Elementary Number Theory

Math 17500, Section 30
Autumn Quarter 2008
John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/~boller/M175

Some Algebraic Definitions

Definition 0.0.1 A ring is a set R with two binary operations + and \cdot satisfying rules E1-E3, A1A5, M1-M2, and D from the definition of the integers. In addition (and independent of each other), the ring is said to be:

- commutative if it also satisfies M3
- with identity if it also satisfies M4
- ordered if it also satisfies O1-O4

A field is a set F with two binary operations + and \cdot satisfying rules E1-E3, A1-A5, M1-M4, and D from the definition of the integers as well as:
M5. (Multiplicative Inverses)
For any $a \in F$ with $a \neq 0$, there is an element $a^{-1} \in F$ such that $a \cdot a^{-1}=1$ and $a^{-1} \cdot a=1$.
Definition 0.0.2 A group is a set G with a binary operation * satisfying:
E1. (Reflexivity, Symmetry, and Transitivity of Equality)
Reflexivity of Equality If $a \in G$, then $a=a$.
Symmetry of Equality If $a, b \in G$ and $a=b$, then $b=a$.
Transitivity of Equality If $a, b, c \in G$ and $a=b$ and $b=c$, then $a=c$.

E2. (Equality and the Group Law)

If $a, b, c \in G$ and $a=b$, then $a * c=b * c$.
G1. (Closure)
If $a, b \in G$, then $a * b \in G$.
G2. (Associativity)
If $a, b, c \in G$, then $(a * b) * c=a *(b * c)$.
G3. (Identity)
There is an element $e \in G$ such that $a * e=a$ and $e * a=a$ for every $a \in G$.
G4. (Inverses)
For any $g \in G$, there is an element $g^{-1} \in F$ such that $g \cdot g^{-1}=1$ and $g^{-1} \cdot g=1$.

