Elementary Number Theory Math 17500, Section 30 Autumn Quarter 2008 John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/~boller/M175

Some Algebraic Definitions

Definition 0.0.1 A ring is a set R with two binary operations + and \cdot satisfying rules E1–E3, A1–A5, M1–M2, and D from the definition of the integers. In addition (and independent of each other), the ring is said to be:

- commutative if it also satisfies M3
- with identity if it also satisfies M4
- ordered if it also satisfies O1–O4

A *field* is a set F with two binary operations + and \cdot satisfying rules E1–E3, A1–A5, M1–M4, and D from the definition of the integers as well as:

M5. (Multiplicative Inverses)

For any $a \in F$ with $a \neq 0$, there is an element $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$ and $a^{-1} \cdot a = 1$.

Definition 0.0.2 A group is a set G with a binary operation * satisfying:

E1. (Reflexivity, Symmetry, and Transitivity of Equality)

Reflexivity of EqualityIf $a \in G$, then a = a.Symmetry of EqualityIf $a, b \in G$ and a = b, then b = a.Transitivity of EqualityIf $a, b, c \in G$ and a = b and b = c, then a = c.

E2. (Equality and the Group Law)

If $a, b, c \in G$ and a = b, then a * c = b * c.

G1. (Closure)

If $a, b \in G$, then $a * b \in G$.

G2. (Associativity)

If $a, b, c \in G$, then (a * b) * c = a * (b * c).

G3. (Identity)

There is an element $e \in G$ such that a * e = a and e * a = a for every $a \in G$.

G4. (Inverses)

For any $g \in G$, there is an element $g^{-1} \in F$ such that $g \cdot g^{-1} = 1$ and $g^{-1} \cdot g = 1$.