Elementary Number Theory

Math 17500, Section 30
Autumn Quarter 2008
John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/~boller/M175

Divisibility in the Integers

Definition 0.0.1 Let \mathbb{Z} be the integers, that is, the unique ordered commutative ring with identity whose positive elements satisfy the well-ordering property. In other words, the integers satisfy the following axioms:

E1. (Reflexivity, Symmetry, and Transitivity of Equality)

Reflexivity of Equality If $a \in \mathbb{Z}$, then $a=a$.
Symmetry of Equality If $a, b \in \mathbb{Z}$ and $a=b$, then $b=a$.
Transitivity of Equality If $a, b, c \in \mathbb{Z}$ and $a=b$ and $b=c$, then $a=c$.
E2. (Additive Property of Equality)
If $a, b, c \in \mathbb{Z}$ and $a=b$, then $a+c=b+c$.
E3. (Multiplicative Property of Equality)
If $a, b, c \in \mathbb{Z}$ and $a=b$, then $a \cdot c=b \cdot c$.

A1. (Closure of Addition)

If $a, b \in \mathbb{Z}$, then $a+b \in \mathbb{Z}$.
A2. (Associativity of Addition)
If $a, b, c \in \mathbb{Z}$, then $(a+b)+c=a+(b+c)$.
A3. (Commutativity of Addition)
If $a, b \in \mathbb{Z}$, then $a+b=b+a$.

A4. (Additive Identity)

There is an element $0 \in \mathbb{Z}$ such that $a+0=a$ and $0+a=a$ for every $a \in \mathbb{Z}$.
A5. (Additive Inverses)
For each element $a \in \mathbb{Z}$, there is an element $-a \in \mathbb{Z}$ such that $a+(-a)=0$ and $(-a)+a=0$.

M1. (Closure of Multiplication)

If $a, b \in \mathbb{Z}$, then $a \cdot b \in \mathbb{Z}$.
M2. (Associativity of Multiplication)
If $a, b, c \in \mathbb{Z}$, then $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.

M3. (Commutativity of Multiplication)

If $a, b \in \mathbb{Z}$, then $a \cdot b=b \cdot a$.
M4. (Multiplicative Identity)
There is an element $1 \in \mathbb{Z}$ (with $1 \neq 0)$ such that $a \cdot 1=a$ and $1 \cdot a=a$ for every $a \in \mathbb{Z}$.
D. (Distributivity of Multiplication over Addition)

If $a, b, c \in \mathbb{Z}$, then $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.
O1. (Transitivity of Inequality)
If $a, b, c \in \mathbb{Z}$ and $a<b$ and $b<c$, then $a<c$.
O2. (Trichotomy)
If $a, b \in \mathbb{Z}$, then exactly one of the following is true: $a<b, a=b$, or $a>b$.
O3. (Additive Property of Inequality)
If $a, b, c \in \mathbb{Z}$ and $a<b$, then $a+c<b+c$.

O4. (Multiplicative Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and $a<b$ and $c>0$, then $a \cdot c<b \cdot c$.
W. (Well-Ordering Property)

If S is a non-empty set of positive integers, then S has a least element (that is, there is some $x \in S$ such that if $y \in S$, then $x \leq y$).

Definition 0.0.2 (Subtraction) We define the difference $a-b$ to be the sum $a+(-b)$.
Theorem 0.0.3 (Cancellation Law for Addition) If $a+c=b+c$, then $a=b$.
Theorem 0.0.4 If $a \in \mathbb{Z}$, then $a \cdot 0=0$.
Theorem 0.0.5 If $a, b \in \mathbb{Z}$, then:
(i) $a(-b)=-a b$ and $(-a) b=-a b$
(ii) $(-a)(-b)=a b$

Theorem 0.0.6 If $a>0$, then $-a<0$. (And if $a<0$, then $-a>0$.)
Theorem 0.0.7 If $a<0$ and $b<c$, then $a b>a c$.
Theorem 0.0.8 If $a \neq 0$, then $a^{2}>0$.
Exercise 0.0.9 Prove that $1>0$.
Theorem 0.0.10 If $a \geq 1$ and $b>0$, then $a b \geq b$.
Theorem 0.0.11 There is no integer between 0 and 1 .
Theorem 0.0.12 (Cancellation for Multiplication) If $a \neq 0$ and $a \cdot b=a \cdot c$, then $b=c$.
Definition 0.0.13 Let $a, b \in \mathbb{Z}$. We say that b divides a (and that b is a divisor of a) and write $b \mid a$ provided that there is some $n \in \mathbb{Z}$ such that $a=b \cdot n$.

Definition 0.0.14 (Division) If $b \mid a($ with $b \neq 0)$ and c is the integer such that $a=b \cdot c$, then we define $\frac{a}{b}=c$.

Exercise 0.0.15 Show that $\frac{a}{b}$ is well-defined.

Theorem 0.0.16 If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$ and $a \mid(b-c)$.
Theorem 0.0.17 If $a \mid b$ and $c \in \mathbb{Z}$, then $a \mid(b \cdot c)$.
Theorem 0.0.18 If $a \mid b$ and $b \mid c$, then $a \mid c$.
Exercise 0.0.19 Prove that if $a \mid b$ and $a \mid c$ and $s, t \in \mathbb{Z}$, then $a \mid(s b+t c)$.
Theorem 0.0.20 If $a>0, b>0$ and $a \mid b$, then $a \leq b$.
Exercise 0.0.21 Show that any non-zero integer has a finite number of divisors.
Theorem 0.0.22 If $a \mid b$ and $b \mid a$, then $a= \pm b$.
Theorem 0.0.23 If $m \neq 0$, then $a \mid b$ if and only if $m a \mid m b$.
Theorem 0.0.24 (The Division Algorithm) If $a, b \in \mathbb{Z}$ and $b>0$, then there exist unique integers q and r such that $a=b q+r$ and $0 \leq r<b$.

Definition 0.0.25 Let $a, b \in \mathbb{Z}$, not both zero. A common divisor of a and b is defined to be any integer c such that $c \mid a$ and $c \mid b$. The greatest common divisor of a and b is denoted (a, b) and represents the largest element of the set $\{c \in \mathbb{Z}|c| a, c \mid b\}$.

Exercise 0.0.26 Show that $(a, b)=(b, a)=(a,-b)$.
Theorem 0.0.27 If $d \mid a$ and $d \mid b$, then $d \mid(a, b)$. (Hint: Do Theorem 28 first.)
Theorem 0.0.28 If $d=(a, b)$, then there exist integers x, y such that $d=x a+y b$.
Theorem 0.0.29 Deleted.
Theorem 0.0.30 If $m \in \mathbb{Z}$ and $m>0$, then $(m a, m b)=m(a, b)$.
Theorem 0.0.31 If $d \mid a$ and $d \mid b$ and $d>0$, then $\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{(a, b)}{d}$.
Definition 0.0.32 Two integers a and b are said to be relatively prime if $(a, b)=1$.
Theorem 0.0.33 If $(a, m)=1$ and $(b, m)=1$, then $(a b, m)=1$.
Theorem 0.0.34 If $c \mid a b$ and $(c, b)=1$, then $c \mid a$.
Theorem 0.0.35 (The Euclidean Algorithm)
Let $a, b \in \mathbb{Z}$ be positive integers. We apply the Division Algorithm sequentially as follows:

$$
\begin{array}{rlrl}
a & =b q_{1}+r_{1} & & 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2} & 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3} & 0<r_{3}<r_{2} \\
& \vdots & & \\
r_{k-2} & =r_{k-1} q_{k}+r_{k} & & 0<r_{k}<r_{k-1} \\
r_{k-1} & =r_{k} q_{k+1} & &
\end{array}
$$

Then $r_{k}=(a, b)$.

