Elementary Number Theory
 Math 17500, Section 30
 Autumn Quarter 2008

Primes

Definition 0.0.1 Fix $n \in \mathbb{Z}$. An integer a is called a divisor of n provided that $a \mid n$.
Definition 0.0.2 An integer $p>1$ is called a prime provided that the only positive divisors of p are 1 and p itself. An integer $n>1$ is called composite if it is not prime.

Theorem 0.0.3 Every integer $n>1$ has at least one prime factor.
Theorem 0.0.4 Every integer $n>1$ may be factored into a product of primes.
Theorem 0.0.5 Let p be prime. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
Theorem 0.0.6 (Fundamental Theorem of Arithmetic)
Every integer $n>1$ may be factored into a product of primes in a unique way up to the order of the factors. In other words, there exists a uniquely determined set of primes $\left\{p_{1}, \ldots, p_{k}\right\}$ and a uniquely determined set of corresponding positive integers $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ such that $n=p_{1}^{\alpha_{1}} \cdots \cdots p_{k}^{\alpha_{k}}$.

Theorem 0.0.7 If $a^{2} \mid b^{2}$, then $a \mid b$.
Definition 0.0.8 A real number x is defined to be rational if there exist integers p and q such that $q \cdot x=p$ and irrational otherwise.
Exercise 0.0.9 Show that if n is a positive integer that is not a perfect square (that is, there is no $a \in \mathbb{Z}$ such that $a^{2}=n$), then \sqrt{n} is irrational. (You do not need to show that \sqrt{n} is a real number, though this is a good exercise in analysis.)

Theorem 0.0.10 There are infinitely many primes.
Exercise 0.0.11 Show that there are infinitely many primes of the form $4 n+3$.
Exercise 0.0.12 Show that if $n>0$ is composite, then there is some prime p dividing n such that $1<p \leq \sqrt{n}$.
Exercise 0.0.13 Suppose $n>0$ is composite and that p is the smallest prime dividing n.
Show that if $p>\sqrt[3]{n}$, then the integer n / p is also prime.
Theorem 0.0.14 There exist arbitrarily large gaps between consecutive primes.
Definition 0.0.15 A prime number of the form $p=2^{n}-1$ is called a Mersenne prime.
Exercise 0.0.16 Show that if $p=2^{n}-1$ is a Mersenne prime, then n itself it prime.
Exercise 0.0.17 Find the smallest prime n for which $p=2^{n}-1$ is not a Mersenne prime.
Definition 0.0.18 A prime number of the form $p=2^{n}+1$ is called a Fermat prime.
Exercise 0.0.19 Show that if $p=2^{n}+1$ is a Fermat prime, then n has no odd divisors besides 1 . (And hence $n=2^{k}$ for some $k \geq 0$.)
Exercise 0.0.20 Show that $p=2^{2^{k}}+1$ is a Fermat prime for $k=0,1,2,3,4$ but not for $k=5$.

