Elementary Number Theory Math 17500, Section 30 Autumn Quarter 2008 John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/~boller/M175

Divisibility in the Integers

Definition 0.0.1 Let \mathbb{Z} be the *integers*, that is, the unique ordered commutative ring with identity whose positive elements satisfy the well-ordering property. In other words, the integers satisfy the following axioms:

E1. (Reflexivity, Symmetry, and Transitivity of Equality)

Reflexivity of EqualityIf $a \in \mathbb{Z}$, then a = a.Symmetry of EqualityIf $a, b \in \mathbb{Z}$ and a = b, then b = a.Transitivity of EqualityIf $a, b, c \in \mathbb{Z}$ and a = b and b = c, then a = c.

E2. (Additive Property of Equality)

If $a, b, c \in \mathbb{Z}$ and a = b, then a + c = b + c.

E3. (Multiplicative Property of Equality)

If $a, b, c \in \mathbb{Z}$ and a = b, then $a \cdot c = b \cdot c$.

A1. (Closure of Addition)

If $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$.

A2. (Associativity of Addition)

If $a, b, c \in \mathbb{Z}$, then (a + b) + c = a + (b + c).

A3. (Commutativity of Addition)

If $a, b \in \mathbb{Z}$, then a + b = b + a.

A4. (Additive Identity)

There is an element $0 \in \mathbb{Z}$ such that a + 0 = a and 0 + a = a for every $a \in \mathbb{Z}$.

A5. (Additive Inverses)

For each element $a \in \mathbb{Z}$, there is an element $-a \in \mathbb{Z}$ such that a + (-a) = 0 and (-a) + a = 0.

- M1. (Closure of Multiplication) If $a, b \in \mathbb{Z}$, then $a \cdot b \in \mathbb{Z}$.
- M2. (Associativity of Multiplication) If $a, b, c \in \mathbb{Z}$, then $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

M3. (Commutativity of Multiplication)

If $a, b \in \mathbb{Z}$, then $a \cdot b = b \cdot a$.

M4. (Multiplicative Identity)

There is an element $1 \in \mathbb{Z}$ (with $1 \neq 0$) such that $a \cdot 1 = a$ and $1 \cdot a = a$ for every $a \in \mathbb{Z}$.

D. (Distributivity of Multiplication over Addition) If $a, b, c \in \mathbb{Z}$, then $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

O1. (Transitivity of Inequality)

If $a, b, c \in \mathbb{Z}$ and a < b and b < c, then a < c.

O2. (Trichotomy)

If $a, b \in \mathbb{Z}$, then exactly one of the following is true: a < b, a = b, or a > b.

O3. (Additive Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and a < b, then a + c < b + c.

O4. (Multiplicative Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and a < b and c > 0, then $a \cdot c < b \cdot c$.

W. (Well-Ordering Property)

If S is a non-empty set of positive integers, then S has a least element (that is, there is some $x \in S$ such that if $y \in S$, then $x \leq y$).

Definition 0.0.2 (Subtraction) We define the difference a - b to be the sum a + (-b).

Theorem 0.0.3 (Cancellation Law for Addition) If a + c = b + c, then a = b.

Theorem 0.0.4 If $a \in \mathbb{Z}$, then $a \cdot 0 = 0$.

Theorem 0.0.5 If $a, b \in \mathbb{Z}$, then:

- (i) a(-b) = -ab and (-a)b = -ab
- (ii) (-a)(-b) = ab

Theorem 0.0.6 If a > 0, then -a < 0. (And if a < 0, then -a > 0.)

Theorem 0.0.7 If a < 0 and b < c, then ab > ac.

Theorem 0.0.8 If $a \neq 0$, then $a^2 > 0$.

Exercise 0.0.9 Prove that 1 > 0.

Theorem 0.0.10 If $a \ge 1$ and b > 0, then $ab \ge b$.

Theorem 0.0.11 There is no integer between 0 and 1.

Theorem 0.0.12 (Cancellation for Multiplication) If $a \neq 0$ and $a \cdot b = a \cdot c$, then b = c.

Definition 0.0.13 Let $a, b \in \mathbb{Z}$. We say that b divides a (and that b is a divisor of a) and write b|a provided that there is some $n \in \mathbb{Z}$ such that $a = b \cdot n$.

Definition 0.0.14 (Division) If b|a (with $b \neq 0$) and c is the integer such that $a = b \cdot c$, then we define $\frac{a}{b} = c$.

Exercise 0.0.15 Show that $\frac{a}{b}$ is well-defined.

Theorem 0.0.16 If a|b and a|c, then a|(b+c) and a|(b-c).

Theorem 0.0.17 If a|b and $c \in \mathbb{Z}$, then $a|(b \cdot c)$.

Theorem 0.0.18 If a|b and b|c, then a|c.

Exercise 0.0.19 Prove that if a|b and a|c and $s, t \in \mathbb{Z}$, then a|(sb + tc).

Theorem 0.0.20 If a > 0, b > 0 and a|b, then $a \le b$.

Exercise 0.0.21 Show that any non-zero integer has a finite number of divisors.

Theorem 0.0.22 If a|b and b|a, then $a = \pm b$.

Theorem 0.0.23 If $m \neq 0$, then a|b if and only if ma|mb.

Theorem 0.0.24 (The Division Algorithm) If $a, b \in \mathbb{Z}$ and b > 0, then there exist unique integers q and r such that a = bq + r and $0 \le r < b$.

Definition 0.0.25 Let $a, b \in \mathbb{Z}$, not both zero. A common divisor of a and b is defined to be any integer c such that c|a and c|b. The greatest common divisor of a and b is denoted (a, b) and represents the largest element of the set $\{c \in \mathbb{Z} \mid c|a, c|b\}$.

Exercise 0.0.26 Show that (a, b) = (b, a) = (a, -b).

Theorem 0.0.27 If d|a and d|b, then d|(a, b). (Hint: Do Theorem 28 first.)

Theorem 0.0.28 If d = (a, b), then there exist integers x, y such that d = xa + yb.

Theorem 0.0.29 Deleted.

Theorem 0.0.30 If $m \in \mathbb{Z}$ and m > 0, then (ma, mb) = m(a, b).

Theorem 0.0.31 If d|a and d|b and d > 0, then $\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{(a,b)}{d}$.

Definition 0.0.32 Two integers a and b are said to be *relatively prime* if (a, b) = 1.

Theorem 0.0.33 If (a, m) = 1 and (b, m) = 1, then (ab, m) = 1.

Theorem 0.0.34 If c|ab and (c, b) = 1, then c|a.

Theorem 0.0.35 (The Euclidean Algorithm)

Let $a, b \in \mathbb{Z}$ be positive integers. We apply the Division Algorithm sequentially as follows:

$$\begin{array}{rcl} a & = & bq_1 + r_1 & & 0 < r_1 < b \\ b & = & r_1q_2 + r_2 & & 0 < r_2 < r_1 \\ r_1 & = & r_2q_3 + r_3 & & 0 < r_3 < r_2 \\ & \vdots & & \\ r_{k-2} & = & r_{k-1}q_k + r_k & & 0 < r_k < r_{k-1} \\ r_{k-1} & = & r_kq_{k+1} & & \end{array}$$

Then $r_k = (a, b)$.