ideal defining X. Let DIY ⊂ DY be the
subring stabilizing Ik for all k. One checks that DIY is generated by OY
and by the subsheaf T IY of derivations stabilizing I. Then DIY maps to
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DX and it acts on I/I2. It therefore also acts on M ⊗ det(I/I2)∨ for
M a DX-module. By definition

(3.1.5) f∗M = DY ⊗DI
Y

(M ⊗ det(I/I2)∨).

Suppose, e.g. X = {0} ↪→ Y = A1. Then y d
dy

acts as −1 on det(I/I2)∨.

It follows that

(3.1.6) f∗C(0) = DY /DY (y, y
d

dy
+ 1) ∼= C[y, y−1]/C[y].

Note the quotient M := C[y, y−1]/C[y] is a D-module which is gener-
ated as a D-module by 1/y. We have (y d

dy
+ 1)(1/y) = 0, so we get the

above isomorphism.

Example 3.1.1. (Convolution) Let G be an algebraic group over C,
and let M,N be D-modules on G. The convolution M ∗ N is defined
by

(3.1.7) M ∗N = µ∗(M �N).

Here M�N is the exterior tensor product on G×G and µ : G×G→ G
is the group law.

3.2. Hypergeometric D-modules. We will be particularly interested
in D-modules on An and on Gn

m. In such affine situations, there is no
need to work with sheaves of differential operators, it suffices to con-
sider modules for the rings (∂i = d

dxi
. The ring of differential operators

on affine space is called the Weyl algebra.)
(3.2.1)

C[x1, . . . , xd, ∂1, . . . , ∂d]; C[x1, x
−1
1 , . . . , xd, x

−1
d , x1∂1, . . . , xd∂d]

Indeed we shall spend most of our time on the case d = 1. Our basic
references are [], [], and [].

Example 3.2.1. (Fourier transform) The map

(3.2.2) FT : D → D; xi → ∂i, ∂i → −xi
is an automorphism of the Weyl algebra. The fourier transform of a
D-module M on An is the D-module

(3.2.3) FT (M) := DFT⊗DM
where the notation means the D on the left of the tensor is viewed as
a right D-module via FT : D → D. The most important example is
the case d = 1, M = D/DP where P =

∑
k fk(x)∂k. Then FT (M) =

D/DP ∗ where P ∗ =
∑

k fk(∂)(−x)k. Thus, e.g.

FT (O) = FT (D/D∂) = D/Dx = C[x, x−1]/C[x] =: δ0.
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Definition 3.2.2. Let P,Q be non-constant polynomials of degrees
n,m in one variable x. Write

(3.2.4) Hyp(P,Q) := P (D)− xQ(D); D := x∂.

The corresponding hypergeometric D-module on Gm is

H(P,Q) := C[x, x−1, D]/C[x, x−1, D]Hyp(P,Q).

Scaling Hyp(P,Q) we may assume Q is monic. We write

Q =
∏

(t− βj), P = λ
∏

(t− αi); αi, βj, λ ∈ C(3.2.5)

Hyp(P,Q) = Hypλ(α, β), H(P,Q) = Hλ(α, β).

Proposition 3.2.3. If n 6= m, H(P,Q) is a connection on Gm. If
n = m, the equation is regular singular at x = 0, λ,∞ and has no
other singularities.

Proof. If n 6= m, we may multiply on the left by x−1 and replace x
by x−1 to arrange that n > m. We have then P (D) − xQ(D) =
a0D

n +a1(x)Dn−1 + · · ·+an(x) where 0 6= a0 ∈ C and ai(x) has degree
≤ 1 in x for i ≥ 1. It follows (cf. the discussion in section 1.4) that at
0 this equation has at worst a singular point at ∞.

Suppose now n = m. Replacing x by λx and factoring out the
constant λ, we can arrange

Hyp(P,Q) = (x− 1)(Dn +
`1(x)

x− 1
Dn−1 + · · ·+ `n(x)

x− 1
),

where `i(x) has degree ≤ 1 in x. Now we have at worst regular singu-
larities at 0,∞, and in addition we may have a regular singularity at
x = 1. Translating back, this becomes a regular singularity at λ for
Hλ(P,Q). �

To fix ideas, take λ = 1 and consider Hyp1(α, β) as a differential
equation with at worst regular singular points at x = 0, 1,∞. Let
V (α, β) be the local solutions of Hyp1(α, β), viewed as a subspace of
the space of analytic functions on some disk in Gm − {1}. If we write
P (D) = (D − α1)R(D) with R(D) of degree n− 1, we get

(3.2.6) (P (D)− xQ(D))(D − α1 + 1)

= (D − α1)((D − α1 + 1)R(D)− xQ(D)).

As a consequence multiplication by D−α1+1 intertwines the two local
systems

(3.2.7) D − α1 + 1 : V (α1 − 1, α2, . . . , β1, . . .)→ V (α1, . . . , β1, . . .)
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If (D− α1 + 1)v = 0, then Dv = (α1− 1)v. The only way we can have
v ∈ V (α1 − 1, α2, . . . , β1, . . .) is if some βj = α1 − 1. The most precise
result in this direction is ([], proposition 3.2, and corollary 3.2.1)

Proposition 3.2.4. (i) Hλ(α, β) is an irreducible D-module on Gm if
and only if ∀i, j; αi 6≡ βj mod Z.
(ii) The isomorphism class of Hλ(α, β) for λ fixed depends only on the
α’s and β’s mod Z.

Proof. Omitted. �

3.3. Hypergeometric Group. We focus on the hypergeometric

H1(α1, . . . , αn, β1, . . . , βn)

with αi − βj 6∈ Z for all i, j. Consider a connection with a log pole

(3.3.1) ∇ : E → E ⊗ Ω1
S(logD),

where D ⊂ S is a smooth divisor. Residue defines a map res :
Ω1
S(logD)→ OD and we can define an endomorphism res(∇) of E⊗OD

via the commutative diagram

(3.3.2)

E
∇−−−→ E ⊗ Ω1

S(logD)y res

y
E ⊗OS

OD
res(∇)−−−−→ E ⊗OS

OD.
Suppose now that S is a curve, and D ⊂ S is a point. A classical
result ([?], corollaire 1.17.2) says that exp(−2πiRes(∇)) has the same
characteristic polynomial as the monodromy matrix for the local sys-
tem of horizontal sections of ∇ over a punctured disk around D. The
eigenvalues of Res(∇) are called local exponents.

Proposition 3.3.1. The local exponents for H1(α, β) are

(3.3.3)


α1, . . . , αn x = 0

β1, . . . , βn x =∞
0, 1, 2, . . . , n− 2, γ :=

∑n
i=1 βi −

∑n
j=1 αj + n− 1 x = 1.

Proof. The computations at 0,∞ are left for the reader. At x = 1, we
can use the indicial equation as calculated in [?, ?], lemma 1.3.2. The
equation

(3.3.4)
n∏
1

(x
d

dx
− αi)− x

n∏
1

(x
d

dx
− βj)

= (1− x)(x
d

dx
)n + (−

∑
αi + x

∑
βj)(x

d

dx
)n−1 +R(x, x

d

dx
)
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where R has degree ≤ n − 2 in x d
dx

. Dividing through by xn(1 − x)
yields

(3.3.5) (
d

dx
)n +

(−
∑
αi + x

∑
βj)

(1− x)x
(
d

dx
)n−1 +R

Here R involves terms T such that either T has degree ≤ n − 2 in d
dx

and (1 − x)T is regular at x = 1 or (1 − x)T vanishes at x = 1. It
now follows from Beukers calculation that the indicial polynomial in
this case is

(3.3.6) t(t−1) · · · (t−n+1)− (−
∑

αi+
∑

βj)t(t−1) · · · (t−n+2)

The zeroes of the indicial polynomial, in this case

t = 0, 1, . . . , n− 2, (−
∑

αi +
∑

βj) + n− 1,

are the local exponents. �

We want to understand local solutions to (3.3.4) near x = 1.

Proposition 3.3.2. Consider a differential equation of the form

(3.3.7) pn(x)y(n) + · · ·+ p1(x)y′(x) + p0(x)y(x) = 0.

Suppose all the pi(x) are analytic at x = a and that pn(x) has a sim-
ple zero there. Then the differential equation has n − 1 independent
holomorphic solutions in a neighborhood of x = a.

Proof. One writes s(x) =
∑

k≥0 fk(x−a)k. Let pi(x) =
∑

j≥0 pij(x−a)j

be Taylor series expansions of the coefficients of the equation. Solv-
ing recursively for the fk making s(x) a solution, one finds an n − 1-
dimensional solution space. Then one checks using classical estimates
that these solutions are analytic at x = a. Details are left for the
reader. �

Consider now the action of π1(P1 − {0, 1,∞}, p0) on the solution
space V (α, β) as above. Let h0, h1, h∞ be the automorphisms of V cor-
responding to loops around 0, 1,∞, oriented in such a way that h0h1 =
h∞. The eigenvalues of h0 and h∞ are exp(2πiαj) and exp(2πiβk)
respectively.

Definition 3.3.3. A pseudo-reflection in Aut(V ) is an element h such
that h− Id has rank 1.

As a consequence of proposition 3.3.2, h1−Id has rank ≤ 1. Assum-
ing that the last eigenvalue exp(2πiγ) calculated in proposition 3.3.1
is not 1, we will have that h1 is a pseudo-reflection.
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Lemma 3.3.4. Let H ⊂ GLn(C) be a group generated by matrices
A,B. Assume AB−1 is a pseudo-reflection. Then H acts irreducibly
on Cn if and only if A and B have distinct sets of eigenvalues.

Proof. Our assumption implies that A − B has rank 1. If we have
0 ( V1 ( Cn stabilized by A and B, we must have that either A−B|V1
has rank 1 or A = B on V1. In the latter case, A and B have a common
eigenvalue. In the former case, A and B agree on Cn/V1 and again they
have a common eigenvalue.

Conversely, if A,B have a common eigenvalue λ, write W = ker(A−
B) ∼= Cn−1. Let v ∈ Cn be an eigenvector of A with eigenvalue λ.
If v ∈ W then v is also an eigenvector of B with eigenvalue λ, so
C · v ⊂ Cn is stable under H. If no such eigenvector lies in W , then
ker(A−λ)∩W = (0). Since ker(A−λ) 6= (0) by assumption and W ⊂
Cn has codimension 1, we must have (0) 6= image(A−λ) = (A−λ)(W ).
Similarly we can assume ker(B−λ)∩W = (0), so (0) 6= image(B−λ) =
(B−λ)(W ). But then (A−λ)W = (B−λ)W = (A−λ)Cn = (B−λ)Cn

is stable under H, so H does not act irreducibly. �

Proposition 3.3.5. (Levelt) Let a1, . . . , an, b1, . . . , bn ∈ C× be such
that ai 6= bj, ∀i, j. Then there exists a pair A,B ∈ GLn(C) with
eigenvalues the a’s (resp. b’s) such that AB−1 is a pseudo-reflection.
The pair A,B is unique upto conjugation.

Proof. Let A,B be given by the matrices

(3.3.8)


0 0 . . . 0 −An
1 0 . . . 0 −An−1
...

...
...

...
0 0 . . . 1 −A1




0 0 . . . 0 −Bn

1 0 . . . 0 −Bn−1
...

...
...

...
0 0 . . . 1 −B1

 .

It is straightforward to check that these matrices have the desired prop-
erties.

To check uniqueness, given A,B satisfying the conditions of the
proposition, we exhibit a basis in which A,B have the above shape.
Take W = ker(A−B) ∼= Cn−1. define

V := W ∩ A−1W ∩ · · · ∩ A−(n−2)W.

If dimV ≥ 2, then ∃ 0 6= v ∈ V ∩A−(n−1)W . The vectors v, Av, . . . , An−1v
would span an A-stable subspace S ⊂ W . Since A = B on W , S would
be stable under A,B and A = B on S. Thus, A,B would have iden-
tical eigenvalues on S, contradicting our assumption. It follows that
dimV = 1. Taking 0 6= v ∈ V , we have that v, Av, . . . , An−1v form a
basis of Cn with respect to which A,B have the form (3.3.8). �
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The idea now is to apply these results to the hypergeometric group
H(a, b) generated by A = h∞ and B = h−10 . In particular, we would like
to know when H(a, b) is a finite group. Of course, for this to happen,
a necessary condition is that the eigenvalues aj, bk be roots of unity.

The following two linear algebra lemmas appear in [?] (Lemmas 4.1,
4.2).

Lemma 3.3.6. Let P,Q ∈ GLn(C) be invertible matrices which have
the same characteristic polynomial. Assume that P is regular, so ∃v ∈
Cn, v, Pv, P 2v, . . . , P n−1v span Cn. Then the space of X ∈ Mn(C)
such that QX = XP has dimension ≥ n.

Proof. Exercise. �

Lemma 3.3.7. Let

g =


0 0 . . . gn
1 0 . . . gn−1
0 1 . . . gn−2
...

... . . .
...

0 0 . . . g1


Let X = (Xij) ∈ Mn(C) satisfy gtXg = X. Then the entries Xij

depend only on i− j.

Proof. Write g = T + γ where T =
∑n−1

1 ei+1,i and γ has the gi in the
last column and zeroes elsewhere. (Here eij is the n× n matrix with 1
in the (i, j)-th place and zeroes elsewhere.) Thus for any n× n matrix
Y , γtY has non-zero entries only in the last row. By the same token,
Y γ has non-zero entries only in the last column. It follows that

gtXg = T tXT + Z

where Z has non-zero entries only in the n-th row and column. The
assertion follows by computing W := T tXT −X and setting all entries
wij = 0 for i, j ≤ n− 1. �

Theorem 3.3.8 ([], theorem 4.3). Let H(a, b) ⊂ GLn(C) be the hy-
pergeometric group with parameters {a1, . . . , an}, {b1, . . . , bn}. Assume
both sets are invariant under the substitution z 7→ z−1. Then there
exists a non-degenerate hermitian form F (x, y) on Cn which is invari-
ant under H(a, b), viz. F (hx, hy) = F (x, y) for all h ∈ H(a, b) and
F = F t.

Proof. It suffices to find an F = (Fij) invariant for h = h−10 , h∞. Writ-
ing h−10 , h∞ in the form given in proposition 3.3.5, we find that the
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entries of (Fij) depend only on i− j. That means that there is a sub-
space of Mn(C) of C-dimension 2n−1 containing any F invariant under
h∞ and any F invariant under h−10 . The condition for F can be written

(3.3.9) Fh̄ = (ht)−1F ; h = h∞, h
−1
0 .

Since the eigenvalues are assumed invariant under z 7→ z̄−1, it follows
that h̄ and (ht)−1 have the same characteristic polynomials. By lemma
3.3.6, it follows that the solutions for h = h−10 , h∞ each have dimension
≥ n. Since they lie in a space of dimension 2n − 1, they must have
a non-trivial intersection. Thus, there exists an F which is invariant

under both h−10 and h∞. Finally, if F satisfies (3.3.9), so does F
t
. Thus,

both F + F
t

and i(F − F t
) are invariant and hermitian. One of these,

at least, is nonzero. �

We next investigate the signature of the hermitian form. From
proposition 3.3.1, the non-trivial eigenvalue of monodromy at 1 is
c := b1b2 · · · bna−11 · · · a−1n . Let ζ be a solution of ζ2c = −1, and de-
fine D := ζ(h0 − 1).

Lemma 3.3.9. There exists u ∈ Cn such that D(x) = ±F (x, u)u.

Proof. Exercise. (See [?], Prop. 4.4.) �

Theorem 3.3.10. Assume ai 6= bj and |ai| = |bj| = 1 for all 1 ≤ i, j ≤
n. Write aj = exp(2πiαj) and bj = exp(2πiβj) with αj, βj ∈ [0, 1).
Reordering, we may assume 0 ≤ α1 ≤ · · · ≤ αn < 1 and 0 ≤ β1 ≤
· · · ≤ βn < 1. Define

mj := #{k | βk < αj}.

Then the signature (p, q) of the invariant hermitian form for the hy-
pergeometric group H(a, b) is given by |p− q| = |

∑n
1 (−1)j+mj |.

Proof. Assume first the aj are all distinct. Note the invariant form F
is necessarily non-degenerate. (The null space would be stable under
H(a, b), contradicting proposition 3.3.4.) It follows that the eigenspace
decomposition of Cn according to the eigenvalues aj of h0 is orthogonal
for F . Let u be as in lemma 3.3.9, and write u = u1 + · · · + un
where h0(ui) = aiui. Now we write with D as in lemma 3.3.9 (note
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h1 = BA−1.)

(3.3.10)
n∏
k=1

(bk − t)(ak − t)−1 = det((B − t)(A− t)−1) =

det(1 + ζ−1D(1− tA−1)−1) = 1± F ((1− tA−1)−1u, u) =

1± ζ−1F (
n∑
1

aj(aj − t)−1uj,
n∑
1

uj) = 1± ζ−1
n∑
1

aj
aj − t

F (uj, uj).

(Here we have used the fact that for M a rank 1 matrix given by
M(x) = w(x)u for some vector u and some linear form w, we have
det(1 +M) = 1 + w(u).)

Taking residues at t = aj yields

F (uj, uj) = ±ζ(bj − aj)a−1j
∏
k 6=j

(bk − aj)(ak − aj)−1.

Finally, substituting ∓ζ = ia
1/2
1 · · · a

1/2
n b

−1/2
1 · · · b−1/2n one finds

(3.3.11) F (uj, uj) = 2 sin π(βj − αj)
∏
k 6=j

sin π(βk − αj)
sin π(αk − αj)

.

The assertion of the theorem follows (in the case aj all distinct) by
computing the signs of these products. By continuity, the assertion
remains true when the aj are not all distinct. �

Corollary 3.3.11. With assumptions as above, the hermitian form F
is definite if and only if the aj and bk interlace on the unit circle, i.e.
each a has two b’s as nearest neighbors and vice versa.

Proof. By the theorem, F is definite if and only if the numbers j +mj

all have the same parity. �

We now consider the question of finiteness for the hypergeometric
group H(a, b). Of course, a necessary condition for finiteness is that
all the eigenvalues aj, bk must be roots of 1. Assume this is the case,
and write Q(aj, bk) = Q(exp(2πi/N)). An immediate consequence of
proposition 3.3.5 is that the matrices defining the action of H(a, b) on
Cn have coefficients in Q(exp(2πi/N)), so the galois group (Z/NZ)×

acts in the sense that given k with (k,N) = 1, the n× n-matrix repre-
senting an element in H(ak, bk) is the transform by the element σk in
the galois group of the corresponding element in H(a, b). In particular,
H(a, b) is finite if and only if H(ak, bk) is.

Theorem 3.3.12. With notation as above, H(a, b) is finite if and only
if for all k with (k,N) = 1 the akj , b

k
` interlace.
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Proof. If H(a, b) is finite, there will exist a definite F which is invariant,
so the a’s and b’s interlace. Also H(a, b) finite if and only if H(ak, bk)
finite, so the hypotheses of the theorem are necessary.

Conversely, assume the ak, bk interlace for all (k,N) = 1. Consider
the map (φ(N) = #(Z/NZ)×)

(3.3.12)
∏
k

σk : H(a, b)→
∏
k

H(ak, bk) ⊂ GLnφ(N)(C)

for a suitable basis of Cnφ(N), the image is contained in GLnφ(N)(Z).
This image leaves invariant a definite hermitian form, so it lies in a
compact unitary group. It is thus discrete and contained in a compact,
hence finite. �


