Elementary Number Theory
 Math 175, Section 30
 Autumn Quarter 2008
 Written Exercises from Weeks 3-4

Exercise 0.0.1 Find the unique prime factorizations of the following positive integers. Feel free to use technological assistance.

- 1,000,000
- 1,000,001
- 4,999,999
- $123,456,789$

Exercise 0.0.2 Use the Euclidean Algorithm to find the greatest common divisors (a, b) for the following a and b :

- $a=233$ and $b=377$
- $a=3,657,329$ and $b=1,348,867$
- $a=d-1$ and $b=d+1$ for some $d \in \mathbb{Z}$.

Exercise 0.0.3 Let $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$.
Define addition and multiplication in $\mathbb{Z}[\sqrt{-5}]$ as follows:

$$
\begin{gathered}
(a+b \sqrt{-5})+(c+d \sqrt{-5})=(a+c)+(b+d) \sqrt{-5} \\
(a+b \sqrt{-5}) \cdot(c+d \sqrt{-5})=(a c-5 b d)+(a d+b c) \sqrt{-5}
\end{gathered}
$$

Define the norm map $N: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}$ as follows:

$$
N(a+b \sqrt{-5})=a^{2}+5 b^{2}
$$

We say that an element $z \in \mathbb{Z}[\sqrt{-5}]$ is prime if there do not exist $x, y \in \mathbb{Z}[\sqrt{-5}]$, with both $N(x)>1$ and $N(y)>1$, such that $z=x y$.

1. Show that $\mathbb{Z}[\sqrt{-5}]$ is a commutative ring with identity (see Algebra script if you need the definition).
2. Show that $N(x y)=N(x) N(y)$ for any $x, y \in \mathbb{Z}[\sqrt{-5}]$.
3. Show that the only elements $x \in \mathbb{Z}[\sqrt{-5}]$ with $N(x) \leq 1$ are $x=-1,0,1$.
4. Show that $\mathbb{Z}[\sqrt{-5}]$ does not have unique factorization into primes by showing that $x=6$ can be factored into primes in two distinct ways.
